Advertisement

Photosynthese und lichtabhängige Phosphorylierung

  • Wilhelm Simonis
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)

Zusammenfassung

In dem vorliegenden Abschnitt über die Zusammenhänge zwischen Lichtabhängiger Phosphorylierung und Photosynthese beschränke ich mich auf die Darstellung der bei intakten Pflanzen gemachten Erfahrungen. Die Verhältnisse bei Chloroplasten und Pflanzenextrakten bleiben der gesonderten Darstellung in diesem Handbuch im Beitrag von Arnon “The chloroplast as functional unit in photosynthesis”1 vorbehalten, auf den aber selbstverständlich zum Vergleich für die entwickelten Vorstellungen laufend hingewiesen werden muß. Wir gehen davon aus, daß Beziehungen zwischen der Belichtung und dem Phosphathaushalt der Pflanzen auf recht verschiedene Weise denkbar sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albaum, H. G.: The metabolism of phosphorylated compounds in plants. Ann. Rev. Plant Physiol. 3, 35–58 (1952).CrossRefGoogle Scholar
  2. Albaum, H. G., A. Schatz, S. H. Hutner and A. Hirschfeld: Phosphorylated compounds in Euglena. Arch. Biochem. 29, 210–218 (1950).PubMedGoogle Scholar
  3. Alberda, Th.: The influence of some external factors on growth and phosphate uptake of maize plants of different salt conditions. Rec. Trav. bot. néerl. 41, 541–601 (1948).Google Scholar
  4. Allen, F. L.: Observations on photosynthesis and related systems. I. Influence of anaerobiosis on photosynthetic rates during continuous irradiation. Arch. Biochem. 55, 38–53 (1955).PubMedCrossRefGoogle Scholar
  5. Andel, O. M. van, W. H. Arisz and R. J. Helder: Influence of light and sugar on growth and salt intake of maize. Proc. kon. ned. Akad. Wet., Ser. C 53, 159–171 (1950).Google Scholar
  6. Arisz, W. H.: Uptake and transport of chlorine by parenchymatic tissue of leaves of Vallisneria spiralis. Proc. kon. ned. Akad. Wet., Ser. C 50, 1019–1035, 1235–1245 (1947).Google Scholar
  7. Influence of inhibitors on the uptake and transport of chloride ions in leaves of Vallisneria spiralis. Acta bot. neerl. 7, 1–32 (1958).Google Scholar
  8. Arnon, D. I.: Phosphorus metabolism and photosynthesis. Ann. Rev. Plant Physiol. 7, 325–354 (1956).CrossRefGoogle Scholar
  9. Chloroplasts and photosynthesis. Brookhaven Symp. Biol. 11, 181–235 (1959).Google Scholar
  10. Arnon, D. I., M. B. Allen and F. R. Whatley: Photosynthesis by isolated chloroplasts. Nature (Lond.) 174, 394–396 (1954).CrossRefGoogle Scholar
  11. Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions. Biochim. biophys. Acta 20, 449–461 (1956).Google Scholar
  12. Arnon, D. I., F. R. Whatley and M. B. Allen: Photosynthesis by isolated chloroplasts. II. Photosynthetic phosphorylation, the conversion of light into phosphate bound energy. J. Amer. chem. Soc. 76, 6324–6329 (1954).CrossRefGoogle Scholar
  13. Assimilatory power in photosynthesis. Science 127, 1026–1034 (1958).Google Scholar
  14. Photosynthesis by isolated chloroplasts. VIII. Photosynthetic phosphorylation and the generation of assimilatory power. Biochim. biophys. Acta 32, 47–57 (1959).Google Scholar
  15. Aronoff, S., and M. Calvin: Phosphorus turnover and photosynthesis. Plant Physiol. 23, 351–358 (1948).PubMedCrossRefGoogle Scholar
  16. Avron, M., and A. T. Jagendorf: Evidence concerning the mechanism of adenosine triphosphate formation by spinach chloroplasts. J. biol. Chem. 234, 967–972 (1959).PubMedGoogle Scholar
  17. Avron, M., A. T. Jagendorf and M. Evans: Photosynthetic phosphorylation in a partially purified system. Biochim. biophys. Acta 26, 262–269 (1957).PubMedCrossRefGoogle Scholar
  18. Baalsrud, K.: Some aspects of the physiology of Thiobacilli. In: Autotrophic Microorganisms, 4th Symp. of the Soc. f. Gen. Microbiology, pp. 54–67. Cambridge 1954.Google Scholar
  19. Baalsrud, K., and K. S. Baalsrud: The role of phosphate in CO2-assimilation of Thiobacilli. In: Phosphorus Metabolism, Vol. II, pp. 544–576. Baltimore, Md. 1952.Google Scholar
  20. Bassham, J. A.: Energy transfer in photosynthesis. Photobiology, 19th Ann. Biol. Colloquium, pp. 65–73. Corvallis, Oregon 1958.Google Scholar
  21. Physical chemistry and structure in photosynthesis. Brookhaven Symp. Biol. 11, 26–31 (1959).Google Scholar
  22. Bassham, J. A., A. A. Benson and M. Calvin: Isotope studies in photosynthesis. J. chem. Educ. 30, 274–283 (1953).CrossRefGoogle Scholar
  23. Bassham, J. A., and M. Calvin: The path of carbon in photosynthesis. Englewood Cliffs, N. Y.: Prentice Hall, Inc. 1957.Google Scholar
  24. Belosersky, A. N., and I. S. Kulaev: Polyphosphates and their significance for the development of Aspergillus niger. Biochimija 22, 29–39 (1957) [Russisch].Google Scholar
  25. Benson, A. A.: Identification of ribulose in 14CO2 photosynthesis products. J. Amer. chem. Soc. 73, 2971–2972 (1951).CrossRefGoogle Scholar
  26. Benson, A. A., J. A. Bassham, M. Calvin, A. G. Hall, H. E. Hirsch, S. Kawaguchi, V. Lynch and N. E. Tolbert: The path of carbon in photosynthesis. XV. Ribulose and sedoheptulose. J. biol. Chem. 196, 703–716 (1952).PubMedGoogle Scholar
  27. Bergmann, L.: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. II. Vergleichende Untersuchungen über den Einfluß mineralischer Faktoren bei heterotropher und mixotropher Ernährung. Flora (Jena) 142, 493–539 (1955).Google Scholar
  28. Bernheim, F., and M. Dixon: Studies on xanthine oxidase. X. The action of light. Biochem. J. 22, 113–124 (1928).PubMedGoogle Scholar
  29. Bidwell, R. G., S. G. Krotkov and G. B. Reed: The influence of light and darkness on the metabolism of radioactive glucose and glutamine in wheat leaves. Canad. J. Bot. 33, 189–196 (1955).CrossRefGoogle Scholar
  30. Bötticher, R., u. L. Behling: Licht, Transpiration, Salzaufnahme und Blattstruktur. Ein Beitrag zum Problem der Sonnen- und Schattenblätter. Flora (Jena) 34, 1–44 (1940).Google Scholar
  31. Bradley, D. F.: Phosphate transients in photosynthesis. Arch. Biochem. 68, 172–185 (1957).PubMedCrossRefGoogle Scholar
  32. Buchanan, J. G., J. A. Bassham, A. A. Benson, D. F. Bradley, M. Calvin, L. L. Dans, M. Goodman, P. M. Hayes, V. H. Lynch, L. T. Norris and A. T. Wilson: The path of carbon in photosynthesis. XVII. Phosphorus compounds as intermediates in photosynthesis. In: Phosphorus Metabolism, Vol. II, pp.440–461. Baltimore, Md.: Johns Hopkins Press 1952.Google Scholar
  33. Burg, A. H. van der: Influence of light on absorbance of potassium by maize plants in CO2-free air. Proc. kon. ned. Akad. Wet., Ser. C 55, 279–281 (1952).Google Scholar
  34. Burk, D., u. O. Warburg: Ein-Quanten-Reaktion und Kreisprozeß der Energie bei der Photosynthese. Z. Naturforsch. 6b, 12–22 (1951).Google Scholar
  35. Burris, R. H.: Nitrogen nutrition. Ann. Rev. Plant Physiol. 10, 301–328 (1959).CrossRefGoogle Scholar
  36. Burström, H.: Nitrate reduction. Radiat. Biol. 3, 443–462 (1956).Google Scholar
  37. Burton, K.: The free-energy change associated with the hydrolysis of acetyl coenzyme A. Biochem. J. 59, 44–46 (1955).PubMedGoogle Scholar
  38. Free energy data of biological interest. Energy Transformations in Living Matter, a Survey, pp. 275–285. Berlin: Springer 1957.Google Scholar
  39. Burton, K., and H. A. Krebs: The free-energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenosine triphosphate. Biochem. J. 54, 94–107 (1953).PubMedGoogle Scholar
  40. Calvin, M.: The photosynthetic carbon cycle. Conf. et Rapp. présentés au 3ème Congr. intern. de Biochim. Bruxelles, 1955, pp. 211–225. Liège 1956.Google Scholar
  41. Der Photosynthese-Cyclus. Angew. Chem. 68, 253–264 (1956).Google Scholar
  42. Calvin, M., J. A. Bassham, A. A. Benson, V. H. Lynch, C. Ouellet, L. Schou, W. Stepka and N. E. Tolbert: Carbon dioxide assimilation in plants. Symp. Soc. exp. Biol. 5, 284–305 (1951).Google Scholar
  43. Cantino, E. C., and E. A. Horenstein: The stimulatory effect of light upon growth and CO2 fixation in Blastocladiella. I. The S.K.J. cycle. Mycologia 48, 777–799 (1956).CrossRefGoogle Scholar
  44. The stimulatory effect of light upon growth and CO2 fixation in Blastocladiella. II. Mechanism at an organismal level of integration. Mycologia 49, 892–894 (1957).Google Scholar
  45. The stimulatory effect of light upon growth and CO2 fixation in Blastocladiella. III. Further studies in vivo and in vitro. Physiol. Plantarum (Cph.) 12, 251–263 (1959).Google Scholar
  46. Chance, B., and R. Sager: Oxygen and light induced oxidation of cytochrome, flavoproteine and pyridine nucleotide in a Chlamydomonas mutant. Plant Physiol. 32, 548–561 (1957).PubMedCrossRefGoogle Scholar
  47. Chance, B., and G. R. Williams: The respiratory chain and oxidative phosphorylation. Advanc. Enzymol. 17, 65–134 (1956).Google Scholar
  48. Damaschke, K., L. Rothbühr u. F. Tödt: Photosynthese unter anaeroben Bedingungen. Z. Naturforsch. 10b, 572–578 (1955).Google Scholar
  49. Delavan, L. A., and A. A. Benson: Light stimulation of glycolic acid oxidation in chloroplasts. Brookhaven Symp. Biol. 11, 259–261 (1959).Google Scholar
  50. Drews, G.: Der Einfluß von 2, 4-Dinitrophenol auf den Phosphorstoffwechsel und die Bildung der metachromatischen Granula bei Mycobacterium phlei. Z. Naturforsch. 14b, 265–268 (1959).Google Scholar
  51. Duysens, L. N. M.: Role of cytochrome and pyridine nucleotide in algal photosynthesis. Science 121, 210–211 (1955).PubMedCrossRefGoogle Scholar
  52. Energy transformation in photosynthesis. Ann. Rev. Plant Physiol. 7, 25–50 (1956).Google Scholar
  53. Duysens, L. N. M., W. J. Huiskamp, J. J. Vos and J. M. van der Hart: Reversible changes in bacteriochlorophyll in purple bacteria upon illumination. Biochim. biophys. Acta 18, 188–190 (1956).CrossRefGoogle Scholar
  54. Ebel, J. P., et V. Volmer: Chromatographie sur papier des ortho-, pyro-, mèta- et polyphosphates. C. R. Acad. Sci. (Paris) 233, 415–417 (1951).Google Scholar
  55. Emerson, R. L., J. F. Stauffer and W. W. Umbreit: Relationships between phosphorylation and photosynthesis in Chlorella. Amer. J. Bot. 31, 107–120 (1944).CrossRefGoogle Scholar
  56. Epstein, E.: Minerai nutrition of plants: Mechanisms of uptake and transport. Ann. Rev. Plant Physiol. 7, 1–24 (1956).CrossRefGoogle Scholar
  57. Farkas, G. L., E. Konrád and Z. Király: The effect of light on the malonate-sensitivity of plant respiration. Physiol. Plantarum (Cph.) 10, 346–355 (1957).CrossRefGoogle Scholar
  58. Frenkel, A. W.: Light induced phosphorylation by cell-free preparations of Rhodospirillum rubrum. In: Research in Photosynthesis, pp. 303–310. New York: Intersc. Publ. 1957.Google Scholar
  59. Light induced reactions of bacterial chromatophores and their relation to photosynthesis. Ann. Rev. Plant Physiol. 10, 53–70 (1959).Google Scholar
  60. Gaffron, H.: Carbon dioxide reduction with molecular hydrogen in green algae. Amer. J. Bot. 27, 273–283 (1940).CrossRefGoogle Scholar
  61. The effect of the specific poisons upon photoreduction with hydrogen in green algae. J. gen. Physiol. 26, 195–217 (1942).Google Scholar
  62. (Editor): Research in photosynthesis. Papers and discussions presented at the Gatlinburg Conference, Oct. 25–29, 1955. New York: Intersc. Publ., Inc. 1957.Google Scholar
  63. In discussion regarding the paper of A. R. Krall 1957, S. 321.Google Scholar
  64. Galston, A. W.: Riboflavine, light and the growth of plants. Science 111, 619–624 (1950).PubMedCrossRefGoogle Scholar
  65. Galston, A. W., and R. S. Baker: Studies on the physiology of light action. V. Photoinductive alternation of auxin metabolism in etiolated peas. Amer. J. Bot. 40, 512–516 (1953).CrossRefGoogle Scholar
  66. Gerretsen, F. C: Manganese in relation to photosynthesis. II. Redoxpotentials of illuminated crude chloroplast suspensions. Plant and Soil 2, 159–193 (1950).CrossRefGoogle Scholar
  67. Gest, H., and M. D. Kamen: Studies on the phosphorus metabolism of green algae and purple bacteria in relation to photosynthesis. J. biol. Chem. 176, 299–318 (1948).PubMedGoogle Scholar
  68. Gibbs, M., and O. Kandler: Asymmetric distribution of 14C in sugars formed during photosynthesis. Proc. nat. Acad. Sci. (Wash.) 43, 446–451 (1957).CrossRefGoogle Scholar
  69. Goodman, J., and A. Rothstein: The active transport of phosphate into yeast cells. J. gen. Physiol. 40, 915–923 (1957).PubMedCrossRefGoogle Scholar
  70. Goodman, M., D. F. Bradley and M. Calvin: Phosphorus and photosynthesis. I. Differences in the light and dark incorporation of radiophosphate. J. Amer. chem. Soc. 75, 1962–1967 (1953).CrossRefGoogle Scholar
  71. Gordon, S. A., and K. Surrey: Red, far-red interaction in oxidative phosphorylation. Plant Physiol. 33, Suppl., XXIV (1958).Google Scholar
  72. Grube, K. H.: Über den Zusammenhang von Phosphathaushalt und Photosynthese bei Helodea densa. Planta (Berl.) 42, 279–303 (1953).CrossRefGoogle Scholar
  73. Grunze, H., u. E.Thilo: Die Papierchromatographie der kondensierten Phosphate, 2. Aufl. Berlin: Akademie-Verlag 1955.Google Scholar
  74. Hackett, D. P.: Respiratory mechanisms in higher plants. Ann. Rev. Plant Physiol. 10, 113–146 (1959).CrossRefGoogle Scholar
  75. Hämmerling, J., u. H. Stich: Über die Aufnahme von 32P in kernhaltige und kernlose Acetabularien. I. Z. Naturforsch. 9b, 149–155 (1954).Google Scholar
  76. Helder, R. J.: Analysis of the process of anion uptake of intact maize plants. Acta bot. neerl. 1, 361–434 (1952).Google Scholar
  77. Helder, R. J., and J. M. Bonga: The influence of light on the loss of labelled phosphorus from bean leaves. Acta bot. neerl. 5, 115–121 (1956).Google Scholar
  78. Hoagland, M. B., C. B. Keller and P. C. Zamecnik: Enzymatic carboxyl activation of amino acids. J. biol. Chem. 218, 345–358 (1956).PubMedGoogle Scholar
  79. Hoagland, M. B., P C. Zamecnik and M. Stephenson: Intermediate reaction in protein biosynthesis. Biochim. biophys. Acta 24, 215–216 (1957).PubMedCrossRefGoogle Scholar
  80. Hoffmann-Ostenhof, O., O. Gabriel u. M. F. Abdel-Wahab: Über die enzymatische Inkorporation von radioaktivem Pyrophosphat in Adenosintriphosphat durch eine Enzympräparation aus Hefe. Naturwiss. 44, 451 (1956).CrossRefGoogle Scholar
  81. Hoffmann-Ostenhof, O., J. Kenedy, K. Keck, O. Gabriel u. H. W. Schönfellinger: Ein neues Phosphat-übertragendes Ferment aus Hefe. Biochim. biophys. Acta 14, 285 (1954).PubMedCrossRefGoogle Scholar
  82. Hoffmann-Ostenhof, O., u. W. Weigert: Über die mögliche Funktion des polymeren Metaphosphats als Speicher energiereichen Phosphats in der Hefe. Naturwiss. 39, 303–304 (1952).CrossRefGoogle Scholar
  83. Holzer, H.: Photosynthese und Atmungskettenphosphorylierung. Z. Naturforsch. 6b, 424–430 (1951).Google Scholar
  84. Chemie und Energetik der pflanzlichen Photosynthese. Angew. Chem. 66, 65–75 (1954).Google Scholar
  85. Huzisige, H.: Comparative studies on the susceptibility of photosynthesis, the Hill reaction and the catalase reaction towards various inhibitors. J. Biochem. 41, 605–619 (1954).Google Scholar
  86. Inada, Y.: Stimulatory and inhibitory effect of light on the nitrate assimilation by Chlorella. J. gen. appl. Microbiol. 4, 153–162 (1958).CrossRefGoogle Scholar
  87. Jacobi, G.: Über den Zusammenhang von Glykolsäure und lichtabhängiger Phosphorylierung. Planta (Berl.) 53, 402–411 (1959).CrossRefGoogle Scholar
  88. Jagendorf, A. T.: The relationship between electron transport and phosphorylation in spinach chloroplasts. Brookhaven Symp. Biol. 11, 236–258 (1959).Google Scholar
  89. Jagendorf, A. T., and M. Avron: Cofactors and rates of photosynthetic phosphorylation by spinach chloroplasts. J. biol. Chem. 231, 277–290 (1958).PubMedGoogle Scholar
  90. Inhibitors of photosynthetic phosphorylation in relation to electron and oxygen transport pathways of chloroplasts. Arch. Biochem. 80, 246–257 (1959).Google Scholar
  91. Jagendorf, A. T., S. B. Hendricks, M. Avron and M. B. Evans: The action spectrum for photosynthetic phosphorylation by spinach chloroplasts. Plant Physiol. 33, 72–73 (1958).PubMedCrossRefGoogle Scholar
  92. Kalckar, H. M.: The nature of energetic coupling in biological synthesis. Chem. Rev. 28, 71–178 (1941).CrossRefGoogle Scholar
  93. Kamen, M. D.: Hematin compounds in the metabolism of photosynthetic tissues. In: Research in Photosynthesis, pp. 149–163. Mew York: Intersc. Publ. 1957.Google Scholar
  94. Kandeler, R.: Über die Lichtabhängigkeit der Anthocyanbildung. Ber. dtsch. bot. Ges. 71, (24)–(25) (1958).Google Scholar
  95. Kandler, O.: Über Beziehungen zwischen Phosphathaushalt und Photosynthese. I. Phosphatspiegelschwankungen bei Chlorella pyrenoidosa als Folge des Licht-Dunkelwechsels. Z. Naturforsch. 5b, 423–437 (1950).Google Scholar
  96. Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. II. Gesteigerter Glucoseeinbau im Licht als Indikator einer lichtabhängigen Phosphorylierung. Z. Naturforsch. 9b, 625–644 (1954).Google Scholar
  97. Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. III. Hemmungsanalyse der lichtabhängigen Phosphorylierung. Z. Naturforsch. 10b, 38–46 (1955).Google Scholar
  98. Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. IV. Zur Frage einer stöchiometrischen Beziehung zwischen CO2-Reduktion und Phosphatumsatz. Z. Naturforsch. 12b, 271–280 (1957 [1]).Google Scholar
  99. Identifizierung von radioaktiver Hamamelonsäure aus Chlorella nach kurzfristiger Photosynthese in 14CO2 und hohen KCN-Konzentrationen. Naturwiss. 44, 562–563 (1957 [2]).Google Scholar
  100. Zur Frage einer photosensibilisierten Phosphorylierung in Hefe. Naturwiss. 44, 378 (1957 [3]).Google Scholar
  101. The effect of 2, 4-dinitrophenol on respiration, oxidative assimilation, and photosynthesis in Chlorella. Physiol. Plantarum (Cph.) 11, 675–684 (1958).Google Scholar
  102. Kandler, O., and M. Gibbs: Asymmetric distribution of 14C in the glucose phosphates formed during photosynthesis. Plant Physiol. 31, 411–412 (1956).PubMedCrossRefGoogle Scholar
  103. Keck, K., and H. Stich: The widespread occurrence of polyphosphates in lower plants. Ann. Bot. 21, 611–619 (1957).Google Scholar
  104. Kessler, E.: Über den Mechanismus der Nitratreduktion von Grünalgen. I. Nitratbildung und Nitratreduktion durch Ankistrodesmus braunii (Nägeli) Brunnthaler. Flora (Jena) 140, 1–38 (1953).Google Scholar
  105. Über die Wirkung von 2, 4-Dinitrophenol auf Nitratreduktion und Atmung von Grünalgen. Planta (Berl.) 45, 94–105 (1955 [1]).Google Scholar
  106. On the role of manganese in the oxygen-evolving system of photosynthesis. Arch. Biochem. 59, 527–529 (1955 [2]).Google Scholar
  107. Role of photochemical processes in the reduction of nitrate by green algae. Nature (Lond.) 176, 1069–1070 (1955 [3]).Google Scholar
  108. Manganese as a cofactor in photosynthetic oxygen evolution. In: Research in Photosynthesis, pp. 243–249. New York: Intersc. Publ. 1957 [1].Google Scholar
  109. Untersuchungen zum Problem der photochemischen Nitratreduktion in Grünalgen. Planta (Berl.) 49, 505–523 (1957 [2]).Google Scholar
  110. Reduction of nitrate by green algae. Symp. Soc. exp. Biol. 13, 87–105 (1959 [1]).Google Scholar
  111. Die Nitratreduktion grüner Pflanzen. Ergebn. Biol. 21, 1–22 (1959 [2]).Google Scholar
  112. Kok, B.: A critical consideration of the quantum yield of Chlorella photosynthesis. Enzymologia 13, 1–56 (1947).Google Scholar
  113. Kornberg, A., S. R. Kornberg and E. S. Simms: Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim. biophys. Acta 20, 215–227 (1956).PubMedCrossRefGoogle Scholar
  114. Kornberg, S. R.: Adenosine triphosphate synthesis from polyphosphate by an enzyme from Escherichia coli. Biochim. biophys. Acta 26, 294–300 (1957).PubMedCrossRefGoogle Scholar
  115. Krall, A. R.: Cytochrome oxidase participation in photosynthetic fixation of carbon dioxide: Specific light reversal of carbon monoxide inhibition. Physiol. Plantarum (Cph.) 8, 869–876 (1955).CrossRefGoogle Scholar
  116. A lightreversible carbon monoxide inhibition of isotopic phosphate uptake by photosynthesizing barley. In: Research in Photosynthesis, pp. 313–332. New York: Intersc. Publ. 1957.Google Scholar
  117. Krebs, H. A., and H. L. Kornberg: Energy Transformations in Living Matter. Berlin: Springer 1957.CrossRefGoogle Scholar
  118. Krogmann, D. W., A. T. Jagendorf and M. Avron: Uncouplers of spinach chloroplast photosynthetic phosphorylation. Plant Physiol. 34, 272–277 (1959).PubMedCrossRefGoogle Scholar
  119. Krogmann, D. W., and B. Vennesland: Oxidative photosynthetic phosphorylation by spinach chloroplasts. J. biol. Chem. 234, 2205–2210 (1959).PubMedGoogle Scholar
  120. Kues, G.: Zur lichtabhängigen Phosphorylierung und papierchromatographischen Trennung von 32P-markierten Verbindungen bei der Grünalge Ankistrodesmus. Diss. Techn. Hochschule Hannover 1958, 119 S.Google Scholar
  121. Latzko, E., u. K. Mechsner: Bedeutung der Alkali-Ionen für die Intensität der Lichtphosphorylierung bei Chlorella vulgaris. Naturwiss. 45, 247–248 (1958).CrossRefGoogle Scholar
  122. Leopold, A. C., and F. S. Guernsey: Respiratory responses to red and infrared light. Physiol. Plantarum (Cph.) 7, 30–40 (1954).CrossRefGoogle Scholar
  123. Le Page, G. A., and W. W. Umbreit: Phosphorylated carbohydrate esters in autotrophic bacteria. J. biol. Chem. 147, 263–271 (1943 [1]).Google Scholar
  124. The occurrence of adenosine-3-triphosphate in autotrophic bacteria. J. biol. Chem. 148, 255–260 (1943[2]).Google Scholar
  125. Lipmann, F.: Metabolic generation and utilization of phosphate bond energy. Advanc. Enzymol. 1, 99–162 (1941).Google Scholar
  126. Acetyl phosphate. Advanc. Enzymol. 6, 231–267 (1946).Google Scholar
  127. Lohmann, K.: Kondensierte Phosphate in Lebensmitteln. Berlin: Springer 1958.Google Scholar
  128. Long, W. G., F. G. Teubner, S. H. Wittwer and R. S. Lindstrom: The effect of internal and external factors upon foliar absorption and distribution of radio-phosphorus, potassium and rubidium in plants. Plant Physiol. 30, Suppl. XVIII–XIX (1955).Google Scholar
  129. Lookeren Campagne, R. N. van: Light-dependent chloride absorption in Vallisneria leaves. Acta bot. neerl. 6, 543–582 (1957).Google Scholar
  130. Loomis, W. F., and F. Lipmann: Reversible inhibition of the coupling between phosphorylation and oxidation. J. biol. Chem. 179, 503–504 (1948).Google Scholar
  131. Luttkus, K., u. R. Bötticher: Über die Ausscheidung von Aschenstoffen durch die Wurzel. Planta (Berl.) 29, 325–340 (1939).CrossRefGoogle Scholar
  132. Lynen, F., u. R. Koenigsberger: Zum Mechanismus der Pasteurschen Reaktion: Der Phosphatkreislauf in Hefe und seine Beeinflussung durch 2, 4-Dinitrophenol. Justus Liebigs Ann. Chem. 573, 60–84 (1951).CrossRefGoogle Scholar
  133. Marrè, E., and G. Forti: Lack of dependance of pyridine nucleotide reduction on high energy phosphates in chloroplasts. Science 126, 976–977 (1957).PubMedCrossRefGoogle Scholar
  134. Marrè, E., and O. Servettaz: Relationship between the cytochrome reductase and diaphorase activities of chloroplasts. Ital. J. Biochem. 7, 233–245 (1958 [1]).Google Scholar
  135. TPNH-Cytochrome c reductase of chloroplasts and its role in photosynthesis phosphorylation. Arch. Biochem. 75, 309–323 (1958 [2]).Google Scholar
  136. Marrè, E., O. Servettaz and G. Forti: Researches on the mechanism of conversion of light into chemical energy in the chloroplasts. Triphosphopyridine nucleotide and cytochrome c as cofactors of photosynthetic phosphorylation. Atti 2° Congr. Intern. Fotobiol. 1957, pp. 329–330.Google Scholar
  137. Maruo, B., M. Nakamura, T. Omura, T. Kono and S. Matsumoto: Effect of light on the phosphorus metabolism of Chlorella. J. agric. chem. Soc. Japan 27, 348–353 (1953).Google Scholar
  138. Massini, P.: Photosynthetic phosphorylation as an explanation for induction phenomena in photosynthesis. Acta bot. neerl. 6, 434–444 (1957).Google Scholar
  139. Mattick, J. L., and E. S. Lindstrom: Photophosphorylation by light and dark grown Rhodospirillum rubrum. Bact. Proc. 1957, 109–110.Google Scholar
  140. Mazelis, M., and P. K. Stumpf: Fat metabolism in higher plants. VI. Incorporation of 32P into peanut mitochondrial phospholipids. Plant Physiol. 30, 237–243 (1955).PubMedCrossRefGoogle Scholar
  141. Mc Dowall, F. D. H.: The effect of some inhibitors of photosynthesis upon the photochemical reduction of a dye by isolated chloroplasts. Plant Physiol. 24, 462–480 (1949).CrossRefGoogle Scholar
  142. Mc Elroy, W. D., and B. Glass (Editors): A Symposium on Phosphorus Metabolism, Vol. I. Baltimore, Md.: Johns Hopkins Press 1951.Google Scholar
  143. A Symposium on Phosphorus Metabolism, Vol. II. Baltimore, Md.: Johns Hopkins Press 1952.Google Scholar
  144. Mechsner, K.: Untersuchungen an Chlorella vulgaris über den Einfluß der Alkaliionen auf die Lichtphosphorylierung. Biochim. biophys. Acta 33, 150–158 (1959).PubMedCrossRefGoogle Scholar
  145. Meyerhof, O., R. Shatas and A. Kaplan: Heat of hydrolysis of trimetaphosphate. Biochim. biophys. Acta 12, 121–127 (1953).PubMedCrossRefGoogle Scholar
  146. Miettinen, J. K.: Fast sampling techniques for biokinetic experiments with radioisotopes. Uptake of labelled orthophosphate by normal and phosphorus-deficient Torulopsis utilis yeast. Internat. Conf. on Radioisotopes in Sci. Res. Unesco/NS/RIC/146 (1957).Google Scholar
  147. Mortimer, D. C: Evidence for an alternate pathway in photosynthetic assimilation. Naturwiss. 45, 116–117 (1958).CrossRefGoogle Scholar
  148. Mothes, K., u. A. N. Wagner: Über die Aktivität der Glycolsäure-Dehydrogenase, insbesondere in Wurzeln. Biochimija 22, 163–177 (1957).Google Scholar
  149. Mudd, J. B.: Interaction of magnesium and adenosine diphosphate in photosynthetic phosphorylation. Nature (Lond.) 183, 900–901 (1959).CrossRefGoogle Scholar
  150. Mudd, S., A. Yoshida and M. Koike: Polyphosphate as accumulator of phosphorus and energy. J. Bact. 75, 224–235 (1958).PubMedGoogle Scholar
  151. Newsburgh, R. W.: Phosphorylation and chemosynthesis by Thiobacillus thiooxidans. J. Bact. 68, 93–97 (1954).Google Scholar
  152. Newsburgh, R. W., and R. H. Burris: Effect of inhibitors on the photosynthetic fixation of carbon dioxide. Arch. Biochem. 49, 98–109 (1954).CrossRefGoogle Scholar
  153. Newton, J. W., and M. D. Kamen: Photophosphorylation by subcellular particles from Chromatium. Biochim. biophys. Acta 25, 462–474 (1957).PubMedCrossRefGoogle Scholar
  154. Niel, C. B. van, M. B. Allen and B. E. Wright: On the photochemical reduction of nitrate by algae. Biochim. biophys. Acta 12, 67–74 (1953).CrossRefGoogle Scholar
  155. Nieman, R. H., and B. Vennesland: Cytochrome c photooxidase of spinach chloroplasts. Science 125, 353–354 (1957).PubMedCrossRefGoogle Scholar
  156. Nihei, T.: A phosphorylative process, accompanied by photochemical liberation of oxygen, occurring at the stage of nuclear division in Chlorella cells. I. J. Biochem. 42, 245–256 (1955).Google Scholar
  157. Ochoa, S., and W. Vishniac: Carboxylation reactions and photosynthesis. Science 115, 297–301 (1952).PubMedCrossRefGoogle Scholar
  158. Oesper, P.: The chemistry and thermodynamics of phosphate bonds. In: Phosphorus Metabolism, Vol. I, pp. 523–535. Baltimore, Md.: Johns Hopkins Press 1951.Google Scholar
  159. Pirson, A.: Functional aspects in mineral nutrition of green plants. Ann. Rev. Plant Physiol. 6, 71–114 (1955).CrossRefGoogle Scholar
  160. Pirson, A., and L. Bergmann: Manganese requirement and carbon source of Chlorella. Nature (Lond.) 176, 209–210 (1955).CrossRefGoogle Scholar
  161. Person, A., and A. Kuhl: Dependance on light of the reversible uptake of inorganic phosphate by Hydrodictyon. Nature (Lond.) 181, 921–922 (1958 [1]).CrossRefGoogle Scholar
  162. Über den Phosphathaushalt von Hydrodictyon. I. Arch. Mikrobiol. 30, 211–225 (1958 [2]).Google Scholar
  163. Pirson, A., C. Tichy u. G. Wilhelmi: Stoffwechsel und Mineralsalzernährung einzelner Grünalgen. I. Vergleichende Untersuchungen an Mangelkulturen von Ankistrodesmus. Planta (Berl.) 40, 199–253 (1952).CrossRefGoogle Scholar
  164. Pressman, B. C., and H. A. Lardy: Influence of potassium and other alkali cations on respiration of mitochondria. J. biol. Chem. 197, 547–556 (1952).PubMedGoogle Scholar
  165. Quensell, E.: Untersuchungen über die Wirkung der Monojodessigsäure auf die lichtabhängige Phosphorylierung bei Helodea crispa. Diss. Techn. Hochschule Hannover 1957, 116S.Google Scholar
  166. Rabin, B. R., D. F. Shaw, N. G. Pon, J. M. Anderson and M. Calvin: Cyanide effects on carbon dioxide fixation in Chlorella. J. Amer. chem. Soc. 80, 2528–2532 (1958).CrossRefGoogle Scholar
  167. Rabinowitch, E. J.: Photosynthesis and Related Processes. I. New York: Intersc. Publ. 1945.CrossRefGoogle Scholar
  168. Photosynthesis and Related Processes. II, 1. New York: Intersc. Publ. 1951.Google Scholar
  169. Photosynthesis and Related Processes. II, 2. New York: Intersc. Publ. 1956.Google Scholar
  170. Rachinskii, V.: Application of the isotope method to the study of the effect of light intensity on the intake of mineral substances by plants. I. Experiments with isotope 32P. Izv. timiryazevkoi sel’ skokhozyaistvennoi akad. 2, 193–210 (1955) [Russisch].Google Scholar
  171. Roberts, R. B., and I. Z. Roberts: Potassium metabolism in Escherichia coli. III. Interrelations of potassium and phosphorus metabolism. J. cell. comp. Physiol. 36, 15–39 (1950).CrossRefGoogle Scholar
  172. Roberts, R. B., I. Z. Roberts and B. B. Cowie: Potassium metabolism in Escherichia coli. II. Metabolism in the presence of carbohydrates and their metabolic derivates. J. cell. comp. Physiol. 34, 259–291 (1949).CrossRefGoogle Scholar
  173. Rothstein, A.: The enzymology of the cell surface. In: Protoplasmatologia, Vol. II E4, 1–86. Wien: Springer 1954.Google Scholar
  174. Ruben, S.: Photosyntheiss and phosphorylation. J. Amer. chem. Soc. 65, 279–282 (1943).CrossRefGoogle Scholar
  175. Rubin, B. A., I. A. Chernavena and A. V. Mikheeva: The effect of light on the activity of cytochrome oxidase. Dokl. Akad. Nauk SSSR., N. S. 105, 1039–1041 (1955).Google Scholar
  176. Scheiter, F., A. Kloke u. H. Fölster: Untersuchungen über den Einfluß des Lichtes auf die P2O5-Aufnahme bei Keimpflanzen. Plant and Soil 8, 194–198 (1957).CrossRefGoogle Scholar
  177. Schlegel, H. G.: Physiologische Untersuchungen an Wasserstoffoxydierenden Bakterien. Arch. Mikrobiol. 18, 362–390 (1953).PubMedCrossRefGoogle Scholar
  178. Untersuchungen über den Phosphatstoffwechsel der wasserstoffoxydierenden Bakterien. Arch. Mikrobiol. 21, 127–155 (1954).Google Scholar
  179. Die Verwertung organischer Säuren durch Chlorella im Licht. Planta (Berl.) 47, 510–526 (1956).Google Scholar
  180. Die Verwertung von Essigsäure durch Chlorella im Licht. Z. Naturforsch. 14b, 246–253 (1959).Google Scholar
  181. Schmidt, G.: The biochemistry of inorganic pyrophosphates and metaphosphates. In: Phosphorus Metabolism, Vol. I, pp. 443–476. Baltimore, Md.: Johns Hopkins Press 1951.Google Scholar
  182. Schmidt, G., W. Hecht and S. J. Thannhauser: The effect of potassium ions on the absorption of orthophosphate and the formation of metaphosphate by bakers’ yeast. J. biol. Chem. 178, 733–742 (1949).PubMedGoogle Scholar
  183. Schmidt, O.: Die Mineralstoffaufnahme der höheren Pflanze als Funktion einer Wechselbeziehung zwischen inneren und äußeren Faktoren. Z. Bot. 30, 289–333 (1936/7).Google Scholar
  184. Schwinck, L.: Nachweis von Adenosintriphosphorsäure (ATP) in Grünalgen und Helodea sowie Einbau von radioaktivem Phosphor (32P) bei der Photosynthese. Planta (Berl.) 47, 165–218 (1956).CrossRefGoogle Scholar
  185. Scott, G. T., and H. R. Hayward: The influence of temperature and illumination on the exchange of potassium ions in Ulva lactuca. Biochim. biophys. Acta 12, 401–404 (1953 [1]).PubMedCrossRefGoogle Scholar
  186. Metabolic factors influencing the sodium and potassium distribution in Ulva lactuca. J. gen. Physiol. 36, 659–671 (1953 [2]).Google Scholar
  187. Siegelman, H. W., and S. B. Hendricks: Photocontrol of anthocyanin synthesis in apple skin. Plant Physiol. 33, 185–190 (1958).PubMedCrossRefGoogle Scholar
  188. Simon, E.: Mechanism of dinitrophenol toxicity. Biol. Rev. 28, 453–479 (1953).CrossRefGoogle Scholar
  189. Simonis, W.: Untersuchungen zur lichtabhängigen Phosphorylierung. II. Die Hemmung der C02-Assimilation von Algen durch Glucose und der Einfluß von Phosphat. Z. Naturforsch, 11b, 354–363 (1956).Google Scholar
  190. Zusammenhänge zwischen Phosphorstoffwechsel und Photosynthese der Pflanzen. Untersuchungen unter Verwendung von 32P. Atompraxis 5, 272–276 (1959).Google Scholar
  191. Simonis, W., u. M. Ehrenberg: Untersuchungen zur lichtabhängigen Phosphorylierung. IV. Die Wirkung des Lichtes auf die 32P-Einlagerung bei chlorophyllfreien Pflanzenzellen und Geweben. Z. Naturforsch. 12b, 156–163 (1957).Google Scholar
  192. Simonis, W., u. K. H. Grube: Untersuchungen über den Zusammenhang von Phosphathaushalt und Photosynthese. Z. Naturforsch. 7b, 194–196 (1952).Google Scholar
  193. Weitere Untersuchungen über Phosphathaushalt und Photosynthese. Z. Naturforsch. 8b, 312–317 (1953).Google Scholar
  194. Simonis, W., u. H. Kating: Untersuchungen zur lichtabhängigen Phosphorylierung. I. Die Beeinflussung der lichtabhängigen Phosphorylierung von Algen durch Glucosegaben. Z. Naturforsch.11b, 165–172 (1956[1]).Google Scholar
  195. Untersuchungen zur lichtabhängigen Phosphorylierung. III. Die CO2-Abhängigkeit der 32P-Einlagerung in Ankistrodesmus. Z. Naturforsch. 11b, 704–708 (1956[2]).Google Scholar
  196. Simonis, W., u. E. Quensell: Zur Wirkung von Monojodessigsäure auf die lichtabhängige Phosphorylierung (32P-Einlagerung) bei Helodea crispa. Naturwiss. 43, 204–205 (1956).CrossRefGoogle Scholar
  197. Simonis, W., u. L. Schwinck: Papierchromatographischer Nachweis einer ATP-ähnlichen Verbindung bei chlorophyllhaltigen Pflanzen. Naturwiss. 40, 245–246 (1953).CrossRefGoogle Scholar
  198. Simonis, W., u. G. Weichart: Untersuchungen zur lichtabhängigen Phosphorylierung. VI. Quantitative Unterschiede der Bildung von 32P-markierten phosphorylierten Verbindungen in Helodea. Z. Naturforsch. 13b, 55–57 (1958[1]).Google Scholar
  199. Untersuchungen zur lichtabhängigen Phosphorylierung. VII. Die Wirkung von Monojodessigsäure auf die Bildung von 32P-markierten phosphorylierten Substanzen in Helodea densa. Z. Naturforsch. 13b, 694–696 (1958 [2]).Google Scholar
  200. Smith, L., and M. Baltscheffsky: Respiration and phosphorylation in extracts of Rhodospirillum rubrum. Fed. Proc. 15, 357–358 (1956).Google Scholar
  201. Respiration and light-induced phosphorylation in extracts of Rhodospirillum rubrum. J. biol. Chem. 234, 1575–1579 (1959).Google Scholar
  202. Smith, L., and B. Chance: Cytochromes in plants. Ann. Rev. Plant Physiol. 9, 449–482 (1958).CrossRefGoogle Scholar
  203. Stenlid, G.: On the effect of some sugars and of 2, 4-dinitrophenol upon the absorption of phosphate ions by excised roots. Physiol. Plantarum (Cph.) 12, 199–235 (1959).CrossRefGoogle Scholar
  204. Stephenson, M. L., K. V. Thimann and P. C. Zamecnik: Incorporation of 14C-amino acids into proteins of leaf disks and cell-free fractions of tobacco leaves. Arch. Biochem. 65, 194–209 (1956).PubMedCrossRefGoogle Scholar
  205. Stich, H.: Der Nachweis und das Verhalten von Metaphosphaten in normalen, verdunkelten und mit Trypanflavin behandelten Acetabularien. Z. Naturforsch. 8b, 36–44 (1953).Google Scholar
  206. Synthese und Abbau der Polyphosphate von Acetabularia nach autoradiographischen Untersuchungen des 32P-Stoffwechsels. Z. Naturforsch. 10b, 281–284 (1955).Google Scholar
  207. Änderungen von Kernund Polyphosphaten in Abhängigkeit von dem Energiegehalt des Cytoplasmas bei Acetabularia. Chromosoma (Berl.) 7, 693–707 (1956).Google Scholar
  208. Stich, H., and M. Grell: Correlation between changes in 32P-turnover in nucleus and cytoplasm of Acetabularia and various tissues of Culex pipiens. Comm. on 8th Int. Congr. Cell Biol. Leiden, Sept. 1954. Excerpta med. (Amst.), Sect. I 8, 431–432 (1954).Google Scholar
  209. Strehler, B. L.: Photosynthesis — energetics and phosphate metabolism. In: Phosphorus Metabolism, Vol. II, pp. 491–506. Baltimore, Md.: Johns Hopkins Press 1952.Google Scholar
  210. Firefly luminescence in the study of energy transfer mechanisms. II. Adenosine triphosphate and photosynthesis. Arch. Biochem. 43, 67–79 (1953).Google Scholar
  211. Strehler, B. L., and J. R. Totter: Firefly luminescence in the study of energy transfer mechanisms. I. Substrate and enzyme determination. Arch. Biochem. 40, 28–41 (1952).PubMedCrossRefGoogle Scholar
  212. Syrett, P. J.: Ammonia and nitrate assimilation by green algae (Chlorophyceae). In: Autotrophic Micro-Organisms. 4th Symp. Soc. Gen. Microbiol., pp. 126–151. Cambridge: Univ. Press 1954.Google Scholar
  213. Takashima, S., and S. Mitsui: Photochemical phosphate transfer in green leaves. I. J. Biochem. 41, 443–450 (1954).Google Scholar
  214. Thilo, E.: Chemie und Nomenklatur der kondensierten Phosphate. In: Kondensierte Phosphate in Lebensmitteln, S. 5–28. Berlin: Springer 1958.CrossRefGoogle Scholar
  215. Die kondensierten Phosphate. Naturwiss. 46, 367–373 (1959).Google Scholar
  216. Thilo, E., H. Grunze, J. Hämmerling u. G. Werz: Über Isolierung und Identifizierung der Polyphosphate aus Acetabularia mediterranea. Z. Naturforsch. 11b, 266–270 (1956).Google Scholar
  217. Tolbert, N. E., and R. H. Burris: Light activation of the plant enzyme which oxidizes glycolic acid. J. biol. Chem. 186, 791–804 (1950).PubMedGoogle Scholar
  218. Tolbert, N. E., and M. S. Cohan: Activation of glycolic acid oxidase in plants. J. biol. Chem. 204, 639–648 (1953).PubMedGoogle Scholar
  219. Trudinger, P. A.: Fixation of carbon dioxide by extracts of the strict autotrophic Thiobacillus denitrificans. Biochem. J. 64, 274–286 (1956).PubMedGoogle Scholar
  220. Tyszkiewicz, E.: Influence de différentes radiations lumineuses sur l’intégration de l’ion phosphorique dans les molécules organiques. C. R. Acad. Sci. (Paris) 241, 1975–1976 (1955).Google Scholar
  221. Umbreit, W. W.: Phosphorylation and carbon dioxide fixation in the autotrophic bacterium Thiobacillus thiooxidans. J. Bact. 67, 387–393 (1954).PubMedGoogle Scholar
  222. Vernon, L.: Bacterial photosynthesis. Photobiology, 19th Ann. Biol. Colloquium, pp. 74–85. Corvallis, Oregon 1958.Google Scholar
  223. Vishniac, W. B., B. L. Horecker and S. Ochoa: Enzymic aspects of photosynthesis. Advanc. Enzymol. 19, 1–77 (1957).Google Scholar
  224. Vishniac, W. B., and S. Ochoa: Phosphorylation coupled to photochemical reduction of pyridine nucleotides by chloroplast preparations. J. biol. Chem. 198, 501–506 (1952).PubMedGoogle Scholar
  225. Vogler, K. G.: Studies on the metabolism of autotrophic bacteria. II. The nature of the chemosynthetic reaction. J. gen. Physiol. 26, 103–117 (1942).PubMedCrossRefGoogle Scholar
  226. Vogler, K. G., and W. W. Umbreit: Studies on the metabolism of autotrophic bacteria. III. The nature of the energy storage material active in the chemosynthetic processes. J. gen. Physiol. 26, 157–167 (1942).PubMedCrossRefGoogle Scholar
  227. Wadkins, C. L., and A. L. Lehninger: The adenosine triphosphate — adenosine diphosphate exchange reaction of oxidative phosphorylation. J. biol. Chem. 233, 1589–1597 (1958).PubMedGoogle Scholar
  228. The oxidation state of the respiratory carriers and the partial reactions of oxidation phosphorylation. J. biol. Chem. 234, 681–687 (1959).Google Scholar
  229. Waksman, S. A., and R. L. Starkey: On the growth and respiration of sulfur-oxidizing bacteria. J. gen. Physiol. 5, 285–310 (1923).PubMedCrossRefGoogle Scholar
  230. Warburg, O.: 1-Quanten-Mechanismen der Photosynthese. Z. Elektrochem. 55, 447–452 (1951).Google Scholar
  231. Warburg, O., H. Geleick u. K. Briese: Weitere Steigerung des Energiegewinns im Kreisprozeß der Photosynthese. Z. Naturforsch. 6b, 285–292 (1951).Google Scholar
  232. Wassink, C. E.: On phosphate exchanges accompanying photosynthesis. Proc. 7th Intern. Bot. Congr. Stockholm 1950, pp. 746–747.Google Scholar
  233. Phosphate in the photosynthetic cycle in Chlorella. In: Research in Photosynthesis, pp. 333–339. New York: Intersc. Publ. 1957.Google Scholar
  234. Wassink, E. C., and J. Rombach: Preliminary report on experiments dealing with phosphate metabolism in the induction phase of photosynthesis in Chlorella. Proc. kon. ned. Akad. Wet., Ser. C 57, 493–497 (1954).Google Scholar
  235. Wassink, E. C., J. E. Tjia and J. F. G. Wintermans: Phosphate exchanges in purple sulphur bacteria in connection with photosynthesis. Proc. kon. ned. Akad. Wet., Ser. C 52, 412–422 (1949).Google Scholar
  236. Wassink, E. C., J. F. G. Wintermans and J. E. Tjia: Phosphate exchanges in Chlorella in relation to conditions for photosynthesis. Proc. kon. ned. Akad. Wet., Ser. C 54, 41–52 (1951 [1]).Google Scholar
  237. The influence of glucose on the changes in TCA soluble phosphates in Chlorella suspensions in relation to conditions of photosynthesis. Proc. kon. ned. Akad. Wet., Ser. C 54, 496–502 (1951 [2]).Google Scholar
  238. Webster, C. C: Incorporation of radioactive amino acids into the proteins of plant tissue homogenates. Plant Physiol. 30, 351–355 (1955).PubMedCrossRefGoogle Scholar
  239. Factors required for amino acid incorporation by disrupted ribonucleoprotein particles. Arch. Biochem. 70, 622–624 (1957).Google Scholar
  240. Weichart, G.: Untersuchungen über Phosphorylierungs-Prozesse bei der CO2-Assimilation höherer Pflanzen (Helodea) unter Verwendung von radioaktivem Phosphat. Diss. Techn. Hochschule Hannover 1958, 154 S.Google Scholar
  241. Untersuchungen über Phosphorylierungsprozesse bei der Photosynthese höherer Pflanzen (Helodea) unter Verwendung von radioaktivem Phosphat. Planta (Berl.) 1960 (im Druck).Google Scholar
  242. Weinstein, L. H., and W. R. Robbins: Effect of light on the catalase and cytochrome oxidase activities of leaf tissues of green and albino sunflower plants. Contrib. Boyce Thompson Inst. 18, 225–230 (1955).Google Scholar
  243. Wessels, J. S. C: Studies on photosynthetic phosphorylation. II. Photosynthetic phosphorylation under aerobic conditions. Biochim. biophys. Acta 29, 113–123 (1958).PubMedCrossRefGoogle Scholar
  244. Studies on photosynthetic phosphorylation. III. Relation between photosynthetic phosphorylation and reduction of triphosphopyridine nucleotide by chloroplasts. Biochim. biophys. Acta 35, 54–64 (1959 [1]).Google Scholar
  245. Dinitrophenol as a catalyst of photosynthetic phosphorylation. Biochim. biophys. Acta 36, 264–265 (1959 [2]).Google Scholar
  246. Whatley, F. R., M. B. Allen and D. I. Arnon: Photosynthetic phosphorylation as an anaerobic process. Biochim. biophys. Acta 16, 605–606 (1955).PubMedCrossRefGoogle Scholar
  247. Whittingham, C. P.: Induction phenomena of photosynthetic algae at low partial pressure of oxygen. J. exp. Bot. 7, 273–289 (1956).CrossRefGoogle Scholar
  248. Wiame, J. M.: Étude d’une substance polyphosphorée, basophile et métachromatique chez les levures. Biochim. biophys. Acta 1, 234–255 (1947[1]).CrossRefGoogle Scholar
  249. The metachromatic reaction of hexametaphosphate. J. Amer. chem. Soc. 68, 3146–3147 (1947[2]).Google Scholar
  250. The occurrence and physiological behaviour of two metaphosphate fractions in yeast. J. biol. Chem. 178, 919–929 (1949).Google Scholar
  251. Wieland, T., u. G. Pfleiderer: Aktivierung von Aminosäuren. Advanc. Enzymol. 19, 235–266 (1957).Google Scholar
  252. Winder, F., and J. M. Denneny: Metaphosphate in mycobacterial metabolism. Nature (Lond.) 174, 353–354 (1954).CrossRefGoogle Scholar
  253. Wintermans, J. F. G. M.: On the formation of polyphosphates in Chlorella in relation to conditions for photosynthesis. Proc. kon. ned. Akad. Wet., Ser. C 57, 574–583 (1954).Google Scholar
  254. Polyphosphate formation in Chlorella in relation to photosynthesis. Meded. Landbouwhogeschool Wageningen 55, 69–126 (1955).Google Scholar
  255. Wintermans, J. F. G. M., and J. E. Tjia: Some observations on the properties of phosphate compounds in Chlorella in relation to condition for photosynthesis. Proc. kon. ned. Akad. Wet., Ser. C 55, 34–39 (1952).Google Scholar
  256. Yoshimura, F.: Influence of the light on the consumption of nitrate and ammonia in lemnaceous plants. Bot. Mag. 65, 176–185 (1952).Google Scholar
  257. Zelitch, J., and S. Ochoa: Oxidation and reduction of glycolic and glyoxylic acids in plants. I. Glycolic acid oxidase. J. biol. Chem. 201, 707–718 (1953).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • Wilhelm Simonis

There are no affiliations available

Personalised recommendations