Skip to main content
  • 395 Accesses

Abstract

The above quotation from Winogbadsky’s article on soil nitrification in Lafar’s Handbuch der Technischen Mykologie bears the essence of his famous investigations on the physiology of certain widespread soil and mud microorganisms. These organisms, exemplified by the nitrifying bacteria, thrive, grow and reproduce in complete darkness in a strictly mineral medium. Carbon dioxide is their sole source of carbon. They derive the energy for the synthesis of cell material from the oxidation of inorganic compounds, e.g., as in the case of the nitrifying bacteria, from the oxidation of ammonium or nitrite ions.

„Die ganze Zeit hindurch ging die Entwicklung wie auch die Oxydation sowohl im Lichte als auch in vollständiger Dunkelheit in bester Weise vor sich, was wohl zu dem Schlusse berechtigte, daß der Nitritbildner normal wachsen und kräftige Wirkung in einem Nährboden ausüben kann, welcher keine Spur von organischer Substanz enthält. Daraus folgte aber mit Notwendigkeit der Schluß, daß dieser Organismus die Fähigkeit haben muß, Kohlensäure zu assimilieren und zwar durch einen vom Lichte unabhängigen Prozeß.“

Winogradsky (1904, p. 163.)

Concerning all important details of the single chemoautotrophic organisms the reader is referred to following special chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Arnon, D. I.: The chloroplast as a complete photosynthetic unit. Science 122, 9–16 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Atkinson, D. E.: The biochemistry of Hydrogenomonas. IV. The inhibition of hydrogenase by oxygen. J. biol. Chem. 218, 557–564 (1956).

    PubMed  CAS  Google Scholar 

  • Baalsrud, K.: Some aspect of the physiology of thiobacilli. In: Autotrophic Microorganisms, edit. by B. A. Fry and J. L. Peel, p. 54–57. Cambridge: Cambridge University Press 1954.

    Google Scholar 

  • Baalsrud, K., and K. S. Baalsrud: The role of phosphate in CO2 assimilation of thiobacilli. In: Phosphorus Metabolism, edit. by W. D. Mc Elroy and B. Glass, Vol. II, p. 544–576. Baltimore: Johns Hopkins Press 1952.

    Google Scholar 

  • Studies on Thiobacillus denitrificans. Arch. Microbiol. 20, 34–62 (1954).

    Google Scholar 

  • Baas-Becking, L. G. M., and G. S. Parks: Energy relations in the metabolism of autotrophic bacteria. Physiol. Rev. 7, 85–106 (1927).

    CAS  Google Scholar 

  • Badin, E. J., and M. Calvin: The path of carbon in photosynthesis. IX. Photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction. J. Amer. chem. Soc. 72, 5266–5270 (1950).

    Article  CAS  Google Scholar 

  • Barker, H. A., and A. Kornberg: The structure of the adenosine triphosphate of Thiobacillus thioxidans. J. Bact. 68, 655–661 (1954).

    CAS  Google Scholar 

  • Bassham, J. A., A. A. Benson, L. D. Kay, A. Z. Harris, A. T. Wilson and M. Calvin: The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Amer. chem. Soc. 76, 1760–1770 (1954).

    Article  CAS  Google Scholar 

  • Beck, J. V., and S. R. Elsden: Isolation and some characteristics of an iron-oxidizing bacterium. Proc. Soc. gen. Microbiol., J. gen. Microbiol. 19, i (1958).

    Article  Google Scholar 

  • Beijerinck, M. W.: Über die Bakterien, welche sich im Dunkeln mit Kohlensäure als Kohlenstoffquelle ernähren können. Zbl. Bakt., II. Abt. 11, 592–599 (1904).

    Google Scholar 

  • Benson, A. A., J. A. Bassham, M. Calvin, T. C. Goodale, V. A. Haas and W. Stepka: The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. J. Amer. chem. Soc. 72, 1710–1718 (1950).

    Article  CAS  Google Scholar 

  • Bergmann, F. H., J. C. Towne and R. H. Burris: Assimilation of carbon dioxide by hydrogen bacteria. J. biol. Chem. 230, 13–24 (1958).

    PubMed  CAS  Google Scholar 

  • Blum, H. F.: On the evolution of photosynthesis. Amer. Naturalist 71, 350–362 (1937).

    Article  Google Scholar 

  • Buder, J.: Zur Biologie des Bakteriopurpurins und der Purpurbakterien. Jb. wiss. Bot. 58, 525–628 (1919).

    CAS  Google Scholar 

  • Burk, D.: The reversibility of coupled reactions in biological systems and the second law of thermodynamics. J. physic. Chem. 35, 432–455 (1931).

    Article  CAS  Google Scholar 

  • Butlin, K. R., and M. E. Adams: Autotrophic growth of sulphate-reducing bacteria. Nature (Lond.) 160, 154–155 (1947).

    Article  CAS  Google Scholar 

  • Calvin, M.: Der Photosynthese- Cyclus. Angew. Chem. 68, 253–264 (1956a).

    Article  Google Scholar 

  • The photosynthetic carbon cycle. J. chem. Soc. 1956 b, 1895–1915.

    Google Scholar 

  • Die chemische Evolution und der Ursprung des Lebens. Naturwissenschaften 43, 387–393 (1956c).

    Google Scholar 

  • The photosynthetic carbon cycle. In: Proc. 3rd Intern. Congr. Biochem. 1955, edit. by C. Liébecq, p. 211–225. New York: Academic Press 1956d.

    Google Scholar 

  • Calvin, M., and P. Massini: The path of carbon in photosynthesis. XX. The steady state. Experientia (Basel) 8, 445–457 (1952).

    Article  CAS  Google Scholar 

  • Cataldi, M. S.: Aislamento de Beggiatoa alba en cultivo puro. Rev. Inst. bact. Buenos Aires 9, 393 (1940). (Cited from Pringsheim 1949.)

    Google Scholar 

  • Chance, B., and G. R. Williams: The respiratory chain and oxidative phosphorylation. Advanc. Enzymol. 17, 65–134 (1956).

    CAS  Google Scholar 

  • Chemiker-Taschenbuch, edit. by I. Koppel, part III, p. 237. Berlin: Springer 1937.

    Google Scholar 

  • Clifton, C. E.: Microbial assimilations. Advanc. Enzymol. 6, 269–308 (1946).

    CAS  Google Scholar 

  • Cold Spring Harbor Symposia Quant. Biology: Appendix. Nomenclature of nutritional types of microorganisms. 11, 302–303 (1946).

    Google Scholar 

  • 6. Colloquium der Gesellschaft für physiologische Chemie am 20–22. April 1955 in Mosbach (Baden): Vergleichend biochemische Fragen. Heidelberg: Springer 1956.

    Google Scholar 

  • Cosgrove, W. B.: Studies on the question of chemo- auto-trophy in Chilomonas Paramecium. Physiol. Zool. 23, 73–84 (1950).

    PubMed  CAS  Google Scholar 

  • De Kruyff, C. D., J. P. van der Walt and H. M. Schwartz: The utilization of thiocyanate and nitrate by thiobacilli. Antonie v. Leeuwenhoek 23, 305–316 (1957).

    Article  Google Scholar 

  • Dworkin, M., and J. W. Foster: Experiments with some microorganisms which utilize ethane and hydrogen. J. Bact. 75, 592–603 (1958).

    PubMed  CAS  Google Scholar 

  • Eymers, J. G., and E. C. Wassink: On the photochemical carbon dioxide assimilation in purple sulphur bacteria. Enzymologia 2, 258–304 (1938).

    CAS  Google Scholar 

  • Fogg, G. E.: The Metabolism of Algae. London: Methuen & Co. Ltd. 1953.

    Google Scholar 

  • Frenkel, A., H. Gaffron and E. H. Battley: Photosynthesis and photoreduction by a species of blue-green algae. Biol. Bull. 97, 269 (1949).

    Google Scholar 

  • Frenkel, A. W., and C. Rieger: Photo-reduction in algae. Nature (Lond.) 167, 1030 (1951).

    Article  CAS  Google Scholar 

  • Fuller, R. C.: The carboxylation of ribulose diphosphate by cell-free extracts of Escherichia coli. Bact. Proc. 1956, 112.

    Google Scholar 

  • Gaffron, H.: Carbon dioxide reduction with molecular hydrogen in green algae. Amer. J. Bot. 27, 273–283 (1940).

    Article  CAS  Google Scholar 

  • The effect of specific poisons upon the photoreduction with hydrogen in green algae. J. gen. Physiol. 26, 195–217 (1942a).

    Google Scholar 

  • Reduction of carbon dioxide coupled with the oxyhydrogen reaction in algae. J. gen. Physiol. 26, 241–267 (1942b).

    Google Scholar 

  • Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. Biol. Rev. 19, 1–20 (1944).

    Google Scholar 

  • Some effects of derivatives of vitamin K on the metabolism of unicellular algae. J. gen. Physiol. 28, 259–268 (1945a).

    Google Scholar 

  • o-Phenanthroline and derivatives of vitamin K as stabilizers of photoreduction in Scenedesmus. J. gen. Physiol. 28, 269–285 (1945b).

    Google Scholar 

  • Über Rückreaktionen bei der Photosynthese. Naturwissenschaften 42, 354–364 (1955).

    Google Scholar 

  • Gundersen, K.: Nitrification in mixed cultures of Nitrosomonas and heterotrophic soil bacteria. Physiol. Plantarum (Cph.) 7, 124–127 (1954).

    Article  CAS  Google Scholar 

  • Effects of B- vitamins and amino- acids on nitrification. Physiol. Plantarum (Cph.) 8, 136–141 (1955a).

    Google Scholar 

  • Observations on mixed cultures of Nitrosomonas and heterotrophic soil bacteria. Plant and Soil 7, 26–34 (1955b).

    Google Scholar 

  • Handbook of Chemistry and Physics, edit. by C. D. Hodgman, p. 1716. Cleveland: Chemical Rubber Publishing Co. 1955.

    Google Scholar 

  • Happold, F. C., K. I. Johnstone, H. J. Rogers and J. B. Youatt: The isolation and characteristics of an organism oxidizing thiocyanate. J. gen. Microbiol. 10, 261–266 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Hofman, T., and H. Lees: The biochemistry of the nitrifying organisms. II. The free-energy deficiency of Nitrosomomis. Biochem. J. 52, 140–142 (1952).

    PubMed  CAS  Google Scholar 

  • Horowitz, N. H.: On the evolution of biochemical syntheses. Proc. nat. Acad. Sci.(Wash.) 31, 153–157 (1945).

    Article  CAS  Google Scholar 

  • Horwitz, L.: Observations on the oxyhydrogen reaction in Scenedesmus and its relationship to respiration and photosynthesis. Arch. Biochem. 66, 23–44 (1957).

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, L., and F. L. Allen: Oxygen evolution and photoreduction in adapted Scenedesmus. Arch. Biochem. 66, 45–63 (1957a).

    Article  CAS  Google Scholar 

  • Oxygen evolution and photoreduction by adapted Scenedesmus. In: Research in Photosynthesis, edit. by H. Gaffron, A. H. Brown, C. S. French, R. Livingston, E. I. Rabinowitch, B. L. Strehler and N. E. Tolbert, p. 232–238. New York: Interscience Publishers 1957b.

    Google Scholar 

  • Iterson, W. van: The problem of the living parts of Gallionella. In: Abstr. Comm. 7th Intern. Congr. Microbiol. 1958, edit. by G. Tunevall, p. 421–422. Uppsala: Almqvist & Wiksell 1958.

    Google Scholar 

  • Jensen, H. L.: Effect of organic compounds on Nitrosomonas. Nature (Lond.) 165, 974 (1950).

    Article  CAS  Google Scholar 

  • Judis, J., H. Koffler and D. M. Powelson: The incorporation of C14O2 into organic compounds by cell-free extracts of a Hydrogenomonas sp. Bact. Proc. 1954, 117.

    Google Scholar 

  • Kaseber, H.: Die Oxydation des Wasserstoffes durch Mikroorganismen. Zbl. Bakt., II. Abt. 16, 681–696 (1906).

    Google Scholar 

  • Keil, F.: Beitrage zur Physiologie der farblosen Schwefelbakterien. Cohn’s Beitr. Biol. Pflanzen 11, 335–372 (1912).

    Google Scholar 

  • Kessleb, E.: On the role of manganese in the oxygen-evolving system of photosynthesis. Arch. Biochem. 59, 527–529 (1955).

    Article  Google Scholar 

  • Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. I. Über die Rolle des Mangans bei Photoreduktion und Photosynthese. Planta (Berl.) 49, 435–454 (1957).

    Google Scholar 

  • Kingma Boltjes, T. Y.: Onderzoekingen over nitrificeerende bacteriën. Deltt: W. D. Meinema 1934.

    Google Scholar 

  • Kistneb, A.: On a bacterium oxidizing carbon monoxide. Proc. kon. ned. Akad. Wet., Ser. C 56, 443–450 (1953).

    Google Scholar 

  • Conditions determining the oxidation of carbon monoxide and of hydrogen by Hydrogenomonas carboxydovorans. Proc. kon. ned. Akad. Wet., Ser. C 57, 186–195 (1954).

    Google Scholar 

  • Kluyveb, A. J.: The Chemical Activities of Microorganisms. London: University of London Press 1931.

    Google Scholar 

  • Kluyveb, A. J., and A. Manten: Some observations on the metabolism of bacteria oxidizing molecular hydrogen. Ant. v. Leeuwenhoek J. Microbiol. Serol. 8, 71–86 (1942).

    Article  Google Scholar 

  • Kobte, I., u. H. Engel: Energiemessungen an Hyphomicrobium vulgare Stutzer et Hartleb. Arch. Mikrobiol. 21, 248–254 (1955).

    Article  Google Scholar 

  • Kuhn, W.: Über das Alter der Sauerstoffatmosphäre der Erde. Chem. Ber. 89, 303–308 (1956).

    Article  CAS  Google Scholar 

  • Kuceba, S., and R. S. Wolfe: A selective enrichment method for Gallionella ferruginea. J. Bact. 74, 344–349 (1957).

    Google Scholar 

  • Labsen, H.: On the microbiology and biochemistry of the photosynthetic green sulfur bacteria. Kgl. norske vidensk. selsk. skr. Nr 1, 1953, p. 1–199. Trondheim: F. Brun 1953.

    Google Scholar 

  • The photolitho- autotrophic bacteria and their energy relations. In: Autotrophic Microorganisms, edit. by B. A. Fby and J. L. Peel, p. 186–201. Cambridge: Cambridge University Press 1954.

    Google Scholar 

  • Labsen, H., C. S. Yocum and C. B. van Niel: On the energetics of the photosyntheses in green sulfur bacteria. J. gen. Physiol. 36, 161–171 (1952).

    Article  Google Scholar 

  • Leathen, W. W., N. A. Kinsel and S. A. Bbaley: Ferrobacillus ferrooxidans: A chemosynthetic autotrophic bacterium. J. Bact. 72, 700–704 (1958).

    Google Scholar 

  • Lees, H.: The biochemistry of the nitrifying bacteria. In: Autotrophic Microorganisms, edit. by B. A. Fry and J. L. Peel, p. 84–98. Cambridge: Cambridge University Press 1954.

    Google Scholar 

  • Biochemistry of Autotrophic Bacteria. London: Butterworths Scientific Publications 1955.

    Google Scholar 

  • Le Page, G. A., and W. W. Umbbeit: The occurrence of adenosine-3-tri-phosphate in autotrophic bacteria. J. biol. Chem. 148, 255–260 (1943).

    Google Scholar 

  • Lewin, J. C.: Obligate autotrophy in Ghlamydamonas Moevmsii. Science 112, 652–653 (1950).

    Article  PubMed  CAS  Google Scholar 

  • Lewis, R. F., and D. Pbameb: Isolation of Nitrosomonas in pure culture. J. Bact. 76, 524–528 (1958).

    PubMed  CAS  Google Scholar 

  • Linday, E. M., and P. J. Sybett: The induced synthesis of hydrogenase by Hydrogenomonas facilis. J. gen. Microbiol. 19, 223–227 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Lipman, J. G., and S. A. Waksman: The oxidation of selenium by a new group of autotrophic microorganisms. Science 57, 60 (1923).

    Article  PubMed  CAS  Google Scholar 

  • Marino, R. J., and C. E. Clifton: Oxidative assimilation in suspensions and cultures of Hydrogenomonas facilis. J. Bact. 69, 188–192 (1955).

    PubMed  CAS  Google Scholar 

  • Mc Fadden, B. A.: Some products of C14O2 fixation by Hydrogenomonas facilis. J. Bact. 77, 339–343 (1959).

    PubMed  CAS  Google Scholar 

  • Meiklejohn, J.: Some aspects of the physiology of the nitrifying bacteria. In: Autotrophic Microorganisms, edit. B. A. Fby and J. L. Peel, p. 68–83. Cambridge: Cambridge University Press 1954.

    Google Scholar 

  • Mevius jr., W.: Beiträge zur Kenntnis von Hyphomicrobium vulgare Stutzer et Hartleb. Arch. Mikrobiol. 19, 1–29 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Molisch, H.: Die Purpurbakterien nach neuen Untersuchungen. Jena: Gustav Fischer 1907.

    Google Scholar 

  • Die Eisenbakterien. Jena: Gustav Fischer 1910.

    Google Scholar 

  • Näveke, R.: Formiatoxydation und Kohlenstoff-Assimilation bei Hyphomicrobium vulgare Stutzeb et Hartleb. Arch. Mikrobiol. 27, 375–399 (1957).

    Article  PubMed  Google Scholar 

  • Näveke, R., u. H. Engel: Der Formiatabbau durch Hyphomicrobium vulgare Stutzer et Hartleb. Arch. Mikrobiol. 21, 371–375 (1954).

    Article  Google Scholar 

  • Nakamura, H.: Acta phytochim. (Tokyo) 10, 271–278 (1938). (Cited from Fogg 1953.)

    CAS  Google Scholar 

  • Nathansohn, A.: Über eine neue Gruppe von Schwefelbakterien und ihren Stoffwechsel. Mitt. zool. Stat. Neapel 15, 655–680 (1902).

    Google Scholar 

  • New Biology No. 16: The Origin of Life. London: Penguin Books Ltd. 1954.

    Google Scholar 

  • Newburgh, R. W.: Phosphorylation and chemosynthesis by Thiobacillus thiooxidans. J. Bact. 68, 93–97 (1954).

    PubMed  CAS  Google Scholar 

  • Niel, C. B. van: On the morphology and physiology of the purple and green sulphur bacteria. Arch. Microbiol. 3, 1–112 (1931).

    Google Scholar 

  • Photosynthesis of bacteria. Cold Spr. Harb. Symp. quant. Biol. 3, 138–150 (1935).

    Google Scholar 

  • The bacterial photo-syntheses and their importance for the general problem of photosynthesis. Advanc. Enzymol. 1. 263–328 (1941).

    Google Scholar 

  • Biochemical problems of the chemo-autotrophic bacteria. Physiol. Rev. 23, 338–354 (1943).

    Google Scholar 

  • The comparative biochemistry of photosynthesis. In: Photosynthesis in Plants, edit. by J. Franck and W. E. Loomis, p. 437–495. Ames: Iowa State College Press 1949a.

    Google Scholar 

  • The comparative biochemistry of photosynthesis. Amer. Scient. 37, 371–383 (1949b).

    Google Scholar 

  • The chemo- autotrophic and photosynthetic bacteria. Ann. Rev. Microbiol. 8, 105–132 (1954).

    Google Scholar 

  • Evolution as viewed by the microbiologist. In: Kluyver, A. J., and C. B. van Niel, The Microbe’s Contribution to Biology, p. 155–176. Cambridge,

    Google Scholar 

  • Mass.: Harvard University Press 1956. Niklewski, B.: Extr. Bull. Acad. Sci. Cracovie 91, 1 (1906). (Cited from Schlegel 1954a.)

    Google Scholar 

  • Orgel, G., N. E. Dewar and H. Koffler: Appearance of radioactivity from 14CO2 in formic and acetic acids during the autotrophic growth of Hydrogenomonas facilis. Biochim. biophys. Acta 21, 409–410 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Orla-Jensen, S.: Die Hauptlinien des natürlichen Bakteriensystems. Zbl. Bakt., II. Abt. 22, 305–346 (1909).

    Google Scholar 

  • Packer, L., and W. Vishniac: Chemosynthetic fixation of carbon dioxide and characteristics of hydrogenase in resting cell suspensions of Hydrogenomonas ruhlandii nov. spec. J. Bact. 70, 216–223 (1955a).

    CAS  Google Scholar 

  • Studies on the mechanism of the enzymatic reduction of diphosphopyridine nucleotide by hydrogen. Bact. Proc. 1955 b, 116–117.

    Google Scholar 

  • Pfeffer, W.: Pflanzenphysiologie, 2. Aufl., Bd. I, S. 346. 1897. (Cited from van Niel 1943.)

    Google Scholar 

  • Postgate, J. R.: On the nutrition of Desulphovibrio desulphuricans: a correction. J. gen. Microbiol. 9, 440–444 (1953).

    Article  PubMed  CAS  Google Scholar 

  • Potter, M. C.: Bacteria as agents in the oxidation of amorphous carbon. Proc. roy. Soc. B 80, 239–259 (1908).

    Article  CAS  Google Scholar 

  • Präve, P.: Untersuchungen über die Stoffwechselphysiologie des Eisenbakteriums Leptothrix ochraceae. Arch. Mikrobiol. 27, 33–62 (1957).

    Article  PubMed  Google Scholar 

  • Präve, P., u. A. Rippel-Baldes: Die Autotrophie von Leptothrix ochracea. Naturwiss. 43, 539 (1956).

    Article  Google Scholar 

  • Pringsheim, E. G.: Neues über Purpurbakterien. Naturwissenschaften 20, 479–483 (1932).

    Article  Google Scholar 

  • Iron bacteria. Biol. Rev. 24, 200–245 (1949).

    Google Scholar 

  • Quayle, J. R., and D. B. Keech: Carbon assimilation by Pseudomonas oxalaticus (OX 1). 1. Formate and carbon dioxide utilization during growth on formate. Biochem. J. 72, 623–630 (1959a).

    CAS  Google Scholar 

  • Carbon assimilation by Pseudomonas oxalaticus (OX 1). 2. Formate and carbon dioxide utilization by cell-free extracts of the organism grown on formate. Biochem. J. 72, 631–637 (1959b).

    Google Scholar 

  • Rabinowitch, E. I.: Photosynthesis and Related Processes, Vol. 1. New York: Inter-science Publishers, Inc. 1945.

    Book  Google Scholar 

  • Racker, E.: Synthesis of carbohydrates from carbon dioxide and hydrogen in a cell-free system. Nature (Lond.) 175, 249–251 (1955).

    Article  CAS  Google Scholar 

  • Ranganayaki, S., and K. Bahadur: The growth of Pichia membranaefaciens utilizing the energy obtained by the oxidation by aeration of different metallic hydroxides. Bull. chem. Soc. Japan 27, 313–314 (1954). [Cited from Chem. Abstr. 49, 8374 (1955).]

    Article  CAS  Google Scholar 

  • Rieke, F. F.: Quantum efficiencies for photosynthesis and photoreduction in green plants. In: Photosynthesis in Plants, edit. by J. Franck and W. E. Loomis, p. 251–272. Ames: Iowa State College Press 1949.

    Google Scholar 

  • Rippel-Baldes, A.: Die Energieausnützung durch Mikroorganismen in quantitativer Hinsicht. Arch. Mikrobiol. 17, 166–188 (1952).

    Article  CAS  Google Scholar 

  • Ruhland, W.: Beiträge zur Physiologie der Knallgasbakterien. Jb. wiss. Bot. 63, 321–389 (1924).

    Google Scholar 

  • Santer, M., J. Boyer and u. Santer: Thiobacillus novellus. I. Growth on organic and inorganic media. J. Bact. 78, 197–202 (1959).

    Article  PubMed  CAS  Google Scholar 

  • Santer, M., and W. Vishniac: CO2 incorporation by extracts of Thiobacillus thioparus. Biochim. biophys. Acta 18, 157–158 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Schatz, A.: Uptake of carbon dioxide, hydrogen and oxygen by Hydrogenomonas facilis. J. gen. Microbiol. 6, 329–335 (1952).

    Article  PubMed  CAS  Google Scholar 

  • Schatz, A., and C. Bovell jr.: Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. J. Bact. 63, 87–98 (1952).

    PubMed  CAS  Google Scholar 

  • Schatz, A., H. D. Isenberg and G. Trelawny: Chemo- autotrophic assimilation of carbon dioxide by Hydrogenomonas facilis with lactate as hydrogen donor. VI. Intern. Congr. Microbiol., Rome 1953. (Cited from Schlegel 1954c.)

    Google Scholar 

  • Schlegel, H. G.: Hemmungsanalytische Untersuchungen an Knallgasbakterien. Flora (Jena) 140, 499–522 (1953).

    Google Scholar 

  • Die Rolle des molekularen Wasserstoffs im Stoffwechsel der Mikroorganismen. Arch. Mikrobiol. 20, 293–322 (1954a).

    Google Scholar 

  • Untersuchungen über den Phosphatstoffwechsel der wasserstoffoxydierenden Bakterien. Arch. Mikrobiol. 21, 127–155 (1954b).

    Google Scholar 

  • Zur Frage der gleichzeitigen Oxydation von molekularem Wasserstoff und organischen Substraten durch Knallgasbakterien. Wiss. Z. Univ. Halle 4, 95–98 (1954c).

    Google Scholar 

  • Die Beeinflussung des Phosphathaushalts von Mikroorganismen durch Kohlendioxyd. Arch. Mikrobiol. 23, 195–206 (1955).

    Google Scholar 

  • Silverman, M. P., and D. G. Lundgren: Studies on the chemoautotrophic iron bacterium Ferrohacillus ferrooxidans. J. Bact. 78, 326–331 (1959).

    PubMed  CAS  Google Scholar 

  • Sisler, F. D., and C. E. Zo Bell: Hydrogen utilization by some marine sulfate- reducing bacteria. J. Bact. 62, 117–127 (1951).

    PubMed  CAS  Google Scholar 

  • Starkey, R. L.: The production of polythionates from thiosulphate by microorganisms. J. Bact. 28, 387–400 (1934).

    PubMed  CAS  Google Scholar 

  • Products of the oxidation of thiosulphate by bacteria in mineral media. J. gen. Physiol. 18, 325–349 (1935).

    Google Scholar 

  • Stephenson, M.: Bacterial Metabolism. London: Longmans, Green & Co. 1939.

    Google Scholar 

  • Stern, K.: Pflanzenthermodynamik. Berlin: Springer 1933.

    Book  Google Scholar 

  • Stokes, J. L.: Studies on the filamentous sheathed iron bacterium Sphaerotilus natans. J. Bact. 67, 278–291 (1954).

    Article  PubMed  CAS  Google Scholar 

  • Stoppani, A. O. M., R. C. Fuller and M. Calvin: Carbon dioxide fixation by Bhodopseudomonas capsulatus. J. Bact. 69, 491–501 (1955).

    PubMed  CAS  Google Scholar 

  • Suzuki, I., and C. H. Werkman: Chemoautotrophic carbon dioxide fixation by extracts of Thiobacillus thiooxidans. I. Formation of oxaloacetic acid. Arch. Biochem. 76, 103–111 (1958a).

    Article  CAS  Google Scholar 

  • Chemoautotrophic carbon dioxide fixation by extracts of Thiobacillus thiooxidans. II. Formation of phosphoglyceric acid. Arch. Biochem. 77, 112–123 (1958b).

    Google Scholar 

  • Takamiya, A., and K. Tubaki: A new form of streptomyces capable of growing autotrophically. Arch. Mikrobiol. 25, 58–64 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Temple, K. L., and A. R. Colmer: The autotrophic oxidation of iron by a new bacterium: Thiobacillus ferrooxidans. J. Bact. 62, 605–611 (1951).

    PubMed  CAS  Google Scholar 

  • Trudinger, P. A.: Phosphoglycerate formation from pentose phosphate by extracts of Thiobacillus denitrificans. Biochim. biophys. Acta 18, 581–582 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Metabolism of phosphate esters by extracts of Thiobacillus denitrificans. Proc. Soc. Gen. Microbiol., J. gen. Microbiol. 14, ix (1956a).

    Google Scholar 

  • Fixation of carbon dioxide by extracts of the strict autotroph Thiobacillus denitrificans. Biochem. J. 64, 274–286 (1956b).

    Google Scholar 

  • Umbreit, W. W.: Problems of autotrophy. Bact. Rev. 11, 157–166 (1947).

    PubMed  CAS  Google Scholar 

  • Significance of autotrophy for comparative physiology. In: Bacterial Physiology, edit. by C. H. Werkman and P. W. Wilson, p. 566–575. New York: Academic Press Inc. 1951.

    Google Scholar 

  • Phosphorylation and carbon dioxide fixation in the autotrophic bacterium, Thiobacillus thiooxidans. J. Bact. 67, 387–393 (1954).

    Google Scholar 

  • Vatter, A. E., and R. S. Wolfe: Electron microscopy of Gallionella ferruginea. J. Bact. 72, 248–252 (1956).

    PubMed  CAS  Google Scholar 

  • Verhoeven, W., A. L. Koster and M. C. A. van Nievelt: Studies on true dissimilatory nitrate reduction. III. Micrococcus denitrificans Beijerinck, a bacterium capable of using molecular hydrogen in denitrification. Antonie v. Leeuwenhoek 20, 273–284 (1954).

    Article  CAS  Google Scholar 

  • Vishniac, W.: On the metabolism of the chemohtho- auto-trophic bacterium Thiobacillus thioparus Beijerinck. Ph. D. thesis. Stanford University 1949.

    Google Scholar 

  • Biochemical aspects of photosynthesis. Ann. Rev. Plant Physiol. 6, 115–134 (1955).

    Google Scholar 

  • Adaptive changes in the CO2 fixation of autotrophic bacteria. In: Abstr. Comm. 7th Intern. Congr. Microbiol. 1958, edit. by G. Tunevall, p. 79–80. Uppsala: Almqvist & Wiksell 1958.

    Google Scholar 

  • Vishniac, W., B. L. Horecker and S. Ochoa: Enzymic aspects of photosynthesis. Advanc. Enzymol. 19, 1–77 (1957).

    CAS  Google Scholar 

  • Vishniac, W., and S. Ochoa: Reduction of pyridine nucleotides in photosynthesis. In: Phosphorus Metabolism, edit. by W. D. Mc Elroy and B. Glass, Vol. II, p. 467–490. Baltimore: Johns Hopkins Press 1952.

    Google Scholar 

  • Vishniac, W., and M. Santer: The thiobacilli. Bact. Rev. 21, 195–213 (1957).

    PubMed  CAS  Google Scholar 

  • Vogler, K. G.: Studies on the metabolism of autotrophic bacteria. II. The nature of the chemosynthetic reaction. J. gen. Physiol. 26, 103–117 (1942).

    Article  PubMed  CAS  Google Scholar 

  • Vogler, K. G., G. A. Le Page and W. W. Umbreit: Studies on the metabolism of autotrophic bacteria. I. The respiration of Thiobacillus thiooxidans on sulfur. J. gen. Physiol. 26, 89–102 (1942).

    Article  PubMed  CAS  Google Scholar 

  • Vogler, K. G., and W. W. Umbreit: Studies on the metabolism of the autotrophic bacteria. III. The nature of the energy storage material active in the chemosynthetic process. J. gen. Physiol. 26, 157–167 (1942).

    Article  PubMed  CAS  Google Scholar 

  • Waksman, S. A., and J. S. Joffe: Micro-organisms concerned in the oxidation of sulphur in the soil. II. Thiobacillus thio-oxidans, a new sulphur oxidizing organism isolated from the soil. J. Bact. 7, 239–256 (1922).

    PubMed  CAS  Google Scholar 

  • Waksman, S. A., and R. L. Starkey: On the growth and respiration of sulphur-oxidizing bacteria. J. gen. Physiol. 5, 285–310 (1923).

    Article  PubMed  CAS  Google Scholar 

  • Warburg, O.: Über den chemischen Mechanismus der Kohlensäureassimliation. Naturwissenschaften 43, 237–241 (1956).

    Article  CAS  Google Scholar 

  • Ware, G.C., and H. A. Painter: Bacterial utilization of cyanide. Nature (Lond.) 175, 900 (1955).

    Article  CAS  Google Scholar 

  • Wassink, E. C., E. Katz and R. Dorrestein: On photosynthesis and fluorescence of bacteriochlorophyll in Thiorhodaceae. Enzymologia 10, 285–354 (1942).

    CAS  Google Scholar 

  • Whelton, R., and M. Doudoroff: Assimilation of glucose and related compounds by growing cultures of Pseudomonas saccharophila. J. Bact. 49, 177–186 (1945).

    PubMed  CAS  Google Scholar 

  • Wilson, E., H. A. Stout, D. Powelson and H. Koffler: Comparative biochemistry of the hydrogen bacteria. I. The simultaneous oxidation of hydrogen and lactate. J. Bact. 65, 283–287 (1953).

    PubMed  CAS  Google Scholar 

  • Wilson, P. W., and W. H. Peterson: The energetics of heterotrophic bacteria. Chem. Rev. 8, 427–480 (1931).

    Article  CAS  Google Scholar 

  • Winogradsky, S.: Über Schwefelbacterien. Bot. Ztg 45, Nos. 31–37, 489 ff. (1887).

    Google Scholar 

  • Beiträge zur Morphoogie und Physiologie der Bacterien, H. I. Zur Morphologie und Physiologie der Schwefelbacterien. Leipzig: Arthur Felix 1888a.

    Google Scholar 

  • Über Eisenbacterien. Bot. Ztg 46, 263–270 (1888b).

    Google Scholar 

  • Die Nitrifikation. In: Handbuch der Technischen Mykologie, herausgeg. von F. Lafar, 2. Aufl., Bd. III, S. 132–181. Jena: Gustav Fischer 1904–1906.

    Google Scholar 

  • Eisenbakterien als Anorgoxydanten. Zbl. Bakt., II. Abt. 57, 1–21 (1922).

    Google Scholar 

  • Woods, D. D., and J. Lascelles: The no man’s land between the autotrophic and heterotrophic ways of life. In: Autotrophic Microorganisms, edit. by B. A. Fry and J. L. Peel, p. 1–27. Cambridge: Cambridge University Press 1954.

    Google Scholar 

  • Youatt, J. B.: Studies on the metabolism of Thiobacillus thiocyanoxidans. J. gen. Microbiol. 11, 139–149 (1954).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1960 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Larsen, H. (1960). Chemosynthesis. (General.). In: Pirson, A. (eds) Die CO2-Assimilation / The Assimilation of Carbon Dioxide. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94798-8_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94798-8_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94799-5

  • Online ISBN: 978-3-642-94798-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics