Advertisement

Abstract

During the first quarter of this century, a number of attempts were made to duplicate the photosynthetic reaction in aqueous solutions or slurries of inorganic or simple organic photosensitizers. Such attempts (Spoehr) have been generally abandoned and the scattered, early reports of experimental successes are discredited. It is most improbable that a homogeneous solution will ever be devised which will be capable, with sensible efficiency, of using visible light to bring about the reduction of carbon dioxide by water, eliminating oxygen. For such a process to succeed, either the energy of four or more photons must be accumulated by a sensitizer molecule or else a series of fairly stable reaction intermediates must be formed. No analog of the first process, the accumulation of energy, has been reported in the extensive literature of the photochemistry of gaseous and liquid solutions, nor is such a process consistent with the known spectrographic properties of atoms or molecules. Natural photosynthesis undoubtedly involves the formation and reactions of a series of intermediates, but occurs in a spatially organized system containing a number of enzymes and carriers. While it is possible that such a chain of reactions could occur in a homogeneous system; if by some miracle it were discovered, it is almost certain that the system would be so complex chemically that it would be about as difficult to study as its biological counterpart.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Abrahamson, E. W., and H. Linschitz: Reversible flash bleaching of chlorophyll. J. chem. Phys. 23, 2198 (1955).CrossRefGoogle Scholar
  2. Allison, F.: Oxydo-Reduktionen mit Chlorophyll und anderen Sensibilatoren. Helv. chem. Acta 13, 788 (1930).CrossRefGoogle Scholar
  3. Aronoff, S.: Light absorption by chlorophyll at high concentrations. Plant Physiol. 27, 413–416 (1952).PubMedCrossRefGoogle Scholar
  4. Aronoff, S., and G. Mackinney: The photooxidation of chlorophyll. J. Amer. chem. Soc. 65, 956 (1943).CrossRefGoogle Scholar
  5. Ashkinazi, M. S., and B. J. Dain: Photochemical properties of complexes of chlorophyll with iron. [Russian.] Dokl. Akad. Nauk 80, 385 (1951).Google Scholar
  6. Ashkinazi, M. S., I. P. Gerasimova and B. J. Dain: Photochemical investigation of iron pheophorbide. [Russian.] Dokl. Akad. Nauk 102, 767 (1954).Google Scholar
  7. Ashkinazi, M. S., T. S. Glickman and B. J. Dain: Nature of the reactions of chlorophyll with inorganic ions. [Russian.] Dokl. Akad. Nauk 74, 315 (1950).Google Scholar
  8. Becker, R. S., and M. Kasha: Luminescence spectroscopy of porphyrin-like molecules including the chlorophylls. J. Amer. chem. Soc. 77, 3669 (1955).CrossRefGoogle Scholar
  9. Bom, J.: Zinkoxyd und Chlorophyll als optische Sensibilisatoren. Helv. chem. Acta 12, 137 (1929).Google Scholar
  10. Bonhoeffer, K. F., u. L. Farkas: Der Reaktionsmechanismus des photochemischen Jodwasserstoffzerfalls. Z. phys. Chem. 132, 235–256 (1928).Google Scholar
  11. Bowen, E. J.: The chemical aspects of light. Oxford: Clarendon Press 1946.Google Scholar
  12. Bowen, E. J., and D. W. Tanner: The photochemistry of anthracenes. Trans. Faraday Soc. 51, 475 (1954).CrossRefGoogle Scholar
  13. Bowen, E. J., and A. H. Williams: The photooxidation of hydrocarbon solutions. Trans. Faraday Soc. 35, 765 (1939).CrossRefGoogle Scholar
  14. Bowman, R., and W. Weinberger: Unpublished work. University of Minnesota 1955.Google Scholar
  15. Brody, S. S.: Fluorescence life times of photosynthetic pigments in vivo and in vitro. Doctoral Diss. University of Illinois 1956.Google Scholar
  16. New excited state of chlorophyll. Science 128, 838 (1958).Google Scholar
  17. Burk, D., u. O. Warburg: Ein-Quanten-Reaktion und Kreisprozeß der Energie bei der Photosynthese. Z. Naturforsch. 6b, 12 (1951).Google Scholar
  18. Calvin, M., and G. Dorough: The phosphorescence of chlorophyll and some chlorin derivatives. Science 105, 433 (1947).PubMedCrossRefGoogle Scholar
  19. The possibility of a triplet state intermediate in the photooxidation of a chlorin. J. Amer. chem. Soc. 70, 699 (1948).Google Scholar
  20. Dainton, F. S., and D. G. L. James: Photochemical electron transfer with special reference to the formation of hydrogen atoms in aqueous solution. J. Chim. phys. 48, C17 (1951).Google Scholar
  21. Dmitrievsky, O., V. Ermolaev and A. Terenin: Direct measurements of the lifetime of excited molecules of chlorophyll and similar pigments in different media. [Russian.] Dokl. Akad. Nauk 114, 751 (1957).Google Scholar
  22. Dunicz, B., T. Thomas, M. van Pee and R. Livingston: A spectro-photometric study of the Molisch phase test of chlorophyll. J. Amer. chem. Soc. 73, 3388–3390 (1951).CrossRefGoogle Scholar
  23. Duysens, L. N. M.: Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature (Lond.) 168, 548 (1951).CrossRefGoogle Scholar
  24. Evans, D. F.: Photomagnetism of triplet states of organic molecules. Nature (Lond.) 176, 777 (1955).CrossRefGoogle Scholar
  25. Evstigneev, V. B., and V. A. Gavrilova: [1] Comparison of the photochemical properties of chlorophyll pheophytin phthalocyanine and their Mg complexes. [Russian*.] Dokl. Akad. Nauk 74, 781 (1950).Google Scholar
  26. [2] Influence of certain compounds on the rate of photooxidation of chlorophyll a. [Russian*.] Dokl. Akad. Nauk 89, 523 (1953).Google Scholar
  27. [3] Spectral properties of reduced chlorophylls a and b. [Russian.] Dokl. Akad. Nauk 91, 899 (1953).Google Scholar
  28. [4] The oxidation-reduction potential of the photoreduced form of chlorophyll. [Russian*.] Dokl. Akad. Nauk 92, 381 (1953).Google Scholar
  29. [5] Concerning the first stage of photoreduction of chlorophyll. [Russian.] Dokl. Akad. Nauk 95, 841 (1954).Google Scholar
  30. [6] Mechanism of photoreduction of some dyes sensitized by chlorophyll and substances related to it. [Russian.] Dokl. Akad. Nauk 98, 1017 (1954).Google Scholar
  31. [7] Oxidation-reduction properties of chlorophyll a and b. [Russian.] Dokl. Akad. Nauk 100, 131 (1955).Google Scholar
  32. [8] Electrical conductivity changes during photoreduction of solutions of chlorophyll and some other dyes. [Russian.] Dokl. Akad. Nauk 103, 97 (1955).Google Scholar
  33. [9] Investigation of the nature of the primary photo-reduced form of chlorophyll and its analogs through the use of D2O. [Russian.] Dokl. Akad. Nauk 115, 530 (1957).Google Scholar
  34. Evstigneev, V. B., V. A. Gavrilova and A. A. Krasnovsky: [1] Influence of oxygen on the absorption spectrum and fluorescence of chlorophyll solutions. [Russian*.] Dokl. Akad. Nauk 66, 1133 (1949).Google Scholar
  35. [2] Influence of foreign molecules on the absorption spectrum and fluorescence of magnesium phthalocyanine and chlorophyll in solution. [Russian*.] Dokl. Akad. Nauk 70, 261 (1950).Google Scholar
  36. [3] Quenching of fluorescence of chlorophyll and of magnesium phthalocyanine and their interaction with quenchers. [Russian*.] Dokl. Akad. Nauk 74, 315 (1950).Google Scholar
  37. Förster, Th.: Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physik 2, 55 (1948).CrossRefGoogle Scholar
  38. Fluoreszenzspektrum und Wasserstoffionenkonzentration. Naturwissenschaften 36, 186 (1949).Google Scholar
  39. Fluoreszenz organischer Verbindungen. Gottingen: Vandenhoeck & Ruprecht 1951.Google Scholar
  40. Forster, L. S., and R. Livingston: The absolute quantum yields of the fluorescence of chlorophyll solutions. J. chem. Phys. 20, 1315 (1952).CrossRefGoogle Scholar
  41. Franck, J., and R. Platzman: Physical principles underlying photochemical, radiation-chemical, and radiobiological reactions. Chapt. 3 in Radiation Biology, vol. I, edit. by A. Hollander. New York: McGraw Hill 1954.Google Scholar
  42. Franck, J., and H. Sponer: Comparison between predissociation and internal conversion in polyatomic molecules. Contrib. etude structure mol., Vol. Commen. Victor Henri 1947/48, p. 169–179.Google Scholar
  43. Remarks on radiation-less transitions in complex molecules. J. chem. Phys. 25, 172 (1956).Google Scholar
  44. Freed, S., and K. M. Sancier: Reversible reaction of chlorophyll giving the red-brown intermediae of the Molisch phase test. Science 117, 655–656 (1953).PubMedCrossRefGoogle Scholar
  45. Solvates of chlorophyll and related substances and their equilibria. J. Amer. chem. Soc. 76, 198–205 (1954).Google Scholar
  46. Fujimori E.: Chlorophyll-photosensitized reduction of triphenyltetrazolium chlorode by hydrazine hydrate. J. Amer. chem. Soc. 77, 6495 (1955).CrossRefGoogle Scholar
  47. Unpublished work. University of Minnesota 1957.Google Scholar
  48. Fujimori, E., and R. Livingston: Interactions of chlorophyll in its triplet state with oxygen, carotene, etc. Nature (Lond.) 180, 1036 (1957).CrossRefGoogle Scholar
  49. Gachovskii, V.: On the nature of the elementary reaction in chlorophyll. [Russian.] Biophysika 2, 756 (1957).Google Scholar
  50. Gaffron, H.: Sauerstoff-Übertragung durch Chlorophyll und das photochemische Äquivalent-Gesetz. Ber. dtsch. chem. Ges. B 60, 755 (1927).CrossRefGoogle Scholar
  51. [2] Die photochemische Bildung von Peroxyd bei der Sauerstoff-Übertragung durch Chlorophyll. Ber. dtsch. chem. Ges. B 60, 2229 (1927).Google Scholar
  52. [3] Über den Mechanismus der Sauerstoffaktivierung durch belichtete Farbstoffe. Biochem. Z. 264, 251 (1933).Google Scholar
  53. Goedheer, J.: [1] Optical properties and in vivo orientation of photosynthetic pigments. Doctoral Diss. Utrecht 1957.Google Scholar
  54. [2] Investigation of bacteriochlorophyll in organic solvents. Biochim. biophys. Acta 27, 478 (1958).Google Scholar
  55. Gosh, J. C., and S. B. Sen-Gupta: The photochemical reduction of methyl red by phenylhydrazine using chlorophyll solutions as sensitizers. J. Indian chem. Soc. 11, 65 (1934).Google Scholar
  56. Gubevich, A. A.: Photochemical method of comparative phytoactinometry. [Russian.] Dokl. Akad. Nauk 91, 1221 (1953).Google Scholar
  57. Heidt, L. J., and A. F. Mc Millan: Conversion of sunlight into chemical energy available in storage for mans use. Science 117, 75 (1953).PubMedCrossRefGoogle Scholar
  58. Heidt, L. J., and M. E. Smith: Quantum yields of the photochemical reduction of cerie ions by water. J. Amer. chem. Soc. 70, 2476 (1948).CrossRefGoogle Scholar
  59. Hendrich, W.: The photovoltaic effect in the chlorophyll-ascorbic acid system. Roczn. Chem. 32, 107 (1958).Google Scholar
  60. Holt, A. S.: University of Illinois, unpublished work 1952.Google Scholar
  61. Jablonski, A.: Efficiency of anti-stokes fluorescence in dyes. Nature (Lond.) 131, 839 (1933).CrossRefGoogle Scholar
  62. Johnston, L. G., and W. F. Watson: The allomerization of chlorophyll. J. chem. Soc. 1956, 1203.Google Scholar
  63. Kachon, A. A., and B. Y. Dain: Photochemistry of chlorophyll at liquid air temperature. [Russian.] Dokl. Akad. Nauk 80, 619 (1950).Google Scholar
  64. Kasha, M.: Private communication 1955.Google Scholar
  65. Kasha, M., and S. P. Mc Glynn: Molecular electronic spectroscopy. Ann. Rev. phys. Chem. 7, 403 (1956).CrossRefGoogle Scholar
  66. Kautsky, H., A. Hirsch u. W. Flesch: Die Bedeutung metastabiler Zustände für sensibilisierte Photooxydationen. Ber. dtsch. chem. Ges. 68, 152 (1953).Google Scholar
  67. Khan, N. A., and O. S. Privett: Chemical and kinetic studies on the autooxidation of fatty acid esters. Hormel Inst. Univ. Minn. Ann. Rpts. 1951/52, 6.Google Scholar
  68. Knight, J.: A study of some aspects of photosensitization. Doctoral Diss. University of Minnesota 1948.Google Scholar
  69. Knight, J., and R. Livingston: Further studies on the reversible photobleaching of chlorophyll a. J. phys. Coll. Chem. 54, 703 (1950).CrossRefGoogle Scholar
  70. Koizumi, M., A. Watanabe and Z. Kuroda: Dye-sensitized photopolymerization of styrene. Nature (Lond.) 175, 770 (1955).CrossRefGoogle Scholar
  71. Krasnovsky, A. A.: [1] Reversible photochemical reduction of chlorophyll by ascorbate. [Russian*.] Dokl. Akad. Nauk 60, 421 (1948).Google Scholar
  72. [2] Oxidation-reduction reactions resulting in increase of free energy sensitized by chlorophyll and Mg-phthalocyanine. [Russian*.] Dokl. Akad. Nauk 61, 91 (1948).Google Scholar
  73. [3] Participation of chlorophyll in photochemical hydrogen (electron) transfer. Proc. Intern. Symp. on Enzyme Chem., Tokyo, p. 355, 1957.Google Scholar
  74. Krasnovsky, A. A., and G. P. Brin: Photosensitizing action of Mg-phthalocyanine and chlorophyll in solution. [Russian.] Dokl. Akad. Nauk 58, 1087 (1947).Google Scholar
  75. Hydrogen transfer from ascorbic acid to coenzyme I sensitized by chlorophyll. [Russian*.] Dokl. Akad. Nauk 67, 325 (1949).Google Scholar
  76. The activating influence of bases on the reversible photochemical reduction of chlorophyll and pheophytin. [Russian*.] Dokl. Akad. Nauk 89, 527 (1953).Google Scholar
  77. Effect of heavy water on the photoreduction of chlorophyll and the photochemical activity of the substances of green leaves. [Russian.] Dokl. Akad. Nauk 96, 1025 (1954).Google Scholar
  78. Krasnovsky, A. A., G. P. Brin and K. K. Vojnovskaja: Conditions for the reversible photochemical transformations of chlorophyll. [Russian*.] Dokl. Akad. Nauk 69, 393 (1949).Google Scholar
  79. Krasnovsky, A. A., and V. A. Gavrilova: Influence of the medium on the photochemical reduction of chlorophyll, riboflavin and other dyes by organic acids. [Russian*.] Dokl. Akad. Nauk 81, 1105 (1951).Google Scholar
  80. Krasnovsky, A. A., and A. V. Umrikhina: Formation of free radicals in the reaction of photochemical reduction of chlorophyll and its analogs. Dokl. Akad. Nauk 104, 882 (1955).Google Scholar
  81. Krasnovsky, A. A., and K. K. Vojnovskaja: Photochemical properties of protochlorophyll. [Russian*.] Dokl. Akad. Nauk 66, 663 (1949).Google Scholar
  82. Reversible photochemical reduction and oxidation of bacterio-chlorophyll and bacteriopheophytin. [Russian*.] Dokl. Akad. Nauk 81, 879 (1951).Google Scholar
  83. Participation of bacteriochlorophyll and chlorophyll a in photochemical hydrogen transfer in solution. [Russian*.] Dokl. Akad. Nauk 87, 109 (1952).Google Scholar
  84. Latimer, P., T. T. Bannister and E. Rabinowitch: Quantum yields of the fluore sc ence of plant pigments. Science 124, 3222 (1956).CrossRefGoogle Scholar
  85. Lavorel, J.: Influence of concentration on the absorption spectrum and the action spectrum of fluorescence of dye solutions J. physic. Chem. 61, 1600 (1957).CrossRefGoogle Scholar
  86. Lewis, G. N., M. Calvin and M. Kasha: Photo-magnetism. J. chem. Phys. 17, 804 (1949).CrossRefGoogle Scholar
  87. Lewis, G. N., and M. Kasha: Phosphorescence and the triplet state. J. Amer. chem. Soc. 66, 2100 (1944).CrossRefGoogle Scholar
  88. Linschitz, H.: Univ. of Syracuse. Private communication 1957.Google Scholar
  89. Unpublished work, University of Chicago.Google Scholar
  90. Linschitz, H., and E. W. Abrahamson: Kinetics of porphyrin-catalyzed chemiluminescent decomposition of peroxides, and the mechanism of photosensitized oxidation. Nature (Lond.) 172, 909 (1953).CrossRefGoogle Scholar
  91. Linschitz, H., and I. Rennert: Reversible photobleaching of chlorophyll in rigid solvents. Nature (Lond.) 169, 193 (1952).CrossRefGoogle Scholar
  92. Linschitz, H., and K. Sarkanen: The absorption spectra and decay kinetics of the metastable states of chlorophylls a and b. J. Amer. chem. Soc. 80, 4826 (1958).CrossRefGoogle Scholar
  93. Livingston, R.: [1] The reversible bleaching of chlorophyll. J. phys. Chem. 45, 1312 (1941).CrossRefGoogle Scholar
  94. [2] Preliminary study of a metastable form of chlorophyll in fluid solutions. J. Amer. chem. Soc. 77, 2179 (1955).Google Scholar
  95. [3] Photochemistry. Chap. I in Radiation Biology. Vol. II. A. Hollander. New York: McGraw Hill & Co. 1955.Google Scholar
  96. Livingston, R., and E. Fujimori: Some properties of the ground triplet state of chlorophyll and related compounds. J. Amer. chem. Soc. 80, 5610 (1958).CrossRefGoogle Scholar
  97. Livingston, R., and C.-L. Ke: Quenching of the fluorescence of chlorophyll a solutions. J. Amer. chem. Soc. 72, 909 (1950).CrossRefGoogle Scholar
  98. Livingston, R., and K. E. Owens. A diffusion-controlled step in chlorophyll-sensitized photochemical autooxidations. J. Amer: chem. Soc. 78, 3301 (1956).CrossRefGoogle Scholar
  99. Livingston, R., and I.R. Pariser: [1] The chlorophyll-sensitized photooxidation of phenylhydrazine by methy red. II. J. Amer. chem. Soc. 70, 1510 (1948).CrossRefGoogle Scholar
  100. [2] The pheophytinsensitized photoreduction of p-dimethylaminoazobenzene by ascorbic acid. J. Amer. chem. Soc. 78, 2944 (1956).Google Scholar
  101. [3] Some photochemical oxidation-reduction reactions sensitized by chlorophyll a and by pheophytin a. J. Amer. chem. Soc. 78, 2948 (1956).Google Scholar
  102. Livingston, R., R. Ramarao and L. Thompson: Quenching of the fluorescence of solutions of porphyrins and of chlorophyll. J. Amer. chem. Soc. 74, 1073 (1952).CrossRefGoogle Scholar
  103. Livingston, R., and V. A.Ryan: The phototropy of chlorophyll in fluid solutions. J. Amer. chem. Soc. 75, 2176 (1953).CrossRefGoogle Scholar
  104. Livingston, R., D. Sickle and A. Uchiyama: The chlorophyll-sensitized photooxidation of phenylhydrazine by methyl red. J. phys. Coll. Chem. 51, 775 (1947).CrossRefGoogle Scholar
  105. Livingston, R., W. F. Watson and J. Mc Ardle: Activation of the fluorescence of chlorophyll solutions. J. Amer. chem. Soc. 71, 1542–1550 (1949).CrossRefGoogle Scholar
  106. Livingston, R., and S. Weil: Activation of the fluorescence of chlorophyll solutions. Nature (Lond.) 170, 750 (1952).CrossRefGoogle Scholar
  107. Mc Brady, J., and R. Livingston: Reversible photobleaching of chlorophyll. J. phys. Coll. Chem. 52, 662 (1948).CrossRefGoogle Scholar
  108. Mc Clure, D. S., and P. L. Hanst: Excited triplet states of polyatomic molecules. II. J. chem. Phys. 23, 1772 (1955).CrossRefGoogle Scholar
  109. Miller, J. R., and G. D. Dorough: Pyridinate complexes of some metalloderivatives of tetraphenylporphine and tetraphenylchlorin. J. Amer. chem. Soc. 74, 3977–3891 (1952).CrossRefGoogle Scholar
  110. Oster, G.: Dye-sensitized photopolymerization. Nature (Lond.) 173, 300 (1954).CrossRefGoogle Scholar
  111. Owens, K. E.: A study of the oxidation of allylthiourea photosensitized by chlorophyll a. Doctoral Diss. University of Minnesota 1955.Google Scholar
  112. Porret, D., and E. Rabinowitch: Reversible bleaching of chlorophyll. Nature (Lond.) 140, 321 (1937).CrossRefGoogle Scholar
  113. Porter, G.: Flash photolysis and flash spectroscopy. Proc. roy. Soc. A 200, 284 (1950).CrossRefGoogle Scholar
  114. Porter, G., and M. W. Windsor: Studies of the triplet state in fluid solvent. Discuss. Faraday Soc. 17, 178 (1954).CrossRefGoogle Scholar
  115. Pringsheim, P.: Fluorescence and phosphorescence. New York: Interscience Publ. 1949.Google Scholar
  116. Prins, J. A.: Spectrum of chlorophyll. Nature (Lond.) 134, 457 (1934).CrossRefGoogle Scholar
  117. Rabinowitch, E.: Photosynthesis. New York: Interscience Publ. Vol. I, 1945; vol. II, 1956.Google Scholar
  118. Rabinowitch, E., and J. Weiss: Reversible oxidation of chlorophyll. Proc. roy. Soc. A 162, 2511 (1937).Google Scholar
  119. Rackow, B., u. H. König: Die Struktur und Funktion der reversiblen photoreduzierten Form des Chlorophylls und ihre mutmaßliche Beziehung der Photosynthese. Z. Elektrochem. 62, 482 (1958).Google Scholar
  120. Riddick, J. A., and E. E. Toops: Organic solvents. New York: Interscience Publ. 1955.Google Scholar
  121. Rollefson, G. K., and H. Boaz: Quenching of fluorescence in solution. J. phys. Coll. Chem. 52, 518 (1948).CrossRefGoogle Scholar
  122. Rominiskii, I., A. Sushkova and A. Il’ina: Intermediate steps in the photochemical oxidation of chlorophyll. [Russian.] Ukrain. Khim. Ž. 24, 236 (1958).Google Scholar
  123. Rüppel, H., u. H. Witt: Blitzlichtelektrische Leitung in organischen Lösungen. Z. phys. Chem. 15, 321 (1958).CrossRefGoogle Scholar
  124. Schenck, G. O.: [1] Über den photochemischen Primärakt und die anschließende erste Dunkelreaktion der Photosynthese. Naturwissenschaften 40, 205 (1952).CrossRefGoogle Scholar
  125. [2] Zur Reaktion photochemisch angeregter Molekeln mit O2. Naturwissenschaften 41, 452 (1953).Google Scholar
  126. Schenck, G. O., u. K. Klinkel: Zur Kinetik der durch fluoreszierende Farbstoffe photosensibilisierten Reaktion mit molekularem Sauerstoff. Naturwissenschaften 38, 355 (1951).CrossRefGoogle Scholar
  127. Schenck, G. O., K. G. Klinkel u. E. Koch: Geschwindigkeit und Temperaturabhängigkeit photosensibilisierter Reaktionen mit O2. Naturwissenschaften 41, 425 (1954).Google Scholar
  128. Schenck, G O., u. K.-H. Ritter: Nachweis der Kohlenstoff-Radikalstellen phototrop-isomerer Diradikale mittels Chinon bei Chlorophyll, Eosin und Rubren. Naturwissenschaften 41, 334 (1954)Google Scholar
  129. Schenck, G. O., u. H. Wirth: Photooxidation von Thioharnstoff zur Amino-imino-methansulfinsäure. Naturwissenschaften 40, 141 (1953).CrossRefGoogle Scholar
  130. Shepp, A.: Index of refraction effects on absolute fluorescence measurements. J. chem. Phys. 25, 579 (1956).CrossRefGoogle Scholar
  131. Spoehr, H. A.: Photosynthesis, chapt. V. New York: Chem. Cat. & Co. 1926.Google Scholar
  132. Stupp, R., u. H. Kuhn: Chlorophyll a. Untersuchung des Polarisationslichts zur Ermittlung der Richtungen der Übergangsmomente von Absorptionsbanden. Helv. chem. Acta 35, 2469 (1952).CrossRefGoogle Scholar
  133. Teale, F.: Carotenoid-sensitized fluorescence of chlorophyll in vitro. Nature (Lond.) 181, 415 (1958).CrossRefGoogle Scholar
  134. Umberger, J. Q., and V. K. La Mer: The kinetics of diffusion controlled molecular and ionic reactions. J. Amer. chem. Soc. 67, 1990 (1945).CrossRefGoogle Scholar
  135. Uri, N.: Chlorophyll photosensitized polymerization and free radical intermediates in photosynthesis. J. Amer. chem. Soc. 74, 5808 (1952).CrossRefGoogle Scholar
  136. Vavilov, S.: Theory of the influence of concentration on the fluorescence of solutions. J. phys. Chem. SSSR. 7, 141 (1943).Google Scholar
  137. Vrbaski, T.: Studies about chlorophyll. The physico-chemical behaviour of chlorophyll. Arch. za Kemija 22, 101 (1950).Google Scholar
  138. Warburg, E.: Über den Energieumsatz bei photochemischen Vorgängen in Gasen. S.-B. preuß. Akad. Wiss. 1916, 314.Google Scholar
  139. Warburg, O., G. Krippahl, W. Buchholz u. W. Schröder: Weiterentwicklung der Methoden zur Messung der Photosynthese. Z. Naturforsch. 8b, 678 (1953).Google Scholar
  140. Warburg, O., and V. Schocken: A manometric actinometer for the visible spectrum. Arch. Biochem. 21, 363 (1949).PubMedGoogle Scholar
  141. Watson, W. F.: The influence of phenylhydrazine on the fluorescence of chlorophyll in solution. Trans. Faraday Soc. 48, 526 (1952).CrossRefGoogle Scholar
  142. Reversible bleaching of chlorophyll by metallic salts. J. Amer. chem. Soc. 75, 2522 (1953).Google Scholar
  143. Watson, W. F., and R. Livingston: Self-quenching and sensitization of the fluorescence of chlorophyll solutions. J. chem. Phys. 18, 802–809 (1950).CrossRefGoogle Scholar
  144. Weber, G., and F. Teale: [1] Determination of the absolute quantum yields of fluorescent solutions. Trans. Farad. Soc. 53, 646 (1957).CrossRefGoogle Scholar
  145. [2] Fluorescence excitation spectrum of organic compounds in solution. Trans. Farad. Soc. 54, 640 (1958).Google Scholar
  146. Weber, K.: Über das photochemische Ausbleichen des Chlorophylls. Ber. dtsch. chem. Ges. 69, 1026 (1936).CrossRefGoogle Scholar
  147. Weigl, J. W., and R. Livingston: Concerning hydrogen transfer in a reaction sensitized by chlorophyll. J. Amer. chem. Soc. 74, 4211 (1952).CrossRefGoogle Scholar
  148. Weil, S.A.: Studies of the fluorescence of solutions of chlorophyll and related substances. Doctoral Diss. University of Minnesota 1952.Google Scholar
  149. Weissberger, A.: Rates and mechanisms of reactions. New York: Interscience Publ. 1953.Google Scholar
  150. Weller. A,: Quantitative Untersuchungen der Fluoreszenzumwandlungen bei Naphtholen. Z. Elektrochem. 56, 662 (1952).Google Scholar
  151. The visible absorption spectra of the phase test intermediates of chlorophyll a and b. J. Amer. chem. Soc. 76, 5819–5821 (1954).Google Scholar
  152. Weller, A., and R. Livingston: The reaction of chlorophyll in amines. J. Amer. chem. Soc. 76, 1575 (1954).CrossRefGoogle Scholar
  153. Wessels, J. S. C: Photooxidation of ascorbic acid by isolated chloroplasts. Rec. Trav. chim. Pays-Bas 74, 832 (1955).CrossRefGoogle Scholar
  154. Zscheile, F. P., and D. G. Harris: Studies on the fluorescence of chlorophyll. J. phys. Chem. 47, 623 (1943).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • R. Livingston

There are no affiliations available

Personalised recommendations