The chloroplast as a functional unit in photosynthesis

  • Daniel I. Arnon
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)

Abstract

Few physiological processes have such an obvious relation to a distinct cytoplasmic particle as photosynthesis has to the chloroplast. In all plants which have chloroplasts, not only do these particles contain all of the chlorophyll (and the accessory pigments) without which photosynthesis cannot proceed, but also, as has long been recognized (Sachs 1887, Pfeffer 1900), the final products of this process, starch and molecular oxygen, are formed in or at the surface of illuminated chloroplasts. It might have been confidently anticipated therefore that the study of the structure and enzymatic composition of chloroplasts would lead to a better insight into the biophysical and biochemical events of photosynthesis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Allen, M. B., D.I. Arnon, J. B. Capindale, F. R. Whatley and L. J. Durham: Photosynthesis by isolated chloroplasts. HI. Evidence for complete photosynthesis. J. Amer. chem. Soc. 77, 4149–4155 (1955).CrossRefGoogle Scholar
  2. Allen, M. B., F. R. Whatley and D.I. Arnon: Conversion of light into chemical energy in photosynthetic phosphorylation and photosynthesis. Plant Physiol. 32, (Suppl.) iii (1957).Google Scholar
  3. Photosynthesis by isolated chloroplasts. VI. Rates of conversion of light into chemical energy in photosynthetic phosphorylation. Biochem. biophys. Acta 27, 16–23 (1958).Google Scholar
  4. Almquist, H. J.: Crystals with vitamin K potency. Nature (Lond.) 140, 25–26 (1937).CrossRefGoogle Scholar
  5. Anderson, E. C., and R. C. Fuller: Photo-phosphorylation in purple sulfur bacteria. Plant Physiol. 32, (Suppl.) xvi (1957).Google Scholar
  6. Arisz, W. H.: Uptake and transport of chloride by parenchymatic tissue of leaves of Vallisneria spiralis. I. Proc. kon. ned. Akad. Wet. 50, 1019–1032 (1947).Google Scholar
  7. Arnon, D. I.: Extracellular photosynthetic reactions. Nature (Lond.) 167, 1008–1010 (1951).CrossRefGoogle Scholar
  8. Glyceraldehyde phosphate dehydrogenase of green plants. Science 116, 635 (1952a).Google Scholar
  9. The glycolytic cycle in the breakdown and synthesis of carbohydrates in green leaves. In: Phosphorus Metabolism, vol. II, pp. 67–79. (W. D. Mc Elroy and B. Glass, Eds.). Baltimore: Johns Hopkins Univ. Press 1952b.Google Scholar
  10. The chloroplast as a complete photosynthetic unit. Science 122, 9–16 (1955).Google Scholar
  11. Phosphorus metabolism and photosynthesis. Ann. Rev. Plant Physiol. 7, 325–354 (1956a).Google Scholar
  12. Localization of photosynthesis in chloroplasts. In: Enzymes: Units of biological structure and function, O. H. Gaebler, Ed. New York: Academic Press 1956b.Google Scholar
  13. Chloroplasts and photosynthesis. Brookhaven Symp. Biol. 11, 181–235 (1958).Google Scholar
  14. Photosynthetic phosphorylation and the energy conversion process in photosynthesis. In: Life and Light (W. D. Mc Elroy, Ed.). Baltimore: Johns Hopkins University Press 1960 (in press).Google Scholar
  15. Arnon, D. I., M. B. Allen and F. R. Whatley: Photosynthesis by isolated chloroplasts. Nature (Lond.) 174, 394–396 (1954).CrossRefGoogle Scholar
  16. Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions. Biochim. biophys. Acta 20, 449–461 (1956).Google Scholar
  17. Arnon, D. I., M. B. Allen, F. R. Whatley, J. B. Capindale and L. L. Rosenberg: Photosynthesis by isolated chloroplasts. Proc. 3rd Int. Congr. Biochem., Brussels, pp. 227–232.1955.Google Scholar
  18. Arnon, D. I., L. L. Rosenberg and F. R. Whatley: A new glyceraldehyde phosphate dehydrogenase from photosynthetic tissue. Nature (Lond.) 173, 1132–1134 (1954).CrossRefGoogle Scholar
  19. Arnon, D. I., and F. R. Whatley: Is chloride a coenzyme of photosynthesis? Science 110, 554–556 (1949).PubMedCrossRefGoogle Scholar
  20. Metabolism of isolated cellular particles from photosynthetic tissue. Physiol. Plantarum (Cph.) 7, 602–613 (1954).Google Scholar
  21. Arnon, D. L, F.R. Whatlwy and M. B. Allen: Photosynthesis by isolated chloroplasts. II. Photo-synthetic phosphorylation, the conversion of light into phosphate bond energy. J. Amer. chem. Soc. 76, 6324–6329 (1954).CrossRefGoogle Scholar
  22. Vitamin K as a cofactor of photosynthetic phosphory-lation. Biochim. biophys. Acta 16, 607–608 (1955).Google Scholar
  23. Triphosphopyridine nucleotide as a catalyst of photosynthetic phosphorylation. Nature (Lond.) 180, 182–185 (1957).Google Scholar
  24. Assimilatory power in photosynthesis. Science 127, 1026–1034 (1958).Google Scholar
  25. Photosynthesis by isolated chloroplasts. VIII Generation of assimilatory power. Biochim. biophys. Acta 32, 47 (1959).Google Scholar
  26. Aronoff, S., and M.Calvin: Phosphorus turnover and photosynthesis. Plant Physiol. 28, 351–358 (1948).CrossRefGoogle Scholar
  27. Aubert, J. P., G. Milhaud et J. Millet: L’assimilation de l’anhydride carbonique par des bacteries chimioautotrophes. Ann. Inst. Pasteur 92, 515–528 (1957).Google Scholar
  28. Aufdemgarten, H.: Zur Kenntnis der sogenannten Induktionsvorgänge bei der Kohlensäureassimilation. Planta (Berl.) 29, 643–678 (1939).CrossRefGoogle Scholar
  29. Avron, M., and A. T. Jagendorf: A TPNH diaphorase from chloroplasts. Arch. Biochem. 65, 475–490 (1956).PubMedCrossRefGoogle Scholar
  30. An extractable factor in photosynthetic phosphorylation. Nature (Lond.) 179, 428–429 (1957).Google Scholar
  31. Avron, M., A. T. Jagendorf and M. Evans: Photosynthetic phosphorylation in a partially purified system. Biochim. biophys. Acta 26, 262–269 (1957).PubMedCrossRefGoogle Scholar
  32. Barltrop, J. A., P. M. Hayes and M. Calvin: The chemistry of 1, 2-dithiolane (trimethyl-ene disulfide) as a model for the primary quantum conversion act in photosynthesis. J. Amer. chem. Soc. 76, 4348–4367 (1954).CrossRefGoogle Scholar
  33. Bassham, J.A., A.A.Benson, L. D. Kay, A. Z. Harris, A. T. Wilson and M. Calvin: J. Amer. chem. Soc. 76, 1760–1770 (1954).CrossRefGoogle Scholar
  34. Bassham, J. A., and M. Calvin: Photosynthesis. In: Currents in Biochemical Research, D. E. Green, Ed. New York: Interscience 1956.Google Scholar
  35. Benson, A. A., and M. Calvin: The dark reductions of photosynthesis. Science 105, 648–694 (1947).PubMedCrossRefGoogle Scholar
  36. Carbon dioxide fixation by green plants. Ann. Rev. Plant Physiol. 1, 25–42 (1950).Google Scholar
  37. Beyer, robert E.: Vitamin K1, a component of the mitochondrial oxidative phosphorylation system. Biochim. biophys. Acta 28, 663–664 (1958).PubMedCrossRefGoogle Scholar
  38. Blackman, F. F.: Optima and limiting factors. Ann. Bot. 19, 281–295 (1905).Google Scholar
  39. Bonner, J., and A. Millerd: Oxidative phosphorylation by plant mitochondria. Arch. Biochem. 42, 135–148 (1953).PubMedCrossRefGoogle Scholar
  40. Bové, J., C. Bové, F. R. Whatley and D. I. Arnon: Photosynthesis by isolated chloroplasts. XIII. The role of chloride. To be submitted to J. biol. Chem. 1960.Google Scholar
  41. Boychenko, E. A., and V.I. Baranov: Participation of organic compounds of iron in photoreduction of CO2 by isolated chloroplasts. Dokl. Akad. Nauk SSSR. 95, 1025–1027 (1954). Chem. Abstr. 48, 8881 (1954).Google Scholar
  42. Brachet, J.: Biochemical Cytology. New York: Academic Press 1958.Google Scholar
  43. Briggs, G. E.: Experimental researches on vegetable assimilation and respiration. XXI. Induction phases in photosynthesis and their bearing on the mechanism of the process. Proc. roy. Soc. B 113, 1–41 (1933).CrossRefGoogle Scholar
  44. Photosynthesis in intermittent light, in relation to current formulations of the principles of the photosynthetic mechanism. Biol. Rev. 10, 460–482 (1935).Google Scholar
  45. Brodie, A. F., M. M. Weber and C. T. Gray: The role of vitamin K1 in coupled oxidative phosphorylation. Biochim. biophys. Acta 25, 448–449 (1957).PubMedCrossRefGoogle Scholar
  46. Brown, A. H., and J. Franck: On the participation of carbon dioxide in the photosynthetic activity of illuminated chloroplast suspensions. Arch. Biochem. 16, 55–60 (1948).PubMedGoogle Scholar
  47. Broyer, T.C., A.B. Carlton, C. M. Johnson and P. R. Stout: Chlorine—a micronutrient element for higher plants. Plant Physiol. 29, 526–532 (1954).PubMedCrossRefGoogle Scholar
  48. Burk, D., u. O. Warburg: Ein-Quanten-Reaktion und Kreisprozeß der Energie bei der Photosynthese. Z. Naturforsch. 6b, 12–22 (1951). Calvin, M.: The photosynthetic carbon cycle. Proceed. 3nd Intern. Congr. Biochem. Brussels 1955 (C. Liebecq, Ed.), pp. 211–225. New York: Academic Press 1956.Google Scholar
  49. Energy reception and transfer in photosynthesis. Rev. mod. Physics 31, 147–156 (1959); also published in Biophysical Science. A Study Program. (J. L. Oncley, Ed.), pp. 147–156. New York: John Wiley and Sons 1959.Google Scholar
  50. Calvin, M., J. A. Bassham, A. A. Benson, V. H. Lynch, C. Ouellet, L. Schott, W. Stepka and N. E. Tolbert: Carbon dioxide assimilation in plants. Symp. Soc. exp. Biol. 5, 284–305 (1951).Google Scholar
  51. Calvin, M., and A.A. Benson: The path of carbon in photosynthesis. Science 107, 476–480 (1948).PubMedCrossRefGoogle Scholar
  52. Chance, B., and R. Sager: Oxygen and light induced oxidations of cytochrome, flavo-protein, and pyridine nucleotide in Chlamydomonas mutant. Plant Physiol. 32, 548–561 (1957).PubMedCrossRefGoogle Scholar
  53. Chance, B., and L. Smith: Respiratory pigments of Rhodospirillum rubrum. Nature (Lond.) 175, 803–806 (1955).CrossRefGoogle Scholar
  54. Chow, C. T., and B. Vennesland: Photosynthetic phosphorylation by chloroplast fragments. Plant Physiol. 32, (Suppl.) iv (1957).Google Scholar
  55. Clark, V. M., G. W. Kirby and A. Todd: Oxidative phosphorylation: a chemical approach using quinol phosphates. Nature (Lond.) 181, 1650–1652 (1958).CrossRefGoogle Scholar
  56. Clendenning, K.A.: Biochemistry of chloroplasts in relation to the Hill reaction. Ann. Rev. Plant Physiol. 8, 137–152 (1957).CrossRefGoogle Scholar
  57. Colpa-Boonstra, J. P., and E. C. Slater: The enzymic oxidation of reduced vitamin K (menadione). Biochim. biophys. Acta 27, 222–224 (1957).CrossRefGoogle Scholar
  58. The possible role of vitamin K in the respiratory chain. Biochim. biophys. Acta 27, 122–133 (1958).Google Scholar
  59. Conn, E. E., and L. C. T. Young: Oxidative phosphorylation by lupine mitochondria. J. biol. Chem. 226, 23–32 (1957).PubMedGoogle Scholar
  60. Cooper, C., and A. L. Lehninger: Oxidative phosphorylation by an enzyme complex from extracts of mitochondria. I. The span β-hydroxybutyrate to oxygen. J. biol. Chem. 219, 489–505 (1956).PubMedGoogle Scholar
  61. Copenhaver, J. H., and H. A. Lardy: Oxidative phosphorylations: Pathways and yield in mitochondrial preparations. J. biol. Chem. 195, 225–238 (1952).PubMedGoogle Scholar
  62. Dallam, R. D., and W. W. Anderson: Vitamin K1 and oxidative phosphorylation. Biochim. biophys. Acta 25, 439 (1957).PubMedCrossRefGoogle Scholar
  63. Dam, H.: Vitamin K, its chemistry and physiology. Advanc. Enzymol. 2, 317–324 (1942).Google Scholar
  64. Vitamin K in unicellular photosynthesizing organisms. Amer. J. Bot. 31, 492–493 (1944).Google Scholar
  65. Vitamin K in the plant. Biochem. J. 32, 485–487 (1938).Google Scholar
  66. Dam, H., J. Glavind u. N. Nielsen: Weitere Untersuchungen über die Bildung und Bedeutung des Vitamin K im Pflanzenorganismus. Hoppe-Seylers Z. physiol. Chem. 265, 80–87 (1940).CrossRefGoogle Scholar
  67. Dam, H., E. Hjorth and I. Kruse: On the determination of vitamin K in chloroplasts. Physiol. Plantarum (Cph.) 1, 379–381 (1948).CrossRefGoogle Scholar
  68. Davenport, H. E.: Cytochrome components in chloroplasts. Nature (Lond.) 170, 1112–1114 (1952).CrossRefGoogle Scholar
  69. Davenport, H. E., and R. Hill: The preparation and some properties of cytochrome f. Proc. roy. Soc. B 139, 327–345 (1952).CrossRefGoogle Scholar
  70. Duysens, L. N. M.: Role of cytochrome and pyridine nucleotide in algal photosynthesis. Science 121, 210–211 (1955).PubMedCrossRefGoogle Scholar
  71. Elsden, S. R., M. D. Kamen and L. P. Vernon: A new soluble cytochrome. J. Amer. chem. Soc. 75, 6347 (1953).CrossRefGoogle Scholar
  72. Emerson, R., and W. Arnold: The photochemical reaction in photosynthesis. J. gen. Physiol. 16, 191–205 (1932).PubMedCrossRefGoogle Scholar
  73. Emerson, R. L., J. F. Stauffer and W.W. Umbreit: Relationships between phosphorylation and photosynthesis in Chlorella. Amer. J. Bot. 31, 107–120 (1944).CrossRefGoogle Scholar
  74. Esau, K.: Plant Anatomy. New York: John Wiley & Sons 1953.Google Scholar
  75. Fager, E. W.: Photochemical carbon dioxide fixation by a cell-free system. Arch. Biochem. 41, 383–395 (1952).PubMedCrossRefGoogle Scholar
  76. Frenkel, A. W.: Light induced phosphorylation by cell-free preparations of photosynthetic bacteria. J. Amer. chem. Soc. 76, 5568–5569 (1954).CrossRefGoogle Scholar
  77. Photophosphorylation of adenine nucleotides by cell-free preparations of purple bacteria. J. biol. Chem. 222, 823–834 (1956).Google Scholar
  78. Fuller, R. C., and E. C. Anderson: CO2 assimilation in the photosynthetic purple sulfur bacteria. Plant Physiol. 32, (Suppl.) xvi (1957).Google Scholar
  79. Gaffron, H.: Some effects of derivatives of vitamin K on the metabolism of unicellular algae. J. gen. Physiol. 28, 259–268 (1945a).CrossRefGoogle Scholar
  80. o-Phenanthroline and derivatives of vitamin K as stabilizers of photoreduction in Scenedesmus. J. gen. Physiol. 28, 269–285 (1945b).Google Scholar
  81. Gaffron, H., Ed.: Research in Photosynthesis. New York: Interscience 1957.Google Scholar
  82. Gaffron, H., E. W. Fager and J. L. Rosenberg: Intermediates in photosynthesis: Formation and transformation of phosphoglyceric acid. Symp. Soc. exp. Biol. 5, 262–283 (1951).Google Scholar
  83. Geller, D. M.: Photophosphorylation by Rhodospirillum rubrum preparations. Doctoral Diss., Div. Med. Sci., Harvard Univ. 1957.Google Scholar
  84. Geller, D.M., and J. D. Gregory: Light-induced oxidation-reduction changes in Rhodospirillum rubrum extracts. Fed. Proc. 15, 260 (1956).Google Scholar
  85. Gibbs, M.: Triosephosphate dehydrogenase and glucose-6-phosphate dehydro-genase in the pea plant. Nature (Lond.) 170, 164–165 (1952).CrossRefGoogle Scholar
  86. Gibbs, M., and M. A. Cynkin: Conversion of carbon-14 dioxide to starch and glucose during photosynthesis by spinach chloroplasts. Nature (Lond.) 182, 1241–1242 (1958).CrossRefGoogle Scholar
  87. Gibbs, M., and O. Kandler: Asymmetric distribution of C14 in sugars formed during photosynthesis. Proc. nat. Acad. Sci. (Wash.) 43, 446–451 (1957).CrossRefGoogle Scholar
  88. Green, D. E.: Organization in relation to en-zymic function. Symp. Soc. exp. Biol. 10, 30–61 (1957).Google Scholar
  89. Green, D. E., R. L. Lester and D. M. Ziegler: Studies on the mechanism of oxidative phosphorylation. I. Preparation and properties of a phosphorylating electron transfer particle from beef heart mitochondria. Biochim. biophys. Acta 23, 516–524 (1957).PubMedCrossRefGoogle Scholar
  90. Green, J. P., E. Søndergaard and H. Dam: Intracellular distribution of vitamin K in beef liver. Biochim. biophys. Acta 19, 182–183 (1956).PubMedCrossRefGoogle Scholar
  91. Gunsalus, I. C: The chemistry and function of the pyruvate oxidation factor (lipoic acid). J. cell. comp. Physiol. 41 (Suppl.), 113–136 (1953).CrossRefGoogle Scholar
  92. Hageman, R. H., and D. I. Arnon: Changes in glyceraldehyde phosphate dehydrogenase during the life cycle of a green plant. Arch. Biochem. 57, 421–436 (1955).PubMedCrossRefGoogle Scholar
  93. Harrison, K.: A theory of oxidative phosphorylation. Nature (Lond.) 181, 1131 (1958).CrossRefGoogle Scholar
  94. Hassid, W. Z., R. M. Mc Cready and R. S. Rosenfels: Determination of starch in plants. Industr. Eng. Chem., Anal. Ed. 12, 142–144 (1940).CrossRefGoogle Scholar
  95. Heath, O. V. S., and B. Orchard: Midday closure of stomata. Nature (Lond.) 180, 180–181 (1957).CrossRefGoogle Scholar
  96. Hill, R.: Reduction by chloroplasts. Symp. Soc. exp. Biol. 5, 223–231 (1951).Google Scholar
  97. The cytochrome b component of chloroplasts. Nature (Lond.) 174, 501–503 (1954).Google Scholar
  98. Hill, R., and R. Scarisbrick: The haematin compounds of leaves. New Phytologist 50, 98–111 (1951).CrossRefGoogle Scholar
  99. Hill, R., and C. D. Whittingham: The induction phase of photosynthesis in Chlorella determined by a spectroscopic method. New Phytologist 52, 133–148 (1953).Google Scholar
  100. Irmak, L. R.: Photosynthesis by isolated chloroplasts. Rev. Fac. Sci. Univ. Istanbul, Sér. B 20, 237–243 (1955).Google Scholar
  101. Jagendorf, A. T.: Oxidation and reduction of pyridine nucleotides by purified chloroplasts. Arch. Biochem. 62, 141–150 (1956).PubMedCrossRefGoogle Scholar
  102. The relationship between electron transport and phosphorylation in spinach chloroplasts. Brookhaven Symp. Biol. 11, 236–258 (1958).Google Scholar
  103. Jagendorf, A. T., and M. Avron: Photosynthetic phosphorylation in a partially purified system. Plant Physiol. 32 (Suppl.) iv (1957).Google Scholar
  104. Cofactors and rates of photosynthetic phosphorylation by spinach chloroplasts. J. biol. Chem. 231, 277–290 (1958). Inhibitors of photosynthetic phosphorylation in relation to electron and oxygen transport pathways of chloroplasts. Arch. Biochem. 80, 246–257 (1959).Google Scholar
  105. James, W.O., and V.S. Das: The organization of respiration in chlorophyllous cells. New Phytologist 56, 325–343 (1957).CrossRefGoogle Scholar
  106. Kamen, M. D.: Hematin compounds in the metabolism of photosynthetic tissues, Chapt. in: Enzymes; Units of biological structure and function, edit. O. H. Gaebler. New York: Academic Press 1956.Google Scholar
  107. Kamen, M., and J. W. Newton: Photophosphorylation by subcellular particles from Chromatium. Biochim. biophys. Acta 25, 462–474 (1957).PubMedCrossRefGoogle Scholar
  108. Kandler, O.: Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. I. Z. Naturforsch. 5b, 423–437 (1950).Google Scholar
  109. Kandler, O., and M. Gibbs: Asymmetric distribution of C14 in the glucose phosphates formed during photosynthesis. Plant Physiol. 31, 411–412 (1956).PubMedCrossRefGoogle Scholar
  110. Kaplan, N. O., M. N. Swartz, M. E. Frech and M. M. Ciotti: Phosphorylative and nonphosphorylative pathways of electron transfer in rat liver mitochondria. Proc. nat. Acad. Sci. (Wash.) 42, 481–487 (1956).CrossRefGoogle Scholar
  111. Keilin, D., and E. F. Hartree: Succinic dehydrogenasecytochrome system of cells. Intracellular respiratory system catalyzing aerobic oxidation of succinic acid. Proc. roy. Soc. B 129, 277–306 (1940).CrossRefGoogle Scholar
  112. Kok, B.: Absorption changes induced by the photochemical reaction of photosynthesis. Nature (Lond.) 179, 583–584 (1957).CrossRefGoogle Scholar
  113. Krall, A. R., and M. R. Purvis: Nucleotide specificity of phosphorylation by isolated spinach chloroplasts. Plant Physiol. 32 (Suppl.) iv (1957).Google Scholar
  114. Krebs, H. A., and H. L. Kornberg: A survey of the energy transformations in living matter. Ergebn. Physiol. 49, 212–298 (1957).PubMedCrossRefGoogle Scholar
  115. Krogmann, D. W., and B. Vennesland: Oxidative photo-synthetic phosphorylation by spinach chloroplasts. J. biol. Chem. 234, 2205–2210 (1959).PubMedGoogle Scholar
  116. Laties, G.: The physical environment and oxidative and phosphorylative capacities of higher plant mitochondria. Plant Physiol. 28, 557–575 (1953).PubMedCrossRefGoogle Scholar
  117. Lebedeff, A.: Über die Assimilation des Kohlenstoffes bei wasserstoffoxydierenden Bakterien. Biochem. Z. 7, 1–10 (1907).Google Scholar
  118. Über die Assimilation des Kohlenstoffes bei wasserstoffoxydierenden Bakterien. Ber. dtsch. bot. Ges. 27, 598–602 (1909).Google Scholar
  119. The assimilation of carbon by saprophytes. Amer. Rev. Soviet Med. 5, 17–27 (1948).Google Scholar
  120. Lehninger, A. L.: Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotide. J. biol. Chem. 190, 345–359 (1951).PubMedGoogle Scholar
  121. Oxidative phosphorylation. Harvey Lect. 49, 176–216 (1955).Google Scholar
  122. Lewis, G. N., and D. Lipkin: Reversible photochemical processes in rigid media: The dissociation of organic molecules into radicals and ions. J. Amer. chem. Soc. 64, 2801–2808 (1942).CrossRefGoogle Scholar
  123. Lieberman, M., and J. B. Biale: Oxidative phosphorylation by sweet potato mitochondria and its inhibition by polyphenols. Plant Physiol. 31, 420–424 (1956).PubMedCrossRefGoogle Scholar
  124. Losada, M., A. V. Trebst and D. I. Arnon: Photosynthesis by isolated chloroplasts. XI. CO2 assimilation in a reconstituted chloroplast system. J. biol. Chem. 235, 832–839 (1960).PubMedGoogle Scholar
  125. Losada, M., A. V. Trebst, S. Ogata and D. I. Arnon: The equivalence of light and adenosine triphosphate in bacterial photosynthesis. Nature (Lond.) 186, 753–760 (1960).CrossRefGoogle Scholar
  126. Lumry, R., J. D. Spikes and H. Eyring: Photosynthesis. Ann. Rev. Plant Physiol. 5, 271–340 (1954).CrossRefGoogle Scholar
  127. Lundegårdh, H.: On the oxidation of cytochrome f by light. Physiol. Plantarum (Cph.) 7, 375–382 (1954).CrossRefGoogle Scholar
  128. Marrè, E., and O. Arrigoni: Ascorbic acid and photosynthesis. I. “Monodehydro-ascorbic acid” reductase of chloroplasts. Biochim. biophys. Acta 30, 453–457 (1958).PubMedCrossRefGoogle Scholar
  129. Marrè, E., and G. Forti: Lack of dependence of pyridine nucleotide reduction on high-energy phosphates in chloroplasts. Science 126, 976–977 (1957).PubMedCrossRefGoogle Scholar
  130. Marrè, E., and O. Servettaz: Citocromo c riduttasi in chloroplasti isolati. Nuove Giorn. bot. ital. 64, 1–2 (1957).Google Scholar
  131. Martin, G., et J. Lavollay: Le chlore, oligo-élément indispensable pour Leman minor. Experientia (Basel) 14, 333 (1958).CrossRefGoogle Scholar
  132. Martius, C: Die Stellung des Phyllochinons (Vitamin K1) in der Atmungskette. Biochem. Z. 326, 26–27 (1954).PubMedGoogle Scholar
  133. Thyroxin und oxydative Phosphorylierung. Proceed. 3rd Int. Congr. Biochem., Brussels, pp. I–9. 1955.Google Scholar
  134. Martius, C., u. D. Nitz-Litzow: Über den Wirkungsmechanismus des Dicu-marols und Verbindungen. Biochim. biophys. Acta 12, 134–140 (1953).PubMedCrossRefGoogle Scholar
  135. Zum Wirkungsmechanismus des Vitamin K. Biochem. Z. 327, 1–5 (1955).Google Scholar
  136. Massey, V.: The micro-estimation of succinate and the extinction coefficient of cytochrome c. Biochim. biophys. Acta 34, 255–256 (1959).PubMedCrossRefGoogle Scholar
  137. Mattick, J. L., and E. S. Lindstrom: A comparison of light induced phosphorylation in light and dark grown Rhodospirillum rubrum. Paper presented before Midwest Section of Amer. Soc. Plant Phyiol., Ann Arbor, Mich. June 1957.Google Scholar
  138. Mc Alister, E. D.: The chlorophyll-carbon dioxide during photosynthesis. J. gen. Physiol. 22, 613–636 (1939).PubMedCrossRefGoogle Scholar
  139. Mc Alister, E.D., and J. Myers: The time course of photosynthesis and fluorescence observed simultaneously. Smiths. Misc. Coll. No. 6, 99, 37 pp. (1940).Google Scholar
  140. Mc Eleoy, W. D., and A. Nason: Mechanism of action of micronutrient elements in enzyme systems. Ann. Rev. Plant Physiol. 5, 1–30 (1954).CrossRefGoogle Scholar
  141. Nakamoto, T., D. W. Krogmann and B. Vennesland: The effect of oxygen on riboflavin phosphate-dependent photosynthetic phosphorylation by spinach chloroplasts. J. biol. Chem. 234, 2783–2788 (1959).PubMedGoogle Scholar
  142. Newton, J. W., and M. D. Kamen: Chromatium cytochrome. Biochim. biophys. Acta 21, 71–80 (1956).PubMedCrossRefGoogle Scholar
  143. Newton, J. W., G. A. Newton and M. D. Kamen: Composition and photochemical activity of pigmented subcellular particles from Chromatium. Paper presented before Midwest Section of Amer. Soc. Plant Physiol., Ann Arbor, Mich. June 1957.Google Scholar
  144. Nieman, R. H., and B. Vennesland: Cytochrome c photooxidase of spinach chloroplasts. Science 125, 353–354 (1957).PubMedCrossRefGoogle Scholar
  145. Nihei, T., T. Sasa, S. Miyachi, K. Suzuki and H. Tamiya: Changes of photosynthetic activity of Chlorella cells during the course of their normal life cycle. Arch. Mikrobiol. 21, 155–164 (1954).Google Scholar
  146. Ogata, S., M. Nozaki and D. I. Arnon: Manuscript in preparation, 1959.Google Scholar
  147. Olson, J., and B. Chance: Cytochrome reactions in Chromatium. Biochim. biophys. Acta 28, 227–228 (1958).PubMedCrossRefGoogle Scholar
  148. Oparin, A. I.: Origin of Life (Trans. by S. Morgulis). New York: Macmillan 1938.Google Scholar
  149. Peters, R. A., H. M. Sinclair and Rlh. S. Thompson: An analysis of the inhibition of pyruvate oxidation by arsenicals in relation to the enzyme theory of vesication. Biochem. J. 40, 516–524 (1946).Google Scholar
  150. Pfeffer, W.: Physiology of Plants. Oxford: Clarendon Press 1900.Google Scholar
  151. Rabinowitch, E. L: Photosynthesis and Related Processes, Vol. 1. New York: Inter-science 1945.CrossRefGoogle Scholar
  152. Photosynthesis. Ann. Rev. Plant Physiol. 3, 229–264 (1952).Google Scholar
  153. Photosynthesis and Related Processes, Vol. 2, Part 2. New York: Interscience 1956.Google Scholar
  154. Racker, E.: Synthesis of carbohydrates from carbon dioxide and hydrogen in a cell-free system. Nature (Lond.) 175, 249–251 (1955).CrossRefGoogle Scholar
  155. Personal communication 1958.Google Scholar
  156. Rosenberg, L. L., and D. I. Arnon: The preparation and properties of a new glyceraldehyde-3-phosphate dehydrogenase from photosynthetic tissues. J. biol. Chem. 217, 361–367 (1955).PubMedGoogle Scholar
  157. Ruben, S.: Photosynthesis and phosphorylation. J. Amer. chem. Soc. 65, 279–282 (1943).CrossRefGoogle Scholar
  158. Ruben, S., M. D. Kamen and W. Z. Hassid: Photosynthesis with radioactive carbon. II. Chemical properties of the intermediates. J. Amer. chem. Soc. 62, 3443–3450 (1940).CrossRefGoogle Scholar
  159. Sachs, J.: Lectures on the physiology of plants. Oxford: Clarendon 1887.Google Scholar
  160. San Pietro, A., and H. M. Lang: Accumulation of reduced pyridine nucleotides by illuminated grana. Science 124, 118–119 (1956).CrossRefGoogle Scholar
  161. Photosynthetic pyridine nucleotide reductase. I. Partial purification and properties of the enzyme from spinach. J. biol. Chem. 231, 211–229 (1958).Google Scholar
  162. Schachman, H. K., A. B. Pardee and R. Y. Stanier: Studies on the macromolecular organization of microbial cells. Arch. Biochem. 38, 245–260 (1952).PubMedCrossRefGoogle Scholar
  163. Sebrell, W. H., and R. S. Harris: The Vitamins, 3 vols. New York: Academic Press 1954.Google Scholar
  164. Singer, T. P., and E. B. Kearney: Solubilization, assay and purification of succinic dehydrogenase. Biochim. biophys. Acta 15, 151–153 (1954).PubMedCrossRefGoogle Scholar
  165. Determination of succinic dehydrogenase activity. Meth. biochem. Anal. 4, 307–333 (1957).Google Scholar
  166. Smith, L., and J. Ramirez: Absorption spectrum changes in photosynthetic bacteria following illumination or oxygenation. Arch. Biochem. 79, 233–244 (1959).CrossRefGoogle Scholar
  167. Stålfelt, M. G.: The stomata as a hydrophotic regulator of the water deficit of the plant. Physiol. Plantarum 8, 572–593 (1955).CrossRefGoogle Scholar
  168. Stern, H.: On the intranuclear environment. Science 121, 144–145 (1954).CrossRefGoogle Scholar
  169. Strehler, B. L.: Firefly luminescence in the study of energy transfer mechanisms. II. Adenosine triphosphate and photosynthesis. Arch. Biochem. 43, 67–79 (1953).PubMedCrossRefGoogle Scholar
  170. Thomas, J. B.: A note on the occurrence of grana in algae and in photosynthesizing bacteria. Proc. kon. ned. Akad. Wet., Ser. C 55, 207–208 (1952).Google Scholar
  171. Thomas, J. B., A. J. M. Haans and A. A. J. van der Leun: Photosynthetic activity of isolated chloroplast fragments of Spirogyra. Biochim. biophys. Acta 25, 453–462 (1957).PubMedCrossRefGoogle Scholar
  172. Tolmach, L. J.: Effects of triphosphopyridine nucleotide upon oxygen evolution and carbon dioxide fixation by illuminated chloroplasts. Nature (Lond.) 167, 946–948 (1951).CrossRefGoogle Scholar
  173. Trebst, A. V., M. Losada and D.I. Arnon: Photosynthesis by isolated chloroplasts. X. Dependence of CO2 assimilation on the photochemical reactions of chloroplasts. J. biol. Chem. 234, 3055–3058 (1959).PubMedGoogle Scholar
  174. Photosynthesis by isolated chloroplasts. XII. Inhibitors of CO2 assimilation in a reconstituted chloroplast system. J. biol. Chem. 235, 840–844 (1960).Google Scholar
  175. Trebst, A. V., H. Y. Tsujimoto and D. I. Arnon: Separation of light and dark phases in the photosynthesis of isolated chloroplasts. Nature (Lond.) 182, 351–355 (1958).CrossRefGoogle Scholar
  176. Trudinger, P. A.: Fixation of carbon dioxide by extracts of the strict autotroph Thiobacullis denitrificans. Biochem. J. 64, 274–286 (1956).PubMedGoogle Scholar
  177. Ueda, R.: Photosynthesis of isolated chloroplasts and their autonomy (Preliminary report). Bot. Mag. (Tokyo) 62, 731–732 (1949).Google Scholar
  178. Urey, H. C: In: The Plants, G. Kutper, Ed. Yale Univ. Press 1952.Google Scholar
  179. Van Lookeren Campagne, R. N.: Light-dependent chloride absorption in Vallisneria leaves. Acta bot. neerl. 6, 543–582 (1957).Google Scholar
  180. Van Niel, C. B.: The comparative biochemistry of photosynthesis. In: Photosynthesis in Plants. J. Franck and W. E. Looms, Eds., pp. 437–495. Iowa State College Press 1949.Google Scholar
  181. Vernon, L. P., and M. D. Kamen: Hematin compounds in photosynthetic bacteria. J. biol. Chem. 211, 643–662 (1954).PubMedGoogle Scholar
  182. Vishniac, W., B. L. Horecker and S. Ochoa: Enzymic aspects of photosynthesis. Advanc. Enzymol. 19, 1–77 (1957).Google Scholar
  183. Vishniac, W., and S. Ochoa: Photochemical reduction of pyridine nucleotides by spinach grana and coupled carbon dioxide fixation. Nature (Lond.) 167, 768–769 (1951).CrossRefGoogle Scholar
  184. Phosphorylation coupled to photochemical reduction of pyridine nucleotides by chloroplast preparations. J. biol. Chem. 198, 501–506 (1952).Google Scholar
  185. Warbubg, O.: Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. Biochem. Z. 100, 230–270 (1919).Google Scholar
  186. Versuche über die Assimilation der Kohlensäure. Biochem. Z. 166, 386–407 (1925).Google Scholar
  187. Heavy metal prosthetic groups and enzyme action, pp. 213–214. Clarendon Press, Oxford 1949.Google Scholar
  188. Warburg, O., W. Schroder u. H. W. Gattung: Züchtung der Chlorella mit fluktuierender Lichtintensität. Z. Naturforsch. 11b, 654–657 (1956).Google Scholar
  189. Wessels, J. S. C.: A possible function of vitamin K in photosynthesis. Rec. Trav. chim. Pays-Bas 73, 529–536 (1954).CrossRefGoogle Scholar
  190. Studies on photosynthetic phosphorylation: I. Photosynthetic phosphorylation under anaerobic conditions. Biochim. biophys. Acta 25, 97–100 (1957).Google Scholar
  191. Whatley, F. R., M. B. Allen and D. I. Arnon: Photosynthetic phosphorylation as an anaerobic process. Biochim. biophys. Acta 16, 605–606 (1955).PubMedCrossRefGoogle Scholar
  192. Cofactors of photosynthetic phosphorylation. Plant Physiol. 32 (Suppl.) iii (1957).Google Scholar
  193. Photosynthesis by isolated chloroplasts. VII Vitamin K and riboflavin phosphate as cofactors of cyclic photophosphorylation. Biochim. biophys. Acta 32, 32–46 (1959).Google Scholar
  194. Whatley, F. R., M. B. Allen, L. L. Rosenberg, J. B. Capindale and D. I. Arnon: Photosynthesis by isolated chloroplasts. V. Phosphorylation and carbon dioxide fixation by broken chloroplasts. Biochim. biophys. Acta 20, 462–468 (1956).PubMedCrossRefGoogle Scholar
  195. Whatley, F. R., M. B. Allen, A. V. Trebst and D. I. Arnon: Photosynthesis by isolated chloroplasts from different plants. Plant Physiol. 33, (Suppl.), xxvii–xxviii (1958).Google Scholar
  196. Photosynthesis by isolated chloroplasts. IX. Photosynthetic phosphorylation and CO2 assimilation in different species. Plant Physiol. 35, 188–193 (I960).Google Scholar
  197. Whittingham, C. P.: Energy transformation in photosynthesis and the relation of photosynthesis to respiration. Biol. Rev. 30, 40–64 (1955).CrossRefGoogle Scholar
  198. Williams, A. M.: Light-induced uptake of inorganic phosphate in cell-free extracts of obligately anaerobic photosynthetic bacteria. Biochim. biophys. Acta 19, 570 (1956).PubMedCrossRefGoogle Scholar
  199. Witt, H. T.: Experimente zum Primärprozeß der Photosynthese. Z. Elektrochem. 59, 981–986 (1955).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • Daniel I. Arnon

There are no affiliations available

Personalised recommendations