Advertisement

Abstract

Robert Mayer (1845) was the first to recognize clearly that life on earth is maintained by the continuous inflow of sunlight, captured by plants. Indeed the most important aspect of photosynthesis is, that it provides the energetic basis of the organic world.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Arnold, W.: A calorimetric determination of the quantum yield in photosynthesis, p. 273–277 in: Photosynthesis in plants, ed. W. Franck and W. E. Looms. Ames: Iowa State Coll. Press 1949.Google Scholar
  2. Arnon, D. I.: Phosphorus metabolism and photosynthesis. Ann. Rev. Plant Physiol. 7, 325–354 (1956).CrossRefGoogle Scholar
  3. Arnon, D. I., R. F. Whatley and M. B. Allen: Assimilatory power in photosynthesis. Science 127, 1026–1034 (1958).PubMedCrossRefGoogle Scholar
  4. Aronoff, S.: Photosynthesis. Bot. Review 23, 65–107 (1957).CrossRefGoogle Scholar
  5. Avron, M., D. W. Krogmann and A. T. Jagendorf: The relation of photosynthetic phosphorylation to the Hill reaction. Biochim. biophys. Acta 30, 144–153 (1958).PubMedCrossRefGoogle Scholar
  6. Barer, R.: Spectrophotometry of clarified cell suspensions. Science 121, 709–715 (1955).PubMedCrossRefGoogle Scholar
  7. Bassham, J. A., A. A. Benson, L. D. Kay, A. Z. Harris, A. T. Wilson and M. Calvin: The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Amer. chem. Soc. 76, 1770–1779 (1954).CrossRefGoogle Scholar
  8. Bassham, J. A., K. Shibata and M. Calvin: Quantum requirement in photosynthesis related to respiration. Biochim. biophys. Acta 17, 332–340 (1955).PubMedCrossRefGoogle Scholar
  9. Benson, A. A., and M. Calvin: The path of carbon in photosynthesis. VII. Respiration and photosynthesis. J. exp. Bot. 1, 63–68 (1950).CrossRefGoogle Scholar
  10. Bongers, L. H. J.: Aspects of nitrogen assimilation by cultures of green algae. Thesis Wageningen. Med. Landb. Hogeschool 56, 1–52 (1956).Google Scholar
  11. Kinetic aspects of nitrate reduction by green algae. Neth. J. Agr. Sc. 6, 79–88 (1958).Google Scholar
  12. Boonstra, A. E. H. R.: Rasverschillen by bieten. VI. Med. Inst. Suikerbietenteelt 12, 13–95 (1942).Google Scholar
  13. Bràckett, F. S., R. A. Olson and R. G. Crickard: Respiration and intensity dependence of photosynthesis in Chlorella. J. gen. Physiol. 36, 529–561 (1953a).CrossRefGoogle Scholar
  14. Time course and quantum efficiency of photosynthesis in Chlorella. J. gen. Physiol. 36, 563–579 (1953b).Google Scholar
  15. Transients in O2 evolution by Chlorella in light and darkness I, p. 412–418 in: Research in Photosynthesis, ed. H. Gaffron et al. New York: Interscience 1957.Google Scholar
  16. Briggs, G. E.: Vegetable assimilation and respiration. Proc. roy. Soc. B 105, 1–35 (1930).CrossRefGoogle Scholar
  17. Experimental researches on vegetable assimilation and respiration. XXI. Induction phases in photosynthesis and their bearing on the mechanism of the process. Proc. roy. Soc. B 113, 1–41 (1933).Google Scholar
  18. Brody, S. S.: New excited state of chlorophyll. Science 128, 838–839 (1958).PubMedCrossRefGoogle Scholar
  19. Brown, A. H.: The effects of light on respiration using isotopically enriched oxygen. Ann. J. Bot. 40, 719–729 (1953).CrossRefGoogle Scholar
  20. Brown, A. H., A. O. C. Nier and R.W. van Norman: Measurement of metabolic gas exchange with a recirdong mass spectrometer. Plant Physiol. 27, 320–334 (1952).PubMedCrossRefGoogle Scholar
  21. Brown, A. H., and D. Weis: Relation between respiration and photosynthesis in the green alga, Ankistrodesmus braunii. Plant Physiol. 34, 224–234 (1959).PubMedCrossRefGoogle Scholar
  22. Brown, A. H., and C P. Whittingham: Identification of the carbon dioxide burst in Chlorella using the recording mass spectrometer. Plant Physiol. 30, 231–237 (1955).PubMedCrossRefGoogle Scholar
  23. Brugger, J.: Fluorescence yield of chlorophyll in Chlorella as a function of light intensity, p. 113–117 in: Research in Photosynthesis, ed. H. Gaffron et al. New York: Interscience 1957.Google Scholar
  24. Burk, D.: Quantum yield of photosynthesis. Nat. Sc. F. Photosynthesis Meetings Gatlinburg 1952.Google Scholar
  25. Photosynthesis: A thermodynamic perfection of nature. Fed. Proc. 12, 611–625 (1953).Google Scholar
  26. Burk, D., S. B. Hendricks, M. Korzenovsky, V. Schocken and O. Warburg: The maximum efficiency of photosynthesis: a rediscovery. Science 110, 225–229 (1949).PubMedCrossRefGoogle Scholar
  27. Burk, D., G. Hobby and J. Hunter: Quantum efficiencies of photosynthesis and cell growth in thermophilic Chlorella at high light intensities. Science 121, 620 (1955).Google Scholar
  28. Burk, D., A. L. Schade, J. Hunter and O.Warburg: Three-vessel and one-vessel manometric techniques for measuring CO2 and O2 gas exchanges in respiration and photosynthesis. Symp. Soc. exp. Biol. 5, 312–335 (1951a).Google Scholar
  29. Burk, D., and O. Warburg: 1-Quanten-Mechanismus und Energie-Kreisprozeß bei der Photosynthese. Naturwissenschaften 37, 560 (1950).CrossRefGoogle Scholar
  30. Ein-Quanten-Reaktion und Kreisprozeß der Energie bei der Photosynthese. Z. Naturforsch. 6b, 12–22 (1951b).Google Scholar
  31. Burlew, J. S. (ed.): Algal culture from laboratory to pilot plant. Washington: C. I. Publ. 1953.Google Scholar
  32. Burström, H.: Nitrate reduction, p. 443–462 in vol. III, Radiation biology, ed. A. Hollaender and S. B. Hendricks. New York: McGraw Hill 1956.Google Scholar
  33. Burton, K., and H. A. Krebs: The free energy changes associated with the individual steps of the tricarboxylic acid cycle, glycolysis and alcoholic fermentation and with the hydrolysis of the pyrophosphate groups of adenosine triphosphate. Biochem. J. 54, 94–102 (1953).PubMedGoogle Scholar
  34. Burton, K., and T. H. Wilson: The free energy changes for the reduction of diphosphopyridine nucleotide and the dehydrogenation of 1-malate. Biochem. J. 54, 86–94 (1953).PubMedGoogle Scholar
  35. Calvin, M.: The photosynthetic carbon cycle. Conf. 3. Int. Congr. Bioch., p. 211–225, Liège 1956.Google Scholar
  36. Chen, S. L.: The action spectrum for the photochemical evolution of oxygen by isolated chloroplasts. Plant Physiol. 27, 35–47 (1952).PubMedCrossRefGoogle Scholar
  37. Clendenning, K. A.: Biochemistry of chloroplasts in relation to the Hill reaction. Ann. Rev. Plant Physiol. 8, 137–152 (1957).CrossRefGoogle Scholar
  38. Clendenning, K. A., and T. E. Brown: Photosynthesis in heavily centrifuged algae. Physiol. Plantarum (Copenh.) 9, 515–518 (1956).CrossRefGoogle Scholar
  39. Clendenning, K. A., and H. C. Ehrmantraut: Photosynthesis and Hill reactions by whole Chlorella cells in continuous and flashing light. Arch. Biochem. 29, 387–403 (1950).PubMedGoogle Scholar
  40. Cramer, M., and J. Myers: Nitrate reduction and assimilation in Chlorella. J. gen. Physiol. 32, 93–102 (1948).PubMedCrossRefGoogle Scholar
  41. Damaschke, K., L. Rothbühr u. F. Tödt: Anwendung der elektrochemischen Sauerstoffmeßmethode für Messungen in biologischen Medien und ihre Ausführung. Biochem. Z. 326, 424–432 (1955).PubMedGoogle Scholar
  42. Damaschke, K., F. Tödt, D. Burk and O. Warburg: An electrochemical demonstration of the energy cycle and maximum quantum yield in photosynthesis. Biochim. biophys. Acta 12, 347–355 (1953).PubMedCrossRefGoogle Scholar
  43. Daniels, F.: Energy efficiency in photosynthesis. In: Radiation and Biology, ed. A. Hollaender and S. B. Hendricks, Vol. III. New York: McGraw Hill Book Co. 1955.Google Scholar
  44. Davenport, H. E., and R. Hill: The preparation and some properties of cytochrome f. Proc. roy. Soc. B 139, 327–345 (1952).CrossRefGoogle Scholar
  45. Davis, E. H., and J. Dedrick: Laboratory experiments on Chlorella culture, culture medium, p. 119–126 in: Algal Culture, ed. J. S. Burlew. Washington: C. I. Publ. 1953.Google Scholar
  46. Duggar, B. M., J. F. Stauffer and F. Daniels: Quantum relations in photosynthesis with Chlorella. Science 99, 435 (1934).Google Scholar
  47. Dutton, H. J., and W. M. Manning: Evidence for carotenoid-sensitized photosynthesis in the diatom Nitzschia closterium. Ann. J. Bot. 28, 516–526 (1941).CrossRefGoogle Scholar
  48. Dutton, H. J., W. M. Manning and B. M. Duggar: Chlorophyll fluorescence and energy transfer in the diatom Nitzschia closterium. J. physic. Chem. 47, 308–313 (1943).CrossRefGoogle Scholar
  49. Duysens, L. N. M.: Transfer of excitation energy in photosynthesis, 96 pp. Thesis Utrecht 1952.Google Scholar
  50. Energy transformations in photosynthesis. Ann. Rev. Plant Physiol. 7, 25–50 (1956).Google Scholar
  51. Ehrmantraut, H., and E. Rabinowitch: Kinetics of Hill reaction. Arch. Biochem. 38, 67–84 (1952).PubMedCrossRefGoogle Scholar
  52. Eichhoff, H. J.: Die Lichtausbeute bei der Kohlensäureassimilation. Biochem. Z. 303, 112–131 (1939).Google Scholar
  53. Emerson, R.: The quantum yield of photosynthesis. Annual Rev. Plant Physiol. 34, 235–239 (1959).CrossRefGoogle Scholar
  54. Emerson, R., and R. Chalmers: Transient changes in cellular gas exchange and the problem of maximum efficiency of photosynthesis. Plant Physiol. 30, 504–529 (1955).PubMedCrossRefGoogle Scholar
  55. On the efficiency of photosynthesis above and below compensation of respiration, p. 349–352 in: Research on Phitosynthesis, ed. H. Gaffron et al. New York: Interscience 1957.Google Scholar
  56. Transient changes in cellular gas exchange, p. 406–407 in: Research in Photosynthesis, ed. H. Gaffron et al. New York: Interscience 1957.Google Scholar
  57. Emerson, R., R. Chalmers and C. Cederstrand: Some factors influencing the long-wave limit of photosynthesis. Proc. nat. Acad. Sci. (Wash.) 43, 133–143 (1957).CrossRefGoogle Scholar
  58. Emerson, R., R. Chalmers, C. Cederstrand and M. Brody: Effect of temperature on the long-wave limit of photosynthesis. Science 123, 673 (1956).Google Scholar
  59. Emerson, R., and L. Green: Effect of hydrogen-ion concentration on Chlorella photosynthesis. Plant Physiol. 13, 157–168 (1938).PubMedCrossRefGoogle Scholar
  60. Emerson, R., and C. M. Lewis: Factors influencing the efficiency of photosynthesis. Ann. J. Bot. 26, 808–822 (1939).CrossRefGoogle Scholar
  61. Carbon dioxide exchange and the measurement of the quantum yield of photosynthesis. Ann. J. Bot. 28, 789–804 (1941).Google Scholar
  62. The photosynthetic efficiency of phycocyanin in Chroococcus and the problem of carotenoids participation in photosynthesis. J. gen. Physiol. 25, 579–596 (1942).Google Scholar
  63. The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. Ann. J. Bot. 30, 165–178 (1943).Google Scholar
  64. Emerson, R., and M. S. Nishimura: The quantum requirement of photosynthesis, p. 219–239 in: Photosynthesis in plants, ed. J. Franck and W. E. Loomis. Ames: Iowa State Coll. Press 1949.Google Scholar
  65. Emerson. R, L., J. F. Stauffer and W. W. Umbreit: Relationship between phosphorylation and photosynthesis. Ann. J. Bot. 31, 107–120 (1944).CrossRefGoogle Scholar
  66. Engelmann, Th. W.: Über Sauerstoffausscheidung von Pflanzenzellen im Mikrospektrum. Arch. f. Physiol. 27, 285 (1883).Google Scholar
  67. Evans, H. J., and A. Nason: Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol. 28, 233–254 (1953).PubMedCrossRefGoogle Scholar
  68. Eymers, J. G., and E. C. Wassink: On the photochemical carbon dioxide assimilation in purple bacteria. Enzymologia 2, 258 to 304 (1938).Google Scholar
  69. Fan, C. S., J. F. Stauffer and W. W. Umbreit: An experimental separation of oxygen liberation from carbon dioxide fixation in photosynthesis by Chlorella. J. gen. Physiol. 27, 15–28 (1943).PubMedCrossRefGoogle Scholar
  70. Franck, J.: An interpretation of the contradictory results in measurements of the photosynthetic quantum yields and related phenomena. Arch. Biochem. 23, 297–314 (1949).PubMedGoogle Scholar
  71. A critical survey of the physical background of photosynthesis. Ann. Rev. Plant Physiol. 2, 53–86 (1951).Google Scholar
  72. Participation of respiratory intermediates in the process of photosynthesis as an explanation of abnormally high quantum yields. Arch. Biochem. 45, 190–229 (1953).Google Scholar
  73. Physical problems of photosynthesis. Proc. Amer. Acad. Arts and Sci. 86, 17–42 (1955).Google Scholar
  74. Franck, J., and K. F. Herzfeld: An attempted theory of photosynthesis. J. chem. Phys. 5, 237–251 (1937).CrossRefGoogle Scholar
  75. Contribution to a theory of photosynthesis. J. physic. Chem. 45, 978–1025 (1941).Google Scholar
  76. Franck, J., P. Pringsheim and D. T. Lad: Oxygen production by anaerobic photosynthesis of algae measured by a new micromethod. Arch. Biochem. 7, 103–142 (1946).Google Scholar
  77. French, C. S.: The quantum yield of hydrogen and carbon dioxide assimilation in purple bacteria. J. gen. Physiol. 20, 711–735 (1937).PubMedCrossRefGoogle Scholar
  78. The rate of CO2 assimilation by purple bacteria at various wave lengths of light. J. gen. Physiol. 21, 71–87 (1938).Google Scholar
  79. French, C. S., and G. S. Rabideau: The quantum yield of oxygen production by chloroplasts suspended in solution containing ferric oxalate. J. gen. Physiol. 28, 329–342 (1945).PubMedCrossRefGoogle Scholar
  80. Frenkel, A.: Light induced phosphorylation by cell-free preparations of photosynthetic bacteria. J. Amer. chem. Soc. 76, 5568 (1954).CrossRefGoogle Scholar
  81. Gaasstra, P.: Aspects of photosynthesis in higher plants. Med. Landb. Hogeschool Wageningen. (In the press.)Google Scholar
  82. Gabrielsen, E. K.: Die Kohlensàureassimilation der Laubblätter in verschiedenen Spektralgebieten. Planta (Berl.) 23, 474–478 (1935).CrossRefGoogle Scholar
  83. Einfluß der Lichtfaktoren auf die Kohlensäureassimilation der Laubblätter. Diss. Copenhagen. Dansk bot. Ark. 10, 1 (1940).Google Scholar
  84. Effects of different chlorophyll concentrations on photosynthesis in foliage leaves. Physiol. Plantarum (Copenh.) 1, 5–37 (1948).Google Scholar
  85. Gaffron, H.: Oxygen transfer by means of chlorophyll and the law of photochemical equivalence. Ber. dtsch. chem. Ges. 60, 755–766 (1927).CrossRefGoogle Scholar
  86. Reduction of carbon dioxide with molecular hydrogen in green algae. Nature (Lond.) 143, 204–205 (1939).Google Scholar
  87. Compensation of respiration by photosynthesis in Chlorella, p. 346. Proc. 1. Int. Photobiol. Congr. Amsterdam 1954.Google Scholar
  88. Transients in the carbon dioxide gas exchange of algae, p. 430–443 in: Research in Photosynthesis, ed. H. Gaffron et al. New York: Interscience 1957.Google Scholar
  89. Gaffron, H., u. J. Rosenberg: Über Rückreaktionen bei der Photosynthese. Naturwissenschaften 42, 354–364 (1955).CrossRefGoogle Scholar
  90. Geoghean, M. J.: Experiments with Chlorella at Jealott’s Hill, p. 182–189 in: Algal Culture, ed. J. S. Burlew. Washington: C. I. Publ. 1953.Google Scholar
  91. Gibbs, M., and O. Kandler: Asymmetrie distribution of C14 in sugars formed during photosynthesis. Proc. nat. Acad. Sci. (Wash.) 43, 446–451 (1957).CrossRefGoogle Scholar
  92. Haxo, F. T., and L. R. Blinks: Photosynthetic action spectra of marine algae. J. gen. Physiol. 33, 389–422 (1950).PubMedCrossRefGoogle Scholar
  93. Hill, R.: Oxygen evolved by isolated chloroplasts. Nature (Lond.) 139, 881–882 (1937).CrossRefGoogle Scholar
  94. Hill, R., and C. P. Wetttingham: The induction phase of photosynthesis in Chlorella determined by a spectroscopic method. New Phytologist 52, 133–148 (1953).Google Scholar
  95. Hiller, R. G., and C. P. Whittingham: Further studies on the carbon dioxide burst in algae. Plant Physiol. 34, 219–222 (1959).PubMedCrossRefGoogle Scholar
  96. Johnston, J. A., and A. H. Brown: The effect of light on the oxygen metabolism of the photosynthetic bacterium Rhodospirillum rubrum. Plant Physiol. 29, 177–182 (1954).PubMedCrossRefGoogle Scholar
  97. Kandler, O.: Über die Beziehungen zwischen Phosphathaushalt und Photosynthese. Z. Naturforsch. 12b, 271–280 (1957).Google Scholar
  98. Kandler, O., and M. Gibbs: Asymmetrie distribution of C14 in the glucose phosphates of Chlorella formed during photosynthesis. Plant Physiol. 31, 411–412 (1956).PubMedCrossRefGoogle Scholar
  99. Katz, E., and E. C. Wassink: Infrared absorption spectra of chlorophyllous pigments in living cells and in extra-cellular states. Enzymologia 1, 97–112 (1939).Google Scholar
  100. Kessler, E.: Stoffwechselphysiologische Untersuchungen an Hydrogenase enthaltenden Grünalgen. Arch. Mikrobiol. 27, 166–181 (1957).PubMedCrossRefGoogle Scholar
  101. Untersuchungen zum Problem der photochemischen Nitratreduktion in Grünalgen. Planta (Berl.) 49, 505–523 (1957).Google Scholar
  102. Ketchum, B. H.: Mineral nutrition of phytoplankton. Ann. Rev. Plant Physiol. 5, 55–74 (1954).CrossRefGoogle Scholar
  103. Kok, B.: A critical consideration of the quantum yield of Chlorella photosynthesis. Enzymologia 13, 1–56 (1948).Google Scholar
  104. Light induced absorption changes in photosynthetic organisms. II. A split-beam difference spectrophotometer. Plant Physiol. 34, 184–192 (1959).Google Scholar
  105. On the interrelation of respiration and photosynthesis in green plants. Biochim. biophys. Acta 3, 625–631 (1949).Google Scholar
  106. Photo-induced interactions in metabolism of green plant cells. Symp. Soc. exp. Biol. 5, 211–221 (1951).Google Scholar
  107. On the efficiency of Chlorella growth. Acta bot. néerl. 1, 445–467 (1952).Google Scholar
  108. Some sensitive and recording volumeters. Biochim. biophys. Acta 16, 35–44 (1955).Google Scholar
  109. On the inhibition of photosynthesis by intense light. Biochim. biophys. Acta 21, 234–244 (1956).Google Scholar
  110. Light induced absorption changes in photosynthetic organisms. Acta bot. néerl. 6, 316–336 (1957).Google Scholar
  111. Kok, B., and J. L. P. van Oorschot: Improved yields in algal mass cultures. Acta bot. néerl. 3, 533–546 (1954).Google Scholar
  112. Kok, B., and C. J. P. Spruit: High initial rates of gas exchange in respiration and photosynthesis of Chlorella. Biochim. biophys. Acta 19, 212–223 (1956).PubMedCrossRefGoogle Scholar
  113. Kopp, C: Über die Energieausbeute bei der Assimilation der Kohlensaure. Biochem. Z. 310, 191–207 (1941).Google Scholar
  114. Korkes, S.: Enzymatic reduction of pyridine nucleotides by molecular hydrogen. J. biol. Chem. 216, 737–748 (1955).PubMedGoogle Scholar
  115. Krall, A. R., M. Avron and A. T. Jagendorf: Non-participation of oxygen in photosynthetic phosphorylation by spinach chloroplasts. Biochim. biophys. Acta 26, 431–432 (1957).PubMedCrossRefGoogle Scholar
  116. Krauss, R. W.: Inorganic nutrition of algae, p. 85–102 in: Algal Culture, ed. J. S. Burlew. Washington: C. I. Publ. 1953.Google Scholar
  117. Krebs, H. A.: The use of CO2 buffers in manometric measurements of cell metabolism. Symp. Soc. exp. Biol. 5, 336–342 (1951).Google Scholar
  118. Larsen, H.: On the microbiology and biochemistry of the photosynthetic green sulfur bacteria. Thesis Trondheim 1953.Google Scholar
  119. Larsen, H., C. S. Yocum and C. B. van Niel: On the energetics of the photosynthesis in green sulfur bacteria. J. gen. Physiol. 36, 161–171 (1952).PubMedCrossRefGoogle Scholar
  120. Latimer, P., T. T. Bannister and E. Rabinowitch: Quantum yields of fluorescence of plant pigments. Science 124, 585 (1956).PubMedCrossRefGoogle Scholar
  121. Lehninger, A. L.: Oxidative phosphorylation in cuphosphopyridine-nucleotide-linked systems, p. 344–365 in: Phosphorus Metabolism, ed. W. D. Mc Elroy and B. Glass. Baltimore 1951.Google Scholar
  122. Livingston, R., and K. E.Owens: A diffusion controlled step in chlorophyll-sensitized photochemical autooxidations. J. Amer. chem. Soc. 78, 3301–3305 (1956).CrossRefGoogle Scholar
  123. Livingston, R., W. F. Watson and I. Mc Ardle: Activation of the fluorescence of chlorophyll solutions. J. Amer. chem. Soc. 1542–1550 (1949).Google Scholar
  124. Lorenzen, H.: pH-Wert und Kohlenstoffversorgung bei Wachstum und Photosynthese von Grünalgen. Flora (Jena) 146, 94–108 (1958).Google Scholar
  125. Lumry, R., and H. Eyring: Energy exchange in photoreactions, pp. 1–70 in: Radiation biology, Vol. III, ed. A. Hollaender and S. B. Hendricks. New York: McGraw Hill Book Co. 1956.Google Scholar
  126. Lumry, R., J. D. Spikes and H. Eyring: Photosynthesis. Ann. Rev. Plant Physiol. 5, 271–340 (1954).CrossRefGoogle Scholar
  127. Lynen, F., and R. Koenigsberger: Demonstration of phosphorylation in alcoholic fermentation by live yeast. Justus Liebigs Ann. Chem. 569, 129–138 (1950).CrossRefGoogle Scholar
  128. Magee, J. L., T. W. De Witt, E. C. Smith and F. Daniels: A photocalorimeter. The quantum efficiency of photosynthesis in algae. J. Amer. chem. Soc. 61, 3529–3533 (1939).CrossRefGoogle Scholar
  129. Manning, W. M.: Photosynthesis. J. physic. Chem. 42, 815–854 (1938c).CrossRefGoogle Scholar
  130. Manning, W. M., C. Juday and M. Wolf: Photosynthesis in Chlorella. Quantum efficiency and rate measurements in sunlight. J. Amer. chem. Soc. 60, 274–278 (1938b).CrossRefGoogle Scholar
  131. Manning, W. M., J. F. Stauffer, B. M. Duggar and F. Daniels: Quantum efficiency of photosynthesis in Chlorella. J. Amer. chem. Soc. 60, 266–274 (1938a).CrossRefGoogle Scholar
  132. Mayer, J. R.: Die Organische Bewegung in ihrem Zusammenhang mit dem Stoffwechsel. Heilbronn 1845.Google Scholar
  133. Moore, W. E., and B. M. Duggar: Quantum efficiency of photosynthesis in Chlorella, p. 239–250 in: Photosynthesis in plants, ed. J. Franck and W. E. Loomis. Arnes: Iowa State Coli. Press 1949.Google Scholar
  134. Myers, J.: Culture conditions and the development of the photosynthetic mechanism. V. Influence of the composition of the nutrient medium. Plant Physiol. 22, 590–597 (1947).PubMedCrossRefGoogle Scholar
  135. The pattern of photosynthesis in Chlorella, p. 349–365 in: Photosynthesis in plants, ed. J. Franck and W. E. Loomis. Ames: Iowa State Coll. Press 1949.Google Scholar
  136. Myers, J., and J. R. Graham: On the mass culture of algae. II. Yield as a function of cell concentration under continuous sunlight irradiance. Plant Physiol. 34, 345–352 (1959).PubMedCrossRefGoogle Scholar
  137. Myers, J., and F. A. Matsen: Kinetic characteristics of Warburg manometry. Arch. Biochem. Biophys. 55, 373–388 (1955).CrossRefGoogle Scholar
  138. Myers, J., J. N. Phillips and J. R. Graham: On the mass culture of algae. Plant Physiol. 26, 539–548 (1951).PubMedCrossRefGoogle Scholar
  139. Nakamura, H.: Über die Photosynthese bei der schwefelfreien Purpurbakterie Rhodobacillus palustris. Acta phytochim. (Tokyo) 9, 189–229 (1937).Google Scholar
  140. Nason, A., R. G. Abraham and B. C. Averbach: The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides. Biochem. biophys. Acta 15, 160–161 (1954).CrossRefGoogle Scholar
  141. Nason, A., and H. Takahashi: Inorganic nitrogen metabolism. Ann. Rev. Microbiol. 12, 203–246 (1958).CrossRefGoogle Scholar
  142. Niel, C. B. van: Photosynthesis of bacteria. Cold Spr. Harb. Symp. quant. Biol. 3, 138–150 (1935).CrossRefGoogle Scholar
  143. On the metabolism of the Thiorhodaceae. Arch. Microbiol. 7, 323–358 (1936).Google Scholar
  144. The bacterial photosynthèses and their importance for the general problem of photosynthesis. Advanc. Enzymol. 1, 263–325 (1941).Google Scholar
  145. The comparative biochemistry of photosynthesis, p. 437–497 in: Photosynthesis in plants, ed. J. Franck and W. E. Loomis. Ames: Iowa State Coll. Press 1949.Google Scholar
  146. Introductory remarks on the comparitive biochemistry of microorganisms. J. cell, comp. Physiol. 41, 11–38 (1953).Google Scholar
  147. Nihei, T., T. Sasa, S. Miyachi, K. Suzuki and M. Tamiya: Change of photosynthetic activity of Chlorella cells during the course of their normal life cycle. Arch. Mikrobiol. 21, 155–164 (1954).Google Scholar
  148. Nishimura, M. S., C. P. Whittingham and R. Emerson: The maximum efficiency of photosynthesis. Symp. Soc. exp. Biol. 5, 176–210 (1951).Google Scholar
  149. Noddack, W., u. H. J. Eichhoff: Untersuchungen über die Assimilation der Kohlensäure durch grüne Pflanzen. III. Z. physik. Chem. A 185, 241–259 (1939).Google Scholar
  150. Noddack, W., u. C. Kopp: Untersuchungen über die Assimilation der Kohlensaure durch grüne Pflanzen. IV. Z. physik. Chem. A 187, 79–102 (1940).Google Scholar
  151. Norman, R. W. van, and A. H. Brown: The relative rates of photosynthetic assimilation of isotopic forms of carbon dioxide. Plant Physiol. 27, 691–709 (1952).PubMedCrossRefGoogle Scholar
  152. Olson, R. A., F. S. Brackett and R. G. Crickard: Oxygen tension measurement by a method of time selection using the static platinum electrode with alternating potential. J. gen. Physiol. 33, 681–703 (1949).CrossRefGoogle Scholar
  153. II. Influence of O2 concentration and respiration, p. 419–429 in: Research in Photosynthesis, ed. H. Gaffron et al. New York: Interscience 1957.Google Scholar
  154. Oorschot, J. L. P. van: Conversion of light energy in algal culture. Thesis Wageningen. Med. Landb. Hogeschool 55, 225–276 (1955).Google Scholar
  155. Pardee, A. B.: Measurements of oxygen uptake under controlled pressures of carbon dioxide. J. biol. Chem. 179, 1085–1091 (1949).PubMedGoogle Scholar
  156. Petering, H. G., and F. Daniels: The determination of dissolved oxygen by means of the dropping mercury electrode with applications in biology. J. Amer. chem. Soc. 60, 2796–2802 (1938).CrossRefGoogle Scholar
  157. Petering, H. G., B. M. Duggar and F. Daniels: Quantum efficiency of photosynthesis in Chlorella. II. J. Amer. chem. Soc. 61, 3525–3529 (1939).CrossRefGoogle Scholar
  158. Person, A.: Functional aspects in mineral nutrition of green plants. Ann. Rev. Plant Physiol. 6, 71–114 (1955).CrossRefGoogle Scholar
  159. Pirson, A., I. Krollpfetffer u. G. Schaefer: Leistungsfähigkeit und Fehlerquellen manometrischer Stoff Wechselmessungen. S.-B. Ges. Naturwiss. Marburg 76, 3–27 (1953).Google Scholar
  160. Rabideau, G. S., C. S. French and A. S. Holt: The absorption and reflection spectra of leaves, chloroplast suspensions and chloroplast fragments as measured an Ulbricht sphere. Amer. J. Bot. 33, 769–777 (1946).CrossRefGoogle Scholar
  161. Rabinowitch, E.: Photosynthesis and related processes. New York: Interscience Vol. I 1945, Vol. II 1951, Vol. H/2 1956.CrossRefGoogle Scholar
  162. Primary photochemical and photophysical processes in photosynthesis. Plant Physiol. 34, 213–218 (1959).Google Scholar
  163. Rackow, B.: Der Vergleich der assimilatorischen Umsätze von Chlorella pyrenoidosa im „Warburg-Gemisch“ und im „Emerson-Gemisch“. Planta (Berl.) 49, 489–493 (1957).CrossRefGoogle Scholar
  164. Rieke, F.F.: On the quantum efficiency of photosynthesis. J. chem. Phys. 7, 238–244 (1939).CrossRefGoogle Scholar
  165. Quantum efficiencies for photosynthesis and photoreduction in green plants, p. 251–272 in: Photosynthesis in plants, ed. J. Franck and W. E. Loomis. Ames: Iowa State Coll. Press 1949.Google Scholar
  166. Roelofsen, P. A.: On photosynthesis of the Thiorhodaceae. Thesis Utrecht 1935.Google Scholar
  167. Rosenberg, J. L.: Use of a glass electrode for measuring rapid changes in photosynthetic rates. J. gen. Physiol. 37, 753 (1954).PubMedCrossRefGoogle Scholar
  168. Photochemistry of chlorophyll. Ann. Rev. Plant Physiol. 8, 115–136 (1957).Google Scholar
  169. Ruben, S.: Photosynthesis and phosphorylation. J. Amer. chem. Soc. 65, 279–282 (1943).CrossRefGoogle Scholar
  170. Ruhland, W.: Beiträge zur Physiologie der Knallgasbakterien. Jb. wiss. Bot. 63, 321–389 (1924).Google Scholar
  171. Schroeder, H.: Die jährliche Gesamtproduktion der grünen Pflanzendecke der Erde. Naturwissenschaften 7, 8–12 (1919a).CrossRefGoogle Scholar
  172. Quantitatives über die Verwendung der solaren Energie auf Erden. Naturwissenschaften 7, 976–981 (1919b).Google Scholar
  173. Seybold, A., u. A. Weisswedler: Spektrophotometrische Messungen an grünen Pflanzen und an Chlorophyll-Lösungen. I. Bot. Archiv 43, 252–290 (1942).Google Scholar
  174. Smith, J. H. C.: Products of photosynthesis, p. 53–94 in: Photosynthesis in plants, ed. J. Franck and W. E. Loomis: Ames: Iowa State Coll. Press 1949.Google Scholar
  175. Spikes, J. D., R. Lumry, H. Eyring and R. E. Wayrynen: Potential changes in suspensions of chloroplasts on illumination. Arch. Biochem. 28, 48–67 (1950).PubMedGoogle Scholar
  176. Spoehr, H. A.: The culture of albino maize. Plant Physiol. 17, 397–410 (1942).PubMedCrossRefGoogle Scholar
  177. Spoehr, H. A., and H. W. Milner: The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol. 24, 120–149 (1949).PubMedCrossRefGoogle Scholar
  178. Spruit, C. J. P., and B. Kok: Simultaneous observation of oxygen and carbon dioxide exchange during non steady state photosynthesis. Biochem. biophys. Acta 19, 417–424 (1956).PubMedCrossRefGoogle Scholar
  179. Stanier, R. Y., M. Doudoroff, R. Kunisawa and R. Contopoulou: The role of organic substrates in bacterial photosynthesis. Proc. nat. Acad. Sci. (Wash.) 45, 1246–1260 (1959).CrossRefGoogle Scholar
  180. Steemann-Nielsen, E.: Carbon dioxide concentration, respiration during photosynthesis and maximum quantum yield of photosynthesis. Physiol. Plantarum (Copenh.) 6, 316–332 (1953).CrossRefGoogle Scholar
  181. On organic production in the oceans. J. Conseil Internat. Explor. Mer (Copenhagen) 19, 309–328 (1954).Google Scholar
  182. Carbon dioxide as carbon source and narcotic in photosynthesis and growth of Chlorella pyrenoidosa. Physiol. Plantarum (Copenh.) 8, 317–335 (1955).Google Scholar
  183. Steemann Nielsen, E., and P. K. Jensen: Concentration of carbon dioxide and rate of photosynthesis, in Chlorella pyrenoidosa. Physiol. Plantarum (Cph.) 11, 170–180 (1958).CrossRefGoogle Scholar
  184. Stoy, V.: Riboflavin-catalyzed enzymic photoreduction of nitrate. Biochim. biophys. Acta 21, 395–396 (1956).PubMedCrossRefGoogle Scholar
  185. Syrett, P. J.: The assimilation of ammonia and nitrate by nitrogen starved cells of Chlorella vulgaris. Physiol. Plantarum (Copenh.) 9, 28–37 (1956).CrossRefGoogle Scholar
  186. Tamiya, H.: Mass culture of algae. Ann. Rev. Plant Physiol. 8, 309–335 (1957).CrossRefGoogle Scholar
  187. Tamiya, H., T. Iwamura, K. Shibata, E. Hase and T. Nihei: Correlation between photosynthesis and light-independent metabolism in the growth of Chlorella. Biochem. biophys. Acta 12, 23–40 (1953).PubMedCrossRefGoogle Scholar
  188. Tanada, T.: The photosynthetic efficiency of carotenoid pigments in Navicula minima. Amer. J. Bot. 38, 276–283 (1951).CrossRefGoogle Scholar
  189. Thomas, M. D.: Effect of ecological factors on photosynthesis. Ann. Rev. Plant Physiol. 6, 135–156 (1955).CrossRefGoogle Scholar
  190. Thomas, M. D., and G. R. Hill: Photosynthesis under field conditions, p. 19–52 in: Photosynthesis in plants, ed. J. Franck and W. E. Loomis:. Ames Iowa State Coll. Press 1949.Google Scholar
  191. Tolbert, N. E., and L. P. Zill: Excretion of glycolic acid by algae during photosynthesis. J. biol. Chem. 222, 895–906 (1956).PubMedGoogle Scholar
  192. Tonnelat, J.: Étude et construction d’un microcalorimètre. Application au rendement de la photosynthèse. Thesis Paris 1945.Google Scholar
  193. Ann. Physiques 20, 601–636 (1946).Google Scholar
  194. Veen, R. van der: Induction phenomena in photosynthesis. I. Physiol. Plantarum (Copenh.) 2, 217–234 (1949).CrossRefGoogle Scholar
  195. Induction phenomena in photosynthesis. III. Physiol. Plantarum (Copenh.) 3, 247–257 (1950).Google Scholar
  196. Vermeulen, D., E. C. Wassink and G. H. Reman: On the fluorescence of photosynthesizing cells. Enzymologia 4, 254–268 (1937).Google Scholar
  197. Vishniac, W.: Biochemical aspects of photosynthesis. Ann. Rev. Plant Physiol. 6, 115–134 (1955).CrossRefGoogle Scholar
  198. Warburg, O.: Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. Biochem. Z. 100, 230–271 (1919).Google Scholar
  199. Über die Geschwindigkeit der photochemischen Kohlensäurezersetzung in lebenden Zellen. IL Biochem. Z. 103, 188–217 (1920a).Google Scholar
  200. Stoffwechsel der Tumoren. Berlin: Springer 1926.Google Scholar
  201. In: Schwermetalle als Wirkungsgruppen von Fermenten. Berlin: Saenger 1948.Google Scholar
  202. 1-Quanten-Mechanismus der Photosynthese. Z. Elektrochem. 55, 447–452 (1951b).Google Scholar
  203. Energetik der Photosynthese. Naturwissenschaften 39, 337–341 (1952a).Google Scholar
  204. Über die Berücksichtigung der Retention der Kohlensäure bei Messungen der Photosynthese in Kulturlösungen. Z. Naturforsch. 9b, 302–303 (1954e).Google Scholar
  205. Photodissoziation und induzierte Atmung, die Fundamentalreaktionen der Photosynthese. Naturwissenschaften 42, 449–450 (1955a).Google Scholar
  206. Photosynthesis. Science 128, 68–73 (1958).Google Scholar
  207. Warburg, O., and D. Burk: The maximum efficiency of photosynthesis. Arch. Biochem. 25, 410–443 (1950a).Google Scholar
  208. Warburg, O., D. Burk and A. L. Schade: Extensions of photosynthetic experimentation. Symp. Soc. exp. Biol. 5, 306–311 (1951a).Google Scholar
  209. Warburg, O., D. Burk, V. Schocken and S. B. Hendricks: The quantum efficiency of photosynthesis. Biochem. biophys. Acta 4, 335 to 346 (1950b).CrossRefGoogle Scholar
  210. Warburg, O., D. Burk, V. Schocken, M. Korzenovsky and S. B. Hendricks: Does light inhibit the respiration of green cells? Arch. Biochem. 23, 330 to 333 (1949b).Google Scholar
  211. Warburg, O., u. H. Geleick: Über den Gewinn im Kreisprozeß der Photosynthese. Z. Naturforsch. 6b, 134–141 (1951c).Google Scholar
  212. Warburg, O., H. Geleick u. K. Briese: Weitere Steigerung des Energiegewinns im Kreisprozeß der Photosynthese. Z. Naturforsch. 6b, 285–292 (1951d).Google Scholar
  213. Über die Aufspaltung der Photosynthese in Lichtreaktion und Rückreaktion. Z. Naturforsch. 6b, 417–424 (1951e).Google Scholar
  214. Über die Messung der Photosynthese in Carbonat-Bicarbonat-Gemischen. Z. Naturforsch. 7b, 141 bis 144 (1952b).Google Scholar
  215. Warburg, O., u. G. Krippahl: Über Photosynthese-Fermente. Angew. Chem. 66, 493–496 (1954a).CrossRefGoogle Scholar
  216. Messung der Lichtabsorption in Chlorella mit der Ulbrichtschen Kugel. Z. Naturforsch. 9b, 181–182 (1954d).Google Scholar
  217. Photochemische Wasserzersetzung durch lebende Chlorella. Z. Naturforsch. 10b, 301–304 (1955b).Google Scholar
  218. Über die CO2-Kapazität der Chlorella und den chemischen Mechanismus der CO2-Assimilation. Z. Naturforsch. 11b, 52–54 (1956b).Google Scholar
  219. Sauerstoff-Halbwertdrucke der Photosynthese und Atmung. Z. Naturforsch. 13b, 66–68 (1958).Google Scholar
  220. Warburg, O., G. Krippahl u. W. Buchholz: Wirkung von Vanadium auf die Photosynthese. Z. Naturforsch. 10b, 422 (1955d).Google Scholar
  221. Warburg, O., G. Krippahl, W. Buchholz u. W. Schröder: Weiterentwicklung der Methoden zur Messung der Photosynthese. Z. Naturforsch. 8b, 675–686 (1953a).Google Scholar
  222. Warburg, O., G. Krippahl u. W. Schröder: Katalytische Wirkung des blaugrünen Lichts auf den Energieumsatz bei der Photosynthese. Z. Naturforsch. 9b, 667–675 (1954c).Google Scholar
  223. Wirkungsspektrum eines Photosynthese-Ferments. Z. Naturforsch. 10b, 631–639 (1955c).Google Scholar
  224. Über den chemischen Mechanismus der Kohlensäureassimilation. Naturwissenschaften 43, 237–241 (1956a).Google Scholar
  225. Warburg, O., G. Krippahl, W. Schröder u. W. Buchholz: Messung des Quantenbedarfs der Photosynthese für sehr dünne Zellsuspensionen. Biochem. biophys. Acta 12, 356–359 (1953b).CrossRefGoogle Scholar
  226. Warburg, O., G. Krippahl, W. Schröder, W. Buchholz u. E. Theel: Über die Wirkung sehr schwachen blaugrünen Lichts auf den Quantenbedarf der Photosynthese. Z. Naturforsch. 9b, 164–165 (1954b).Google Scholar
  227. Warburg, O., u. E. Negelein: Über die Reduktion der Salpetersäure in grünen Zellen. Biochem. Z. 110, 66–115 (1920b).Google Scholar
  228. Über den Energieumsatz bei der Kohlensäureassimilation. Z. physik. Chem. 102, 235–266 (1922).Google Scholar
  229. Über den Einfluß der Wellenlänge auf den Energieumsatz bei der Kohlensäureassimilation. Z. physik. Chem. 106, 191–218 (1923).Google Scholar
  230. Warburg, O., and V. Schocken: A manometric actinometer for the visible spectrum. Arch. Biochem. 21, 363–369 (1949a).Google Scholar
  231. Warburg, O., u. W. Schröder: Quantenbedarf der Photosynthese. Z. Naturforsch. 12b, 716–722 (1957).Google Scholar
  232. Wassink, E. C.: Efficiency of light energy conversion in plant growth. Plant Physiol. 34, 356–361 (1959).PubMedCrossRefGoogle Scholar
  233. Wassink, E. C., E. Katz and R. Dorrestein: On photosynthesis and fluorescence of bacteriochlorophyll in Thiorhodaceae. Enzymologia 10, 285–354 (1942).Google Scholar
  234. Wassink, E. C., et J. A. H. Kersten: Observations sur le spectre d’absorption et sur le rôle des Carotinoides dans la photosynthèse des Diatomées. Enzymologia 12, 3–32 (1946).Google Scholar
  235. Wassink, E. C., B. Kok and J. L. P. van Oorschot: The efficiency of light conversion in Chlorella cultures as compared with higher plants, p. 55–62 in: Algal Culture, ed. J. S. Burlew. Washington: C. I. Publ. 1953.Google Scholar
  236. Wassink, E. C., and J. A. J. Stolwijk: Effects of light quality on plant growth. Ann. Rev. Plant Physiol. 7, 373–400 (1956).CrossRefGoogle Scholar
  237. Wassink, E. C., D. Vermeulen, G. H. Reman and E. Katz: On the relation between fluorescence and assimilation in photosynthesizing cells. Enzymologia 5, 100–109 (1938).Google Scholar
  238. Weigl, J. W., and M. Calvin: An isotope effect in photosynthesis. J. chem. Phys. 17, 210 (1949).CrossRefGoogle Scholar
  239. Weigl, J. W., P. M. Warrington and M. Calvin: The relation of photosynthesis to respiration. J. Amer. chem. Soc. 73, 5058–5063 (1951).CrossRefGoogle Scholar
  240. Weis, D., and A. H. Brown: Kinetic relationships between photosynthesis and respiration in the algal flagellate, Ochromonas malhamensis. Plant Physiol. 34, 235–239 (1959).PubMedCrossRefGoogle Scholar
  241. Wessels, J. S. C.: A possible function of vitamin K in photosynthesis. Rec. Trav. chim. Pays-Bas T 73, 529–536 (1954).CrossRefGoogle Scholar
  242. Studies on photosynthetic phosphorylation. I. Photosynthetic phosphorylation under anaerobic conditions. Biochem. biophys. Acta 25, 97–100 (1957).Google Scholar
  243. Wessler, S., and C. S. French: The photosynthetic quotient H2/CO2 for Streptococcus varians. J. cell. comp. Physiol. 13, 327–334 (1939).CrossRefGoogle Scholar
  244. Whittingham, C. P.: Rate of photosynthesis and concentration of carbon dioxide in Chlorella. Nature (Lond.) 170, 1017–1018 (1952).CrossRefGoogle Scholar
  245. Photosynthesis in Chlorella during intermittent illumination of long periodicity. Plant Physiol. 29, 473–477 (1954).Google Scholar
  246. Induction phenomena in photosynthetic algae at low partial pressures of oxygen, p. 409–411 in: Research in Photosynthesis, ed. H. Gaffron et al. New York: Interscience 1957.Google Scholar
  247. Willstätter, R., u. A. Stoll: Untersuchungen über die Assimilation der Kohlensäure. Berlin: Springer 1918.CrossRefGoogle Scholar
  248. Wintermans, J. F. G. M.: Some observations on phosphate metabolism in the induction phase of photosynthesis in Chlorella. Acta bot. néerl. 7, 489–502 (1958).Google Scholar
  249. Withrow, R. B., and A. P. Withrow: Generation control and measurement of visible and near visible radiant energy, p. 125–258 in: Radiation biology, Vol. II. ed. A. Hollaender and S. B. Hendricks. New York: McGraw Hill Book Co. 1956.Google Scholar
  250. Wohl, K.: Zur Energiebüanz der Kohlensäureassimüation. Z. physik. Chem. B 31, 152–156 (1935).Google Scholar
  251. Yocum, C. S., and L. R. Blinks: Photosynthetic efficiency of marine plants. J. gen. Physiol. 38, 1–17 (1955).Google Scholar
  252. Yuan, E. L., R. W. Evans and F. Daniels: Energy efficiency of photosynthesis by Chlorella. Biochem. biophys. Acta 17, 185–193 (1955).PubMedCrossRefGoogle Scholar
  253. Zucker, M., and A. Nason: A pyridine nucleotide-hydroxylamine reductase from Neurospora. J. biol. Chem. 213, 463–478 (1955).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • Bessel Kok

There are no affiliations available

Personalised recommendations