Advertisement

The path of carbon in photosynthesis

  • J. A. Bassham
  • M. Calvin
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)

Abstract

As knowledge regarding the formation of organic compounds from carbon dioxide and other inorganic materials in green plants accumulates, it becomes increasingly apparent that it is difficult to distinguish which transformations of carbon compounds should be classified as part of the pathway of carbon in photosynthesis and which reactions should be considered as other metabolic processes of the plant. All reactions of a photoautotrophic plant rely ultimately on the energy stored by the photosynthetic process. Therefore, any definition of carbon reduction during photosynthesis based on requirement of energy or equivalents of reducing agents should specify the requirement precisely. Even so, it is questionable whether such a definition can distinguish between carbon reduction reactions of photosynthesis and other metabolic transformations of carbon compounds. It is now believed that energy-carrying compounds such as adenosine triphosphate and reducing agents such as reduced triphosphopyridine nucleotide which are formed during respiratory processes may also be formed directly from products close to the primary photochemical reactions of photosynthesis. Transformations of carbon compounds which require such substances and which take place in the dark may also occur at a greatly accelerated rate during photosynthesis. Furthermore, most, if not all, of the reactions of carbon reduction in photosynthesis are known to occur, although at a diminished rate, in the dark long after the immediate reducing and energy-carrying agents formed from the photochemical reaction have decayed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Aronoff, S.: Metabolism of soy bean leaves. III. The organic acids produced in short-time photosynthesis. Arch. Biochem. 32, 237–248 (1951).PubMedCrossRefGoogle Scholar
  2. Aronoff, S., H. A. Barker and M. Calvin: Distribution of labeled carbon in sugar from Barley. J. biol. Chem. 169, 459–460 (1947).PubMedGoogle Scholar
  3. Aronoff, S., and L. Vernon: Metabolism of soybean leaves. I. The sequence of formation of the soluble carbohydrates during photosynthesis. Arch. Biochem. 28, 424–439 (1950).PubMedGoogle Scholar
  4. Badin, E. J., and M. Calvin: The path of carbon in photosynthesis. IX. Photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction. J. Amer. chem. Soc. 72, 5266–5270 (1950).CrossRefGoogle Scholar
  5. Baeyer, A.: Über die Wasserentziehung und ihre Bedeutung für das Pflanzenleben und die Gärung. Ber. dtsch. chem. Ges. 3, 63–75 (1870). Reviewed in: Photosynthesis and related processes, I (E. I. Rabinowttch), p. 246. New York: Interscience Publishers 1945.CrossRefGoogle Scholar
  6. Bassham, J. A., A. A. Benson and M. Calvin: Path of carbon in photosynthesis. VIII. The role of malic acid. J. biol. Chem. 185, 781–787 (1950).PubMedGoogle Scholar
  7. Bassham, J. A., A. A. Benson, L. D. Kay, A. Z. Harris, A. T. Wilson and M. Calvin: The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Amer. chem. Soc. 76, 1760–1770 (1954).CrossRefGoogle Scholar
  8. Bassham, J. A., and M. Calvin: The path of carbon in photosynthesis, p. 42–43. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1957.Google Scholar
  9. Bassham, J. A., M. R. Kirk and M. Calvin: The effects of hydroxylamine on the C14O2 fixation patterns during photosynthesis. Proc. nat. Acad. Sci. (Wash.) 44, 491–493 (1958).CrossRefGoogle Scholar
  10. Bassham, J. A., K. Shibata, K. Steenberg, J. Bourdon and M. Calvin: Photosynthetic cycle ansd respiration: Light and dark transients. J. Amer. chem. Soc. 78, 4120–4124 (1956).CrossRefGoogle Scholar
  11. Benson, A. A.: Diglycerophospholipides. Their distribution and metabolism. Abstracts of Amer. Chem. Soc. Meeting, San Francisco, California, April 1958, Abstract No. 5C.Google Scholar
  12. Benson, A. A., and J. A. Bassham: Chemical degradation of isotopic succinic and malic acids. J. Amer. chem. Soc. 70, 3939–3940 (1948).CrossRefGoogle Scholar
  13. Benson, A. A., J. A. Bassham, M. Calvin, T. C. Goodale, V. A. Haas and W. Stepka: The path of carbon in photosynthesis. V. Paper chromatography and radioautography of the products. J. Amer. chem. Soc. 72, 1710–1718 (1950).CrossRefGoogle Scholar
  14. Benson, A. A., J. A. Bassham, M. Calvin, A. G. Hall, H. E. Hirsch, S. Kawaguchi, V. Lynch and N. E. Tolbert: The path of carbon in photosynthesis. XV. Ribulose and sedoheptulose. J. biol. Chem. 196, 703–716 (1952).PubMedGoogle Scholar
  15. Benson, A. A., and M.Calvin: The dark reduction of photosynthesis. Science 105, 648–649 (1947).PubMedCrossRefGoogle Scholar
  16. Intermediates of photosynthesis: Isolation and degradation methods. University of California, Radiation Laboratory Report No. 2682, Berkeley, California 1954.Google Scholar
  17. Benson, A. A., M. Calvin, V. A. Haas, S. Aronoff, A. G. Hall, J. A. Bassham and J. W. Weigl: C14 in photosynthesis. In: Photosynthesis in plants, ed. by J. Franck and W. Looms, pp. 381–401. Iowa: Iowa State College Press 1949.Google Scholar
  18. Benson, A. A., and B. Maruo: Radiochemical identification of diglycerophosphate and its probable role in lipid synthesis by plants. Internat. Conference on Radioisotopes in Scientific Research, Paris, France, September, 1957. Paper No. UNESCO/NS/RIC/185.Google Scholar
  19. Bishop, N. L, and H. Gaffron: The inhibition of photosynthesis by sodium fluoride. I. The sodiumfluoride-induced CO2 burst from Chlorella. Biochim. biophys. Acta 28, 35–44 (1958).PubMedCrossRefGoogle Scholar
  20. Blackman, F. F., and G. L. G. Matthaei: Experimental researches in vegetable assimilation and respiration. IV. A quantitative study of carbon-dioxide assimilation and leaf-temparature in natural illumination. Proc. roy. Soc. B 76, 402–445 (1905). Reviewed in: Photosynthesis and related processes, I (E. I. Rabinowitch), p. 172. New York: Interscience Publishers 1945.CrossRefGoogle Scholar
  21. Block, R. J., E. L. Durrum and G. Zweig: A manual of paper chromatography and paper electrophoresis. New York: Academic Press Inc. 1955.Google Scholar
  22. Calvin, M., J. A. Bassham, A. A. Benson, V. H. Lynch, C. Ouellet, L. Schou, W. Stepka and N. E. Tolbert: Carbon dioxide assimilation in plants. Symp. Soc. exp. Biol. 5, 284–305 (1951).Google Scholar
  23. Calvin, M., and A. A. Benson: The path of carbon in photosynthesis. I. Science 107, 476–480 (1948).PubMedCrossRefGoogle Scholar
  24. Calvin, M., and P. Massini: The path of carbon in photosynthesis. XX. The steady state. Experientia (Basel) 8, 445–457 (1952).CrossRefGoogle Scholar
  25. Consden, R., A. H. Gordon and A. J. P. Martin: Qualitative analysis of proteins: A partition Chromatographic method using paper. Biochem. J. 38, 224–232 (1944).PubMedGoogle Scholar
  26. Doman, N. G.: Investigating the nature of early products in photosynthesis. Paper presented at IX International Botanical Congress, Montreal, Canada, 1959.Google Scholar
  27. Fuller, R. C., and I. C. Anderson: CO2 assimilation in the photosynthetic purple sulfur bacteria. Plant Physiol. 32, Suppl., August xvi, (1957).Google Scholar
  28. Gaffron, H., E. W. Fager and A. Brown: The C14-labeled products of the aerobic and anaerobic light and dark reactions of photosynthesis as fractionated with benzene alcohol; in a panel discussion “Plant Metabolism and Photosynthesis” at symposium on the uses of isotopes in biology and medicine, University of Wisconsin, Madison, Wisconsin 1947.Google Scholar
  29. Gibbs, M.: Conversion of formate carbon to starch during photosynthesis. Fed. Proc. 17, 228 (1958).Google Scholar
  30. Gibbs, M., and O. Kandler: Asymmetric distribution of C14 in glucose phosphates formed during photosynthesis. Plant Physiol. 31, 411–412 (1956).PubMedCrossRefGoogle Scholar
  31. Asymmetric distribution of C14 in glucose phosphates formed during photosynthesis. Proc. nat. Acad. Sci. (Wash.) 43, 446–451 (1957).Google Scholar
  32. Gunsalus, I. C. and M. Gibbs: The heterolactic fermentation. II. Position of C14 in the products of the glucose dissimilation by Leuconostoc mesenteroides. J. biol. Chem. 194, 871–875 (1952).PubMedGoogle Scholar
  33. Hill, R.: Oxygen evolved by isolated chloroplasts. Nature (Lond.) 139, 881–882 (1937).CrossRefGoogle Scholar
  34. Hill, R., and R. Scarisbrick: The reduction of ferric oxalate by isolated chloroplasts. Proc. roy. Soc. B 129, 238–255 (1940).CrossRefGoogle Scholar
  35. Production of oxygen by illuminated chloroplasts. Nature (Lond.) 146, 61–62 (1940).Google Scholar
  36. Horecker, B. L., M. Gibbs, H. Klenow and P. Z. Smyrniotis: The mechanism of pentose phosphate conversion to hexose monophosphate. I. With a liver enzyme preparation. J. biol. Chem. 207, 393–403 (1954).PubMedGoogle Scholar
  37. Horecker, B. L., P. Z. Smyrniotis, H. H. Hiatt and P. A. Marks: Tetrose phosphate and the formation of sedoheptulose phosphate. J. biol. Chem. 212, 827–836 (1955).PubMedGoogle Scholar
  38. Ingen-Housz, J.: Experiences sur végétables etc. (French translation by the author with additions.) F. Didot le jeune, Paris 1780. Reviewed in: Photosynthesis and related processes, I (E. I. Rabinowitch), p. 17. New York: Interscience Publishers 1945.Google Scholar
  39. An essay on the food of plants and the renovation of soils. (Appendix to 15th chapter of the General Report from the Board of Agriculture.) London 1796. Book in German: Ernährung der Pflanzen und Fruchtbarkeit des Bodens. Leipzig 1798. Reviewed in: Photosynthesis and related processes, I (E. L Rabinowitch), p. 17. New York: Interscience Publishers 1945.Google Scholar
  40. Kandler, O.: Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. IV. Z. Naturforsch. 12b, 271–280 (1957).Google Scholar
  41. Alcohol and KCN poisoning in short-time photosynthesis studies. University of California Radiation Laboratory Report 3710, 9–20, March 1957.Google Scholar
  42. Identifizierung von radiaoktiver Hamamelonsäure aus Chlorella nach kurzfristiger Photosynthese in C14O2 und hohen KCN-Konzentrationen. Naturwissenschaften 21, 562–563 (1957).Google Scholar
  43. Occurrence of unknown radioactive substances after short-time photosynthesis in C14O2. Arch. Biochem. 73, 38 (1958).Google Scholar
  44. Kandler, O., and M. Gibbs: Asymmetric distribution of C14 in the glucose phosphates formed during photosynthesis. Plant Physiol. 31, 411–412 (1956).PubMedCrossRefGoogle Scholar
  45. Kasprzyk, Z., and M. Calvin: Search for unstable CO2 fixation products in algae using low temperature liquid scintillators. Proc. nat. Acad. Sci. (Wash.) 45, 952–959 (1959).CrossRefGoogle Scholar
  46. Kluyver, A. J., u. H. J. L. Donker: Die Einheit in der Biochemie. Chem. Zelle Gewebe 13, 134–190 (1926).Google Scholar
  47. Krebs, H. A., and W. A. Johnson: The role of citric acid in intermediate metabolism in animal tissues. Enzymologia 4, 148–156 (1937).Google Scholar
  48. Liebig, J.: Die Wechselwirthschaft. Justus Liebigs Ann. Chem. 46, 58–97 (1843). Reviewed in: Photosynthesis and related processes, I (E. I. Rabinowitch), p. 246. New York: Interscience Publishers 1945.CrossRefGoogle Scholar
  49. Linko, P., O. Holm-Hansen, J. A. Bassham and M. Calvin: Formation of radioactive citrulline during photosynthesis C14O2 fixation by blue-green algae. J. exp. Bot. 8, 147–156 (1957).CrossRefGoogle Scholar
  50. Martin, A. J. P., and R. L. M. Synge: Separation of the higher monoamino-acids by counter-current liquid-liquid extraction: The amino-acid composition of wool. Biochem. J. 35, 91–121 (1941).PubMedGoogle Scholar
  51. A new form of chromatogram employing two liquid phases. 1: A theory of chromatography. 2: Application to the micro-determination of the higher monoamino-acids in proteins. Biochem. J. 35, 1358–1368 (1941).Google Scholar
  52. Mayer, J. R.: Die organische Bewegung in ihrem Zusammenhang mit dem Stoffwechsel. Heilbronn 1845. Reprinted in: Die Mechanik der Wärme; gesammelte Schriften; Stuttgart 1893, and in Ostwald’s Klassiker der exacten Naturwissenschaften, No. 180; Leipzig: Akademische Verlagsgesellschaft 1911. Reviewed in: Photosynthesis and related processes, I (E. I. Rabinowitch), p. 26. New York: Interscience Publishers 1947.Google Scholar
  53. Metzner, H., B. Metzner and M. Calvin: Early unstable CO2 fixation products in photosynthesis. Proc. nat. Acad. Sci. (Wash.) 44, 205 to 211 (1958).CrossRefGoogle Scholar
  54. Labile products of early CO2 fixation in photosynthesis. Arch. Biochem. 74, 1–6 (1958).Google Scholar
  55. Metzner, H., H. Simon, B. Metzner and M. Calvin: Evidence for an unstable CO2 fixation product in algal cells. Proc. nat. Acad. Sci. (Wash.) 43, 892–895 (1957).CrossRefGoogle Scholar
  56. Mortimer, D. C.: Evidence for an alternate pathway in photosynthetic assimilation Naturwissenschaften 45, 116–117 (1958).CrossRefGoogle Scholar
  57. Moses, V., and M. Calvin: The path of carbon in photosynthesis. XXII. The identification of carboxy-ketopentitol diphosphates as products of photosynthesis. Proc. nat. Acad. Sci. (Wash.) 44, 260–277 (1958).CrossRefGoogle Scholar
  58. The path of carbon in photosynthesis. XXIII. The tentative identification of erythrose phosphate. Arch. Biochem. Biophys. 78, 598–600 (1958).Google Scholar
  59. Moyse, A., et G. Golchine: L’action de la lumiere sur la β-carboxylation et les oxydations dans les feuilles de Bryophyllum. Bull. Soc. Chim. Biol. (Paris) 39, 725–745 (1957).Google Scholar
  60. Myers, J.: Culture conditions and the development of the photosynthetic mechanism. V. Influence of the composition of the nutrient medium. Plant Physiol. 22, 590–597 (1947).PubMedCrossRefGoogle Scholar
  61. The pattern of photosynthesis in Chlorella. In: Photosynthesis in plants, pp. 349–364. Iowa: Iowa State College Press 1949.Google Scholar
  62. Niel, C. B. van: On the morphology and physiology of the purple and green sulfur bacteria. Arch. Mikrobiol. 3, 1–112 (1931).CrossRefGoogle Scholar
  63. The bacterial photosynthesis and their importance for the general problem of photosynthesis. Advanc. Enzymol. 1, 263–328 (1941).Google Scholar
  64. Norris, L., R. E. Norris and M. Calvin: A survey of the rates and products of short-term photosynthesis in plants of nine phyla. J. exp. Bot. 6, 64–74 (1955).CrossRefGoogle Scholar
  65. Paechnatz, G.: Zur Frage der Assimilation von Formaldehyd durch die grüne Pflanze. Z. Bot. 32, 161–211 (1938).Google Scholar
  66. Park, R. B., N. Pon, J. A. Bassham and M. Calvin: CO2 fixation by chloroplast and steady state in vivo systems. Paper presented at the IX International Botanical Congress, Montreal, Canada, 1959. (Abstract, Volume II, p. 293).Google Scholar
  67. Pon, N. G.: Ph. D. Thesis: Studies on the carboxydismutase system and related materials. University of California, Berkeley, California. (1960).Google Scholar
  68. Priestley, J.: Observations on different kinds of air. Phil. Trans. B 62, 147–264 (1772). Reviewed in: Photosynthesis and related processes, I (E. I. Rabinowitch), p. 14. New York: Interscience Publishers 1945.CrossRefGoogle Scholar
  69. Rabin, B. R., N. G. Pon, D. F. Shaw, J. M. Anderson and M. Calvin: Cyanide effect on CO2 fixation in Chlorella. J. Amer. chem. Soc. 80, 2528–2532 (1958).CrossRefGoogle Scholar
  70. Racker, E., G. de la Haba and I. G. Leder: Transketolase catalyzed utilization of fructose-6-phosphate and its significance in a glucose-6-phosphate oxidation cycle. Arch. Biochem. 48, 238–240 (1954).PubMedCrossRefGoogle Scholar
  71. Ruben, S., W. Z. Hassid and M. D. Kamen: Radioactive carbon in the study of photosynthesis. J. Amer. chem. Soc. 61, 661–663 (1939).CrossRefGoogle Scholar
  72. Ruben, S., and M. D. Kamen: Photosynthesis with radioactive carbon. IV. Molecular weight of the intermediate products and a tentative theory of photosynthesis. J. Amer. chem. Soc. 62, 3451–3455 (1940).CrossRefGoogle Scholar
  73. Radioactive carbon in the study of respiration in heterotrophic systems. Proc. nat. Acad. Sci. (Wash.) 26, 418–426 (1940).Google Scholar
  74. Nonphotochemical reduction of carbon dioxide by biological systems. J. appl. Phys. 12, 321–322 (1941).Google Scholar
  75. Ruben, S., M. Randall, M. Kamen and J. L. Hyde: Heavy oxygen (O18) as a tracer in the study of photosynthesis. J. Amer. chem. Soc. 63, 877–879 (1941).CrossRefGoogle Scholar
  76. Saussure, N. Th. de: Recherches chimiques sur la végétation. Nyon: Paris 1804. Reviewed in: Photosynthesis and related processes, I (E. I. Rabinowitch), p. 23. New York: Interscience Publishers 1945.Google Scholar
  77. Schou, L., A. A. Benson, J. A. Bassham and M. Calvin: The path of carbon in photosynthesis. XI. The role of glycolic acid. Physiol. Plantarum (Cph.) 3, 487–495 (1950).CrossRefGoogle Scholar
  78. Senebier, J.: Mémoires physico-chimiques sur l’influence de la lumière solaire pour modifier les êtres de trois règnes, soutour ceux du règne végétal. 3 vols. Chirol, Geneve 1782. Reviewed in: Photosynthesis and related processes, I (E. I. Rabinowitch). New York: Interscience Publishers 1945.Google Scholar
  79. Smith, G. F.: Cerate oxidimetry. Columbus, Ohio: G. Frederick Smith Chemical Company 1942.Google Scholar
  80. Stepka, W., A. A. Benson and M. Calvin: The path of carbon in photosynthesis. II. Amino acids. Science 108, 304 (1948).PubMedCrossRefGoogle Scholar
  81. Stoppani, A. O. M., R. C. Fuller and M. Calvin: Carbon dioxide fixation by Rhodopseudomonas capsulatus. J. Bact. 69, 491–501 (1955).PubMedGoogle Scholar
  82. Thunberg, T.: Über einen neuen Weg von der Kohlensäure zum Formaldehyd. Ein Beitrag zur Theorie der Kohlensäureassimilation. Z. phys. Chem. 106, 305–312 (1923).Google Scholar
  83. Topper, Y. J., and A. B. Hastings: A study of the chemical origins of glycogen by use of C14-labeled carbon dioxide, acetate, and pyruvate. J. biol. Chem. 179, 1255 (1949).PubMedGoogle Scholar
  84. Vishniac, W., and R. C. Fuller: Identity of fluoride-labile CO2 fixation product in algae. Fed. Proc. 17, 328 (1958).Google Scholar
  85. Warburg, O., H. Klotzsch u. G. Krippahl: Glutaminsäure in Chlorella. Z. Naturforsch. 12b, 622–628 (1958).Google Scholar
  86. Weinhouse, S., G. Medes and N. F. Floyd: Fatty acid metabolism. V. The conversion of fatty acid intermediates to citrate, studied with the aid of isotopic carbon. J. biol. Chem. 166, 691–703 (1946).PubMedGoogle Scholar
  87. Weissbach, A., B. L. Horecker, and J. Hurwitz: The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J. biol. Chem. 218, 795 (1956).PubMedGoogle Scholar
  88. Wieland, H.: Über den Mechanismus der Oxydationsvorgänge. III. Ber. dtsch. chem. Ges. 47, 2085–2111 (1914).CrossRefGoogle Scholar
  89. Willstätter, R., u. A. Stoll: Untersuchungen über die Assimilation der Kohlensäure. Berlin: Springer 1918. Reviewed in: Photosynthesis and related processes (E. I. Rabinowitch). New York: Interscience Publishers 1945.CrossRefGoogle Scholar
  90. Wilson, A. T., and M. Calvin: The photosynthetic cycle. CO2 dependent transients. J. Amer. chem. Soc. 77, 5948–5957 (1955).CrossRefGoogle Scholar
  91. Wood, H. G., N. Lifson and V. L. Lorber: The position of fixed carbon in glucose from rat liver glycogen. J. biol. Chem. 159, 475–489 (1945).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • J. A. Bassham
  • M. Calvin

There are no affiliations available

Personalised recommendations