Advertisement

Untersuchungen der Photosynthese bei Anregung mit Blitzlicht

  • H. T. Witt
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)

Zusammenfassung

Zur Untersuchung der an der Photosynthese beteiligten Teilreaktionen hat sich neben anderen Verfahren die Anregung der Photosynthese mit Blitzlicht als erfolgreiche Methode erwiesen. Diese Methode wurde vor nahezu 40 Jahren eingeführt, aber auch heute sind die Anwendungsmöglichkeiten dieses Untersuchungsverfahrens noch nicht erschöpft.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Allen, F. L., and J. Franck: Photosynthetic evolution of oxygen by flashes of light. Biochem. and Biophys. 58, 124 (1955).CrossRefGoogle Scholar
  2. Arnold, W.: The order of Blackman reaction in photosynthesis. J. gen. Physiol. 15, 391 (1933).Google Scholar
  3. Arnold, W., and H. Kohn: The chlorophyll unit in photosynthesis. J. gen. Physiol. 18, 109 (1934).PubMedCrossRefGoogle Scholar
  4. Arnold, W., and H. K. Sherwood: Are chloroplasts semiconductors? Proc. nat. Acad. Sci. (Wash.) 43, No 1, 105 (1957).CrossRefGoogle Scholar
  5. Arnon, D. I.: The chloroplasts as a complete photosynthetic unit. Science 122, 9 (1955).PubMedCrossRefGoogle Scholar
  6. Arnon, D. I., M. B. Allen and F. R. Whatley: Photosynthesis by isolated chloroplasts. IV. General concept and comparision of three photochemical reactions. Biochim. biophys. Acta 20, 449, 462 (1956).PubMedCrossRefGoogle Scholar
  7. Arnon, D.I., and F. R. Whatley: Factors influencing oxygen production by illuminated chloroplast fragments. Arch. Biochem. 23, 141 (1949).PubMedGoogle Scholar
  8. Aufdemgarten, H.: Zur Kenntnis der sogenannten Induktionsvorgänge bei der Kohlensãureassimilation. Planta (Berl.) 24, 643 (1939).CrossRefGoogle Scholar
  9. Bassham, J. A., and M. Calvin: Photosynthesis. USAEC ünclass. Report UCRL-2853 (1955).Google Scholar
  10. Bishof, N. J.: Vitamin K, an essential factor for the photochemical activity of isolated chloroplasts. Proc. nat. Acad. Sci. (Wash.) 44, 501 (1958).CrossRefGoogle Scholar
  11. Blinks, L. R., and R. K. Skow: The time course of photosynthesis as shown by the glass electrode, with anomalies in the acidity changes. Proc. nat. Acad. Sci. (Wash.) 24, 420 (1938).CrossRefGoogle Scholar
  12. Bradley, D. F., and M. Calvin: The effect of thioctic acid on the quantum efficiency of the Hill reaction in intermittent light. Science 41, 563 (1955).Google Scholar
  13. Briggs, G. E.: Photosynthesis in intermittent light, in relation to current formulations of the principles of the photosynthetic mechanism. Biol. Rev. 10, 460 (1935).CrossRefGoogle Scholar
  14. Photosynthesis in intermittent illumination. Proc. roy. Soc. B 130, 24 (1941).Google Scholar
  15. Brilliant, W. A., u. T. A. Krupnikowa: Über den Einfluß von KCN auf den Gasaustausch von Wasserpflanzen bei verschiedenartiger Beleuchtung [in Russisch]. Dokl. Akad. Nauk SSSR. 85, No 6, 1383 (1952a).Google Scholar
  16. Über die verschiedenen Bedingungen des Verlaufs der Dunkelreaktionen bei der Photosynthese [in Russisch]. Dokl. Akad. Nauk SSSR. 86, Nr 6, 1223 (1952b).Google Scholar
  17. Brody, S. S., and E. Rabinowitch: Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science 125, 555 (1957).PubMedCrossRefGoogle Scholar
  18. Brown, H. T., and F. Escombe: Researches on some of the physiological processes of green leaves, with special reference to the interchange of energy between the leaf and its surroundings. Proc. roy. Soc. B 76, 29 (1905).CrossRefGoogle Scholar
  19. Burk, D., G. Hobby, T. Laughead and V. Riley: Reversible solarization in intermittent photosynthesis and its signifiance for the Blackman time constant, chlorophyll unit, and catalyst B. Fed. Proc. 12, 185 (1953).Google Scholar
  20. Chance, B., and R. Sager: Oxygen and light induced oxidations of cytochrome, flavoprotein and pyridine nucleotide in a Chlamydomonas mutant. Plant Physiol. 32, 548 (1957b).CrossRefGoogle Scholar
  21. Chance, B., and B. Strehler: Effects of oxygen and red light upon the absorption of visible light in green plants. Plant Physiol. 32, 536 (1957).PubMedCrossRefGoogle Scholar
  22. Christie, M. I., R. G. W. Norrish and G. Porter: The recombination of atoms. I. Iodine atoms in the rare gases. Proc. roy. Soc. A 216, 152 (1952).Google Scholar
  23. Claes, H.: Analyse der biochemischen Synthesekette für Carotinoide mit Hilfe von Chlorella-Mutsanten. Z. Naturforsch. 9b, 461 (1954).Google Scholar
  24. Clendenning, K. A., and H. C. Ehrmantraut: Photosynthesis and Hill reactions by whole Chlorella cells in continuous and flashing light. Arch. Biochem. 29, 387 (1950).PubMedGoogle Scholar
  25. Coleman, J. W., A. S. Holt and E. Rabinowitch: Reversible bleaching of chlorophyll in vivo. Science 123, 795 (1956).PubMedCrossRefGoogle Scholar
  26. Coleman, J. W., and E. Rabinowitch: Evidence of photoreduction of chlorophyll in vivo. J. phys. Chem. 63, 30 (1959).CrossRefGoogle Scholar
  27. Damaschke, K., u. L. Rothbühr: Die langsamste Dunkelreaktion der Photosynthese und der Einfluß von Giften auf diese, verfolgt durch elektrochemische Sauerstoffmessung. Biochem. Z. 327, 39 (1955).PubMedGoogle Scholar
  28. Damaschke, K., L. Rothbühr u. F. Tödt: Photosynthèse unter anaeroben Bedingungen. Z. Naturforsch. 106, 572 (1955).Google Scholar
  29. Davidson, N., R. Marshall, A. E. Larsh and T. Carrington: Direct observation of the rate of recombonation of iodine atoms. J. chem. Phys. 19, 1311 (1951).CrossRefGoogle Scholar
  30. Dutton, H. I., W. M. Manning and B. M. Duggar: Chlorophyll fluorescence and energy transfer in the diatom Nitzschia closterium. J. physic. Chem. 47, 308 (1943).CrossRefGoogle Scholar
  31. Duysens, L. N. M.: Transfer of excitation energy in photosynthesis. Thesis Utrecht 1952.Google Scholar
  32. Reversible photo-oxidation of a cytochrome pigment in photosynthesizing Rhodospirillum rubrum. Nature (Lond.) 173, 692 (1954a).Google Scholar
  33. Reversible changes in the absorption spectrum of Chlorella upon irradiation. Science 120, 353 (1954b).Google Scholar
  34. Role of cytochrome and pyridine nucleotide in algal photosynthesis. Science 121, 210 (1955a).Google Scholar
  35. Studies on catalysts in photosynthesis of Chlorella by means of sensitive absorption spectrophotometry. 3. Congr. Int. Biochimie, Bruxelles (Communication). 1955b.Google Scholar
  36. Ehrmantraut, H. C., and E. Rabinowitch: Kinetics of Hill reaction. Arch. Biochem. 38, 67 (1952).PubMedCrossRefGoogle Scholar
  37. Emerson, R.: Photosynthesis. Ann. Rev. Biochem. 6, 535 (1937).CrossRefGoogle Scholar
  38. Emerson, R., and W. Arnold: A separation of the reactions in photosynthesis by means of intermittent light. J. gen. Physiol. 15, 391 (1932a).CrossRefGoogle Scholar
  39. The photochemical reaction in photosynthesis. J. gen. Physiol. 16, 191 (1932b).Google Scholar
  40. Emerson, R., R. Chalmers and C. Cederstrand: Some factors influencing the long-wave limit of photosynthesis. Proc. nat. Acad. Sci. (Wash.) 43, 133 (1957).CrossRefGoogle Scholar
  41. Emerson, R., L. Green and J. L. Webb: Relation between quantity of chlorophyll and capacity for photosynthesis. Plant Physiol. 15, 311 (1940).PubMedCrossRefGoogle Scholar
  42. Förster, Th.: Ein Beitrag zur Theorie der Photosynthese. Z. Naturforsch. B 2, 174 (1947).Google Scholar
  43. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physik 2, 55 (1948).Google Scholar
  44. Franck, J.: Physical problems of photosynthesis. Daedalus, Proc. Amer. Acad. Arts Sci. 86, 17 (1955).Google Scholar
  45. Franck, J., and K. F. Herzfeld: Contribution to a theory of photosynthesis. J. phys. Chem. 45, 978 (1941).CrossRefGoogle Scholar
  46. Franck, J., and R. Livingston: Remarks on intra- and inter-molecular migration of excitation energy. Rev. Modern Phys. 21, 505 (1949).CrossRefGoogle Scholar
  47. Franck, J., P. Pringsheim and D. Lad: Oxygen production by anaerobic photosynthesis of algae measured by a new micro method. Arch. Biochem. 7, 103 (1945).Google Scholar
  48. Franck, J., and E. Teller: Migration and photochemical action of excitation energy in crystals. J. chem. Phys. 6, 861 (1938).CrossRefGoogle Scholar
  49. French, S. C., and V. K. Young: „Pigments Spectra“, Biological Effects of Radiation, 2. Aufl., Bd. II. New York: Mc Graw-Hill 1952.Google Scholar
  50. Fujimori, E., and R. Livingston: Interactions of chlorophyll in its triplet state with oxygen, carotene, etc. Nature (Lond.) 180, 1036 (1957).CrossRefGoogle Scholar
  51. Gaffron, H., u. K. Wohl: Zur Theorie der Assimilation. Naturwissenschaften 24, 81 (1936).CrossRefGoogle Scholar
  52. Gerretsen, F. C.: Manganese in relation to photosynthesis. Plant and Soil 2, 159 (1950).CrossRefGoogle Scholar
  53. Gilmour, H. S. A., R. Lumry and J. D. Spikes: Kinetic evidence for new participants in the Hill reaction. Nature (Lond.) 173, 31 (1954).CrossRefGoogle Scholar
  54. Gilmour, H. S. A., R. Lumry, J. D. Spikes and H. Eyring: Kinetics of the Hill reaction of isolated chloroplasts in flashing light. Report XI to the Atomic Energy Commission [Contract No. A I (11-1)-82, Project No. 4]. 1953.Google Scholar
  55. Holt, A. S., and C. S. French: The photochemical production of oxygen and hydrogen ion by isolated chloroplasts. Arch. Biochem. 9, 25 (1946).PubMedGoogle Scholar
  56. Katz, E.: Photosynthesis in plants, p. 291. Amer. Iowa State College Press 1949.Google Scholar
  57. Kennedy, S. R.: The influence of magnesium deficiency, chlorophyll concentration and heat-treatments on the rate of photosynthesis of Chlorella. Amer. J. Bot. 27, 68 (1940).CrossRefGoogle Scholar
  58. Kessler, E.: Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. Planta (Berl.) 49, 435 (1957).CrossRefGoogle Scholar
  59. Kohn, H. L: Number of chlorophyll molecules acting as an absorbing unit in photosynthesis. Nature (Lond.) 137, 706 (1936).CrossRefGoogle Scholar
  60. Kok, B.: Photosynthesis in flashing light. Biochim. et biophys. Acta 21, 245 (1956a).CrossRefGoogle Scholar
  61. On the reversible absorption change at 705 mμ in photosynsynthetic Organismus. Biochim. et biophys. Acta 22, 399 (1956b).Google Scholar
  62. Absorption changes induced by the photochemical reaction of photosynthesis. Nature (Lond.) 179, 583 (1957a).Google Scholar
  63. Light induced absorption changes in photosynthesis. Acta bot. neerl. 6, 316 (1957b).Google Scholar
  64. Changes of absorption spectrum induced by illumination and their bearing on the nature of the photoreceptor of photosynthesis. Atti del 2. Congr. interna rionale di fotobiologia, Torino 1957, Edizioni Minerva Medica 1957c.Google Scholar
  65. Light induced absorption changes in photosynthetic organisms. (A split beam difference spectrophotometer.) Plant Physiol. 34, 184 (1959).Google Scholar
  66. Kok, B., and J. A. Businger: Kinetics of photosynthesis and photoinhibition. Nature (Lond.) 177, 135 (1956).CrossRefGoogle Scholar
  67. Krasnovsky, A. A.: Reversible photochemical reduction of chlorophyll by ascorbate. C. R. (Doklady) Acad Sci. USSR. 60, 421–427 (1948).Google Scholar
  68. Latimer, P., T. T. Bannister and E. Rabinowitch: Quantum yields of fluorecence of plant pigments. Science 124, 585 (1956).PubMedCrossRefGoogle Scholar
  69. Livingston, R., and V. A. Ryan: The phototropy of chlorophyll in fluid solutions. J. Amer. chem. Soc. 75, 2176 (1953).CrossRefGoogle Scholar
  70. Lundegårdh, H.: On the oxidation of cytochrome by light. Physiol. Plantarum (Cph.) 7, 375 (1954).CrossRefGoogle Scholar
  71. Lynch, V. H., and C. S. French: β-Carotene, an active component of chloroplasts. Arch. Biochem. 70, 382 (1957).PubMedCrossRefGoogle Scholar
  72. Mc Alister, E. D.: Time course of photosynthesis for a higher plant. Smithson. Misc. Coll. 95, No 24 (1937).Google Scholar
  73. Niel, C.B.van: The bacterial photosynthesis and their importance for the general problem of photosynthesis. In: Advances in Enzymology and related Subjects, Vol. I, p. 263. New York: Interscience 1941.Google Scholar
  74. Noack, K., A. Pirson u. H. Michels: Zur Kenntnis der Assimilationshemmung nach Sauerstoffentzug bei Grünalgen. Naturwissenschaften 27, 645 (1939).CrossRefGoogle Scholar
  75. Olson, R. A., F. S. Bbackett and R. G. Crickard: Transient oxygen evolution in Chlorella within a few seconds after illunnnation. J. cell. comp. Physiol. 46, 353 (1955).Google Scholar
  76. Ornstein, L. S., E. C. Wassink, G. H. Reman and D. Vermeulen: Theoretical considerations concerning the relation between chlorophyll fluorescence and photosynthesis in green plant cells. Enzymologia 5, 110 (1938).Google Scholar
  77. Phillips, J. N., and J. Myers: Growth rate of Chlorella in flashing light. Plant Physiol. 29, 152 (1954).PubMedCrossRefGoogle Scholar
  78. Pirson, A., C. Tichy u. G. Wilhelmi: Stoffwechsel und Mineralsalzernährung einzelliger Grünalgen. Planta (Berl.) 40, 199 (1952).CrossRefGoogle Scholar
  79. Pollack, M., P. Pringsheim and D. Terwood: A method for determining small quantities of oxygen. J. chem. Phys. 12, 295 (1944).CrossRefGoogle Scholar
  80. Porter, G., and M. W. Windsor: The triplet state in fluid media. Proc. roy. Soc. A 244, 238 (1958).Google Scholar
  81. Pratt, R., F. N. Craig and S. F. Trelease: Influence of deuterium oxide on photochemical and dark reactions of photosynthesis. Science 85, 271 (1937).PubMedCrossRefGoogle Scholar
  82. Pratt, R., and S. F. Trelease: Influence of deuterium oxide on photosynthesis in flashing and in continuous light. Amer. J. Bot. 25, 133 (1938).CrossRefGoogle Scholar
  83. Rabinowitch, E.: Photosynthesis and related processes II, 1. New York: Interscience Publishers 1951.Google Scholar
  84. Photosynthesis and related processes II, 2. New York: Interscience Publishers 1956.Google Scholar
  85. Rieke, F. F., and H. Gaffron: Flash saturation and reaction periods in photosynthesis. J. phys. Chem. 47, 299 (1943).CrossRefGoogle Scholar
  86. Rosenberg, I. L., S. Takashtma and R. Lumry: Spectroscopy of flash-illuminated chloroplasts. In: Research in Photosynthesis, Part II. New York: Interscience Publ. 1957. Papers presented at Gatlinburg Conference on Photosynthesis 1955.Google Scholar
  87. Strehler, B. L., and V. H. Lynch: Photosynthetic luminescence and photoinduced absorption spectrum changes in Chlorella. Science 123, 462 (1956).PubMedCrossRefGoogle Scholar
  88. Szent-Györgyi, A.: Towards a new biochemistry? Science 93, 604 (1941).Google Scholar
  89. Tamiya, H., and Y. Criba: Analysis of photosynthetic mechanism by the method of intermittent illumination. Stud. Tokugawa Inst. 6, I u. II (1949).Google Scholar
  90. Tödt, F.: Grundlagen und Anwendungen der elektrochemischen Bestimmung des im Wasser gelösten Sauerstoffe. Gesundheits-Ing. 65, 76 (1942).Google Scholar
  91. Tödt, F., K. Damaschke u. L. Rothbühr: Die elektrochemische Messung von Sauerstoffumsätzen bei der Photosynthese. Biochem. Z. 325, 210 (1954).PubMedGoogle Scholar
  92. Vereshchinsky, I. V.: Eine Methode zur Aufbewahrung isolierter Chloroplasten ‚bei der ihre photochemischen Aktivitäten nicht geändert werden. Biochimija 16, 350 (1951).Google Scholar
  93. Vishniac, W., and I. A. Rose: Mechanism of chlorophyll action in photosynthesis. Nature (Lond.) 182, 1089 (1958).CrossRefGoogle Scholar
  94. Warburg, O.: Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebendigen Zellen. Biochem. Z. 100, 230 (1919a). Biochem. Z. 100, 258 (1919b).Google Scholar
  95. Quantenmechanismus der Photosynthese. Z. Elektrochem. 55, 447 (1951).Google Scholar
  96. Warburg, O., u. G. Krippahl: Über die CO2-Kapazität der Chlorella und den chemischen Mechanismus der CO2-Assimilation.Google Scholar
  97. Über die funktionelle Carboxylgruppe des Chlorophylls. Z. Naturforsch. 11b, 52, 179 (1956).Google Scholar
  98. Warburg, O., u. E. Negelein: Über den Energieninaatz bei der Kohlensäureassimilation. Z. phys. Chem. 102, 235 (1922).Google Scholar
  99. Über den Einfluß der Wellenlänge auf den Energieumsatz bei der Kohlensäureassimilation. Z. phys. Chem. 106, 191 (1923).Google Scholar
  100. Wassink, E. C., et J. A. H. Kersten: Observations sur la photosynthèse et la fluorescence chlorophyllienne des Diatomées. Enzymologia 11 (282) (1944).Google Scholar
  101. Wassink, E. C., P. Vermeulen, G. H. Reman and E. Katz: On the relation between fluorescence and assimilation in photosynthesis. Enzymology 5, 100 (1938).Google Scholar
  102. Weiss, J.: Some remarks on the photosynthesis of green plants. J. gen. Physiol. 20, 501 (1937).PubMedCrossRefGoogle Scholar
  103. Weller, A.: The visible adsorption spectra of the phase test intermediates of chlorophyll-a and -b. Amer, chem. Soc. 76, 5819 (1954).CrossRefGoogle Scholar
  104. Weller, S., and J. Franck: Photosynthesis in flashing light. J. phys. Chem. 45, 1359 (1941).CrossRefGoogle Scholar
  105. Wessels, I. S. C.: Investigations into some aspects of the Hill reaction. Thesis, Leyden, 1954.Google Scholar
  106. Whittingham, C., P., and A. H. Brown: Oxygen evolution from algae illuminated by short and long flushes of light. J. exp. Bot. 9, 311 (1958).CrossRefGoogle Scholar
  107. Willstätter, R., u. A. Stoll: Untersuchungen über die Assimilation der Kohlensäure. Berlin 1918.Google Scholar
  108. Witt, H.T.: Kurzzeitige Absorptionsänderungen beim Primärprozeß der Photosynthèse. Naturwissenschaften 42, 72 (1955a).CrossRefGoogle Scholar
  109. Zum Primärprozeß der Photosynthese. Z. phys. Chem., N. F. 4, 120 (1955b).Google Scholar
  110. Experimente zum Primärprozeß der Photosynthese. Z. Elektrochem. 59, 981 (1955c)— Reaction patterns in the primary process of Photosynthesis. In: Research in Photosynthesis, Part II. New York-London: Interscience Inc. 1957. Papers presented at Gatlinburg Conference on Photosynthesis 1955d.Google Scholar
  111. Witt, H. T., u. R. Moraw: Absorptionsänderung und Chlorophyllfluoreszenz im Primärprozeß der Photosynthese. Z. phys. Chem., N. F. 12, 393 (1957a).CrossRefGoogle Scholar
  112. Absorptionsänderung und Sauerstoffbildung im Primärprozeß der Photosynthese. Z. phys. Chem., N. F. 13, 119 (1957b).Google Scholar
  113. Untersuchungen über den Primärprozeß der Photosynthese. I. Z. phys. Chem., N. F. 20, 17 (1959a).Google Scholar
  114. Untersuchungen über den Primärprozeß der Photosynthese. II. Z. phys. Chem., N. F. 20, 283 (1959b).Google Scholar
  115. Witt, H. T., R. Moraw u. A. Müller: Zum Primärprozeß der Photosynthese an Chlorophyllkörnern außerhalb der pflanzlichen Zelle. Z. Elektrochem. 60, 1149 (1956).Google Scholar
  116. Zur Dunkelreaktion im Primärprozeß der Photosynthese. Z. phys. Chem., N.F. 13, 113 (1957).Google Scholar
  117. Neue Absorptionsänderungen beim Primärprozeß der Photosynthese. Z. phys. Chem., N. F. 14, 127 (1958a).Google Scholar
  118. Reaktionen am Chlorophyll beim Primärprozeß der Photosynthese. Z. Naturforsch. 13b, 822 (1958b).Google Scholar
  119. Blitzlichtphotometrie. Z. phys. Chem., N.F. 20, 193 (1959).Google Scholar
  120. Witt, H. T., R. Moraw, A. Müller, B. Rumberg u. G. Zieger: Zwei Chlorophyllreaktionen in vivo. Z. phys. Chem. N. F. 23, 133 (1960).CrossRefGoogle Scholar
  121. Kinetische Untersuchungen bei den Primärvorgängen der Photosynthese. Z. Elektrochem. 64, 181 (1960).Google Scholar
  122. Witt, H. T., u. A. Müller: Quantitative Untersuchungen über den Primärprozeß der Photosynthese an isolierten Chloroplasten. III. Z. phys. Chem., N. F. 21, 1 (1959).CrossRefGoogle Scholar
  123. Wohl, K.: Zur Theorie der Assimilation. I. Die Theorie der Assimilationseinheit. Z. phys. Chem. B 37, 105 (1937a).Google Scholar
  124. Zur Theorie der Assimilation. II. Die Assimilationstheorie von Franck und Herzfeld. Z. phys. Chem. B 37, 122 (1937b).Google Scholar
  125. Zur Theorie der Assimilation. III. Über die Dunkelreaktionen der Assimilation („die Blackmansche Reaktion“). Z. phys. Chem. B 37, 169 (1937c).Google Scholar
  126. Zur Theorie der Assimilation. IV. Zum Mechanismus der Assimilationseinheit. Z. phys. Chem. B 37, 186 (1937d).Google Scholar
  127. Zur Theorie der Assimilation. V. Gesamtübersicht. Z. phys. Chem. B 37, 209 (1937e).Google Scholar
  128. Wolken, B. B., and F. A. Schwertz: Molecular weight of algal chloroplastin. Nature (Lond.) 177, 136 (1956).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • H. T. Witt

There are no affiliations available

Personalised recommendations