Advertisement

Abstract

Current ideas maintain that the first step in the chemical path of photosynthesis is a carboxylation process. At present we do not know for certain whether this carboxylation uses free CO2, HCO 3 ions or both. It is, however, necessary to distinguish decisively between the carbon source used during this carboxylation process and the carbon source assimilated from outside by the cell. They do not necessarily have to be identical. Although, e.g., in terrestrial plants, free CO2 exclusively is assimilated, the carboxylation does possibly use HCO 3 ions. The presence of carbonic anhydrase in the cells makes such an arrangement possible.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Angelstein, U.: Über die Kohlensäureassimilation submerser Wasserpflanzen in Bikarbonat- und Karbonatlösungen. Beitr. Biol. Pflanz. 10, 87–117 (1910).Google Scholar
  2. Arens, K.: Zur Kenntnis der Karbonatassimilation der Wasserpflanzen. Planta (Berl.) 10, 814–816 (1930).CrossRefGoogle Scholar
  3. Physiologisch polarisierter Massenaustausch und Photosynthese bei submersen Wasserpflanzen. I. Planta (Berl.) 20, 621–658 (1933).Google Scholar
  4. Physiologisch polarisierter Massenaustausch und Photosynthese bei submersen Wasserpflanzen. II. Die Ca(HC03)2-Assimilation. Jb. wiss. Bot. 83, 513–560 (1936a).Google Scholar
  5. Photosynthese von Wasserpflanzen in Kaliumbikar-bonatlösungen. Jb. wiss. Bot. 83, 561–566 (1936b).Google Scholar
  6. Benecke, W.: Beiträge zum Problem der Kohlensäureassimilation. Z. Bot. 13, 417–460 (1921).Google Scholar
  7. Bode, H. R.: Untersuchungen über die Abhängigkeit der Atmungsgröße von der H-Ionenkonzentration bei einigen Spirogyra-Arten. Jb. wiss. Bot. 65, 352–387 (1926).Google Scholar
  8. Bradfield, J. R. G.: Plant carbonic anhydrase. Nature (Lond.) 159, 467–468 (1947).CrossRefGoogle Scholar
  9. Briggs, G. E., and C. P. Whittingham: Factors affecting the rate of photosynthesis of low concentration of carbon dioxide and in high illumination. New Phytologist 51, 236 (1952).CrossRefGoogle Scholar
  10. Brown, T. E., and C. Eyster: Carbonic anhydrase in certain species of plants. Ohio J. Sci. 55, 257–262 (1955).Google Scholar
  11. Dahm, p.: Beziehungen der Sphagneen und einiger untergetauchten Wasserpflanzen zum Kalkkarbonat. Jb. wiss. Bot. 65, 314–351 (1926).Google Scholar
  12. Day, R., and J. Franklin: Plant carbonic anhydrase. Science 104, 363–365 (1946).CrossRefGoogle Scholar
  13. Egle, K., u. W. Schenk: Untersuchungen über die Reassimilation der Atmungskohlensäure bei der Photosynthese der Pflanzen. Beitr. Biol. Pflanz. 29, 75–105 (1952).Google Scholar
  14. Emerson, R., and L. Green: Effect of hydrogen-ion concentration on Chlorella photosynthesis. Plant Physiol. 13, 159–168 (1938).CrossRefGoogle Scholar
  15. Gessner, F.: Untersuchungen über Assimilation und Atmung submerser Wasserpflanzen. Jb. wiss. Bot. 85, 267–526 (1937).Google Scholar
  16. Hoover, W. H., E. S. Johnston and F. S. Brackett: Carbon dioxide assimilation in a higher plant. Smithsonian Inst. Publ. Misc. Coll. 87, No 16, 1933.Google Scholar
  17. Iversen, J.: Studien über die Ph-Verhältnisse dänischer Gewässer und ihren Einfluß auf die Hydrophyten-Vegetation. Bot. Tidsskr. 40, 277–333 (1929).Google Scholar
  18. James, W. O.: Experimental researches on vegetable assimilation and respiration. XIX. The effect of variation of carbon dioxide supply upon the rate of assimilation of submerged water plants. Proc. roy. Soc. B 103, 1–42 (1928).CrossRefGoogle Scholar
  19. Lookeren Campagne, R. N. van: On the influence of carbon dioxide and bicarbonate on the photosynthesis in Vallisneria spiralis. Proc. kon. ned. Akad. Wet., Ser. C 58, 548–553 (1955).Google Scholar
  20. Lowenhaupt, B.: The transport of calcium and other cations in submerged aquatic plants. UCRL-3247 (U.S. Atomic Energy Commission) 1955.Google Scholar
  21. Active cation transport in submerged aquatic plants. I. Effect of light upon the absorption and excretion of calcium by Potamogeton crispus (L.) leaves. UCRL-3460 (U.S. Atomic Energy Commission) 1956.Google Scholar
  22. Meldrum, N. U., and F. J. W. Roughton: Some properties of carbonic anhydrase, the CO2 enzyme present in blood. J. Physiol. (Lond.) 75, 15–16 (1932).Google Scholar
  23. Mommaerts, W. F. H. M.: The possible occurrence of carbonic anhydrase in green leaves. Proc. Acad. Sci. Amsterd. 43, 1044–1049 (1940).Google Scholar
  24. Nathansohn, A.: Über die Bedingungen der Kohlensäureassimilation in natürlichen Gewässern, insbesondere im Meere. Ber. Verh. sächs. Ges. Wiss. Leipzig, math.-phys. Kl. 59, 211–227 (1907).Google Scholar
  25. Neish, A. C: Studies on chloroplasts. II. Their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem. J. 33, 300–308 (1939).PubMedGoogle Scholar
  26. Österlind, S.: Influence of low bicarbonate concentration on the growth of a green alga. Nature (Lond.) 161, 319–320 (1948a).CrossRefGoogle Scholar
  27. The retarding effect of high concentrations of carbon dioxide and carbonate ions on the growth of a green alga. Physiol. Plantarum (Cph.) 1, 170–175 (1948b).Google Scholar
  28. Growth conditions of the alga Scenedesmus quadricauda with special reference to the inorganic carbon sources. Symb. bot. upsal. 10, 1–141 (1949).Google Scholar
  29. Inorganic carbon sources of green algae. I. Growth experiments with Scenedesmus quadricauda and Chlorella pyrenoidosa. Physiol. Plantarum (Cph.) 3, 353–360 (1950).Google Scholar
  30. III. Measurements of photosynthesis in Scenedesmus quadricauda and Chlorella pyrenoidosa. Physiol. Plantarum (Cph.) 4, 242–254 (1951a).Google Scholar
  31. IV. Photoactivation of some factor necessary for bicarbonate assimilation. Physiol. Plantarum (Cph.) 4, 514–527 (1951b).Google Scholar
  32. V. Inhibition of photosynthesis by cyanide. Physiol. Plantarum (Cph.) 5, 372–378 (1952a).Google Scholar
  33. VI. Further experiments concerning photoactivation of bicarbonate assimilation. Physiol. Plantarum (Cph.) 5, 403–408 (1952b).Google Scholar
  34. Rabinowitch, E. I.: Photosynthesis and related processes. Vol. II. part 2, p. 1211–2088. New York 1956.Google Scholar
  35. Rosenberg, J. L.: Use of a glass electrode for measuring rapid changes in photosynthetic rates. J. gen. Physiol. 37, 753–774 (1954).PubMedCrossRefGoogle Scholar
  36. Roughton, F. J. W.: Carbonic anhydrase. Ergebn. Enzymforsch. 3, 289–302 (1934).Google Scholar
  37. Ruttner, F.: Das elektrolytische Leitvermögen verdünnter Lösungen unter dem Einfluß submerser Gewächse. S.-B. Akad. Wiss. Wien, math.-nat. Kl. 130, 71–108 (1921).Google Scholar
  38. Zur Frage der Karbonat-Assimilation der Wasserpflanzen. Eine vergleichende Untersuchung. I. Teil: Die beiden Haupttypen der Kohlenstoffaufnahme. Öst. bot. Z. 94, 265–294 (1947).Google Scholar
  39. II. Teil: Das Verhalten von Elodea canadensis und Fontinalis antipyretica in Lösungen von Natrium- bzw. Kalium-bikarbonat. Öst. bot. Z. 95, 208–238 (1948).Google Scholar
  40. Schutow, D. A.: Die Assimilation der Wasserpflanzen und die aktuelle Reaktion des Milieus. Planta (Berl.) 2, 132–151 (1926).CrossRefGoogle Scholar
  41. Smith, E. L.: The influence of light and carbon dioxide on photosynthesis. J. gen. Physiol. 20, 807–830 (1937).PubMedCrossRefGoogle Scholar
  42. Limiting factors in photosynthesis: light and carbon dioxide. J. gen. Physiol. 22, 21–35 (1938).Google Scholar
  43. Steemann Nielsen, E.: Dependence of freshwater plants on quantity of carbon dioxide and hydrogen ion concentration, illustrated through experimental investigations. Dansk bot. Ark. 11, Nr 8, 1–25 (1944).Google Scholar
  44. Carbon sources in the photosynthesis of aquatic plants. Nature (Lond.) 158, 594–596 (1946).Google Scholar
  45. Photosynthesis of aquatic plants with special reference to the carbon-sources. Dansk bot. Ark. 12, Nr 8, 1–71 (1947).Google Scholar
  46. Passive and active ion transport during photosynthesis in water plants. Physiol. Plantarum (Cph.) 4, 189–198 (1951).Google Scholar
  47. Experimental carbon dioxide curves in photosynthesis. Physiol. Plantarum (Cph.) 5, 145–159 (1952).Google Scholar
  48. The persistence of aquatic plants to extreme Ph values. Physiol. Plantarum (Cph.) 5, 211–217 (1952b).Google Scholar
  49. Carbon dioxide concentration, respiration during photosynthesis, and maximum quantum yield of photosynthesis. Physiol. Plantarum (Cph.) 6, 316–332 (1953).Google Scholar
  50. Influence of Ph on the respiration in Chlorella pyrenoidosa. Physiol. Plantarum (Cph.) 8, 106–115 (1955).Google Scholar
  51. Carbon dioxide as carbon source and narcotic in photosynthesis and growth of Chlorella pyrenoidosa. Physiol. Plantarum (Cph.) 8, 317–335 (1955b).Google Scholar
  52. Steemann Nielsen, E., and J. Kristiansen: Carbonic anhydrase in submersed autotrophic plants. Physiol. Plantarum (Cph.) 2, 325–331 (1949).CrossRefGoogle Scholar
  53. Tolbert, N. E., and L. P. Zill: Excretion of glycolic acid by algae during photosynthesis. J. biol. Chem. 222, 895–906 (1956).PubMedGoogle Scholar
  54. Tseng, C. K., and B. M. Sweeney: Physiological studies of Gelidium cartilagineum. I. Photosynthesis, with special reference to the carbon dioxide factor. Amer. J. Bot. 33, 706–715 (1946).CrossRefGoogle Scholar
  55. Verduin, j.: Carbon dioxide compensation point in photosynthesis. Science 120, 75–76 (1954).PubMedCrossRefGoogle Scholar
  56. Warburg, O.: Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. Biochem. Z. 100, 230–270 (1919).Google Scholar
  57. Energetik der Photosynthese. Naturwissenschaften 39, 337–341 (1952).Google Scholar
  58. Waygood, E. R., and K. A. Clendenning: Carbonic anhydrase in green plants. Canad. J. Res., C 28, 673–689 (1950).CrossRefGoogle Scholar
  59. Whittingham, C. P.: Rate of photosynthesis and concentration of carbon dioxide in Chlorella. Nature (Lond.) 170, 1017–1018 (1952).CrossRefGoogle Scholar
  60. Wilmott, A. J.: Experimental researches on vegetable assimilation and respiration. XIV. Assimilation by submerged plants in dilute solutions of bicarbonates and of acids: an improved bubble-counting technique. Proc. Roy. Soc. B 92, 304–327 (1921).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • E. Steemann Nielsen

There are no affiliations available

Personalised recommendations