Advertisement

Biochemische Variabilität der Photosynthese: Photoreduktion und verwandte Photosynthesetypen

  • Erich Kessler
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)

Zusammenfassung

Lange Zeit hindurch wurde der Mechanismus der Photosynthese grüner Pflanzen für starr und unwandelbar gehalten. Die ersten Zweifel an der Berechtigung dieser Ansicht kamen auf, als Nakamura (1937, 1938) die Beobachtung machte, daß bei einer Blaualge (Oscillatoria spec.) und einer Diatomee (Pinnularia spec.) die Photosynthese durch H2S nicht gehemmt wird. Es fand vielmehr bei diesen Algen im Licht eine CO2-Reduktion bei gleichzeitiger Absorption von H2S statt, und an Stelle der normalen photosynthetischen O2-Entwicklung wurde Schwefel in den Zellen ausgeschieden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Atkinson, D. E.: The biochemistry of Hydrogenamonas. IV. The inhibition of hydrogenase by oxygen. J. biol. Chem. 218, 557–564 (1956).PubMedGoogle Scholar
  2. Baas Becking, L. G. M., and E. J. F. Wood: Biological processes in the estuarine environment. Proc. kon. ned. Akad. Wet. B 58, 160–181 (1955).Google Scholar
  3. Badin, E. J., and M. Calvin: The path of carbon in photosynthesis. IX. Photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction. J. Amer. chem. Soc. 72, 5266–5270 (1950).CrossRefGoogle Scholar
  4. Bishop, N. I.: The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochim. biophys. Acta 27, 205–206 (1958).PubMedCrossRefGoogle Scholar
  5. Boitschenko, E.A.: Evolution of hydrogen by isolated chloroplasts. C. R. Acad. Sci. URSS. 52, 521–524 (1946).Google Scholar
  6. Hydrogenase of isolated chloroplasts. Biochimija 12, 153–162 (1947).Google Scholar
  7. Activation of molecular hydrogen by hydrogenases of chloroplasts. Biochimija 13, 219–224 (1948).Google Scholar
  8. The product of reduction of carbon dioxide by chloroplast hydrogenase. Dokl. Akad. Nauk SSSR. 64, 545–548 (1949).Google Scholar
  9. Brown, A. H.: The carbohydrate constituents of Scenedesmus in relation to the assimilation of carbon by photoreduction. Plant Physiol. 23, 331–337 (1948).PubMedCrossRefGoogle Scholar
  10. Brugger, J. E., and J. Franck: Experimental and theoretical contribution to studies of the afterglow of chlorophyll in plant materials. Arch. Biochem. 75, 465–496 (1958).PubMedCrossRefGoogle Scholar
  11. Czurda, V.: Schwefelwasserstoff als ökologischer Faktor der Algen. Zbl. Bakt., II. Abt. 103, 285–311 (1941).Google Scholar
  12. Damaschke, K.: Die Wasserstoffgärung von Chlorella im Dunkeln nach Anaerobiose unter Stickstoff. Z. Naturforsch. 12b, 441–443 (1957).Google Scholar
  13. Damaschke, K., u. M. Lübke: Hemmung der Wasserstoffgärung von Chlorella p. durch Gifte. Z. Naturforsch. 13b, 54–55 (1958a).Google Scholar
  14. Über die Fähigkeit der Chlorella pyrenoidosa zur anaeroben Nitritreduktion. Z. Naturforsch. 13b, 134–135 (1958b).Google Scholar
  15. Die Wirkung verschiedener Gifte auf die Entstehung von Wasserstoff bei Belichtung anaerob inkubierter Chlorella pyrenoidosa. Z. Naturforsch. 13b, 172–182 (1958c).Google Scholar
  16. Damaschke, K., u. L. Rothbühr: Die langsamste Dunkelreaktion der Photosynthese und der Einfluß von Giften auf diese, verfolgt durch elektrochemische Sauerstoffmessung. Biochem. Z. 327, 39–61 (1955).PubMedGoogle Scholar
  17. Fisher, H. F., A. I. Krasna and D. Rittenberg: The interaction of hydrogenase with oxygen. J. biol. Chem. 209, 569–578 (1954).PubMedGoogle Scholar
  18. Foster, J. W.: The role of organic substrates in photosynthesis of purple bacteria. J. gen. Physiol. 24, 123–134 (1940).PubMedCrossRefGoogle Scholar
  19. Oxidation of alcohols by non-sulfur photosynthetic bacteria. J. Bact. 47, 355–372 (1944).Google Scholar
  20. Franck, J., and H. Gaffron: Photosynthesis, facts and interpretations. Advanc. Enzymol. 1, 199–262 (1941).Google Scholar
  21. Franck, J., P. Pringsheim and D. T. Lad: Oxygen production by anaerobic photosynthesis of algae measured by a new micromethod. Arch. Biochem. 7, 103–142 (1945).Google Scholar
  22. Frenkel, A.: A study of the hydrogenase systems of green and bluegreen algae. Biol. Bull. 97, 261–262 (1949).Google Scholar
  23. Frenkel, A., H. Gaffron and E. H. Battley: Photosynthesis and photoreduction by a species of blue-green algae. Biol. Bull. 97, 269 (1949).Google Scholar
  24. Photosynthesis and photoreduction by the blue green alga, Synechococcus elongatus, Näg. Biol. Bull. 99, 157–162 (1950).Google Scholar
  25. Frenkel, A. W.: Hydrogen evolution by the flagellate green alga, Chlamydomonas moewusii. Arch. Biochem. 38, 219–230 (1952).PubMedCrossRefGoogle Scholar
  26. Frenkel, A. W., and R. A. Lewin: Photoreduction by Chlamydomonas. Amer. J. Bot. 41, 586–589 (1954).CrossRefGoogle Scholar
  27. Frenkel, A. W., and C. Rieger: Photoreduction in algae. Nature (Lond.) 167, 1030 (1951).CrossRefGoogle Scholar
  28. Gaffron, H.: Über den Stoffwechsel der Purpurbakterien. II. Biochem. Z. 275, 301–319 (1935).Google Scholar
  29. Reduction of carbon dioxide with molecular hydrogen in green algae. Nature (Lond.) 143, 204–205 (1939).Google Scholar
  30. The oxyhydrogen reaction in green algae and the reduction of carbon dioxide in the dark. Science 91, 529–530 (1940a).Google Scholar
  31. Carbon dioxide reduction with molecular hydrogen in green algae. Amer. J. Bot. 27, 273–283 (1940b).Google Scholar
  32. The effect of specific poisons upon the photoreduction with hydrogen in green algae. J. gen. Physiol. 26, 195–217 (1942a).Google Scholar
  33. Reduction of carbon dioxide coupled with the oxyhydrogen reaction in algae. J. gen. Physiol. 26, 241–267 (1942b).Google Scholar
  34. Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. Biol. Rev. 19, 1–20 (1944).Google Scholar
  35. Some effects of derivatives of vitamin K on the metabolism of unicellular algae. J. gen. Physiol. 28, 259–268 (1945a).Google Scholar
  36. o-Phenanthroline and derivatives of vitamin K as stabilizers of photoreduction in Scenedesmus. J. gen. Physiol. 28, 269–285 (1945b).Google Scholar
  37. Mechanism of photosynthesis, p. 152–185. In: Autotrophic Micro-organisms. Cambridge 1954.Google Scholar
  38. Photosynthesis and the origin of life, p. 127–154. In: Rhythmic and Synthetic Processes in Growth. Princeton Univ. Press 1957.Google Scholar
  39. Gaffron, H., E. W. Fager and J.L.Rosenberg: Intermediates in photosynthesis: Formation and transformation of phosphoglyceric acid. Symp. Soc. exp. Biol. 5, 262–283 (1951).Google Scholar
  40. Gaffron, H., and J. Rubin: Fermentative and photochemical production of hydrogen in algae. J. gen. Physiol. 26, 219–240 (1942).PubMedCrossRefGoogle Scholar
  41. Gest, H., M. D. Kamen and H. M. Bregoff: Studies on the metabolism of photosynthetic bacteria. V. Photoproduction of hydrogen and nitrogen fixation by Bhodospirillum rubrum. J. biol. Chem. 182, 153–170 (1950).Google Scholar
  42. Hansen, I., u. J. Gerloff: Beitrag zur Kenntnis einiger Volvocales. Ber. dtsch. bot. Ges. 65, 87–93 (1952).Google Scholar
  43. Holt, A. S., I.A.Brooks and W. A. Arnold: Some effects of 2537 Å on green algae and chloroplast preparations. J. gen. Physiol. 34, 627–645 (1951).PubMedCrossRefGoogle Scholar
  44. Horwitz, L.: Observations on the oxyhydrogen reaction in Scenedesmus and its relation to respiration and photosynthesis. Arch. Biochem. 66, 23–44 (1957a).CrossRefGoogle Scholar
  45. Observations on the affect of metallic mercury upon some microorganisms. J. cell. comp. Physiol. 49, 437–453 (1957b).Google Scholar
  46. Horwitz, L., and F. L. Allen: Oxygen evolution and photoreduction in adapted Scenedesmus. Arch. Biochem. 66, 45–63 (1957a).CrossRefGoogle Scholar
  47. Oxygen evolution and photoreduction by adapted Scenedesmus, p. 232–238. In: Research in Photosynthesis. New York: Interscience 1957b.Google Scholar
  48. Hutner, S. H., and L. Provasoli: The phytoflagellates, p. 27–128. In: Biochemistry and Physiology of Protozoa, Vol.1. New York: Academic Press 1951.Google Scholar
  49. Kessler, E.: On the role of manganese in the oxygen-evolving system of photosynthesis. Arch. Biochem. 59, 527–529 (1955).PubMedCrossRefGoogle Scholar
  50. Reduction of nitrite with molecular hydrogen in algae containing hydrogenase. Arch. Biochem. 62, 241–242 (1956).Google Scholar
  51. Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. I. Über die Rolle des Mangans bei Photoreduktion und Photosynthese. Planta (Berl.) 49, 435–454 (1957a).Google Scholar
  52. Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. II. Dunkel-Reduktion von Nitrat und Nitrit mit molekularem Wasserstoff. Arch. Mikrobiol. 27, 166–181 (1957b).Google Scholar
  53. Untersuchungen zum Problem der photochemischen Nitratreduktion in Grünalgen. Planta (Berl.) 49, 505–523 (1957c).Google Scholar
  54. Manganese as a cofactor in photosynthetic oxygen evolution, p. 243–249. In: Research in Photosynthesis. New York: Interscience 1957d.Google Scholar
  55. Kessler, E., W. Arthur and J. E. Brugger: The influence of manganese and phosphate on delayed light emission, fluorescence, photoreduction and photosynthesis in algae. Arch. Biochem. 71, 326–335 (1957).PubMedCrossRefGoogle Scholar
  56. Larsen, H.: On the microbiology and biochemistry of the photosynthetic green sulfur bacteria. Kgl. norske Vid. Selsk. Skr. 1953, 1–199.Google Scholar
  57. Larsen, H., C. S. Yocum and C. B. van Niel: On the energetics of the photosyntheses in green sulfur bacteria. J. gen. Physiol. 36, 161–171 (1952).PubMedCrossRefGoogle Scholar
  58. Lewin, J. C.: Obligate autotrophy in Chlamydomonas moewusii Gerloff. Science 112, 652–653 (1950).PubMedCrossRefGoogle Scholar
  59. Lindstrom, E. S., R. H. Burris and P. W. Wilson: Nitrogen fixation by photosynthetic bacteria. J. Bact. 58, 313–316 (1949).PubMedGoogle Scholar
  60. Monod, J.: Inhibition de l’adaptation enzymatique chez B. coli en présence de 2, 4dinitrophénol. Ann. Inst. Pasteur 70, 381–384 (1944).Google Scholar
  61. Nakamura, H.: Über das Auftreten des Schwefelkügelchens im Zellinnern von einigen niederen Algen. Bot. Mag. (Tokyo) 51, 529–533 (1937).Google Scholar
  62. Über die Kohlensäureassimilation bei niederen Algen in Anwesenheit des Schwefelwasserstoffs. Acta phytochim. (Tokyo) 10, 271–281 (1938).Google Scholar
  63. Niel, C. B. van: The bacterial photosyntheses and their importance for the general problem of photosynthesis. Advanc. Enzymol. 1, 263–328 (1941).Google Scholar
  64. Peck, H. D., A. San Pietro and H. Gest: On the mechanism of hydrogenase action. Proc. nat. Acad. Sci. (Wash.) 42, 13–19 (1956).CrossRefGoogle Scholar
  65. Pirson, A., C. Tichy u. G. Wilhelmi: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. I. Vergleichende Untersuchungen an Mangelkulturen von Ankistrodesmus. Planta (Berl.) 40, 199–253 (1952).CrossRefGoogle Scholar
  66. Rabinowitch, E. I.: Photosynthesis and Related Processes, vol.1. New York: Interscience 1945.CrossRefGoogle Scholar
  67. Reiner, J. M.: Effect of enzyme inhibitors on transformation of enzymes in the living cell. Proc. Soc. exp. Biol. (N. Y.) 63, 81–84 (1946).CrossRefGoogle Scholar
  68. Rieke, F. F.: Quantum efficiencies for photosynthesis and photoreduction in green plants, p. 251–272. In: Photosynthesis in Plants. Ames, Iowa 1949.Google Scholar
  69. Rieke, F.F., and H. Gaffron: Flash saturation and reaction periods in photosynthesis. J. phys. Chem. 47, 299–308 (1943).CrossRefGoogle Scholar
  70. Roelofsen, P. A.: On the metabolism of the purple sulphur bacteria. Proc. kon. ned. Akad. Wet. 37, 660–669 (1934).Google Scholar
  71. Schatz, A.: Speculations on the ecology and photosynthesis of the “copper mosses”. Bryologist 58, 113–120 (1955).Google Scholar
  72. Spruit, C. J. P.: Photoproduction of hydrogen and oxygen in Chlorella, p. 323–327. In: Proc. 1. Internat. Photobiol. Congr., Amsterdam 1954.Google Scholar
  73. Simultaneous photoproduction of hydrogen and oxygen by Chlorella. Mededel. Landbouwhogeschool Wageningen 58, 1–17 (1958).Google Scholar
  74. Stephenson, M., and L. H. Stickland: Hydrogenase: A bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochem. J. 25, 205–214 (1931).PubMedGoogle Scholar
  75. Tödt, F.: Elektrochemische Sauerstoffmessungen. Berlin: W. de Gruyter & Co. 1958.Google Scholar
  76. Ulubekova, M. V.: Study of photosynthesis in green algae by means of carbon-14. Dokl. Akad. Nauk SSSR. 104, 491–493 (1955).Google Scholar
  77. Vishniac, W., and G. H. Reazin: Photoreduction in Ochromonas malhamensis, p. 239 to 242. In: Research in Photosynthesis. New York: Interscience 1957.Google Scholar
  78. Wassink, E. C., E. Katz and R. Dorrestein: On photosynthesis and fluorescence of bacteriochlorophyll in Thiorhodaceae. Enzymologia 10, 285–354 (1942).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • Erich Kessler

There are no affiliations available

Personalised recommendations