Advertisement

Die photosynthetische Sauerstoffentwicklung

  • Erich Kessler
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)

Zusammenfassung

Der Weg des Kohlenstoffs bei der Photosynthese konnte mit Hilfe der Tracer-Methodik unter Verwendung des radioaktiven Isotops C14 erfolgreich bearbeitet werden (vgl. Calvin 1956). Unsere Kenntnisse vom Mechanismus der photosynthetischen Sauerstoffentwicklung sind demgegenüber noch äußerst unvollkommen. Ein hinreichend langlebiges radioaktives Sauerstoffisotop zur Charakterisierung der Zwischenprodukte steht nicht zur Verfügung1, und mit Hilfe des schweren Isotops O18 konnte bisher nur die Herkunft des photosynthetischen O2 aus Wasser geklärt werden (Ruben und Mitarbeiter 1941).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Allen, F. L.: Observations on photosynthesis and related systems. I. Influence of anaerobiosis on photosynthetic rates during continuous irradiation. Arch. Biochem. 55, 38–53 (1955).PubMedCrossRefGoogle Scholar
  2. Allen, F. L., and J. Franck: Photosynthetic evolution of oxygen by flashes of light. Arch. Biochem. 58, 124–143 (1955).PubMedCrossRefGoogle Scholar
  3. Arnon, D. I.: Conversion of light into chemical energy in photosynthesis. Nature (Lond.) 184, 10–21 (1959).Google Scholar
  4. Arnon, D.I., M. B. Allen and F. R. Whatley: Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions. Biochim. biophys. Acta 20, 449–461 (1956).PubMedCrossRefGoogle Scholar
  5. Barltrop, J. A., P. M. Hayes and M. Calvin: The chemistry of 1, 2-dithiolane (trimethylene disulfide) as a model for the primary quantum conversion act in photosynthesis. J. Amer. chem. Soc. 76, 4348–4367 (1954).CrossRefGoogle Scholar
  6. Baur, E.: Notiz über die Photo-Oxydation des Carotins. Helv. chim. Acta 19, 1210–1212 (1936).CrossRefGoogle Scholar
  7. Zur Photo-Oxydation des Carotins. Helv.-chim. Acta 20, 402–404 (1937).Google Scholar
  8. Bergmann, L.: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. II. Vergleichende Untersuchungen über den Einfluß mineralischer Faktoren bei heterotropher und mixotropher Ernährung. Flora (Jena) 142, 493–539 (1955).Google Scholar
  9. Bishop, N. I.: The influence of the herbicide, DCMU, on the oxygenevolving system of photosynthesis. Biochim. biophys. Acta 27, 205–206 (1958a).CrossRefGoogle Scholar
  10. Vitamin K, an essential factor for the photochemical activity of isolated chloroplasts. Proc. nat. Acad. Sci. (Wash.) 44, 501–504 (1958b).Google Scholar
  11. The role of vitamin K in the Hill reaction. Brookhaven Symp. Biol. 11, 332–338 (1958c).Google Scholar
  12. Blass, U., J. M. Anderson and M. Calvin: Biosynthesis and possible functional relationships among the carotenoids; and between chlorophyll a and chlorophyll b. Plant Physiol. 34, 329–333 (1959).PubMedCrossRefGoogle Scholar
  13. Brown, A. H., and A. W. Frenkel: Photosynthesis. Ann. Rev. Plant Physiol. 4, 23–58 (1953).CrossRefGoogle Scholar
  14. Brown, T. E., H. C. Eyster and H. A. Tanner: Physiological effects of manganese deficiency, p. 135–155. In: Trace Elements. New York: Academic Press Inc. 1958.Google Scholar
  15. Brugger, J. E., and J. Franck: Experimental and theoretical contribution to studies of the afterglow of chlorophyll in plant materials. Arch. Biochem. 75, 465–496 (1958).PubMedCrossRefGoogle Scholar
  16. Calvin, M.: Der Photosynthese-Cyclus. Angew. Chem. 68, 253–264 (1956).CrossRefGoogle Scholar
  17. Calvin, M., and J. A. Barltrop: A possible primary quantum conversion act of photosynthesis. J. Amer. chem. Soc. 74, 6153–6154 (1952).CrossRefGoogle Scholar
  18. Chance, B., and R. Sager: Oxygen and light induced oxidations of cytochrome, flavoprotein, and pyridine nucleotide in a Chlamydomonas mutant. Plant Physiol. 32, 548–561 (1957).PubMedCrossRefGoogle Scholar
  19. Chance, B., and L. Smith: Respiratory pigments of Rhodospirillum rubrum. Nature (Lond.) 175, 803–806 (1955).CrossRefGoogle Scholar
  20. Cholnoky, L., C. Györgyfy, E. Nagy and M. Pánczél: Function of carotenoids in chlorophyll-containing organs. Nature (Lond.) 178, 410–411 (1956).CrossRefGoogle Scholar
  21. Chrastil, J.: Dynamic study of the plastid pigments, carotene, xanthophyll, chlorophyll and phytol. Fol. biol. (Praha) 3, 368–373 (1957).Google Scholar
  22. Conant, J. B., E. M. Dietz, C. F. Bailey and S. E. Kamerling: Studies in the chlorophyll series. V. The structure of chlorophyll a. J. Amer. chem. Soc. 53, 2382–2393 (1931).CrossRefGoogle Scholar
  23. Damaschke, K., u. L. Rothbühr: Die langsamste Dunkelreaktion der Photosynthese und der Einfluß von Giften auf diese, verfolgt durch elektrochemische Sauerstoffmessung. Biochem. Z. 327, 39–61 (1955).PubMedGoogle Scholar
  24. Davenport, H. E.: Cytochrome components in chloroplasts. Nature (Lond.) 170, 1112–1114 (1952).CrossRefGoogle Scholar
  25. Davenport, H. E., and R.Hill: The preparation and some properties of cytochrome f. Proc. roy. Soc. B 139, 327–345 (1952).CrossRefGoogle Scholar
  26. Dole, M., and G. Jenks: Isotopic composition of photosynthetic oxygen. Science 100, 409 (1944).PubMedCrossRefGoogle Scholar
  27. Dorough, G. D., and M. Calvin: The path of oxygen in photosynthesis. J. Amer. chem. Soc. 73, 2362–2365 (1951).CrossRefGoogle Scholar
  28. Duysens, L. N. M.: Reversible photooxidation of a cytochrome pigment in photosynthesizing Rhodospirillum rubrum. Nature (Lond.) 173, 692–693 (1954a).CrossRefGoogle Scholar
  29. Reversible changes in the absorption spectrum of Chlorella upon irradiation. Science 120, 353–354 (1954b).Google Scholar
  30. Role of cytochrome and pyridine nucleotide in algal photosynthesis. Science 121, 210–211 (1955).Google Scholar
  31. Eyster, C., T. E. Brown and H. A. Tanner: Manganese requirement with respect to respiration and the Hill reaction in Chlorella pyrenoidosa. Arch. Biochem. 64, 240–241 (1956).PubMedCrossRefGoogle Scholar
  32. Eyster, C., T. E. Brown, H. A. Tanner and S. L. Hood: Manganese requirement with respect to growth, Hill reaction and photosynthesis. Plant Physiol. 33, 235–241 (1958).PubMedCrossRefGoogle Scholar
  33. Fischer, H.: Die Chemie des Pyrrols, Bd. II/2. Leipzig: Akademische Verlagsgesellschaft 1940.Google Scholar
  34. Fogelström-Fineman, I, O. Holm-Hansen, B. M. Tolbert and M. Calvin: A tracer study with O18 in photosynthesis by activation analysis. Int. J. appl. Radiat. and Isotopes 2, 280–286 (1957).CrossRefGoogle Scholar
  35. Franck, J.: Physical problems of photosynthesis. Daedalus 86, 17–42 (1955).Google Scholar
  36. A theory of the photochemical part of photosynthesis, p. 142–146. In: Research in Photosynthesis. New York: Interscience 1957.Google Scholar
  37. Fluorescenz des Chlorophylls in Zellen und Chloroplasten und ihre Beziehungen zu den Primärakten der Photosynthese. In: Handbuch der Pflanzenphysiologie, Bd. 5. 1960.Google Scholar
  38. Franck, J., P. Pringsheim and D. T. Lad: Oxygen production by anaerobic photosynthesis of algae measured by a new micromethod. Arch. Biochem. 7, 103–142 (1945).Google Scholar
  39. Frenkel, A., H. Gaffron and E. H. Battley: Photosynthesis and photoreduction by a species of blue-green algae. Biol. Bull. 97, 269 (1949).Google Scholar
  40. Gaffron, H.: Wirkung von Blausäure und Wasserstoffperoxyd auf die Blackmansche Reaktion in Scenedesmus. Biochem. Z. 292, 241–270 (1937).Google Scholar
  41. The effect of specific poisons 3 upon the photoreduction with hydrogen in green algae. J. gen. Physiol. 26, 195–217 (1942).Google Scholar
  42. Photosynthesis, photoreduction and dark reduction of carbon dioxide in certain algae. Biol. Rev. 19, 1–20 (1944).Google Scholar
  43. o-Phenanthroline and derivatives of vitamin K as stabilizers of photoreduction in Scenedesmus. J. gen. Physiol. 28, 269–285 (1945).Google Scholar
  44. Gaffron, H., u. K. Wohl: Zur Theorie der Assimilation. Naturwissenschaften 24, 81–90, 103–107 (1936).CrossRefGoogle Scholar
  45. Gerretsen, F. C.: Manganese in relation to photosynthesis. II. Redox potentials of illuminated crude chloroplast suspensions. Plant & Soil 2, 159–193 (1950).CrossRefGoogle Scholar
  46. Griffiths, M., W. R. Sistrom, G. Cohen-Bazire, R. Y. Stanier and M. Calvin: Function of carotenoids in photosynthesis. Nature (Lond.) 176, 1211–1215 (1955).CrossRefGoogle Scholar
  47. Habermann, H. M.: Light dependent oxygen metabolism of chloroplast preparations. II. Stimulation by manganous ions. Plant Physiol. 35, 307–312 (1960).PubMedCrossRefGoogle Scholar
  48. Hill, R.: Oxygen produced by isolated chloroplasts. Proc. roy. Soc. B 127, 192–210 (1939).CrossRefGoogle Scholar
  49. Hill, R., and E. F. Hartree: Hematin compounds in plants. Ann. Rev. Plant Physiol. 4, 115–150 (1953).CrossRefGoogle Scholar
  50. Hill, R., D. H. Northcote and H. E. Davenport: Active chloroplast preparations from Chlorella pyrenoidosa. Nature (Lond.) 172, 948–949 (1953).CrossRefGoogle Scholar
  51. Hill, R., and R. Scarisbrick: The haematin compounds of leaves. New Phytologist 50, 98–111 (1951).CrossRefGoogle Scholar
  52. Holt, A. S., and C. S. French: Isotopic analysis of the oxygen evolved by illuminated chloroplasts in normal water and in water enriched with O18. Arch. Biochem. 19, 429–435 (1948).PubMedGoogle Scholar
  53. The photochemical liberation of oxygen from water by isolated chloroplasts, p. 277–285. In: Photosynthesis in Plants. Ames, Iowa 1949.Google Scholar
  54. Huzisige, H.: Comparative studies on the susceptibility of photosynthesis, the Hill reaction and the catalase reaction towards various inhibitors. J. Biochem. (Tokyo) 41, 605–619 (1954).Google Scholar
  55. Jagendorf, A. T., and M. Avron: Inhibitors of photosynthetic phosphorylation in relation to electron and oxygen transport pathways of chloroplasts. Arch. Biochem. 80, 246–257 (1959).CrossRefGoogle Scholar
  56. Jagendorf, A. T., and S. G. Wildman: The proteins of green leaves. VI. Centrifugal fractionation of tobacco leaf homogenates and some properties of isolated chloroplasts. Plant Physiol. 29, 270–279 (1954).PubMedCrossRefGoogle Scholar
  57. Kamen, M. D.: Use of isotopes in biochemical research: Fundamental aspects. Ann. Rev. Biochem. 16, 631–654 (1947).PubMedCrossRefGoogle Scholar
  58. Hematin compounds in the metabolism of photosynthetic tissues, p. 149–163. In: Research in Photosynthesis. New York: Interscience 1957.Google Scholar
  59. Kamen, M. D., and H. A. Barker: Inadequacies in present knowledge of the relation between photosynthesis and the O18 content of atmospheric oxygen. Proc. nat. Acad. Sci. (Wash.) 31, 8–15 (1945).CrossRefGoogle Scholar
  60. Kamen, M. D., and L. P. Vernon: Enzymatic activities affecting cytochromes in photosynthetic bacteria. J. biol. Chem. 211, 663–675 (1954).PubMedGoogle Scholar
  61. Comparative studies on bacterial cytochromes. Biochim. biophys. Acta 17, 10–22 (1955).Google Scholar
  62. Kenten, R. H., and P. J. G. Mann: The oxidation of manganese by illuminated chloroplast preparations. Biochem. J. 61, 279–286 (1955).PubMedGoogle Scholar
  63. Kessler, E.: On the role of manganese in the oxygen-evolving system of photosynthesis. Arch. Biochem. 59, 527–529 (1955).PubMedCrossRefGoogle Scholar
  64. Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. I. Über die Rolle des Mangans bei Photoreduktion und Photosynthese. Planta (Berl.) 49, 435–454 (1957a).Google Scholar
  65. Manganese as a cofactor in photosynthetic oxygen evolution, p. 243–249. In: Research in Photosynthesis. New York: Interscience 1957b.Google Scholar
  66. Kessler, E., W. Arthur and J. E. Brugger: The influence of manganese and phosphate on delayed light emission, fluorescence, photoreduction and photosynthesis in algae. Arch. Biochem. 71, 326–335 (1957).PubMedCrossRefGoogle Scholar
  67. Larsen, H., C. S. Yocum and C. B. van Niel: On the energetics of the photosyntheses in green sulfur bacteria. J. gen. Physiol. 36, 161–171 (1952).PubMedCrossRefGoogle Scholar
  68. Lavorel, J.: Photoinhibition de la catalase des chloroplastes. Biochim. biophys. Acta 22, 226–237 (1956).PubMedCrossRefGoogle Scholar
  69. Lumry, R., R. E. Wayrynen and J. D. Spikes: The mechanism of the photochemical activity of isolated chloroplasts. II. Quantum requirements. Arch. Biochem. 67, 453–465 (1957).PubMedCrossRefGoogle Scholar
  70. Lundegårdh, H.: On the oxidation of cytochrome f by light. Physiol. Plantarum (Cph.) 7, 375–382 (1954).CrossRefGoogle Scholar
  71. Mehler, A. H.: Studies on reactions of illuminated chloroplasts. I. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. 33, 65–77 (1951a).CrossRefGoogle Scholar
  72. Studies on reactions of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen. Arch. Biochem. 34, 339–351 (1951b).Google Scholar
  73. Nakamura, H.: Über die Kohlensäureassimilation bei niederen Algen in Anwesenheit des Schwefelwasserstoffs. Acta phytochim. (Tokyo) 10, 271–281 (1938a).Google Scholar
  74. Über den Einfluß der Blausäure auf die Photosynthese von Scenedesmus. Acta phytochim. (Tokyo) 10, 313–316 (1938b).Google Scholar
  75. Über die quantitativen Beziehungen zwischen der Katalase in Chloroplasten und dem Chlorophyll, nebst einigen Bemerkungen über die Rolle der Katalase im Assimilationsvorgang. Jap. J. Bot. 11, 221–236 (1941).Google Scholar
  76. Negelein, E.: Über die Wirkung des Schwefelwasserstoffs auf chemische Vorgänge in Zellen. Biochem. Z. 165, 203–213 (1925).Google Scholar
  77. Newton, J. W., and M. D. Kamen: Chromatium cytochrome. Biochim. biophys. Acta 21, 71–80 (1956).PubMedCrossRefGoogle Scholar
  78. Niel, C. B. van: The comparative biochemistry of photosynthesis, p. 437–495. In: Photosynthesis in Plants. Ames, Iowa 1949.Google Scholar
  79. Noack, K.: Photochemische Wirkungen des Chlorophylls. Naturwissenschaften 14, 383–389 (1926).CrossRefGoogle Scholar
  80. Pirson, A.: Ernährungs- und stoffwechselphysiologische Untersuchungen an Fontinalis und Chlorella. Z. Bot. 31, 193–267 (1937).Google Scholar
  81. Manganese and its role in photosynthesis, p. 81–98. In: Trace Elements. New York: Academic Press Inc. 1958.Google Scholar
  82. Pirson, A., C. Tichy u. G. Wilhelmi: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. I. Vergleichende Untersuchungen an Mangelkulturen von Ankistrodesmus. Planta (Berl.) 40, 199 bis 253 (1952).CrossRefGoogle Scholar
  83. Rabinowitch, E. I.: Photosynthesis and Related Processes, vol.1. New York: Interscience 1945; vol. II, 1. New York: Interscience 1951; vol. II, 2. New York: Interscience 1956.CrossRefGoogle Scholar
  84. Richter, G., u. A. Pirson: Enzyme von Hydrodictyon und ihre Beeinflussung durch Beleuchtungsperiodik. Flora (Jena) 144, 562–597 (1957).Google Scholar
  85. Rieke, F. F.: Quantum efficiencies for photosynthesis and photoreduction in green plants, p. 251–272. In: Photosynthesis in Plants. Ames, Iowa 1949.Google Scholar
  86. Ruben, S., M. Randall, M. Kamen and J. L. Hyde: Heavy oxygen (O18) as a tracer in the study of photosynthesis. J. Amer. chem. Soc. 63, 877–879 (1941).CrossRefGoogle Scholar
  87. Sapozhnikov, D. I., T. A. Krasovskaya and A. N. Mayevskaya: Changes observed in the relation between the main carotenoids in the plastids of green leaves exposed to light. Dokl. Akad. Nauk SSSR. 113, 465–467 (1957).Google Scholar
  88. Shibata, K., u. E.Yakushiji: Der Reaktionsmechanismus der Photosynthese. Naturwissenschaften 21, 267–268 (1933).CrossRefGoogle Scholar
  89. Stoll, A.: Über den chemischen Verlauf der Photosynthese. Naturwissenschaften 20, 955–958 (1932).CrossRefGoogle Scholar
  90. Zusammenhänge zwischen der Chemie des Chlorophylls und seiner Funktion in der Photosynthese. Naturwissenschaften 24, 53–59 (1936).Google Scholar
  91. Tamiya, H.: Analysis of photosynthetic mechanism by the method of intermittent illumination. II. Theoretical part. Stud. Tokugawa Inst. 6, 43–129 (1949).Google Scholar
  92. Tamiya, H., S. Miyachi and T. Hirokawa: Some new preillumination experiments with carbon-14 p. 213–223. In: Research in Photosynthesis. New York: Interscience 1957.Google Scholar
  93. Vernon, L. P., and M. D. Kamen: Hematin compounds in photosynthetic bacteria. J. biol. Chem. 211, 643–662 (1954).PubMedGoogle Scholar
  94. Vinogradov, A. P., u. R. V. Teis: C. R. Acad. Sci. URSS. 33, 490–493 (1941); 56, 59–60 (1947).Google Scholar
  95. Warburg, O.: Schwermetalle als Wirkungsgruppen von Fermenten. Berlin: Dr. W. Saenger 1948.Google Scholar
  96. Warburg, O., u. G. Krippahl: Über den chemischen Mechanismus der Kohlensäureassimilation. Svensk kem. T. 69, 143–156 (1957).Google Scholar
  97. Warburg, O., G. Krippahl, H.-S. Gewttz u. W. Völker: Carotinoid-Oxygenase in Chlorella. Z. Naturforsch. 13b, 437 bis 439 (1958).Google Scholar
  98. Warburg, O., G. Krippahl, W. Schröder u. W. Buchholz: SauerstoffKapazität der Chlorella. Z. Naturforsch. 9b, 769–778 (1954).Google Scholar
  99. Warburg, O., u. W. Schröder: Versuche über die Sauerstoffkapazität der Chlorella. Z. Naturforsch. 10b, 639 bis 642 (1955).Google Scholar
  100. Wassink, E. C., E. Katz and R. Dorrestein: On photosynthesis and fluorescence of bacteriochlorophyll in Thiorhodaceae. Enzymologia 10, 285–354 (1942).Google Scholar
  101. Weller, S., and J. Franck: Photosynthesis in flashing light. J. physic. Chem. 45, 1359 bis 1373 (1941).CrossRefGoogle Scholar
  102. Willstätter, R., u. A. Stoll: Untersuchungen über die Assimilation der Kohlensäure. Berlin: Springer 1918.CrossRefGoogle Scholar
  103. Wohl, K.: Zur Energiebilanz der Kohlensäureassimilation. Z. phys. Chem. B 31, 152–156 (1935).Google Scholar
  104. Yakushiji, E.: Über die Katalase und ihre Rolle im Reaktionsmechanismus der Photosynthese. Acta phytochim. (Tokyo) 7, 93–115 (1933).Google Scholar
  105. Yosida, T., N. Morita, H. Tamiya, H. Nakayama u. H. Huzisige: Über den Gehalt des Assimilationssauerstoffs an schwerem Isotop. Ein Beitrag zur Kenntnis des Mechanismus der Photosynthese. Acta phytochim. (Tokyo) 13, 11–18 (1942).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • Erich Kessler

There are no affiliations available

Personalised recommendations