Advertisement

Photochemical activity of isolated chloroplasts (Hill reactions)

  • K. A. Clendenning
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)

Abstract

Residual photosynthetic reactions in isolated chloroplasts have now been studied for about eighty years. The modern period of quantitative research in this field began with the work of R. Hill (1937). Upon suspending freshly isolated chloroplasts in dilute solutions of an artificial oxidant (ferric oxalate), Hill discovered that photochemical oxygen formation occurred in the absence of carbon dioxide assimilation. This discovery in itself contributed to knowledge of the photosynthetic mechanism, since it showed that oxygen evolution and carbon dioxide assimilation are separable components of photosynthesis. Subsequent research on “the Hill reaction” has contributed information on the photosynthetic mechanism along a number of different lines. Comparative studies of photosynthesis and of water photolysis (the Hill reaction) have allowed several photosynthetic characteristics to be categorized as attributes either of the photochemical driving mechanism or of the dark synthetic reactions of photosynthesis. The Hill reaction has allowed the mechanism of water photolysis to be analyzed under simpler conditions than prevail in the complete process of photosynthesis. Upon replacing artificial oxidants with natural oxidant systems, the Hill reaction can be linked to dark photosynthetic reactions (photosynthesis in vitro).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Albers, V. M. and H. V. Knorr: The absorption spectra of single chloroplasts in living cells in the region from 664 mμ to 704 mμ. Plant Physiol. 12, 833–843 (1937).PubMedCrossRefGoogle Scholar
  2. Allen, F. L., and J. Franck: Photosynthetic evolution of oxygen by flashes of light. Arch. Biochem. 58, 124–143 (1955).PubMedCrossRefGoogle Scholar
  3. Arnold, W. A.: The effect of ultraviolet light on photosynthesis. J. gen. Physiol. 17, 135–143 (1933).PubMedCrossRefGoogle Scholar
  4. Arnon, D. I.: Some recent advances in the study of essential micronutrients for green plants. Proc. 8th Internat. Congr. of Botany, Sect. 11, pp. 73–80. Paris 1954.Google Scholar
  5. The chloroplast as a complete photosynthetic unit. Science 122, 9–16 (1955).Google Scholar
  6. Arnon, D. I., and F. R. Whatley: [1] Factors influencing oxygen production by illuminated chloroplast fragments. Arch. Biochem. 23, 141–156 (1949).PubMedGoogle Scholar
  7. [2] Is chloride a coenzyme of photosynthesis? Science 110, 554–556 (1949).Google Scholar
  8. Aronoff, S.: [1] Photochemical reduction of chloroplast grana. Plant Physiol. 21, 393–409 (1946).PubMedCrossRefGoogle Scholar
  9. [2] Redox potentials and photoreduction by chloroplast granules. Science 104, 503–505 (1946).Google Scholar
  10. Beijerinck, M. W.: Photobacteria as a reactive in the investigation of the chlorophyll function. Amsterdam. Proc. kon. ned. Akad. Wet. Sect. Sci. 4, 45–49 (1901).Google Scholar
  11. Bergmann, L.: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. II. Vergleichende Untersuchungen über den Einfluß mineralischer Faktoren bei heterotropher und mixotropher Ernährung. Flora (Jena) 142, 493–539 (1955).Google Scholar
  12. Bishop, N. I.: The influence of the herbicide, DCMU, on the oxygen-evolving system of photosynthesis. Biochim. biophys. Acta 27, 205–206 (1958).PubMedCrossRefGoogle Scholar
  13. The role of certain petroleum ether-soluble compounds in the Hill reaction. Plant Physiol. 33, Suppl. XXVII (1958).Google Scholar
  14. Role of Vitamin K in the Hill reaction. Brook-haven Symp. Biol. 11, 332–338 (1959).Google Scholar
  15. Bishop, N. L, R. Lumry and J. D. Spikes: The mechanism of the photochemical activity of isolated chloroplasts. I. Effect of temperature. Arch. Biochem. 58, 1–18 (1955).PubMedCrossRefGoogle Scholar
  16. Bishop, N. L, and J. D. Spikes: Inhibition by cyanide of the photochemical activity of isolated chloroplasts. Nature (Lond.) 176, 307–310 (1955).CrossRefGoogle Scholar
  17. Bradley, D. F., and M. Calvin: The effect of thioctic acid on the quantum efficiency of the Hill reaction. Arch. Biochem. 53, 99–118 (1954).PubMedCrossRefGoogle Scholar
  18. The effect of thioctic acid on the quantum efficiency of the Hill reaction in intermittent light. Proc. nat. Acad. Sci. (Wash.) 41, 563–571 (1955).Google Scholar
  19. Briggs, G. E.: Experimental researches on vegetable assimilation and respiration. XIII. The development of photosynthetic activity during germination. Proc. roy. Soc. B 91, 249–268 (1920).CrossRefGoogle Scholar
  20. Brown, A. H., and N. Good: Photochemical reduction of oxygen in chloroplast preparations and in green plant cells. Arch. Biochem. 57, 340 to 354 (1955).PubMedCrossRefGoogle Scholar
  21. Brown, T. E.: Comparative studies of photosynthesis and the Hill reaction in Nostoc muscorum and Chlorella pyrenoidosa. Ph. D. thesis, Ohio State University, Columbus, Ohio 1954.Google Scholar
  22. Broyer, T. C., A. B. Charlton, C. M. Johnson and P. R. Stout: Chlorine — a micronutrient element for higher plants. Plant Physiol. 29, 526–532 (1954).PubMedCrossRefGoogle Scholar
  23. Burnham, B. F., and J. D. Spikes: Plant environment conditions and the properties of isolated chloroplasts. Utah Acad. Sci., Arts and Letters, Proc. 31, 109–111 (1954).Google Scholar
  24. Chen, S. L.: The action spectrum for the photochemical evolution of oxygen by isolated chloroplasts. Plant Physiol. 27, 35–48 (1952).PubMedCrossRefGoogle Scholar
  25. Clendenning, K. A.: Recent investigations of photosynthesis and the Hill reaction. Proc. 8th Internat. Congr. Bot. Paris, Sect. 11, 21–35 (1954).Google Scholar
  26. Biochemistry of chloroplasts in relation to the Hill reaction. Ann. Rev. Plant Physiol. 8, 137–152 (1957).Google Scholar
  27. Clendenning, K. A., T.E. Brown and H. C. Eyster: Comparative studies of photosynthesis in Nostoc muscorum and Chlorella pyrenoidosa. Canad. J. Bot. 34, 943–966 (1956).CrossRefGoogle Scholar
  28. Clendenning, K. A., T. E. Brown and E. E. Walldov: Natural inhibitors of the Hill reaction. Research in Photosynthesis, edit, by H. Gaffron, pp. 274–284. New York: Interscience Press 1957.Google Scholar
  29. Causes of increased and stabilized Hill reaction rates in polyethylene glycol solutions. Physiol. Plantarum (Copenh.) 9, 519–532 (1956).Google Scholar
  30. Clendenning, K. A., and H. C. Ehrmantraut: Photosynthesis and Hill reactions by whole Chlorella cells in continuous and flashing light. Arch. Biochem. 29, 387–403 (1950).PubMedGoogle Scholar
  31. Clendenning, K. A., and P. R. Gobham: [1] Photochemical activity of isolated chloroplasts in relation to reaction conditions. Canad. J. Res., C 28, 78–101 (1950).CrossRefGoogle Scholar
  32. [2] Photochemical activity of isolated chloroplasts in relation to their source and previous history. Canad. J. Res., C 28, 114–139 (1950).Google Scholar
  33. Dam, H.: Vitamin K, its chemistry and physiology. Advanc. Enzymol. 2, 285–324 (1942).Google Scholar
  34. Davenport, H. E.: Cytochrome components in chloroplasts. Nature (Lond.) 170, 1112 (1952).CrossRefGoogle Scholar
  35. Davenport, H. E., and R. Hill: The preparation and properties of cytochrome f. Proc. roy. Soc. B 139, 327–345 (1952).CrossRefGoogle Scholar
  36. Drawert, H.: Der pH-Wert des Zellsaftes. In Encyclopedia of Plant Physioldgy, edit. by W. Ruhland, Vol. I, pp. 627–648. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  37. Duysens, L. N. M.: Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature (Lond.) 168, 548–550 (1951).CrossRefGoogle Scholar
  38. Transfer of excitation energy in photosynthesis. Ph. D. thesis, Utrecht 1951.Google Scholar
  39. Role of cytochrome and pyridine nucleotide in algal photosynthesis. Science 121, 210–211 (1955).Google Scholar
  40. Duysens, L. N. M., and J. Amesz: Fluorescence spectrophotometry of reduced pyridine nucleotide in intact cells in the near ultraviolet and visible region. Biochim. bio-phys. Acta 24, 19–26 (1957).CrossRefGoogle Scholar
  41. Quantum requirement for phosphopyridine nucleotid reaction in photosynthesis. Plant Physiol. 34, 210–213 (1959).Google Scholar
  42. Duysens, L. N. M., and G. Sweep: Fluorescence spectrophotometry of pyridine nucleotide in photosynthesizing cells. Biochim. biophys. Acta 25, 13–16 (1957).PubMedCrossRefGoogle Scholar
  43. Ehrmantraut, H. C., and E. I. Rabinowitch: Kinetics of the Hill reaction. Arch. Biochem. 38, 67–84 (1952).PubMedCrossRefGoogle Scholar
  44. Emerson, R., and W. A. Arnold: [1] A separation of the reactions in photosynthesis by means of intermittent light. J. gen. Physiol. 15, 391–420 (1932).PubMedCrossRefGoogle Scholar
  45. [2] The photochemical reaction in photosynthesis. J. gen. Physiol. 16, 191–205 (1932).Google Scholar
  46. Emerson, R., and C. M. Lewis: Factors influencing the efficiency of photosynthesis. Amer. J. Bot. 26, 808–822 (1939).CrossRefGoogle Scholar
  47. The dependence of the quantum yield of Chlorella photosynthesis on wavelenght of light. Amer. J. Bot. 30, 165–178 (1943).Google Scholar
  48. Engelmann, T. W.: Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und thierischer Organismen. Bot. Ztg 39, 441–447 (1881).Google Scholar
  49. Ewart, A. J.: On assimilatory inhibition in plants. J. Linnean Soc. London 31, 364–443 (1896).Google Scholar
  50. Eyster, H. C., T. E. Brown, S. L. Hood and H. A. Tanner: The role of manganese in growth, photosynthesis, respiration and the Hill reaction, using Chlorella pyrenoidosa and spinach chloroplasts. Plant Physiol. 31 (Suppl.) XVII (1956).Google Scholar
  51. Eyster, H. C., T. E. Brown and H. A. Tanner: Manganese requirement with respect to respiration and the Hill reaction in Chlorella pyrenoidosa. Arch. Biochem. 64, 240–241 (1956).PubMedCrossRefGoogle Scholar
  52. Fan, C. S., J. F. Stauffer and W. W. Umbreit: An experimental separation of oxygen liberation from carbon dioxide fixation in photosynthesis by Chlorella. J. gen. Physiol. 27, 15–28 (1943).PubMedCrossRefGoogle Scholar
  53. Franck, J., and C. S. French: Photoxidation processes in plants. J. gen. Physiol. 25, 309–324 (1941).PubMedCrossRefGoogle Scholar
  54. French, C. S., and M. L. Anson: Paper read at the A.A.A.S. meetings, Dallas, Texas, December, 1941.Google Scholar
  55. The oxygen evolution activity of chloroplast suspensions after being frozen, dried or disintegrated. (Abstract.) Amer. J. Bot. 31, 9s (1944).Google Scholar
  56. French, C. S., A. S. Holt, R. D. Powell and M. L. Anson: The evolution of oxygen from illuminated suspensions of frozen, dried and homogenized chloroplasts. Science 103, 505–506 (1946).CrossRefGoogle Scholar
  57. French, C. S., E. Newcomb and M. L. Anson: The evolution of oxygen from illuminated suspensions of chloroplasts (abstract). Amer. J. Bot. 29, 8s (1942).Google Scholar
  58. French, C. S., and G. S. Rabideau: The quantum yield of oxygen production by chloroplasts suspended in solutions containing ferric oxalate. J. gen. Physiol. 28, 329–342 (1945).PubMedCrossRefGoogle Scholar
  59. French, C. S., R. W. Smith and F. D. H. Mac Dowall: Dye reduction by chloroplast suspensions as a means of measuring their activity for photosynthetic oxygen evolution. (Abstract.) Fed. Proc. 6, No. 1 (1947).Google Scholar
  60. Fujimura, K., I. Aikawa and Y. Inada: The activities of isolated chloroplasts of the leaves of sweet potato on the Hill reaction. Mem. Res. Inst. Food. Sci., Kyoto Univ. 7, 18–33 (1954).Google Scholar
  61. Fujimura, K., I. Aikawa, Y. Inada and H. Hiras: The activities of isolated chloroplasts of the leaves of several crops for the photolysis of water. Mem. Res. Inst. Food Sci., Kyoto Univ. 5, 77–106 (1953).Google Scholar
  62. Fuller, R. C., H. Grisebach and M. Calvin: The metabolism of thioctic acid in algae. J. Amer. chem. Soc. 77, 2659 (1955).CrossRefGoogle Scholar
  63. Gaffron, H.: The effect of specific poisons upon the photoreduction with hydrogen in green algae. J. gen. Physiol. 26, 195–217 (1942).PubMedCrossRefGoogle Scholar
  64. Photosynthesis, Photoreduction and dark reduction of carbon dioxide in certain algae. Biol Rev. 19, 1–20 (1944).Google Scholar
  65. Gerretsen, F. C: Manganese in relation to photosynthesis. II. Redox potentials of illuminated crude chloroplast suspensions. Plant and Soil 2, 159–193 (1950).CrossRefGoogle Scholar
  66. Gilmour, H. S. A.: Studies on the Hill reaction. Ph. D. thesis, University of Utah, Salt Lake City, Utah 1953.Google Scholar
  67. Gilmour, H. S. A., R. Lumby and J. D. Spikes: Electrode reactions of isolated chloroplast fragments. Plant Physiol. 28, 89–98 (1953).PubMedCrossRefGoogle Scholar
  68. Kinetic evidence for new participants in the Hill reaction. Nature (Lond.) 173, 31–32 (1954).Google Scholar
  69. Gilmour, H. S. A., R. Lumry, J. D. Spikes and H. Eyring: Kinetics of the Hill reaction of isolated chloroplasts in flashing light. A. E. C. Technical Rep. No. XI, July 1, 1953, Institute for the study of rate processes, University of Utah, Salt Lake City, Utah.Google Scholar
  70. Gorham, P. R., and K. A. Clendenning: Storage of isolated chloroplasts without loss of photochemical activity. Canad. J. Res., C 28, 513–524 (1950).CrossRefGoogle Scholar
  71. Anionic stimulation of the Hill reaction in isolated chloroplasts. Arch. Biochem. 37, 199–223 (1952).Google Scholar
  72. Granick, S.: Quantitative isolation of chloroplasts from higher plants. Amer. J. Bot. 25, 558–561 (1938).CrossRefGoogle Scholar
  73. Plastid structure, development and inheritance. In Encyclopedia of Plant Physiology, edit. by W. Ruhland, Vol. 1, pp. 507–564. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  74. Griffiths, M., W. R. Sistrom, G. Cohen-Bazire and R. Y. Stanier: Function of carotenoids in photosynthesis. Nature (Lond.) 176, 1211–1214 (1955).CrossRefGoogle Scholar
  75. Haberlandt, G. F. G.: Funktion und Lage des Zellkerns. Jena: Gustav Fischer 1887.Google Scholar
  76. Habermann, H. M.: Light-dependent oxygen metabolism of chloroplast preparations. I. Stimulation following quinone reduction. Plant Physiol. 33, 242–245 (1958).PubMedCrossRefGoogle Scholar
  77. Light dependent oxygen metabolism of chloroplast preparations. II. Stimulation by manganous ions. Plant Physiol. 35, 307–312 (1960).Google Scholar
  78. Haxo, F. T., and L. R. Blinks: Photosynthetic action spectra of marine algae. J. gen. Physiol. 33, 389–422 (1950).PubMedCrossRefGoogle Scholar
  79. Hill, R.: Oxygen dissociation curves of muscle hemoglobin. Proc. roy. Soc. B 120, 472–483 (1936).CrossRefGoogle Scholar
  80. Oxygen production by isolated chloroplasts. Nature (Lond.) 139, 881–882 (1937).Google Scholar
  81. Oxygen production by isolated chloroplasts. Proc. roy. Soc. B 127, 192–210 (1939).Google Scholar
  82. Oxido-reduction in chloroplasts. Advanc. Enzymol. 12, 1–39 (1951).Google Scholar
  83. Reduction by chloroplasts. Symposia of the Soc. for Experimental Biology, No V, Carbon dioxide fixation and photosynthesis, pp. 222–231. 1951.Google Scholar
  84. Hill, R., and R. Scarisbrick: [1] Reduction of ferric oxalate by isolated chloroplasts. Proc. Roy. Soc. B 129, 238–255 (1940).CrossRefGoogle Scholar
  85. [2] Oxygen production by isolated chloroplasts. Nature (Lond.) 146, 61–62 (1940).Google Scholar
  86. The hematin compounds of leaves. New Phytologist 50, 98–111 (1951).Google Scholar
  87. Holt, A. S., I. A. Brooks and W. A. Arnold: Some effects of 2537 Å on green algae and chloroplast preparations. J. gen. Physiol. 34, 627–645 (1951).PubMedCrossRefGoogle Scholar
  88. Holt, A. S., and C. S. French: The photochemical production of oxygen and hydrogen ion by isolated chloroplasts. Arch. Biochem. 9, 25–43 (1946).PubMedGoogle Scholar
  89. Oxygen production by illuminated chloroplasts suspended in solutions of oxidants. Arch. Biochem. 19, 368–378 (1948).Google Scholar
  90. Isotopic analysis of the oxygen evolved by chloroplasts in normal water and in water enriched with O18. Arch. Biochem. 19, 429–435 (1948).Google Scholar
  91. The photochemical liberation of oxygen from water by isolated chloroplasts. In J. Franck and W. E. Loomis, Photosynthesis in Plants, pp. 277–285. Ames, Iowa: Iowa State College Press 1949.Google Scholar
  92. Holt, A. S., R. F. Smith and C. S. French: Dye reduction by illuminated chloroplast fragments. Plant Physiol. 26, 164–173 (1951).PubMedCrossRefGoogle Scholar
  93. Horwttz, L.: Some theoretical considerations relating to the meaning and measurement of chloroplast reducing potential. Bull. math. Physics 16, 45–53 (1954).Google Scholar
  94. Effects of D2O on the quinone Hill reaction of Chlorella pyrenoidosa. Plant Physiol. 29, 215–219 (1954).Google Scholar
  95. Inman, O. L.: The evolution of oxygen in the process of photosynthesis. Cold Spr. Harb-Symp. quant. Biol. 3, 184–190 (1935).CrossRefGoogle Scholar
  96. [1] Photosynthesis and the living state. Science 88, 544–545 (1938).Google Scholar
  97. [2] The Mirsky-Pauling theory of the structure of native, denatured and coagulated proteins, and some theoretical aspects of the evolution of oxygen from the irradiated green cell. Plant Physiol. 13, 859–862 (1938).Google Scholar
  98. Irving, A. A.: The beginning of photosynthesis and the development of chlorophyll. Ann. Bot. 24, 805–818 (1910).Google Scholar
  99. Kamen, M. D.: Hematin compounds in the metabolism of photosynthetic tissues. Research in Photosynthesis, edit. by H. Gaffron, pp. 149–163. New York 1957.Google Scholar
  100. Kautsky, H.: Zur Frage der photochemischen Sauerstoffentwicklung aus isolierten Chlorophyllkörnern. Naturwissenschaften 26, 14 (1938).CrossRefGoogle Scholar
  101. Ke, B., and K. A. Clendenning: Properties of chloroplast dispersions in the presence of detergents. Biochim. biophys. Acta 19, 74–83 (1956).PubMedCrossRefGoogle Scholar
  102. Kenten, R. H., and P. J. G. Mann: Oxidation of manganese by illuminated chloroplast preparations. Biochem. J. 61, 279–286 (1955).PubMedGoogle Scholar
  103. Kessler, E.: On the role of manganese in the oxygen-evolving system of photosynthesis. Arch. Biochem. 59, 527–529 (1955).PubMedCrossRefGoogle Scholar
  104. Kinzel, H., u. W. Url: Katalasebestimmung an grünen Blättern unter Berücksichtigung des Säurefehlers. Physiol. Plantarum (Copenh.) 7, 835–850 (1954).CrossRefGoogle Scholar
  105. Kok, B.: Absorption changes induced by the photochemical reaction of photosynthesis. Nature (Lond.) 179, 583–584 (1957).CrossRefGoogle Scholar
  106. Light induced absorption changes in photosynthetic organisms. Acta bot. néerl. 6, 316–336 (1957).Google Scholar
  107. Changes of absorption spectrum induced by illumination and their bearing on the nature of the photoreceptor in photosynthesis. Proc. 2nd Internat. Congr. Photobiol. Turin 1957, p. 369–383.Google Scholar
  108. Kratz, W. A., and J. Myers: Photosynthesis and respiration of three blue-green algae. Plant Physiol. 30, 275–280 (1955).PubMedCrossRefGoogle Scholar
  109. Kumm, J., and C. S. French: The evolution of oxygen from suspensions of chloroplasts; the activity of various species and the effects of previous illumination of the leaves. Amer. J. Bot. 32, 291–295 (1945).CrossRefGoogle Scholar
  110. Lumby, R., and J. D. Spikes: Chemical kinetic studies of the Hill reaction. Research in Photosynthesis, edit. by H. Gaffron, pp. 373–391. New York 1957.Google Scholar
  111. Lundegåbdh, H.: On the oxidation of cytochrome f by light. Physiol. Plantarum (Copenh.) 7, 375–382 (1954).CrossRefGoogle Scholar
  112. Lynch, V. H., and C. S. French: β-Carotene, an active component of chloroplasts. Arch. Biochem. 70, 382–391 (1957).PubMedCrossRefGoogle Scholar
  113. Mac Dowall, F. D. H.: The effects of some inhibitors of photosynthesis upon the photochemical reduction of a dye by isolated chloroplasts. Plant Physiol. 24, 462–480 (1949).PubMedCrossRefGoogle Scholar
  114. The reducing potential of illuminated chloroplasts. Science 116, 398–399 (1952).Google Scholar
  115. Mc Clendon, J. H.: The physical environment of chloroplasts as related to their morphology and activity in vitro. Plant Physiol. 29, 448–458 (1954).PubMedCrossRefGoogle Scholar
  116. Mc Clendon, J. H., and L. R. Blinks: Use of high molecular weight solutes in the study of isolated intracellular structures. Nature (Lond.) 170, 557–558 (1952).CrossRefGoogle Scholar
  117. Mehler, A. H.: Studies on reactions of illuminated chloroplasts. 1. Mechanism of the reduction of oxygen and other Hill reagents. Arch. Biochem. 33, 65–77 (1951).PubMedCrossRefGoogle Scholar
  118. 2. Stimulation and inhibition of the reaction with molecular oxygen. Arch. Biochem. 34, 339–351 (1951).Google Scholar
  119. Mehler, A. H., and A. H. Brown: Studies on reactions of illuminated chloroplasts. III. Simultaneous photoproduction and consumption of oxygen studied with oxygen isotopes. Arch. Biochem. 38, 365–370 (1952).PubMedCrossRefGoogle Scholar
  120. Milner, H. W., C. S. French, M. L. G. Koenig and N. S. Lawrence: Measurement and stabilization of activity of chloroplast material. Arch. Biochem. 28, 193–200 (1950).PubMedGoogle Scholar
  121. Milner, H. W., M. L. G. Koenig and N. S. Lawrence: Reactivation of dispersed chloroplast material by reaggregation. Arch. Biochem. 28, 185–192 (1950).PubMedGoogle Scholar
  122. Milner, H. W., N. S. Lawrence and C. S. French: Colloidal dispersion of chloroplast material. Science 111, 633–634 (1950).PubMedCrossRefGoogle Scholar
  123. Milner, M., C. S. French and H. W. Milner: Effect of petroleum ether extraction and readdition of various compounds on the photochemical activity of isolated chloroplasts. Plant Physiol. 33, 367–372 (1958).PubMedCrossRefGoogle Scholar
  124. Molisch, H.: Über Kohlensäureassimilation-Versuche mittelst der Leuchtbakterienmethode. Bot. Z., Abt. 1, 62, 1–10 (1904).Google Scholar
  125. Über Kohlen-säureassimilatipn toter Blätter. Z. Bot. 17, 577–593 (1925).Google Scholar
  126. Noack, K., A. Pirson u. H.Michels: Zur Kenntnis der Assimilationshemmung nach Sauerstoffentzug bei Grünalgen. Naturwissenschaften 27, 645 (1939).CrossRefGoogle Scholar
  127. Pirson, A.: Paper read at 8th Internat. Congr. of Botany, Paris, July, 1954.Google Scholar
  128. Pirson, A., and L. Bergmann: Manganese requirement and carbon source in Chlorella. Nature (Lond.) 176, 209 (1955).CrossRefGoogle Scholar
  129. Pirson, A., C. Tichy u. G. Wilhelmi: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. I. Vergleichende Untersuchungen an Mangelkulturen von Ankistrodesmus. Planta (Berl.) 40, 199–253 (1952).CrossRefGoogle Scholar
  130. Punnett, T.: The PH optimum of the Hill reaction. J. Amer. chem. Soc. 79, 4816 (1957).CrossRefGoogle Scholar
  131. Stability of isolated chloroplast preparations and its effect on Hill reaction measurements. Plant Physiol. 34, 283–289 (1959).Google Scholar
  132. Rabideau, G. S., C. S. French and A. S. Holt: The absorption and reflection spectra of leaves, chloroplast suspensions and chloroplast fragments as measured in an Ulbricht sphere. Amer. J. Bot. 33, 769–777 (1946).CrossRefGoogle Scholar
  133. Rieske, J. S.: Doctoral thesis, University of Utah, Salt Lake City, Utah, 1956.Google Scholar
  134. Rodrigo, F. A.: Experiments concerning the state of chlorophyll in the plant. Ph. D. Thesis. Utrecht 1955.Google Scholar
  135. Sager, R., and M. Zalokar: Pigments and photosynthesis in a carotenoid-deficient mutant of Chlamydomonas. Nature (Lond.) 182, 98–100 (1958).CrossRefGoogle Scholar
  136. San Pietro, A., S. B. Hendricks, J. Giovanelli and F. E. Stolzenbach: Action spectrum for triphospho-pyridine nucleotide reduction by illuminated chloroplasts. Science 128, 845 (1958).PubMedCrossRefGoogle Scholar
  137. San Pietro, A., and H. M. Lang: Accumulation of reduced pyridine nucleoides by illuminated grana. Science 124, 118–119 (1956).CrossRefGoogle Scholar
  138. Schachman, H. K., A. B. Pardee and R. Y. Stanier: Studies on the macromolecular organization of microbial cells. Arch. Biochem. 38, 245–260 (1952).PubMedCrossRefGoogle Scholar
  139. Schwartz, F.: Die morphologische und chemische Zusammensetzung des Protoplasmas. Breslau 1887. Cited by J. H. Mc Clendon 1954.Google Scholar
  140. Schwartz, M.: The quantum efficiency of the photochemical reduction of quinone and ferricyanide by lyophilized and whole Chlorella cells. Arch. Biochem. 59, 5–16 (1955).PubMedCrossRefGoogle Scholar
  141. Sidebis, C. P., and H. Y. Young: Effects of iron on chlorophyllous pigments, ascorbic acid, acidity and carbohydrates of Ananus Comosus. Plant Physiol. 19, 52–75 (1944).CrossRefGoogle Scholar
  142. Small, J.: PH and plants. New York: D. van Nostrand, Inc. 1946.Google Scholar
  143. Smith, J. H. C: The development of chlorophyll and oxygen-evolving power in etiolated barley leaves when illuminated. Plant Physiol. 29, 143–148 (1954).PubMedCrossRefGoogle Scholar
  144. Spikes, J. D.: Stoichiometry of the photolysis of water by illuminated chloroplast fragments. Arch. Biochem. 35, 101–109 (1952).PubMedCrossRefGoogle Scholar
  145. Spikes, J. D., R. Lumry, H. Eyring and R. E. Wayrynen: Potential changes in suspensions of chloroplasts on illumination. Arch. Biochem. 28, 48–67 (1950).PubMedGoogle Scholar
  146. Spikes, J. D., and M. Stout: Photochemical activity of chloroplasts isolated from sugar beet infected with virus yellows. Science 122, 375–376 (1955).PubMedCrossRefGoogle Scholar
  147. Takashima, S.: Chlorophyll-Lipoprotein obtained in crystals. Nature (Lond.) 169, 182–183 (1952).CrossRefGoogle Scholar
  148. Tamiya, H.R Analysis of photosynthetic mechanism by the method of intermittent illumination. Stud. Tokugawa Inst. 6, 1–129 (1949).Google Scholar
  149. Thomas, J. B.: A note on the occurrence of grana in algae and in photosynthesizing bacteria. Proc. kon. ned. Akad. Wet., Ser. C 55, 207–209 (1952).Google Scholar
  150. Thomas, J. B., O. H. Blaauw and L. N. M. Duysens: On the relation between size and photochemical activity of fragments of spinach grana. Biochim. biophys. Acta 10, 230–240 (1953).PubMedCrossRefGoogle Scholar
  151. Thomas, J. B., and W. De Rover: On phyco-cyanin participation in the Hill reaction of the blue-green alga Synechococcus cedrorum. Biochim. biophys. Acta 16, 391–395 (1955).PubMedCrossRefGoogle Scholar
  152. Tullin, V.: Response of the sugar beet to common salt. Physiol. Plantarum (Copenh.) 7, 810–834 (1954).CrossRefGoogle Scholar
  153. Vishniac, W.: Light-dependent reductions in a cell-free system. Research in Photosynthesis, edit. by H. Gaffron, p. 285–287. New York 1957.Google Scholar
  154. Vishniac, W., and S. Ochoa: Fixation of carbon dioxide coupled to photochemical reduction of pyridine nucleotides by chloroplast preparations. J. biol. Chem. 195, 75–93 (1952).PubMedGoogle Scholar
  155. Vishniac, W., and I. A. Rose: Mechanism of chlorophyll action in photosynthesis. Nature (Lond.) 182, 1089–1090 (1958).CrossRefGoogle Scholar
  156. Warburg, O.: Versuche über die Assimilation der Kohlensäure. Biochem. Z. 166, 386–406 (1925).Google Scholar
  157. Schwermetalle als Wirkungsgruppen von Fermenten, 2. Aufl. Berlin: W. Saenger 1948.Google Scholar
  158. Heavy metal prosthetic groups and enzyme action. Oxford: Clarendon Press 1949.Google Scholar
  159. Über den Einfluß der Wellenlänge auf die Chinonreduction in grünen Grana. Z. Naturforsch. 76, 443–446 (1952).Google Scholar
  160. Photosynthese. Angew. Chem. 69, 627–634 (1957).Google Scholar
  161. Photosynthesis. Experiments at the Max Planck Institute for Cell Physiology, Berlin-Dahlem, 1950–1957. Science 128, 68–73 (1958).Google Scholar
  162. Warburg, O., u. G.Krippahl: Hill-Reaktionen. Z. Natur-forsch. 13b, 509–514 (1958).Google Scholar
  163. Warburg, O., u. W. Lüttgens: Experiment zur Assimilation der Kohlensäure. Naturwissenschaften 32, 161, 301 (1944).CrossRefGoogle Scholar
  164. Photochemical reduction of quinone in green granules. [Russian.] Biokhimiya 11, 303–322 (1946).Google Scholar
  165. Wayrynen. R. E.: The quantum yield of the photoreduction reaction in photosynthesis. Ph. D. thesis, University of Utah, Salt Lake City, Utah, 1952.Google Scholar
  166. Wayrynen, R. E., R. Lumry, J. D. Spikes and J. Rieske: The mechanism of the photochemical activity of isolated chloroplasts. I. Quantum yield. A. E. C. Technical Rep. No. VII, Sept. 30, 1952. Institute for the study of Rate Processes, University of Utah, Salt Lake City.Google Scholar
  167. Wessels, J. S. C.: Investigation into some aspects of the Hill reaction. Ph. D. thesis, Leyden, 1954.Google Scholar
  168. A possible function of vitamin K in photosynthesis. Rec. Trav. chim. Pays-Bas. 73, 529–536 (1954).Google Scholar
  169. Wessels, J. S. C., and R. van der Veen: The action of some derivatives of phenylurethane and of 3-phenyl-1, 1 -dimethyl urea on the Hill reaction. Biochim. biophys. Acta 19, 548–549 (1956).PubMedCrossRefGoogle Scholar
  170. Whatley, F. R., M. B. Allen, L. L. Rosenberg, J. B. Capindale and D. I. Arnon: Photosynthesis by isolated chloroplasts. V. Phosphorylation and carbon dioxide fixation by broken chloroplasts. Biochim. biophys. Acta 20, 462–468 (1956).PubMedCrossRefGoogle Scholar
  171. Whatley, F. R., L. Ordin and D. I. Arnon: Distribution of micronutrient metals in leaves and chloroplast fragments. Plant Physiol. 26, 414–418 (1951).PubMedCrossRefGoogle Scholar
  172. Whittingham, C. P.: Some features of the chloroplast reaction. Research in Photosynthesis, edit. by H. Gaffron, p. 263–273. New York 1957.Google Scholar
  173. Willstätter, R., u. A. Stoll: Untersuchungen über die Assimilation der Kohlensäure. Berlin: Springer 1918.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • K. A. Clendenning

There are no affiliations available

Personalised recommendations