A respiratory substrate can be defined as a substance which is oxidized to yield the energy necessary for cell maintenance and growth (Wohl and James 1942). As a result of its oxidation inorganic phosphate is esterified and labile phosphorylated compounds containing high energy phosphate bonds are formed (Albaum 1952)1. It is these high energy phosphate bonds which subsequently provide the energy for all kinds of synthetic processes in the cell, and their formation represents, from the physiological point of view, an essential part of the respiratory process.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albaum, H. G.: The metabolism of phosphorylated compounds in plants. Annual Rev. Plant Physiol. 3, 35–58 (1952).Google Scholar
  2. Altschul, M., M. L. Karon and P. J. Pynn: An apparatus and method for the measurement of the respiration of cottonseed. Plant Physiol. 21, 410–415 (1946).PubMedGoogle Scholar
  3. Arnon, D. I., and F. R. Whatley: Metabolism of isolated cellular particles from photosynthetic tissues. I. Oxygen uptake and carbon dioxide evolution in the dark. Physiol. Plantarum (Copenh.) 7, 602–613 (1954).Google Scholar
  4. Axelrod, B., and A. S. Bandurski: Oxidative metabolism of hexose phosphates by higher plants. Federat. Proc. 11, 182 (1952).Google Scholar
  5. Axelrod, B., A. S. Bandurski, C. M. Greiner and Rosie Jang: The metabolism of hexose and pentose phosphates in higher plants. J. of Biol. Chem. 202, 619–634 (1953).Google Scholar
  6. Barker, J.: Analytic studies in plant respiration. Proc. Roy. Soc. Lond., Ser. B 112, 316–335 (1933a).Google Scholar
  7. Barker, J.: Analytic studies in plant respiration. Proc. Roy. Soc. Lond., Ser. B 112, 336–358 (1933b).Google Scholar
  8. Barker, J., and L. W. Mapson: Studies on the respiratory and carbohydrate metabolism of plant tissues. Proc. Roy. Soc. Lond., Ser. B 141, 321–337 (1953).Google Scholar
  9. Barker, J., and L. W. Mapson: Studies in the respiratory and carbohydrate metabolism of plant tissues. Proc. Roy. Soc. Lond., Ser. B 143, 523–549 (1955).Google Scholar
  10. Barker, J., and A. F. el Saifi: Studies in the respiratory and carbohydrate metabolism of plant tissues. Proc. Roy. Soc. Lond., Ser. B 140, 385–403 (1952).Google Scholar
  11. Barnell, H. R.: Studies in tropical fruits. Ann. of Bot., N. S. 7, 297–323 (1943).Google Scholar
  12. Barnett, R. C., H. A. Stafford, E. E. Conn and B. Vennesland: Phosphogluconic dehydrogenase in higher plants. Plant Physiol. 28, 115–122 (1953).PubMedGoogle Scholar
  13. Barron, E. S. G., G. K. K. Link, R. M. Klein and B. E. Michel: The metabolism of potato slices. Arch, of Biochem. 28, 377–398 (1950).Google Scholar
  14. Beaudreau, G. S., and LeMar F. Remmert: Krebs cycle activity of particles from bean seedlings. Arch, of Biochem. a Biophysics 55, 469–485 (1955).Google Scholar
  15. Beevers, H., and M. Gibbs: Position of C14 in alcohol and carbon dioxide formed from labeled glucose by corn root tips. Plant Physiol. 29, 318–321 (1954a).PubMedGoogle Scholar
  16. Beevers, H., and M. Gibbs: The direct oxidation pathway in plant respiration. Plant Physiol. 29, 322–324 (1954 b).PubMedGoogle Scholar
  17. Bennet-Clark, T. A., and D. Bexon: Water relations of plant cells. III. The respiration of plasmolyzed tissues. New Phytologist 42, 65–92 (1943).Google Scholar
  18. Bennett, E.: A note on the presence of pyruvic acid in Ebenezer onions. Plant Physiol. 20, 461–462 (1945).PubMedGoogle Scholar
  19. Benson, A.A., and M. Calvin: The path of carbon in photosynthesis. VII. Respiration and photosynthesis. J. of Exper. Bot. 1, 63–68 (1950).Google Scholar
  20. Bernhauer, K., u. N. Böckl: Zum Chemismus der durch Aspergillus niger bewirkten Säurebildungsvorgänge. Biochem. Z. 253, 16–24 (1932).Google Scholar
  21. Bidwell, R. G. S., G. Krotkov and G. B. Reed: Synthesis of radioactive glutamine from C14O2 in Swiss chard leaves and its isolation by paper chromatography. Arch, of Biochem. a Biophysics 48, 72–83 (1954).Google Scholar
  22. Bidwell, R. G. S., G. Krotkov and G. B. Reed: The influence of light and darkness on the metabolism of radioactive glucose and glutamine in wheat leaves. Canad. J. Bot. 33, 189–196 (1955).Google Scholar
  23. Bonner, J.: Biochemical mechanisms in the respiration of the Avena coleoptile. Arch, of Biochem. 17, 311–326 (1948).Google Scholar
  24. Bonner, J.: Relations of respiration and growth in the Avena coleoptile. Amer. J. Bot. 36, 429–436 (1949).Google Scholar
  25. Bonner, J., and A. Millerd: Oxidative phosphorylation by plant mitochondria. Arch, of Biochem. a Biophysics 42, 135–148 (1953).Google Scholar
  26. Bonner, J., and S. G. Wildman: Enzymatic mechanisms in the respiration of spinach leaves. Arch, of Biochem. 10, 497–518 (1946).Google Scholar
  27. Bonner, W., and J. Bonner: The rôle of carbon dioxide in acid formation by succulent plants. Amer. J. Bot. 35, 113–117 (1949).Google Scholar
  28. Bonnier, G., et L. Mangin: Respiration des tissues sans chlorophylle. Ann. des Sci. natur., Sér. VI 18, 293–379 (1884).Google Scholar
  29. Brodie, Anne B.: Physiological and biochemical effects of the impairment of tissue protein in the starving isolated first leaf of the wheat plant. Ph. D. Thesis. Toronto, Ontario, Canada: University of Toronto 1938.Google Scholar
  30. Brown, A. H.: The effects of light on respiration using isotopically enriched oxygen. Amer. J. Bot. 40, 719–729 (1953).Google Scholar
  31. Brown, R.: Studies on germination and seedling growth. III. Early growth in relation to certain aspects of nitrogen metabolism in the seedling of barley. Ann. of Bot., N. S. 10, 73–96 (1946).Google Scholar
  32. Brtjmmond, D.O., and R. H. Burris: Transfer of C14 by lupine mitochondria through reactions of the tricarboxylic acid cycle. Proc. Nat. Acad. Sci. U.S.A. 39, 754–759 (1953).Google Scholar
  33. Brtjmmond, D.O., and R. H. Burris: Reactions of the tricarboxylic acid cycle in green leaves. J. of Biol. Chem. 209, 755–765 (1954).Google Scholar
  34. Burris, R. H.: Organic acids jn plant metabolism. Annual Rev. Plant Physiol. 4, 91–114 (1953).Google Scholar
  35. Calvin, M.: The path of carbon in photosynthesis. J. Chem. Educat. 26, 639–657 (1939).Google Scholar
  36. Calvin, M.: The photosynthetic cycle. Report No 2924 from Radiation Laboratory, University of California, Berkeley, California, U.S.A. March 21,1955.Google Scholar
  37. Calvin,M., and P. Massini: The path of carbon in photosynthesis. II. The steady state. Experientia (Basel) 8, 445–457 (1952).Google Scholar
  38. Chrzaszcz, T., u. M. Zakomorny: Biochemische Umbildung des Zuckers durch Schimmelpilze. Die Umbildung der Fumarsäure, Anhäufung der Ameisensäure und der Chemismus der Oxalsäurebildung. Biochem. Z. 259, 156–167 (1933).Google Scholar
  39. Cowie, Lillian M., and G. Krotkov: The biosynthesis of radioactive arabinose, xylose and galactose using detached wheat seedlings. Canad. J. of Botany 35, 1–4 (1957).Google Scholar
  40. Cramer, Marian, and J. Meyers: Effects of starvation on the metabolism of Chlorella. Plant Physiol. 24, 255–264 (1949).PubMedGoogle Scholar
  41. Daggs, R. G., and H. S. Halcro-Wardlaw: The conversion of fat to carbohydrate in the germinating castor bean. II. The combustion respiratory quotient as determined by a modified oxycalorimeter. J. Gen. Physiol. 17, 303–309 (1933).PubMedGoogle Scholar
  42. Danforth, W.: Oxidative metabolism of Euglena. Arch, of Biochem. a. Biophysics 46, 164–173 (1953).Google Scholar
  43. Darby, R. T., and D. R. Goddard: Studies on the respiration of the mycelium of the fungus Myrothecium verrugaria. Amer. J. Bot. 37, 379–387 (1950).Google Scholar
  44. Davis, D.D.: The Krebs cycle enzyme system of pea seedlings. J. of Exper. Bot. 4, 173–183 (1953).Google Scholar
  45. Davis, E. A.: Likelihood of photorespiration or light-inhibited respiration in green plants, Science (Lancaster Pa.) 112, 113–115 (1950).Google Scholar
  46. Deleano, Nicolas T.: Studien über den Atmungsstoffwechsel abgeschnittener Laubblätter. Jb. wiss Bot. 51, 541–592 (1912).Google Scholar
  47. Dickens, F.: The significance of the direct pathway for glucose oxidation. Major metabolic fuels. Brook-haven Symposium in Biology No 5, September 1952, p. 134–161. Upton, N. Y.. U.S.A.: Brookhaven National Laboratory 1953.Google Scholar
  48. Doyer, Lucie C.: Energie-Umsetzungen während der Keimung von Weizenkörner. Rec. Trav. bot. néerl. 12, 369–423 (1915).Google Scholar
  49. Eny, Désiré M.: Respiration studies on Chlorella. II. Influence of various organic acids on gas exchange. Plant Physiol. 26, 268–289 (1951).PubMedGoogle Scholar
  50. Fidler, J. C.: A comparison of the aerobic and anaerobic respiration of apples. J. of Exper. Bot. 2, 41–64 (1951).Google Scholar
  51. Finkle, B. J., and D. I. Arnon: Metabolism of isolated cellular particles from photosynthetic tissues. II. Oxidative decarboxylation of oxalic acid. Physiol. Plantarum (Copenh.) 7, 614–624 (1954).Google Scholar
  52. Foster, J. W.: Chemical activities of fungi. New York: Academic Press Inc. 1949.Google Scholar
  53. Foster, J. W., and J. B. Davis: Anaerobic formation of fumaric acid by the mold Rhizopus nigricans. J. Bacter. 56, 329–339 (1948).Google Scholar
  54. Gaffron, H., and E. W. Fager: The kinetics and chemistry of photosynthesis. Annual Rev. Plant Physiol. 2, 87–114 (1951).Google Scholar
  55. Gibbs,M.: Effect of light intensity on the distribution of C14 in sunflower leaf metabolite during photosynthesis. Arch, of Biochem. a Biophysics 45, 156–160 (1953).Google Scholar
  56. Gibbs, M.: The respiration of pea plant. Oxidation of hexose phosphate and pentose phosphate by cell-free extracts of pea leaves. Plant Physiol. 29, 34–39 (1954).PubMedGoogle Scholar
  57. Gibbs, M., V.W. Cochrane, L. M. Paege and H. Wolin: Fermentation of D-xylose-1-C14 by Fusarium Uni Bailey. Arch, of Biochem. a. Biophysics 50, 237–242 (1954).Google Scholar
  58. Gibbs, M., and B. L. Horecker: The mechanism of pentose phosphate conversion to hexose monophosphates. J. of Biol. Chem. 208, 813–820 (1954).Google Scholar
  59. Gould, B. S., and A. A. Tytell: Studies in the physiology of Fusaria. The respiratory and fermentative mechanisms. J. Gen. Physiol. 24, 655–667 (1941).PubMedGoogle Scholar
  60. Gregory, F. G., and P. K. Sen: Physiological studies in plant nutrition. VI. The relation of respiration rate to the carbohydrate and nitrogen metabolism of the barley leaf as determined by nitrogen and potassium deficiency. Ann. of Bot., N. S. 1, 521–561 (1937).Google Scholar
  61. Hackett, D. P., and E. W. Simon: Oxidative activity of particles prepared from the spadix of Arum maculatum. Nature (Lond.) 173, 162–163 (1954).Google Scholar
  62. Henderson, H. M., and J. F. Stauffer: The influence of some respiratory inhibitors and intermediates on growth and respiration of excised tomato roots. Amer. J. Bot. 31, 528–535 (1944).Google Scholar
  63. Horecker, B. L.: A new pathway for the oxidation of carbohydrate. Brewers Digest 28, 214–219 (1953).Google Scholar
  64. Hoskin, F. C. G., G. Krotkov, R. Y. Moir and G. B. Heed: Production of acetate by higher plants as determined by the isotope dilution technique. Amer. J. Bot. 40, 502–507 (1953).Google Scholar
  65. Humphreys, T. E., E. H. Newcomb, Ann H. Bokman and P. K. Stumpf: Fat metabolism in higher plants. II. Oxidation of palmitate by a peanut particulate system. J. of Biol. Chem. 210, 941–948 (1954).Google Scholar
  66. Humphreys, T. E., and P. K. Stumpf: Fat metabolism in higher plants. IV. Preparation of soluble fatty acid oxidases from peanut microsomes. J. of Biol. Chem. 213, 941–949 (1955).Google Scholar
  67. James, W. O.: Plant respiration. Oxford: The Clarendon Press 1953.Google Scholar
  68. James, W. O., and H. Beevers: The respiration of Arum spadix. A rapid respiration resistant to cyanide. New Phytologist 49, 353–374 (1950).Google Scholar
  69. James, W. O., and A. H. Bunting: On the mechanism of glycolysis in barley. New Phytologist 40, 268–275 (1941).Google Scholar
  70. James, W. O., C. R. C. Heard and G. M. James: On the oxidative decomposition of hexose-diphosphate by barley. New Phytologist 43, 62–74 (1944).Google Scholar
  71. Johnson, C. M., and W. M. Hoskin: The relation of acids and peroxides in spray oils to the respiration of sprayed bean leaves and the development of injury. Plant Physiol. 27, 507–525 (1952).PubMedGoogle Scholar
  72. Karon, M. L., and A. M. Altschul: Respiration of cottonseed. Plant Physiol. 21, 506–521 (1946).PubMedGoogle Scholar
  73. Krebs, H.A.: The intermediary stages in the biological oxidation of carbohydrates. Adv. Enzymol. 3, 191–252 (1943).Google Scholar
  74. Krotkov, G.: Carbohydrate and respiratory metabolism in the isolated starving leaf of wheat. Plant Physiol. 14, 203–226 (1939a).PubMedGoogle Scholar
  75. Krotkov, GG.: Carbohydrates of wheat leaves. Plant Physiol. 14, 559–565 (1939b).PubMedGoogle Scholar
  76. Krotkov, G., and H. A. Barker: Utilization of acetate by tobacco leaves, as determined with C14. Amer. J. Bot. 35, 12–15 (1948).Google Scholar
  77. Krotkov, G., and S. Rrzvi: Metabolism of uniformly labelled maltose-C14 introduced into detached wheat and tobacco leaves. Canad. J. Bot. 34, 569–576 (1956).Google Scholar
  78. Krotkov, G., P. V. Vittorio and G. B. Reed: Synthesis of glucose and starch by tobacco leaves from HC14OOH, CH3C14OOH, CH3CHOH C14OOH, C14H3 C14HOH COOH and C6H5 C14OOH. . Arch, of Biochem. a Biophysics 51, 147–154 (1954).Google Scholar
  79. Lall, G.: Chemical studies in the physiology of apples. XIV. A method of estimating chemical change and rate of respiration in stored apples. Ann. of Bot. 48, 273–292 (1934).Google Scholar
  80. Laties, G. G.: The physical environment and oxidative and phosphorylative capacities of higher plant mitochondria. Plant Physiol. 28, 557–575 (1953 a).PubMedGoogle Scholar
  81. Laties, G. G.: Transphosphorylating systems as a controlling factor in mitochondrial respiration. Physiol. Plantarum (Copenh.) 6, 215–225 (1953 b).Google Scholar
  82. Laties, G. G.: The dual rôle of adenylate in the mitochondrial oxidations of a higher plant. Physiol. Plantarum (Copenh.) 6, 199–214 (1953 c).Google Scholar
  83. Link, G. K. K., R.M. Klein and E. S. G. Barron: Metabolism of slices of the tomato stem. J. of Exper. Bot. 3, 216–236 (1952).Google Scholar
  84. Ludwig, CA., F.E. Allison, S. R. Hoover and F.W. Minor: Biochemical nitrogen fixation studies. III. Production and oxidation of ethyl alcohol by legume nodules. Bot. Gaz. 102, 417–436 (1941).Google Scholar
  85. Maquenne, L., et E. Demoussy: Sur la valeur des coefficients chlorophylliens et leur rapports avec les quotients respiratoires réels. C. R. Acad. Sci. Paris 156, 506–512 (1913).Google Scholar
  86. Meiss, A. N.: The formation of asparagine in etiolated seedlings. Connecticut Agricult. Exper. Stat., Bull. 553 (1952).Google Scholar
  87. Mtllerd, A.: Respiratory oxidation of pyruvate by plant mitochondria. Arch, of Biochem. a. Biophysics 42, 149–163 (1953).Google Scholar
  88. Mtllerd, A., and J. Bonner: The biology of plant mitochondria. J. Histochem. a. Cytochem. 1, 254–264 (1953).Google Scholar
  89. Mtllerd, A., J. Bonner, B. Axelrod and R. Bandurski: Oxidative and phosphorylative activity of plant mitochondria. Proc. Nat. Acad. Sci. U.S.A. 37, 855–862 (1951).Google Scholar
  90. Millerd, A., J. Bonner and J. B. Biale: The climacteric rise in fruit respiration as controlled by phosphorylative coupling. Plant Physiol. 28, 521–531 (1953).PubMedGoogle Scholar
  91. Mitchell, J. E., R. H. Burris and A. J. Riker: Inhibition of respiration in plant tissues by callus stimulating substances and related chemicals. Amer. J. Bot. 36, 368–378 (1949).Google Scholar
  92. Morrison, J. F.: Enzymatic mechanisms in the respiration of rhubarb leaves. Austral. J. Exper. Biol. a. Med. Sci. 28, 311–320 (1950).Google Scholar
  93. Murlin, J. R.: The conversion of fat to carbohydrate in the germinating castor bean. I. The respiratory metabolism. J. Gen. Physiol. 17, 283–302 (1933).Google Scholar
  94. Nance, J. P.: A comparison of carbohydrate loss and carbon dioxide production during fermentation by barley roots. Amer. J. Bot. 36, 274–276 (1949).Google Scholar
  95. Naylor, A. W., and N. E. Tolbert: Glutamic acid metabolism in green and etiolated barley plants. Physiol. Plantarum (Copenh.) 9, 220–229 (1956).Google Scholar
  96. Nelson, CD., G. Krotkov and G. B. Reed: Metabolism of radioactive asparagine in wheat leaves and Lupinus angustifolius seedlings. Arch, of Biochem. a. Biophysics 44, 218–225 (1953).Google Scholar
  97. Newcomb, Eldon H., and P. K. Stumpf: Fat metabolism in higher plants. I. Biogenesis of higher fatty acids by slices of peanut cotyledons in vitro. J. of Biol. Chem. 200, 233–239 (1953).Google Scholar
  98. Nickerson, W. J.: Biology of pathogenic fungi, p. 189–216. Waltham, Mass., U.S.A.: Chronica Botanica 1947.Google Scholar
  99. Nickerson, W. J., and J.B. Chadwick: On the respiration of Dermatophytes. Arch, of Biochem. 10, 81–100 (1946).Google Scholar
  100. Nord, F. F., and L. J. Sciarini: On the mechanism of enzyme action. Part 27. The action of certain wood destroying fungi on glucose, xylose, raffinose and cellulose. Arch, of Biochem. 9, 419–437 (1946).Google Scholar
  101. Ohmura, T.: Oxidative phosphorylation by a particulate fraction from green leaves. . Arch, of Biochem. a Biophysics 57, 187–194 (1955).Google Scholar
  102. O’Kelly, J. C.: External carbohydrates in growth and respiration of pollen tubes in vitro. Amer. J. Bot. 42, 322–327 (1955).Google Scholar
  103. Palleroni, N. J., A. L. Shefener and C. C. Ltndegren: The absence of preadaptive oxidation of galactose by strains of Saccharomyces cereviseae. . Arch, of Biochem. aBiophysics 40, 22–27 (1952).Google Scholar
  104. Perlman, D.: Studies on the growth and metabolism of Polysoms anceps in submerged culture. Amer. J. Bot. 36, 180–184 (1949).Google Scholar
  105. Pierce, H. B., D. E. Sheldon and J. R. Murltn: The conversion of fat to carbohydrate in the germinating castor bean. III. The chemical analysis and correlation with respiratory exchange. J. Gen. Physiol. 17, 311–325 (1933).PubMedGoogle Scholar
  106. Platenius, H.: Effect of temperature on the respiration rate and the respiratory quotient of some vegetables. Plant Physiol. 17, 179–197 (1942).PubMedGoogle Scholar
  107. Porter, H. K., and L.H. May: Metabolism of radioactive sugars by tobacco leaf disks. J. of Exper. Bot. 6, 43–63 (1955).Google Scholar
  108. Raistrick H., and The Staff: Studies in the biochemistry of micro-organisms. Trans. Roy. Soc. Lond. B 220, 1–367 (1931).Google Scholar
  109. Ramachandran, K., and T. K. Walker: The formation of pyruvic and dimethylpyruvic acids by Aspergillus niger. . Arch, of Biochem. aBiophysics 35, 195–203 (1952).Google Scholar
  110. Rautanen, N., and J. M. Tager: The oxidation of amino acids by plant mitochondria. Biochemistry of nitrogen. A. I. Vertanen homage volume, Helsinki 1955. Publ. Suomalainen Tiedeakatemia, p. 241–250.Google Scholar
  111. Reazin, G. H.: On the dark metabolism of a golden-brown alga Ochromonas malhamensis. Amer. J. Bot. 41, 771–777 (1954).Google Scholar
  112. Roth, J. S., H. J. Eichel and E. Ginter: The oxidation of amino acids by Tetrahymena pyriformis W. Arch, of Biochem. a. Biophysics 48, 112–119 (1954).Google Scholar
  113. Schade, A. L., and K. V. Thimann: The metabolism of the water mold Leptomitus lacteus. Amer. J. Bot. 27, 659–670 (1940).Google Scholar
  114. Schwabe, G.: Über die Wirkung der Amin-säuren auf den Sauerstoff verbrauch submerser Gewächse. Protoplasma 16, 397–451 (1932).Google Scholar
  115. Sheffner, A. L., and D. O. McClary: The oxidation of galactose in the presence of 2,4-dinitrophenol as a measure of galactose adaptation in Saccharomyces cereviseae. . Arch, of Biochem. a Biophysics 57, 401–413 (1955).Google Scholar
  116. Skoog, F. K., and C. C. Lindegren: Adaptation in yeast unable to ferment glucose. J. Bacter. 53, 729–742 (1947).Google Scholar
  117. Stelling-Dekker, N. M.: Die Hefesammelung des Centralbureau voor Schimmelcultures, Teil I, Die Sporogenen Hefen. Amsterdam: Koninklijke Akademie van Wetenschappen 1931.Google Scholar
  118. Stiles, W.: Respiration. Bot. Review 1, 249–268 (1935).Google Scholar
  119. Stiles, W., and W. Leach: Respiration in plants. London: Methuen & Co. 1932.Google Scholar
  120. Strauss, B. S.: Aspects of carbohydrate metabolism of a mutant of Neurospora crassa requiring acetate for growth. Arch, of Biochem. a Biophysics 36, 33–47 (1952).Google Scholar
  121. Strauss, B. S.: Studies on the metabolism of acetate by acetate-requiring mutants of Neurospora crassa. Arch, of Biochem. a. Biophysics 55, 77–94 (1955).Google Scholar
  122. Stumpf, P. K.: Fat metabolism in higher plants. III. Enzymic oxidation of glycerol. Plant Physiol. 30, 55–58 (1955).PubMedGoogle Scholar
  123. Syrett, P. J.: The assimilation of ammonia by nitrogen-starved cells of Chlorella vulgaris. Part I. The correlation of assimilation with respiration. Ann. of Bot. 17, 1–19 (1953).Google Scholar
  124. Tager, J. M.: The oxidation of pyruvic acid by a particulate fraction from Avena seedlings. Physiol. Plantarum (Copenh.) 7, 625–636 (1954).Google Scholar
  125. Tolbert, N. E., C. O. Clagett and R. H. Burris: Products of the oxidation of glycolic acid and 1-lactic acid by enzymes from tobacco leaves. J. of Biol. Chem. 181, 905–914 (1949).Google Scholar
  126. Turner, J. S., and V. F. Hanly: Succinate and plant respiration. New Phytologist 48, 149–171 (1949).Google Scholar
  127. Ulrich, A.: Metabolism of non-volatile organic acids in excised barley roots as related to cation-anion balance during salt accumulation. Amer. J. Bot. 28, 526–537 (1941).Google Scholar
  128. Vickery, H. B.: The metabolism of the organic acids of tobacco leaves. VIII. Effect of culture of excised leaves in solutions of L-malate at pH 4 to pH 7. J. of Biol. Chem. 214, 323–333 (1955).Google Scholar
  129. Vickery, H. B., G. W. Pucher, A. J. Wakeman and C. S. Leavenworth: Chemical investigations of the rhubarb plant. Connecticut Agricult. Exper. Stat., New Haven, Conn., U.S.A. Bull. 424 (1939).Google Scholar
  130. Vittorio, P. V., G. Krotkov and G. B. Reed: Labelling in the glucose deposited as starch during photosynthesis. Proc. Soc. Exper. Biol. a. Med. 74, 775–776 (1950).Google Scholar
  131. Vittorio, P. V., G. Krotkov and G. B. Reed: Incorporation of C14 into various carbohydrates of tobacco leaves after different periods of photosynthesis in C14O2. Science (Lancaster, Pa.) 119, 906–908 (1954a).Google Scholar
  132. Vittorio, P. V., G. Krotkov and G. B. Reed: Synthesis of radioactive sucrose by tobacco leaves from C14 uniformly labelled glucose and glucose-1-phosphate. Canad. J. Bot. 32, 369–377 (1954b).Google Scholar
  133. Vittorio, P. V., G. Krotkov and G. B. Reed: Absorption and utilization of C14-glucose by detached wheat leaves. Canad. J. Bot. 33, 275–280 (1955).Google Scholar
  134. Waelsch, H.: Certain aspects of intermediary metabolism of glutamine, asparagine and glutathione. Adv. Enzymol. 13, 237–319 (1952).Google Scholar
  135. Webster, G. C., and A. W. Frenkel: Some respiratory characteristics of the blue-green alga Anabaena. Plant Physiol. 28, 63–69 (1953).PubMedGoogle Scholar
  136. Weigl, J. W., P. M. Warrington and M. Calvin: The relation of photosynthesis to respiration. J. Amer. Chem. Soc. 73, 5058–5063 (1951).Google Scholar
  137. White, H. L., and W. G. Templeman: The interaction of factors in the growth of Lemna. X. The interaction of nitrogen and light intensity in relation to respiration. Ann. of Bot., N. S. 1, 191–204 (1937).Google Scholar
  138. White, M. G., and J. J. Willaman: Biochemistry of plant diseases. X. Fermentation of pentoses by Fusarium lini. Biochemic. J. 22, 583–591 (1928).Google Scholar
  139. Wickerham, L. J., L. B. Lockwood, O. G. Pettijohn and G.E. Ward: Starch hydrolysis and fermentation by the yeast. J. Bacter. 48, 413–427 (1944).Google Scholar
  140. Wohl, K., and W. O. James: The energy changes associated with plant respiration. New Phytologist 41, 230–256 (1942).Google Scholar
  141. Wolf, F. T.: The oxidation of carbohydrates by a surface strain of Penicillium notatum. Arch, of Biochem. 13, 83–92 (1947).Google Scholar
  142. Wolin, M. J., J. B. Evans and C. F. Niven jr.: A study of the methylene blue and oxygen inhibition of pyruvate oxidation by Micrococcus pyogenes var. aureus. Arch, of Biochem. a. Biophysics 58, 356–364 (1955).Google Scholar
  143. Yarwood, C. F.: Detached leaf culture. Bot. Review 12, 1–56 (1946).Google Scholar
  144. Yemm, E. W.: The respiration of barley plants. II. Carbohydrate concentration and carbon dioxide production in starving leaves. Proc. Roy. Soc. Lond., Ser. B 117, 504–525 (1935).Google Scholar
  145. Yemm, E. W.: Respiration of barley plants. III. Protein catabolism in starving leaves. Proc. Roy. Soc. Lond., Ser. B 123, 243–273 (1937).Google Scholar
  146. Abbot, E.V.: The occurence and action of fungi in soils. Soil Sci. 16, 207–216 (1923).Google Scholar
  147. Armstrong, G. M.: Studies in the physiology of the fungi. XIV. Sulphur nutrition: The use of thiosulphate as influenced by hydrogen-ion concentration. Ann. Missouri Bot. Garden 8, 237–281 (1921).Google Scholar
  148. Atkinson, D.E.: Hydrogen metabolism in Acetobacter peroxydans. J. Bacter. 72, 189–194 (1956).Google Scholar
  149. Baalsrud, K.: Some aspects of the physiology of thiobacilli. Fourth Symposium of the Soc. Gen. Microbiol., p. 54–67. Cambridge: University Press 1954.Google Scholar
  150. Baalsrud, K., u. K. S. Baalsrud: Studies on Thiobacillus denitrificans. Arch. Mikrobiol. 20, 34–62 (1954).PubMedGoogle Scholar
  151. Barker, H. A.: Studies on the methane fermentation. VI. The influence of carbon dioxide concentration on the rate of carbon dioxide reduction by molecular hydrogen. Proc. Nat. Acad. Sci. U.S.A. 29, 184–190 (1943).Google Scholar
  152. Barker, H. A.: On the rôle of carbon dioxide in the metabolism of Clostridium thermoaceticum. Proc. Nat. Acad. Sci. U.S.A. 30, 88–90 (1944).Google Scholar
  153. Battmann, A., u. V. Denk: Zur Physiologie der Sulfatreduktion. Arch. Mikrobiol. 15, 283–307 (1950).Google Scholar
  154. Bömeke, H.: Beiträge zur Physiologie nitrifizierender Bakterien. Arch. Mikrobiol. 10, 385–445 (1939).Google Scholar
  155. Boitschenko, E. A.: Zit. nach Schlegel 1954a. Dokl. Akad. Nauk USSR., N. S. 70, 1037 (1950).Google Scholar
  156. Butlin, K. R., and M.E. Adams: Autotrophic growth of sulphate reducing bacteria. Nature (Lond.) 160, 154–155 (1947).Google Scholar
  157. Butlin, K. R., M.E. Adams and M. Thomas: The isolation and cultivation of sulphate-reducing bacteria. J. Gen. Microbiol. 3, 46–59 (1949).PubMedGoogle Scholar
  158. Cardon, B. P., and H. A. Barker: Amino acid fermentations by Clostridium propionicum and Diplococcus glycinophilus. Arch, of Biochem. 12, 165–180 (1947).Google Scholar
  159. Claren, O. B.: Zum Stoffwechsel der Leuchtbakterien. I. Liebigs Ann. 535, 122–149 (1938).Google Scholar
  160. Colmer, A. R., K. L. Temple and M. E. Hinkle: An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines. J. Bacter. 59, 317–328 (1950).Google Scholar
  161. Demolon, A.: Sur le pouvoir sulfoxydant des sols. C. r. Acad. Sci. Paris 173, 1408–1410 (1921).Google Scholar
  162. Denk, V.: Zur Frage der Ammonentstehung im Stoffkreislauf der Natur. Arch. Mikrobiol. 15, 308–314 (1950).Google Scholar
  163. Fogg, G. E.: Nitrogen fixation by photosynthetic organisms. Annual Rev. Plant Physiol. 7, 51–70 (1956).Google Scholar
  164. Frenkel, A. W., H. Gaffron and E. H. Battley: Photosynthesis and photoreduction by a species of blue-green algae. Biol. Bull. 97, 269 (1939).Google Scholar
  165. Frenkel, A. W., H. Gaffron and E. H. Battley: Photosynthesis and photoreduction by the blue-green alga, Synechococcus elongatus Näg. Biol. Bull. 99, 157–162 (1950).PubMedGoogle Scholar
  166. Frenkel, A. W., and R. A. Lewin: Photoreduction by Chlamy-domonas. Amer. J. Bot. 41, 586–589 (1954).Google Scholar
  167. Frenkel, A. W., and C. Rieger: Photoreduction in algae. Nature (Lond.) 167, 1030 (1951).Google Scholar
  168. Gaffron, H.: Über den Stoffwechsel der schwefelfreien Purpurbakterien. Biochem. Z. 260, 1–17 (1933).Google Scholar
  169. Gaffron, H.: Über den Stoffwechsel der Purpurbakterien. II. Biochem. Z. 275, 301–319 (1935a).Google Scholar
  170. Gaffron,H.: Über die Kohlensäureassimilation der roten Schwefelbakterien. II. Biochem. Z. 279, 1–33 (1935b).Google Scholar
  171. Gaffron, H.: Studies on the induction period of photosynthesis and light respiration in green algae. Carbon dioxide reduction with molecular hydrogen in green algae. Amer. J. Bot. 27, 204–216, 273–283 (1940).Google Scholar
  172. Gest, H.: Anaerobic oxidation of malate and hydrogen in the dark by Rhodospirillum rubrum. Bacter. Proc. 1950, 136–137 (1950).Google Scholar
  173. Gest,H.: Metabolic patterns in photosynthetic bacteria. Bacter. Rev. 15, 183–210 (1951).Google Scholar
  174. Gest, H.: Oxidation and evolution of molecular hydrogen by microorganisms. Bacter. Rev. 18, 43–73 (1954).Google Scholar
  175. Glover, J., M. D. Kamen and H. van Genderen: Studies on the metabolism of photosynthetic bacteria. XII. Comparative light and dark metabolism of acetate and carbonate by Rhodospirillum rubrum. Arch, of Biochem. a Biophysics 35, 384–408 (1952).Google Scholar
  176. Hamilton, P. B., and P. W. Wilson: Nitrogen fixation by Aerobacter aerogenes. Ann. Acad. Sci. fenn., Ser. A, II, Chem. 60, 139–150 (1955).Google Scholar
  177. Happold, F. C., K. J. Johnstone and H. J. Rogers: An examination of Bacterium thiocyan-oxidans. Nature (Lond.) 169, 332 (1952).Google Scholar
  178. Happold, F. C., K.J. Johnstone, H.J. Rogers and J. B. Yottatt: The isolation and characteristics of an organism oxidizing thiocyanate. J. Gen. Microbiol. 10, 261–266 (1954).PubMedGoogle Scholar
  179. Happold, F. C., and A. Key: The bacterial purification of gas-works liquors. II. The biological oxidation of ammonium thiocyanate. Biochemic. J. 31,1323–1329 (1937).Google Scholar
  180. Herisset, A.: Influence de la lumière sur la fixation de l’azot par la Nostoc commune. Bull. Soc. Chim. biol. Paris 34, 532–537 (1952).PubMedGoogle Scholar
  181. Hirsch, P., u. H. Engel: Über oligocarbophile Actinomyceten. Ber. dtsch. bot. Ges. 69, 441–454 (1956).Google Scholar
  182. Hooger-Heide, J. C., and W. Kocholaty: Metabolism of the strict anaerobes (Genus: Clostridium). II. Reduction of amino-acids with gaseous hydrogen by suspensions of CI. sporogenes. Biochemic. J. 32, 949–957 (1938).Google Scholar
  183. Kamen, M. D., and H. Gest: Evidence for a nitrogenase system in the photosynthetic bacterium, Rhodospirillum rubrum. Science (Lancaster, Pa.) 109, 560 (1949).Google Scholar
  184. Karlson, J. L., B. E. Volcani and H. A. Barker: The nutritional requirements of Clostridium aceticum. J. Bacter. 56, 781–782 (1948).Google Scholar
  185. Keil, F.: Beiträge zur Physiologie der farblosen Schwefelbakterien. Beitr. Biol. Pflanz. 11, 335–372 (1912).Google Scholar
  186. Kenten, R. H., and P. J. G. Mann: Manganese oxidation in the pea plant (Pisum sativum L.) grown under conditions of manganese toxicity. Biochemic. J. 65, 179–185 (1957).Google Scholar
  187. Kessler, E.: Reduction of nitrite with molecular hydrogen in algae, containing hydrogenase. Arch, of Biochem. a Biophysics 62, 241–242 (1956).Google Scholar
  188. Kessler, E.: Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. II. Dunkel-Reduktion von Nitrat und Nitrit mit molekularem Wasserstoff. Arch. Mikrobiol. 27, 166–181 (1957).PubMedGoogle Scholar
  189. Kistner, A.: On a bacterium oxidizing carbon monoxide. Proc. Kon. Ned. Akad. v. Wetensch., Ser. C 56, 443–453 (1953)Google Scholar
  190. Kistner, A.: Conditions determining the oxidation of carbon monoxide and of hydrogen by Hydrogenomonas carboxydovorans n. sp. Proc. Kon. Ned. Akad. v. Wetensch., Ser. C 57, 186–195 (1954).Google Scholar
  191. Klattsmeier, R. E., and R. O. Baird: Ammonium dehydrogenase. J. Bacter. 68, 129–130 (1954).Google Scholar
  192. Klein,G., u. T. Svolba: Zwischenprodukte bei Assimilation und Atmung autotropher Bakterien. Z. Bot. 19, 65–100 (1926/27).Google Scholar
  193. Kluyver, A. J., and A. Manten: Some observations on the metabolism of bacteria oxidizing molecular hydrogen. Leeuwenhoek J. Microbiol, a. Serol. 8, 71–86 (1942).Google Scholar
  194. Kluyver, A. J., and G. T. P. Schnellen: On the fermentation of carbon monoxide by pure cultures of methan bacteria. Arch, of Biochen. a. Biophysics 14, 57–70 (1947).Google Scholar
  195. Kluyver, A. J., and W. Verhoeven: Studies on true dissimilatory nitrate reduction. IV. On adaption in Micrococcus denitrificans. Leeuwenhoek J. Microbiol, a. Serol. 20, 337–358 (1954).Google Scholar
  196. Koffler, H., and P. W. Wilson: The comparative biochemistry of molecular hydrogen. In: Bacterial Physiology (ed. C. H. Werkman and P. W. Wilson), Chap. 16. New York: Academic Press 1951.Google Scholar
  197. Krasna, A. J., and D. Rittenberg: Reduction of nitrate which molecular hydrogen by Proteus vulgaris. J. Bacter. 68, 53–56 (1954).Google Scholar
  198. Lanz, I.: Schwefelkristalle in Blaualgen. Ber. dtsch. bot Ges. 60, 469–472 (1942).Google Scholar
  199. Larsen, H.: On the culture and general physiology of the green sulphur bacteria. J. Bacter. 64, 187–196 (1952).Google Scholar
  200. Larsen, H.: The photohtho-autotrophic bacteria and their energy relations. Fourth Symposium of the Soc. Gen. Microbiol., Cambridge: University Press 1954, p. 186–201.Google Scholar
  201. Larsen, H., C. S. Yocum and C. B. van Niel: On the energetics of the photo-syntheses in green sulphur bacteria. J. Gen. Physiol. 36, 161–171 (1953).Google Scholar
  202. Lascelles, J., and J. L. Still: The oxidation of molecular hydrogen by bacteria. Austral. J. Sci. 7, 93–94 (1944).Google Scholar
  203. Lascelles, JJ., and J. L. Still: Utilisation of molecular hydrogen by bacteria. Austral. J. Exper. Biol. a. Med. Sci. 24, 37–48 (1946a).Google Scholar
  204. Lascelles, J., and J. L. Still: The reduction of nitrate, nitrite and hydroxylamin by E. coli.. Austral J. Exper. Biol. a. Med. Sci. 24, 159–167 (1946b).Google Scholar
  205. Leathen, W. W., and S. A. Braley: A new iron-oxidizing bacterium: Ferrobacillus ferrooxidans. Bacter. Proc. 1954, 44.Google Scholar
  206. Leathen, W. W., N. A. Kinsel and S. A. Braley: Ferrobacillus ferrooxidans: a chemosynthetic autotrophic bacterium. J. Bacter. 72, 700–704 (1956).Google Scholar
  207. Lees, HH.: The biochemistry of the nitrifying bacteria. Fourth Symposium Soc. Gen. Microbiol., Cambridge: University Press 1954, p. 84–98.Google Scholar
  208. Lees, H.: Biochemistry of autotrophic bacteria. London: Butterworths Scient. Publ. 1955.Google Scholar
  209. Le Page, G. A.: The biochemistry of autotrophic, bacteria. The metabolism of Thiobacillus thiooxydans in the absence of oxidable sulphur. Arch, of Biochem. 1, 255–266 (1942).Google Scholar
  210. Lieske, R.: Beiträge zur Kenntnis der Physiologie von Spirophyllum ferrugineum Ellis, einem typischen Eisenbakterium. Jb. wiss Bot. 49, 91–127 (1911).Google Scholar
  211. Lindstrom, E. S., S. R. Tove and P. W. Wilson: Nitrogen fixation by the green and purple sulfur bacteria, Science (Lancaster Pa.) 112, 197–198 (1950).Google Scholar
  212. Lipman, J. G., and S. A. Waksman: The oxidation of selenium by a new group of autotrophic microorganisms, Science (Lancaster Pa.) 57, 60 (1923).Google Scholar
  213. Meiklejohn, J.: Some aspects of the physiology of the nitrifying bacteria. Fourth Symposium Soc. Gen. Microbiol., p. 68–83. Cambridge: University Press 1954.Google Scholar
  214. Nakamura, H.: Über die Photosynthese bei der schwefelfreien Purpurbakterie Rhodo-bacillus palustris. Beiträge zur Stoffwechselphysiologie der Purpurbakterien. I. Acta Phyto-chim. (Japan) 9, 189–229 (1937).Google Scholar
  215. Nakamura, H.: Über das Vorkommen der Hydrogenylase in Rhodo-bacillus palustris und über ihre Rolle im Mechanismus der bakteriellen Photosynthese. Beiträge zur Stoffwechselphysiologie der Purpurbakterien. III. Acta Phytochim. (Japan) 10, 211–218 (1937/38a).Google Scholar
  216. Nakamura, H.: Über die Rolle der Hydrogenase im Stoffwechsel von Rhodo-bacillus palustris. Beiträge zur Stoffwechselphysiologie der Purpurbakterien. IV. Acta Phytochim. (Japan) 10, 259–270 (1937/38b).Google Scholar
  217. Nakamura, H.: Über die Kohlensäureassimilation bei niederen Algen in Anwesenheit des Schwefelwasserstoffs. Acta Phytochim. (Japan) 10, 271–281 (1937/38 c).Google Scholar
  218. Nakamura, H.: Weitere Untersuchungen über den Wasserstoffumsatz bei den Purpurbakterien, nebst einer Bemerkung über die gegenseitige Beziehung zwischen Thio-und Athiorhodaceen. Beiträge zur Stoff Wechselphysiologie der Purpurbakterien. V. Acta Phytochim. (Japan) 11, 109–125 (1939/40a).Google Scholar
  219. Nakamura, H.: über die Hydrogenlyase und die Hydro-genase in Leuchtbakterien, nebst einer Bemerkung über die Möglichkeit ihrer Beteihgung am Leuchtvorgang. Acta Phytochim. (Japan) 11, 239–247 (1939/40b).Google Scholar
  220. Niel, C. B. van: On the morphology and physiology of the purple and green bacteria. Arch. Mikrobiol. 3, 1–102 (1931).Google Scholar
  221. Nakamura, H.: On the metabolism of the Thiorhodaceae. Arch. Mikrobiol. 7, 323–358 (1936).Google Scholar
  222. Nakamura, H.: The bacterial Photosyntheses and their importance for the general problems of photosynthesis. Adv. Enzymol. 1, 263–328 (1941).Google Scholar
  223. Nakamura, H.: The culture, general physiology, morphology and classification of the non-sulphur purple and brown bacteria. Bacter. Rev. 8, 1–118 (1944).Google Scholar
  224. Nakamura, H.: The comparative biochemistry of photosynthesis. Amer. Scientist 37, 371–383 (1949).Google Scholar
  225. Nakamura, H.: Bacterial photosynthesis. In: The Enzymes (ed. J. B. Sumner and K. Myrbäck), Vol. 2, part 2, p. 1074–1888. New York: Academic Press 1952.Google Scholar
  226. Niklewski, B.: Über die Wasserstoffaktivierung durch Bakterien unter besonderer Berücksichtigung der neuen Gattung Hydrogenomonas agilis. Zbl. Bakter. II 40, 430–433 (1914).Google Scholar
  227. Packer, L., and W. Vishniac: Chemosynthetic fixation of carbon dioxide and characteristics of hydrogenase in resting cell suspensions of Hydrogenomonas ruhlandii nov. spec. J. Bacter. 70, 216–223 (1955).Google Scholar
  228. Parker, C. D., and J. Prisk: The oxidation of inorganic compounds of sulphur by various sulphur bacteria. J. Gen. Microbiol. 8, 344–364 (1953).PubMedGoogle Scholar
  229. Pine, M. J., and H. A. Barker: Studies on the methane bacteria. XI. Fixation of atmospheric nitrogen by Methanobacterium omelianskyi. J. Bacter. 68, 589–591 (1954).Google Scholar
  230. Postgate, J. R.: The reduction of sulphur compounds by Desulphovibrio desulphuricans. J. Gen. Microbiol. 5, 725–738 (1951).PubMedGoogle Scholar
  231. Potter, M. C.: Bacteria as agents in the oxidation of amorphus carbon. Proc. Roy. Soc. Lond., Ser. B 80, 239–259 (1908).Google Scholar
  232. Präve, P.: Untersuchungen über die Stoffwechselphysiologie des Eisenbacteriums Leptothrix ochracea Kützing. Arch. Mikrobiol. 27, 33–62 (1957).PubMedGoogle Scholar
  233. Pringsheim, E.G.: The filamentous bacteria Sphaerotilus, Leptothrix, Cladothrix and their relation to iron and manganese. Philosophic. Trans. Roy. Soc. Lond., Ser. B 233, 453–482 (1949a).Google Scholar
  234. Pringsheim, E.G.: Iron bacteria. Biol. Rev. Cambridge Philos. Soc. 24, 200–245 (1949b).PubMedGoogle Scholar
  235. Pringsheim, E.G.: Eisenorganismen. Endeavour 11, 208–214 (1952).Google Scholar
  236. Qttastel, J. H., and P. G. Scholefield: Arsenite oxidation in soil. Soil Sci. 75, 279–285 (1953).Google Scholar
  237. Ranganayaki, S., and K. Bahadur: The growth of Pichia membranaefaciens utilizing the energy obtained by the oxidation by aeration of different metallic hydroxides. Bull. Chem. Soc. Japan 27, 313–314 (1954).Google Scholar
  238. Reppel, A.: Über einige Fragen der Oxydation des elementaren Schwefels. Z. Bakter. II 62, 290–295 (1924).Google Scholar
  239. Rippel-Baldes, A.: Mikrobiologie des Stickstoffs. Jb. Akad. Wiss. Göttingen 1941/42, 41–55.Google Scholar
  240. Roelofsen, P. A.: On the metabolism of the purple sulphur bacteria. Proc. Kon. Ned. Akad. v. Wetensch. 37, 660–669 (1934).Google Scholar
  241. Roelofsen, P. A.: On photosynthesis of the Thiorhodaceae. Diss. Utrecht 1935.Google Scholar
  242. Rosenblum, E. D., and P. W. Wilson: Molecular hydrogen and nitrogen fixation by Clostridium. J. Bacter. 59, 83–91 (1950).Google Scholar
  243. Ruhland, W.: Aktivierung von Wasserstoff und Kohlensäureassimilation durch Bakterien. Ber. dtsch. bot Ges. 40, 180–184 (1922).Google Scholar
  244. Ruhland, W.: Beiträge zur Physiologie der Knallgasbakterien. Jb. wiss. Bot. 63, 321–389 (1924).Google Scholar
  245. Sartory, A., et J. Meyer: Contribution a l’étude du métabolisme hydrocarbone des bactéries ferrugineuses. C. r. Acad. Sci. Paris 225, 541–542 (1947).PubMedGoogle Scholar
  246. Schatz, A.: Uptake of carbon dioxide, hydrogen and oxygen by Hydrogenomonas facilis. J. Gen. Microbiol. 6, 329–335 (1952).PubMedGoogle Scholar
  247. Schatz, A., and J. C. Bovell: Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. J. Bacter. 63, 87–98 (1952).Google Scholar
  248. Schatz, A., and R. R. Mohan: Oxidation of ammonia and urea (heterotrophic nitrification) by Strepto-myces nitrificans. J. Cellul. a. Comp. Physiol. 45, 331–342 (1955).Google Scholar
  249. Schlegel, H.-G.: Die Rolle des molekularen Wasserstoffs im Stoffwechsel der Mikroorganismen. Arch. Mikrobiol. 20, 293–322 (1954a).PubMedGoogle Scholar
  250. Schlegel, H.-G.: Untersuchungen über den Phosphatstoffwechsel der wasserstoffoxydierenden Bakterien. Arch. Mikrobiol. 21, 127–155 (1954b).Google Scholar
  251. Schnellen, C. G. T. P.: Onderzoekingen over de Methangisting. Diss. Delft 1947.Google Scholar
  252. Schumacher, W.: Lehrbuch der Botanik für Hochschulen, Teil II, Physiologie, S. 210. Stuttgart: Gustav Fischer 1954.Google Scholar
  253. Senez, J. C.: Sur l’activité et la croissance des bactéries anaerobies sulfato-réductrices en cultures semi-autotrophes. Ann. Inst. Pasteur 84, 595–604 (1953).Google Scholar
  254. Senez, J. C.: Consommation de l’hydrogène moléculaire par les suspensions nonproliférantes et par les extraits cellulaires de Desulfovibrio (Sporovibrio) desulfuricans. Bull. Soc. Chim. biol. Paris 37, 1135–1146 (1955).PubMedGoogle Scholar
  255. Senez, J. C., et B. E. Volcani: Utilisation de l’hydrogène moléculaire par des souches de bactéries sulfatoréductrices d’origine marine. C. r. Acad. Sci. Paris 232, 1035–1036 (1951).Google Scholar
  256. Sijderius, R.: Heterotrophe bacterien, die Thiosulfaat oxydeeren. Diss. Amsterdam 1946.Google Scholar
  257. Sisler, F.D., and C. E. ZoBell: Hydrogen-utilizing sulfate-reducing bacteria in marine sediments. J. Bacter. 60, 747–756 (1950).Google Scholar
  258. Sisler, F.D., and C. E. ZoBell: Nitrogen fixation by sulphatreducing bacteria indicated by nitrogen/argon ratios. Science (Lancaster, Pa.) 113, 511–512 (1951a).Google Scholar
  259. Sisler, F.D., and C. E. ZoBell: Hydrogen utilisation by some marine sulphate-reducing bacteria. J. Bacter. 62, 117–127 (1951b).Google Scholar
  260. Stadtman, T. C., and H. A. Barker: A new formate-decomposing bacterium, Methanococcus vannielii. J. Bacter. 62, 269–280 (1951).Google Scholar
  261. Starkey, R. L.: Cultivation of organisms concerned in the oxidation of thiosulfate. J. Bacter. 28, 365–386 (1934a).Google Scholar
  262. Sisler, F.D., and C. E. ZoBell: The production of polythionates from thiosulfate by microorganisms. J. Bacter. 28, 387—280 (1934b).Google Scholar
  263. Sisler, F.D., and C. E. ZoBell: Products of the oxidation of thiosulfate by bacteria in mineral media. J. Gen. Physiol. 18, 325–349 (1935).Google Scholar
  264. Stepehnson, M.: Formic hydro-genlyase. Erg. Enzymforsch. 6, 139–156 (1937).Google Scholar
  265. Stepehnson, M.: Some aspects of hydrogen transfer. Leeuwenhoek J. Microbiol, a. Serol. 12, 33–48 (1947).Google Scholar
  266. Stephenson, M., and L. H. Stickland: Hydrogenase: a bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochemic. J. 25, 205–214 (1931a).Google Scholar
  267. Stephenson, M., and L. H. Stickland: Hydrogenase: II. The reduction of sulphate to sulphide by molecular hydrogen. Biochemic. J. 25, 215–220 (1931b).Google Scholar
  268. Stern,K.: Pflanzenthermodynamik. Berlin: Springer 1933.Google Scholar
  269. Stickland, L. H.: The reduction of nitrates by Bact. coli. Biochemic. J. 25, 1543–1554 (1931).Google Scholar
  270. Stoppani, A. O. M., R. C. Fuller and M. Calvin: Carbon dioxide fixation by Rhodopseudomonas capsulatus. J. Bacter. 69, 491–501 (1955).Google Scholar
  271. Takamiya, A., u. K. Tubaki: A new form of Streptomyces capable of growing auto-trophically. Arch. Mikrobiol. 25, 58–64 (1956),PubMedGoogle Scholar
  272. Tarr, H. L. A.: The enzymatic formation of hydrogen sulphide bv certain heterotrophic bacteria. Biochemic. J. 27, 1869–1874 (1933); 28, 192–198 (1934).Google Scholar
  273. Teichmann, E.: Vergleichende Untersuchungen über die Kultur und Morphologie einiger Eisenorganismen. Diss. Deutsche Universität Prag 1955.Google Scholar
  274. Temple, K. L., and A. R. Colmer: The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxydans. J. Bacter. 62, 605–611 (1951).Google Scholar
  275. Trautwein, K.: Beitrag zur Physiologie und Morphologie der Thionsäurebakterien (Omelianski). Z. Bakter. II 53, 513–548 (1921).Google Scholar
  276. Trudinger, P.A.: Fixation of carbon dioxide by extracts of the strict autotroph Thiobacillus denitrificans. Biochemic. J. 64, 274–286 (1956).Google Scholar
  277. Turner, A. W.: Bacterial oxidation of arsenite. Nature (Lond.) 164, 76–77 (1949).Google Scholar
  278. Umbreit, W. W.: Significance of autotrophy for comparative physiology. In: Bacterial Physiology, herausgeg. von C. H. Werkman u. P. W. Wilson, p. 566–575. New York: Academic Press Inc. 1951.Google Scholar
  279. Verhoeven, W.: Studies on true dissimilatory nitrate reduction. V. Nitric oxide production and consumption by micro-organisms. Leeuwenhoek J. Microbiol, a. Serol. 22, 385–406 (1956).Google Scholar
  280. Verhoeven, W., A. L. Koster and M. C. A. van Nievelt: Studies on true dissimilatory nitrate reduction. III. Micrococcus denitrificans Beijerinck, a bacterium capable of using molecular hydrogen in denitrification. Leeuwenhoek J. Microbiol, s. Serol. 20, 273–284 (1954).Google Scholar
  281. Vinogradov, A. P., E. A. Boitschenko et V. J. Baranov: Zit. nach Schlegel 1954a. Dokl. Akad. Nauk USSR., N. S. 78, 327 (1951).Google Scholar
  282. Vishniac, W.: The metabolism of Thiobacullis thioparus. I. The oxidation of thiosulphate. J. Bacter. 64, 363–373 (1952).Google Scholar
  283. Vogler, K. G.: The presence of an endogenous respiration in the autotrophic bacteria. J. Gen. Physiol. 25, 617–622 (1942).PubMedGoogle Scholar
  284. Ware, G. C., and H. A. Painter: Bacterial utilisation of cyanide. Nature (Lond.) 175, 900 (1955).Google Scholar
  285. Wassink, E. C., E. Katz and R. Dorrestein: On photosynthesis and fluorescence of bacteriochlorophyll in Thiorhodaceae. Enzymologia (Den Haag) 10, 285 (1942).Google Scholar
  286. Wessler, S., and C. S. French: The photosynthetic quotient H2/CO2 for Streptococcus varians. J. Cellul. a. Comp. Physiol. 13, 327–334 (1939).Google Scholar
  287. Whiteley, H. R., and H.C. Douglas: The fermentations of purines by Micrococcus lactilyticus. J. Bacter. 61, 605–616 (1951).Google Scholar
  288. Wieland, H., u. H. J. Pistor: Über das dehydrierende Enzymsystem von Acetobacter peroxydans. Über den Mechanismus der Oxydations Vorgänge. Liebigs Ann. 522, 116–136 (1936); 535, 205–219 (1938).Google Scholar
  289. Wieringa, K. T.: The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Leeuwenhoek J. Microbiol, a. Serol. 6, 251–262 (1940).Google Scholar
  290. Winogradsky, S.: Über Schwefelbakterien. Bot. Ztg 45, 489–507, 513–523, 529–539, 545–559, 569–575, 585–594, 606–610 (1887).Google Scholar
  291. Woods, D. D.: Hydrogenlyases. IV. The synthesis of formic acid by bacteria. Biochemic. J. 30, 515–527 (1936).Google Scholar
  292. Woods, D. D.: The reduction of nitrate to ammonia by Clostridium welchii. Biochemic. J. 32, 2000–2012 (1938).Google Scholar
  293. Yam AG at and H. Nakamura: Über die Hydrogenase, nebst einer Bemerkung über den Mechanismus der bakteriellen Knallgasreaktion. Acta Phytochim. (Japan) 10, 297–311 (1937/38).Google Scholar
  294. Youatt, J. B.: Studies on the metabolism of Thiobacillus thiocyanoxidans. J. Gen. Microbiol. 11, 139–149 (1954)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • G. Krotkov
  • Horst Engel

There are no affiliations available

Personalised recommendations