Advertisement

The photosynthetic bacteria

  • Howard Gest
  • Martin D. Kamen
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)

Abstract

In this chapter, we will review the metabolism of photosynthetic bacteria2, a group of morphologically diverse organisms which show remarkable biochemical versatility. All organisms in this category have in common the capacity to reduce carbon dioxide through an anaerobic photosynthetic mechanism. In certain types (green sulfur bacteria), photosynthetic utilization of CO2 as the sole carbon source for growth appears to be obligatory. Others, found among the purple bacteria, display metabolic patterns suggestive of an important stage in biochemical evolution, characterized by an intimate coupling of “autotrophic” and “heterotrophic” mechanisms of cell material synthesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Anderson, I., and R. C. Fuller: Personal communication 1957.Google Scholar
  2. Arnon, D. I., M. B. Allen and F. R. Whatley: Photosynthesis by isolated chloroplasts. Nature (Lond.) 174, 394–396 (1954).CrossRefGoogle Scholar
  3. Bachhawat, B. K., and M. J. Coon: The role of adenosine triphosphate in the enzymatic activation of carbon dioxide. J. Amer. chem. Soc. 79, 1505–1506 (1957).CrossRefGoogle Scholar
  4. Enzymatic activation of carbon dioxide. I. Crystalline carbon dioxide activating enzyme. J. biol. Chem. 231, 625–635 (1958).Google Scholar
  5. Barrett, J., and R. Lemberg: Prosthetic group of cytochrome a2. Nature (Lond.) 173, 213 (1954).CrossRefGoogle Scholar
  6. Bartsch, R. G., and M. D. Kamen: Unpublished observations 1957.Google Scholar
  7. On the new heme protein of facultative photoheterotrophs. J. biol. Chem. 230, 41–63 (1958).Google Scholar
  8. Beck, W. S., M. Flavin and S. Ochoa: Metabolism of propionic acid in animal tissues. III. Formation of succinate. J. biol. Chem. 229, 997–1010 (1957).PubMedGoogle Scholar
  9. Berg, P.: Participation of adenyl-acetate in the acetate-activating system. J. Amer. chem. Soc. 77, 3163–3164 (1955).CrossRefGoogle Scholar
  10. Bregoff, H. M., and M. D. Kamen: Studies on the metabolism of photosynthetic bacteria. XIV. Quantitative relations between malate dissimilation, photo-production of hydrogen, and nitrogen metabolism in Rhodospirillum rubrum. Arch. Biochem. Biophys. 36, 202–220 (1952a).CrossRefGoogle Scholar
  11. Photohydrogen production in Chromatium, J. Bact. 63, 147–149 (1952b).Google Scholar
  12. Brodie, A. F., M. M. Weber and C. T. Gray: The role of vitamin K1 in coupled oxidative phosphorylation. Biochim. biophys. Acta 25, 448–449 (1957).PubMedCrossRefGoogle Scholar
  13. Burris, R. H.: Studies on the mechanism of biological nitrogen fixation. In: Inorganic Nitrogen Metabolism, pp. 316–343. Baltimore: Johns Hopkins Press 1956.Google Scholar
  14. Calvin, M.: The photosynthetic carbon cycle. Proceedings, Third Internat. Congr. of Biochemistry, Brussels 1955; pp. 211–225. New York: Academic Press, Inc. 1956.Google Scholar
  15. Chance, B.: Spectra and reaction kinetics of respiratory pigments of homogenized and intact cells. Nature (Lond.) 169, 215–221 (1952).CrossRefGoogle Scholar
  16. Spectrophotometry of intracellular respiratory pigments. Science 120, 767–775 (1954).Google Scholar
  17. Stoichiometric relationships and phosphorylation mechanisms in the respiratory chain of mitochondria. Proceedings, Internat. Symposium on Enzyme Chemistry, Tokyo and Kyoto 1957, pp. 295–297. Tokyo: Maruzen Co., Ltd. 1958.Google Scholar
  18. Chance, B., and L. Smith: Respiratory pigments of Rhodospirillum rubrum. Nature (Lond.) 175, 803–806 (1955).CrossRefGoogle Scholar
  19. Chance, B., L. Smith and L. Castor: New methods for the study of the carbon monoxide compounds of respiratory enzymes. Biochim. biophys. Acta 12, 289–298 (1953).PubMedCrossRefGoogle Scholar
  20. Chance, B., and G. R. Williams: The respiratory chain and oxidative phosphorylation. In: Advances in Enzymology, Vol. 17, pp. 65–134. New York: Interscience Publ., Inc. 1956.Google Scholar
  21. Clayton, R. K.: Photosynthesis and respiration in Rhodospirillum rubrum. Arch. Mikrobiol. 22, 180–194 (1955a).CrossRefGoogle Scholar
  22. Competition between light and dark metabolism in Rhodospirillum rubrum. Arch. Mikrobiol. 22, 195–203 (1955b).Google Scholar
  23. Photosynthetic metabolism of propionate in Rhodospirillum rubrum. Arch. Mikrobiol. 26, 29–31 (1957).Google Scholar
  24. Clayton, R. K., F. H. Dettmer and A. E. Robertson jr.: Oxidative metabolism of propionate in Rhodospirillum rubrum. Arch. Mikrobiol. 26, 20–28 (1957a).CrossRefGoogle Scholar
  25. Clayton, R. K., E. O. Ellingson and H. E. Shaw: A carbon dioxide requirement for the metabolism of propionate in Rhodospirillum rubrum. Arch. Mikrobiol. 25, 429–432 (1957b).CrossRefGoogle Scholar
  26. Cohen-Bazire, G., W. R. Sistrom and R. Y. Stantbr: Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. cell. comp. Physiol. 49, 25–68 (1957).CrossRefGoogle Scholar
  27. Coleman, G. S.: The dissimilation of amino acids by Rhodospirillum rubrum. J. gen. Microbiol. 15, 248–256 (1956).PubMedCrossRefGoogle Scholar
  28. Crook, P. G., and E. S. Lindstrom: A comparison of the oxidative metabolism of light and dark grown Rhodospirillum rubrum. Canad. J. Microbiol. 2, 427–432 (1956).CrossRefGoogle Scholar
  29. Cutinelli, C., G. Ehrensvärd, G. Högström, L. Reio, E. Saluste and R. Stjernholm: Acetic acid metabolism in Rhodospirillum rubrum under anaerobic condition. III. Ark. Kemi 3, 501–509 (1951a).Google Scholar
  30. Cutinelli, C., G. Ehrensvärd and L. Reio: Acetic acid metabolism in Rhodospirillum rubrum under anaerobic condition. Ark. Kemi 2, 357–361 (1950).Google Scholar
  31. Cutinelli, C., G. Ehrensvärd, L. Reio, E. Saluste and R. Stjernholm: Acetic acid metabolism in Rhodospirillum rubrum under anaerobic condition. II. Ark. Kemi 3, 315–322 (1951b).Google Scholar
  32. Davenport, H. E.: Reductive cleavage of cytochrome c. Nature (Lond.) 169, 75 (1952).CrossRefGoogle Scholar
  33. Davenport, H. E., and R. Hill: The preparation and some properties of cytochrome f. Proc. roy. Soc. B 139, 327–345 (1952).CrossRefGoogle Scholar
  34. De Moss, J. A., and H. E. Swim: Quantitative aspects of the tricarboxylic acid cycle in baker’s yeast. J. Bact. 74, 445–451 (1957).Google Scholar
  35. Duchow, E., and H. C. Douglas: Rhodomicrobium vannielii, a new photoheterotrophic bacterium. J. Bact. 58, 409–416 (1949).PubMedGoogle Scholar
  36. Duysens, L. N. M.: Transfer of excitation energy in photosynthesis. Doctoral thesis, Univ. of Utrecht, Utrecht, Netherlands, 1952.Google Scholar
  37. Reversible photo-oxidation of a cytochrome pigment in photosynthesizing Rhodospirillum rubrum. Nature (Lond.) 173, 692–693 (1954).Google Scholar
  38. Eisenberg, M. A.: The tricarboxylic acid cycle in Rhodospirillum rubrum. J. biol. Chem. 203, 815–836 (1953).PubMedGoogle Scholar
  39. The acetate-activating enzyme of Rhodospirillum rubrum. Biochim. biophys. Acta 16, 58–65 (1955).Google Scholar
  40. The acetate-activating mechanism in Rhodospirillum rubrum. Biochim. biophys. Acta 23, 327–332 (1957).Google Scholar
  41. Elsden, S. R.: The utilization of organic compounds by photosynthetic bacteria. In: Autotrophic Micro-organisms pp. 202–223. Cambridge: Cambridge University Press 1954.Google Scholar
  42. Elsden, S. R., M. D. Kamen and L. P. Vernon: A new soluble cytochrome. J. Amer. chem. Soc. 75, 6347–6348 (1953).CrossRefGoogle Scholar
  43. Elsden, S. R., and J. G. Ormeeod: The effect of monofluoroacetate on the metabolism of Rhodospirillum rubrum. Biochem. J. 63, 691–701 (1956).PubMedGoogle Scholar
  44. Eymers, J. G., and E. C. Wassink: On the photochemical carbon dioxide assimilation in purple sulphur bacteria. Enzymologia 2, 258–304 (1938).Google Scholar
  45. Flavin, M., H. Castro-Mendoza and S. Ochoa: Metabolism of propionic acid in animal tissues. II. Propionyl coenzyme A carboxylation system. J. biol. Chem. 229, 981–996 (1957).PubMedGoogle Scholar
  46. Flavin, M., and S. Ochoa: Metabolism of propionic acid in animal tissues. I. Enzymatic conversion of propionate to succinate. J. biol. Chem. 229, 965–979 (1957).PubMedGoogle Scholar
  47. Foster, J. W.: The role of organic substrates in photosynthesis of purple bacteria. J. gen. Physiol. 24, 123–134 (1940).PubMedCrossRefGoogle Scholar
  48. Oxidation of alcohols by non-sulfur photosynthetic bacteria. J. Bact. 47, 355–372 (1944).Google Scholar
  49. Frenkel, A.: Light induced phosphorylation by cell-free preparations of photosynthetic bacteria. J. Amer. chem. Soc. 76, 5568–5569 (1954).CrossRefGoogle Scholar
  50. Photophosphorylation of adenine nucleotides by cell-free preparations of purple bacteria. J. biol. Chem. 222, 823–834 (1956).Google Scholar
  51. Gaffron, H.: Über die Kohlensäure-Assimilation der roten Schwefelbakterien. I. Biochem. Z. 269, 447–453 (1934).Google Scholar
  52. Über die Kohlensäureassimilation der roten Schwefelbakterien. II. Biochem. Z. 279, 1–33 (1935).Google Scholar
  53. Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. Biol. Rev. 19, 1–20 (1944).Google Scholar
  54. Geller, D. M.: Photophosphorylation by Rhodospirillum rubrum preparations. Ph. D. thesis, Department of Biochemistry, Harvard University, Cambridge, Massachusetts, 1957.Google Scholar
  55. Gest, H.: Metabolic patterns in photosynthetic bacteria. Bact. Rev. 15, 183–210 (1951).PubMedGoogle Scholar
  56. Properties of cell-free hydrogenases of Escherichia coli and Rhodospirillum rubrum. J. Bact. 63, 111–121 (1952).Google Scholar
  57. Oxidation and evolution of molecular hydrogen by microorganisms. Bact. Rev. 18, 43–73 (1954).Google Scholar
  58. Some aspects of electron transport in microorganisms with special reference to oxidation and formation of molecular hydrogen. Proceedings, Internat. Symposium on Enzyme Chemistry, Tokyo and Kyoto 1957, pp. 250–255. Tokyo: Maruzen Co., Ltd. 1958.Google Scholar
  59. Gest, H., J. Judis and H. D. Peck Jr.: Reduction of molecular nitrogen and relationships with photosynthesis and hydrogen metabolism. In: Inorganic Nitrogen Metabolism, pp. 298–315. Baltimore: Johns Hopkins Press 1956.Google Scholar
  60. Gest, H., and M. D. Kamen: Studies on the phosphorus metabolism of green algae and purple bacteria in relation to photosynthesis. J. biol. Chem. 176, 299–318 (1948).PubMedGoogle Scholar
  61. Studies on the metabolism of photosynthetic bacteria. IV. Photochemical production of molecular hydrogen by growing cultures of photosynthetic bacteria. J. Bact. 58, 239–245 (1949a).Google Scholar
  62. Photoproduction of molecular hydrogen by Rhodospirillum rubrum. Science 109, 558–559 (1949b).Google Scholar
  63. Gest, H., M. D. Kamen and H. M. Bregoff: Studies on the metabolism of photosynthetic bacteria. V. Photoproduction of hydrogen and nitrogen fixation by Rhodospirillum rubrum. J. biol. Chem. 182, 153–170 (1950).Google Scholar
  64. Gibson, J., and H. Larsen: Cytochromes from Chlorobium thiosulphatophilum. Biochem. J. 60, xxvii (1955).PubMedGoogle Scholar
  65. Giesberger, G.: Some observations on the culture, physiology and morphology of µome brown-red Rhodospirillum- species. Antonie v. Leeuwenhoek 13, 135–148 (1947).CrossRefGoogle Scholar
  66. Glover, J., and M. D. Kamen: Observations on the simultaneous metabolism of acetate and carbon dioxide by resting cell suspensions of Rhodospirillum rubrum. Fed. Proc. 10, 190 (1951).Google Scholar
  67. Glover, J., M. D. Kamen and H. van Genderen: Studies on the metabolism of photosynthetic bacteria. XII. Comparative light and dark metabolism of acetate and carbonate by Rhodospirillum rubrum. Arch. Biochem. Biophys. 35, 384–408 (1952).PubMedCrossRefGoogle Scholar
  68. Green, D. E., S. Mii and P. M. Kohout: Studies on the terminal electron transport system. I. Succinic dehydrogenase. J. biol. Chem. 217, 551–567 (1955).PubMedGoogle Scholar
  69. Hill, R.: Oxygen produced by isolated chloroplasts. Proc. roy. Soc. B 127, 192–210 (1939).CrossRefGoogle Scholar
  70. Reduction by chloroplasts. In: Carbon Dioxide Fixation and Photosynthesis. Symp. Soc. Exp. Biol., Vol. V, pp. 222–231. New York: Academic Press, Inc. 1951.Google Scholar
  71. Hill, R., and M. D. Kamen: Unpublished observations 1956.Google Scholar
  72. Hug, D. H., and C. H. Werkman: Transamination in Rhodospirillum rubrum. Arch. Biochem. Biophys. 72, 369–375 (1957).PubMedCrossRefGoogle Scholar
  73. Hurwitz, J., A. Weissbach, B. L. Horecker and P. Z. Smyrniotis: Spinach phosphoribulokinase. J. biol. Chem. 218, 769–783 (1956).PubMedGoogle Scholar
  74. Hutner, S. H.: Growth requirements of the photosynthetic bacterium, Rhodospirillum rubrum. Arch. Biochem. 3, 439–444 (1944).Google Scholar
  75. Organic growth essentials of the aerobic nonsulfur photosynthetic bacteria. J. Bact. 52, 213–221 (1946).Google Scholar
  76. Anaerobic and aerobic growth of purple bacteria (Athiorhodaceae) in chemically defined media. J. gen. Microbiol. 4, 286–293 (1950).Google Scholar
  77. Personal communication 1957.Google Scholar
  78. Ishimoto, M., J. Koyama and Y. Nagai: Biochemical studies on sulfate- reducing bacteria. IV. The cytochrome system of sulfate- reducing bacteria. J. Biochem. (Tokyo) 41, 763–770 (1954),Google Scholar
  79. Ishimoto, M., J. Koyama, T. Yagi and M. Shxraki: Biochemical studies on sulfate- reducing bacteria. VII. Purification of the cytochrome of sulfate- reducing bacteria and its physiological role. J. Biochem. (Tokyo) 44, 413–423 (1957).Google Scholar
  80. Johns, A. T.: The mechanism of propionic acid formation by Veillonella gazogenes. J. gen. Microbiol. 5, 326–336 (1951).PubMedCrossRefGoogle Scholar
  81. Johnston, J. A., and A. H. Brown: The effect of light on the oxygen metabolism of the photosynthetic bacterium, Rhodospirillum rubrum. Plant Physiol. 29, 177–182 (1954).PubMedCrossRefGoogle Scholar
  82. Kamen, M. D.: Hydrogenase activity and photoassimilation. Fed. Proc. 9, 543–549 (1950).PubMedGoogle Scholar
  83. Bacterial heme proteins. Bact. Rev. 19, 250–262 (1955).Google Scholar
  84. Hematin compounds in the metabolism of photosynthetic tissues. In: Enzymes: Units of Biological Structure and Function. Henry Ford Hospital Internat. Symposium, pp. 483–498. New York: Academic Press, Inc. 1956.Google Scholar
  85. Hematin compounds in the metabolism of photosynthetic tissues. In: Research in Photosynthesis. Gatlinburg (Tennessee) Conference, pp. 149–163. New York: Interscience Publ., Inc. 1957.Google Scholar
  86. Kamen, M. D., S. J. Ajl, S. L. Ranson and J. M. Siegel: Nonequivalence of methyl and carboxyl groups in photometabolism of acetate by Rhodospirillum rubrum. Science 113, 302 (1951).PubMedCrossRefGoogle Scholar
  87. Kamen, M. D., and H. Gest: Evidence for a nitrogenase system in the photosynthetic bacterium, Rhodospirillum rubrum. Science 109, 560 (1949).PubMedCrossRefGoogle Scholar
  88. Kamen, M. D., and Y. Takeda: A comparative study of bacterial and mammalian cytochrome c. Biochim. biophys. Acta 21, 518–523 (1956).PubMedCrossRefGoogle Scholar
  89. Kamen, M. D., and L. P. Vernon: Enzymatic activities affecting cytochromes in photosynthetic bacteria. J. biol. Chem. 211, 663–675 (1954a).Google Scholar
  90. Existence of haem compounds in a photosynthetic obligate anaerobe. J. Bact. 67, 617–618 (1954b).Google Scholar
  91. Comparative studies on bacterial cytochromes. Biochim. biophys. Acta 17, 10–22 (1955).Google Scholar
  92. Karunairatnam, M. C., and H. Gest: Hydrogenase and photometabolism in Rhodospirillum rubrum. Abstracts, Seventh Internat. Congr. of Microbiology, Stockholm 1958, p. 74. Uppsala: Almqvist & Wiksells 1958.Google Scholar
  93. Katoh, S.: The inhibitory effect of light on the oxygen-uptake by cell-free extract and particulate fractions of Rhodopseudomonas palustris; in press 1958.Google Scholar
  94. Kohlmiller jr., E. F., and H. Gest: A comparative study of the light and dark fermentations of organic acids by Rhodospirillum rubrum. J. Bact. 61, 269–282 (1951).PubMedGoogle Scholar
  95. Kornberg, H. L., and H. A. Krebs: Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature (Lond.) 179, 988–991 (1957).CrossRefGoogle Scholar
  96. Krebs, H. A., and H. L. Kornberg: Energy transformations in living matter. Ergebn. Physiol. 49, 212–298 (1957).PubMedCrossRefGoogle Scholar
  97. Larsen, H.: Photosynthesis of succinic acid by Chlorobium thiosulphatophilum. J. biol. Chem. 193, 167–173 (1951).PubMedGoogle Scholar
  98. On the microbiology and biochemistry of the photosynthetic green sulfur bacteria. Trondheim: F. Bruns Bokhandel 1953.Google Scholar
  99. The photolitho- autotrophic bacteria and their energy relations. In: Autotrophic Micro-organisms, pp. 186–201. Cambridge: Cambridge University Press 1954.Google Scholar
  100. Larsen, H., C. S. Yocum and C. B. van Niel: On the energetics of the photosyntheses in green sulfur bacteria. J. gen. Physiol. 36, 161–171 (1952).PubMedCrossRefGoogle Scholar
  101. Lemberg, R., and J. W. Legge: Hematin compounds and bile pigments (see p. 163). New York: Interscience Publ., Inc. 1949.Google Scholar
  102. Lindstrom, E. S., R. H. Burris and P. W. Wilson: Nitrogen fixation by photosynthetic bacteria. J. Bact. 58, 313–316 (1949).PubMedGoogle Scholar
  103. Lindstrom, E. S., S. M. Lewis and M. J. Pinsky: Nitrogen fixation and hydrogenase in various bacterial species. J. Bact. 61, 481–487 (1951).PubMedGoogle Scholar
  104. Lindstrom, E. S., S. R. Tove and P. W. Wilson: Nitrogen fixation by the green and purple sulfur bacteria. Science 112, 197–198 (1950).PubMedCrossRefGoogle Scholar
  105. Lipmann, F.: An analysis of the pyruvic acid oxidation system. Cold Spr. Harb. Symp. quant. Biol. 7, 248–259 (1939).CrossRefGoogle Scholar
  106. Metabolic generation and utilization of phosphate bond energy. In: Advances in Enzymology, Vol. 1, pp. 99–162. New York: Interscience Publ., Inc. 1941.Google Scholar
  107. In: Symposium on Chemical Transformations in Photosynthesis. Fed. Proc. 9, 549–550 (1950).Google Scholar
  108. Lipmann, F., and L. C. Tuttle: On the condensation of acetyl phosphate with formate or carbon dioxide in bacterial extracts. J. biol. Chem. 158, 505–519 (1945).Google Scholar
  109. Morita, S.: The effect of light on the metabolism of lactic acid by Rhodopseudomonas palustris. I. J. Biochem. (Tokyo) 42, 533–554 (1955).Google Scholar
  110. Aerobic metabolism of acetic acid in Rhodopseudomonas palustris. J. Biochem. (Tokyo) 45, 651–666 (1958).Google Scholar
  111. Muller, F. M.: On the metabolism of the purple sulphur bacteria in organic media. Arch. Mikrobiol. 4, 131–166 (1933).CrossRefGoogle Scholar
  112. Murray, R. G. E., and H. C. Douglas: The reproductive mechanism of Rhodomicrobium vannielii and the accompanying nuclear changes. J. Bact. 59, 157–167 (1950).PubMedGoogle Scholar
  113. Nakamuba, H.: Über die Photosynthese bei der schwefelfreien Purpurbakterie, Rhodobacillus palustris. Beiträge zur Stoffwechselphysiologie der Purpurbakterien. I. Acta phytochim. (Tokyo) 9, 189–229 (1937a).Google Scholar
  114. Über das Vorkommen der Hydrogenlyase in Rhodobacillus palustris und über ihre Rolle im Mechanismus der bakteriellen Photosynthese. Beiträge zur Stoffwechselphysiologie der Purpurbakterien. III. Acta phytochim. (Tokyo) 10, 211–218 (1937b).Google Scholar
  115. Weitere Untersuchungen über den Wasserstoffumsatz bei den Purpurbakterien, nebst einer Bemerkung über die gegenseitige Beziehimg zwischen Thio- und Athiorhodaceae. Beiträge zur Stoffwechselphysiologie der Purpurbakterien. V. Acta phytochim. (Tokyo) 11, 109–125 (1939).Google Scholar
  116. Weitere Untersuchungen über die bakterielle Photosynthese. Beiträge zur Stoffwechselphysiologie der Purpurbakterien. VI. Acta phytochim. (Tokyo) 12, 43–64 (1941).Google Scholar
  117. Newton, J. W., and M. D. Kamen: Chromatium cytochrome. Arch. Biochem. Biophys. 58, 246–247 (1955).PubMedCrossRefGoogle Scholar
  118. Chromatium cytochrome. Biochim. biophys. Acta 21, 71–80 (1956a).Google Scholar
  119. Some aspects of the light induced phosphorylation in extracts of Chromatium. Bact. Proc. 1956b, 115.Google Scholar
  120. Photophosphorylation by subcellular particles from Chromatium. Biochim. biophys. Acta 25, 462–474 (1957).Google Scholar
  121. Newton, J. W., and G. A. Newton: Composition of the photoactive subcellular particles from Chromatium. Arch. Biochem. Biophys. 71, 250–265 (1957).PubMedCrossRefGoogle Scholar
  122. Newton, J. W., and P. W. Wilson: Nitrogen fixation and photoproduction of molecular hydrogen by Thiorhodaceae. Antonie v. Leeuwenhoek 19, 71–77 (1953).CrossRefGoogle Scholar
  123. Nieman, R. H., and B. Vennesland: Cytochrome c photooxidase of spinach chloroplasts. Science 125, 353–354 (1957).PubMedCrossRefGoogle Scholar
  124. Olson, J. M.: A spectrophotometric study of intracellular oxidation-reduction reactions in the photosynthetic bacterium, Chromatium. Ph. D. thesis, University of Pennsylvania, Philadelphia, Pennsylvania, 1957.Google Scholar
  125. Ormerod, J. G.: The use of radioactive carbon dioxide in the measurement of carbon dioxide fixation in Rhodospirillum rubrum. Biochem. J. 64, 373–380 (1956).PubMedGoogle Scholar
  126. Paul, K.- G.: The porphyrin component of cytochrome c and its linkage to protein. Acta chem. scand. 5, 389–405 (1951).CrossRefGoogle Scholar
  127. Peck jr., H. D., and H. Gest: A new procedure for assay of bacterial hydrogenases. J. Bact. 71, 70–80 (1956).PubMedGoogle Scholar
  128. Peck jr., H. D., A. San Pietro and H. Gest: On the mechanism of hydrogenase action. Proc. nat. Acad. Sci. (Wash.) 42, 13–19 (1956).CrossRefGoogle Scholar
  129. Postgate, J. R.: Dependence of sulphate reduction and oxygen utihzation on a cytochrome in Desulphovihrio. Biochem. J. 58, ix (1954).PubMedGoogle Scholar
  130. Cytochrome C3 and desulphoviridin; pigments of the anaerobe Desulphovihrio desulphuricans. J. gen. Microbiol. 14, 545–572 (1956).Google Scholar
  131. Pringsheim, E. G.: Die Stellung der Grünen Bakterien im System der Organismen. Arch. Mikrobiol. 19, 353–364 (1953).PubMedCrossRefGoogle Scholar
  132. Racker, E.: Synthesis of carbohydrates from carbon dioxide and hydrogen in a cell-free system. Nature (Lond.) 175, 249–251 (1955).CrossRefGoogle Scholar
  133. Roelofsen, P. A.: On photosynthesis of the Thiorhodaceae. Doctoral thesis, Univ. of Utrecht, Utrecht, Netherlands, 1935.Google Scholar
  134. Ruben, S.: Photosynthesis and phosphorylation. J. Amer. chem. Soc. 65, 279–282 (1943).CrossRefGoogle Scholar
  135. San Pietro, A., and H. M. Lang: Photosynthetic pyridine nucleotide reductase. I. Partial purification and properties of the enzyme from spinach. J. biol. Chem. 231, 211–229 (1958).PubMedGoogle Scholar
  136. Scardovi, V.: Un nuovo sulfo-batterio fotosintetizzante: Rhodopseudomonas vannielii n. sp. Ann. Microbiol. (Milano) 4, 3–28 (1951).Google Scholar
  137. Studi sul metabolismo delle Athiorhodaceae. I. Ossidazioni corrispondenti al ciclo di Krebs nel metabolismo aerobico in oscurità di Rhodopseudomonas vannidii. Ann. Microbiol. (Milano) 6, 139–150 (1955a).Google Scholar
  138. Studi sul metabolismo delle Athiorhodaceae. II. Metabolismo anaerobico del glucosio in Rhodospirillum rubrum e Rhodopseudomonas vannielii in assenza di energia luminosa. Ann. Microbiol. (Milano) 6, 151–166 (1955b).Google Scholar
  139. Scarisbrick, R.: Hematin compounds in plants. Ann. Rep. Progr. chem. Soc. Lond. 44, 226–235 (1947).Google Scholar
  140. Schachman, H. K., A. B. Pardee and R. Y. Stanier: Studies on the macromolecular organization of microbial cells. Arch. Biochem. Biophys. 38, 245–260 (1952).PubMedCrossRefGoogle Scholar
  141. Schlegel, H.- G.: Die Rolle des molekularen Wasserstoffs im Stoffwechsel der Mikroorganismen. Arch. Mikrobiol. 20, 293–322 (1954).PubMedCrossRefGoogle Scholar
  142. Siegel, J. M.: The metabolism of acetone by the photosynthetic bacterium Rhodopseudomonas gdatinosa. J. Bact. 60, 595–606 (1950).PubMedGoogle Scholar
  143. The photosynthetic metabolism of acetone by Rhodopseudomonas gelatinosa. J. biol. Chem. 208, 205–216 (1954).Google Scholar
  144. The dark anaerobic metabolism of acetone and acetate by the photosynthetic bacterium Rhodopseudomonas gdatinosa. J. biol. Chem. 228, 41–47 (1957).Google Scholar
  145. Siegel, J. M., and M. D. Kamen: Studies on the metabolism of photosynthetic bacteria. VI. Metabolism of isopropanol by a new strain of Rhodopseudomonas gdatinosa. J. Bact. 59, 693–697 (1950).PubMedGoogle Scholar
  146. Studies on the metabolism of photosynthetic bacteria. VII. Comparative studies on the photoproduction of H2 by Rhodopseudomonas gelatinosa and Rhodospirillum rubrum. J. Bact. 61, 215–228 (1951).Google Scholar
  147. Siegel, J. M., and A. A. Smith: The dark aerobic metabolism of acetone by the photosynthetic bacterium Rhodopseudomonas gelatinosa. J. biol. Chem. 214, 475–482 (1955).PubMedGoogle Scholar
  148. Smith, L.: Bacterial cytochromes. Bact. Rev. 18, 106–130 (1954).PubMedGoogle Scholar
  149. Stanier, R. Y., and G. Cohbn-Bazire: The role of light in the microbial world: some facts and speculations. In: Microbial Ecology, pp. 56–89. Cambridge: Cambridge University Press 1957.Google Scholar
  150. Stiffler, H. J., and H. Gest: Effects of light intensity and nitrogen growth source on hydrogen metabolism in Rhodospirillum rubrum. Science 120, 1024–1026 (1954).PubMedCrossRefGoogle Scholar
  151. Stoppani, A. O. M., R. C. Fuller and M. Calvin: Carbon dioxide fixation by Rhodopseudomonas capsulatus. J. Bact. 69, 491–501 (1955).PubMedGoogle Scholar
  152. Thomas, J. B.: A note on the occurrence of grana in algae and in photosynthesizing bacteria. Proc. kon. ned. Akad. Wet., Ser. C 55, 207–208 (1952).Google Scholar
  153. Tsukamoto, A.: On the oxidation of fatty acids by purple bacteria. Bot. Mag. (Tokyo) 62, 159–167 (1949).Google Scholar
  154. On the oxidation of fatty acids by purple bacteria. II. The fate of acetate and propionate in respiration and photosynthesis. J. Biochem. (Tokyo) 39, 339–347 (1952).Google Scholar
  155. Utter, M. F., and K. Kurahashe: Mechanism of action of oxalacetic carboxylase. J. biol. Chem. 207, 821–841 (1954).PubMedGoogle Scholar
  156. Van Niel, C. B.: The bacterial photosyntheses and their importance for the general problem of photosynthesis. In: Advances in Enzymology, Vol. 1, pp. 263–328. New York: Interscience Publ., Inc. 1941.Google Scholar
  157. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bact. Rev. 8, 1–118 (1944).Google Scholar
  158. The comparative biochemistry of photosynthesis. In: Photosynthesis in Plants, pp. 437–495. Ames: Iowa State College Press 1949.Google Scholar
  159. The chemoautotrophic and photosynthetic bacteria. Ann. Rev. Microbiol. 8, 105–132 (1954).Google Scholar
  160. Vernon, L. P.: Cytochrome c content of Rhodospirillum rubrum. Arch. Biochem. Biophys. 43, 492–493 (1953).PubMedCrossRefGoogle Scholar
  161. Photoreduction of triphosphopyridine nucleotide by chromatophores of Rhodospirillum rubrum. J. Amer. chem. Soc. 80, 246–247 (1958a).Google Scholar
  162. Photoreduction of pyridine nucleotides by cell-free extracts and chromatophores of Rhodospirillum rubrum. J. biol. Chem. 233, 212–216 (1958b).Google Scholar
  163. Vernon, L. P., and M. D. Kamen: Studies on the metabolism of photosynthetic bacteria. XV. Photoautoxidation of ferrocytochrome c in extracts of Rhodospirillum rubrum. Arch. Biochem. Biophys. 44, 298–311 (1953).PubMedCrossRefGoogle Scholar
  164. Hematin compounds in photosynthetic bacteria. J. biol. Chem. 211, 643–662 (1954a).Google Scholar
  165. Studies on the metabolism of photosynthetic bacteria. XVII. Comparative studies on simultaneous photooxidations in bacterial and plant extracts. Arch. Biochem. Biophys. 51, 122–138 (1954b).Google Scholar
  166. Virtanen, A. I.: Biological nitrogen fixation. Proceedings, Third Internat. Congr. of Biochemistry, Brussels 1955; pp. 425–433. New York: Academic Press, Inc. 1956.Google Scholar
  167. Wall, J. S., A. C. Wagenknecht, J. W. Newton and R. H. Burris: Comparison of the metabolism of ammonia and molecular nitrogen in photosynthesizing bacteria. J. Bact. 63, 563–575 (1952).PubMedGoogle Scholar
  168. Warburg, O., u. W. Christian: Isolierung und Kristallisation des Proteins des oxydierenden Gärungsferments. Biochem. Z. 303, 40–68 (1939).Google Scholar
  169. Wassink, E. C.: The reducing action of light in photosynthesis. In: Carbon Dioxide Fixation and Photosynthesis. Symp. Soc. Exp. Biol., Vol. V, pp. 251–261. New York: Academic Press, Inc. 1951.Google Scholar
  170. Wassink, E. C., and A. Manten: Some observations on the utilization of organic compounds by purple sulphur bacteria. Antonie v. Leeuwenhoek 8, 155–163 (1942).CrossRefGoogle Scholar
  171. Weinhouse, S., and R. H. Millington: Acetate metabolism in yeast, studied with isotopic carbon. J. Amer. chem. Soc. 69, 3089–3093 (1947).CrossRefGoogle Scholar
  172. White, F. G., and L. P. Vernon: Inhibition of reduced diphosphopyridine nucleotide oxidase activity of Rhodospirillum rubrum chromatophores upon illumination. J. biol. Chem. 233, 217–221 (1958).PubMedGoogle Scholar
  173. Williams, A. M.: Light-induced uptake of inorganic phosphate in cell-free extracts of obligately anaerobic photosynthetic bacteria. Biochim. biophys. Acta 19, 570 (1956).PubMedCrossRefGoogle Scholar
  174. Wilson, P. W.: The comparative biochemistry of nitrogen fixation. In: Advances in Enzymology, Vol. 13, pp. 345–375. New York: Interscience Publ., Inc. 1952.Google Scholar
  175. Wong, D. T. O., and S.J. Ajl: Significance of the malate synthetase reaction in bacteria. Science 126, 1013–1014 (1957).PubMedCrossRefGoogle Scholar
  176. Woody, B. R., and E. S. Lindstrom: The succinic dehydrogenase from Rhodospirillum rubrum. J. Bact. 69, 353–356 (1955).PubMedGoogle Scholar

Literature to addendum

  1. Anderson, I. C., and R. C. Fuller: Photophosphorylation by isolated chromatophores of the purple sulfur bacteria. Arch. Biochem. Biophys. 76, 168–179 (1958).PubMedCrossRefGoogle Scholar
  2. Arnon, D. I.: Conversion of light into chemical energy in photosynthesis. Nature (Lond.) 184, 10–21 (1959).Google Scholar
  3. Bergeron, J. A.: The bacterial chromatophore. In: The Photochemical Apparatus, Its Structure and Function, pp. 118–131. Brookhaven Symp. Biol. No 11 (1959).Google Scholar
  4. Chance, B., and M. Nishimura: On the mechanism of chlorophyll- cytochrome interaction: the temperature insensitivity of light- induced cytochrome oxidation in Chromatium. Proc. nat. Acad. Sci. (Wash.) 46, 19–24 (1960).CrossRefGoogle Scholar
  5. Clayton, R. K.: Protein synthesis in the induced formation of catalase in Rhodopseudomonas spheroides. J. biol. Chem. 235, 405–407 (1960).PubMedGoogle Scholar
  6. Coleman, G. S.: The incorporation of amino acid carbon by Rhodospirillum rubrum. Biochim. biophys. Acta 30, 549–559 (1958).PubMedCrossRefGoogle Scholar
  7. The effect of dl-glutamic acid on the growth of Rhodospirillum rubrum. Biochim. biophys. Acta 31, 55–65 (1959).Google Scholar
  8. Fedorov, V. D.: The polyphosphates of photosynthesizing bacteria. Dokl. Akad. Nauk SSSR., Biol. Sci. Sec. 126, 508–511 (1959). (Translation published by Amer. Inst. Biol. Sci.)Google Scholar
  9. Frenkel, A. W.: Simultaneous reduction of diphosphopyridine nucleotide and oxidation of reduced flavin mononucleotide by illuminated bacterial chromatophores. J. Amer. chem. Soc. 80, 3479 (1958).CrossRefGoogle Scholar
  10. Light-induced reactions of chromatophores of Rhodospirillum rubrum. In: The Photochemical Apparatus, Its Structure and Function, pp. 276–288. Brookhaven Symp. Biol. No. 11 (1959).Google Scholar
  11. Light-induced reactions of bacterial chromatophores and their relation to photosynthesis. Ann. Rev. Plant Physiol. 10, 53–70 (1959).Google Scholar
  12. Frenkel, A. W., and D. D. Hickman: Structure and photochemical activity of chlorophyll-containing particles from Rhodospirillum rubrum. J. biophys. biochem. Cytol. 6, 285–289 (1959).PubMedCrossRefGoogle Scholar
  13. Fuller, R. C., and I. C. Anderson: Suppression of carotenoid synthesis and its effect on the activity of photosynthetic bacterial chromatophores. Nature (Lond.) 181, 252–254 (1958).CrossRefGoogle Scholar
  14. Goedheer, J. C.: Reversible oxidations of pigments in bacterial chromophores. In: The Photochemical Apparatus, Its Structure and Function, pp. 325–331. Brookhaven Symp. Biol. No. 11 (1959).Google Scholar
  15. Hendley, D. D.: Endogenous fermentation in Thiorhodaceae. J. Bact. 70, 625–634 (1955).PubMedGoogle Scholar
  16. Hickman, D. D., and A. W. Frenkel: The structure of Rhodospirillum rubrum. J. biophys. biochem. Cytol. 6, 277–284 (1959).PubMedCrossRefGoogle Scholar
  17. Holt, A. S., and H. V. Morley: Chlorobium chlorophyll. J. Amer. chem. Soc. 82, 500–501 (1960).CrossRefGoogle Scholar
  18. Kaplan, I. R., and H. Silberman: Spectroscopy of bacterial chlorophylls separated by paper and cellulose column chromatography. Arch. Biochem. Biophys. 80, 114–124 (1959).CrossRefGoogle Scholar
  19. Karunairatnam, M. C., J. Spizizen and H. Gest: Preparation and properties of protoplasts of Rhodospirillum rubrum. Biochim. biophys. Acta 29, 649–650 (1958).PubMedCrossRefGoogle Scholar
  20. Krasnovsku, A. A., and E. V. Pakshina: The photochemical and spectral properties of bacterioviridin of green sulfur bacteria. Dokl. Akad. Nauk SSSR., Biochem. Sec. 127, 215–218 (1959). (Translation published by Amer. Inst. Biol. Sci.)Google Scholar
  21. Newton, J. W.: Immunochemical reactions of the photosynthetic apparatus in purple bacteria. In: The Photochemical Apparatus, Its Structure and Function, pp. 289–295. Brookhaven Symp. Biol. No. 11 (1959).Google Scholar
  22. Newton, J. W., and L. Levine: Immunochemical studies on the photoactive subcellular particles from Chromatium. Arch. Biochem. Biophys. 83, 456–471 (1959).PubMedCrossRefGoogle Scholar
  23. Olson, J. M., and B. Kok: IS oxidized bacteriochlorophyll an intermediate in bacterial photosynthesis? Biochim. biophys. Acta 32, 278–280 (1959).PubMedCrossRefGoogle Scholar
  24. Paléus, S., and H. Tuppy: A hemopeptide from a tryptic hydrolysate of Rhodospirillum rubrum cytochrome c. Acta chem. scand. 13, 641–646 (1959).CrossRefGoogle Scholar
  25. Petrova, E. A.: Sources of nitrogen nutrition for purple sulfur bacteria. Dokl. Akad. Nauk SSSR., Biol. Sci. Sec. 126, 516–518 (1959). (Translation published by Amer. Inst. Biol. Sci.)Google Scholar
  26. Pratt, D. C., and A. W. Frenkel: Studies on nitrogen fixation and photosynthesis of Rhodospirillum rubrum. Plant Physiol. 34, 333–337 (1959).PubMedCrossRefGoogle Scholar
  27. Smith, L.: Reactions of Rhodospirillum rubrum extract with cytochrome c and cytochrome C2. J. biol. Chem. 234, 1571–1574 (1959).PubMedGoogle Scholar
  28. Smith, L., and M. Baltscheffsky: Respiration and light-induced phosphorylation in extracts of Rhodospirillum rubrum. J. biol. Chem. 234, 1575–1579 (1959).PubMedGoogle Scholar
  29. Smith, L., M. Baltscheffsky and J. M. Olson: Absorption spectrum changes observed on illumination of aerobic suspensions of photosynthetic bacteria. J. biol. Chem. 235, 213–218 (1960).PubMedGoogle Scholar
  30. Smith, L., and J. Ramirez: Reactions of carotenoid pigments in photosynthetic bacteria. J. biol. Chem. 235, 219–225 (1960).Google Scholar
  31. Stanier, R. Y., M. Doudoroff, R. Kunisawa and R. Contopoulou: The role of organic substrates in bacterial photosynithesis. Proc. nat. Acad. Sci. (Wash.) 45, 1246–1260 (1959).CrossRefGoogle Scholar
  32. Takamatsu, K., and S. Morita: Action spectra of photosynthesis and photochemical assimilation of pyruvic acid in Rhodopseudomonas palustris. J. Biochem. (Tokyo) 45, 541–546 (1958).Google Scholar
  33. Taylor, J. J.: The effects of sodium thioglycolate on the photosynthetic and dark metabolism of purple sulphur bacteria. Canad. J. Microbiol. 4, 425–433 (1958).CrossRefGoogle Scholar
  34. The demonstration of photochemical reducing sites in Chromatium sp. Exp. Cell Res. 17, 533–535 (1959).Google Scholar
  35. Thomas, J. B.: Pigment carrying structures of the photosynthetic non-sulphur purple bacterium Rhodopseudomonas spheroides. Plant Physiol. 34, 338–340 (1959).PubMedCrossRefGoogle Scholar
  36. Thomas, J. B., J. de Gier and C. Bril: Studies on the natural state of bacteriochlorophyll. Biochim. biophys. Acta 36, 326–334 (1959).PubMedCrossRefGoogle Scholar
  37. Tuttle, A. L., and H. Gest: Subcellular particulate systems and the photochemical apparatus of Rhodospirillum rubrum. Proc. nat. Acad. Sci. (Wash.) 45, 1261–1269 (1959).CrossRefGoogle Scholar
  38. Induction of morphological aberrations in Rhodospirillum rubrum by D- amino acids. J. Bact., 79, 213–216 (1960).Google Scholar
  39. Vatter, A. E., and R. S. Wolfe: The structure of photosynthetic bacteria. J. Bact. 75, 480–488 (1958).PubMedGoogle Scholar
  40. Vernon, L. P.: Photooxidations catalyzed by chromatophores of Rhodospirillum rubrum under anaerobic conditions. J. biol. Chem. 234, 1883–1888 (1959).PubMedGoogle Scholar
  41. Photooxidation of cytochrome c by illuminated chromatophores of Rhodospirillum rubrum under anaerobic conditions. Biochim. biophys. Acta 32, 589–591 (1959).Google Scholar
  42. Vernon, L. P., and O. K. Ash: The photoreduction of pyridine nucleotides by illuminated chromatophores of Rhodospirillum rubrum in the presence of succinate. J. biol. Chem. 234, 1878–1882 (1959).PubMedGoogle Scholar
  43. Vishniac, W., and I. A. Rose: Mechanism of chlorophyll action in photosynthesis. Nature (Lond.) 182, 1089–1090 (1958).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • Howard Gest
  • Martin D. Kamen

There are no affiliations available

Personalised recommendations