Photosynthesis is highly dependent on structure. In higher plants, the photosynthetic apparatus is localized in chloroplasts. In certain algae and photosynthetic bacteria such chloroplasts are absent. For a long time, it has been believed that in these organisms the photosynthetic pigments are homogeneously distributed throughout the cytoplasm. Electron microscope studies, however, revealed that, also here, a structured photosynthetic apparatus, albeit different from a “true” chloroplast, occurs. Unfortunately, it is not an easy task to define a “true chloroplast”. The classical definition states that the chloroplast is a chlorophyll containing chromoplast. The chromoplasts, together with leucoplasts, belong to the plastids. Plastids, in their turn, are autonomous cytoplasmatic bodies. Though this definition does not contain much information about a chloroplast, it may seem to be useful for classification of this organelle. However, in certain organisms, such as blue-green algae, diatoms and photosynthetic bacteria, things become difficult to classify. Either the structure in question looks incomplete as compared with that of higher plants or its dimensions are submicroscopic, whereas it is tacitly accepted that chloroplasts are perceptible under the light microscope. Thus it seems desirable to reconsider the present definition. However, before attempting to do so, the data concerning both chemical and physical composition of the chloroplast will be reviewed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertsson, P. Å., and H. Leyon: The structure of chloroplasts. V. Chlorella pyrenoidosa Pringsheim studied by means of electron microscopy. Exp. Cell Res. 7, 288–290 (1954).PubMedCrossRefGoogle Scholar
  2. Allen, P. J., and J. S. D. Bacon: Oligosaccharides formed from sucrose by fructose-transferring enzymes of higher plants. Biochem. J. 63, 200–206 (1956).PubMedGoogle Scholar
  3. Anderson, D. G., and B. Vennesland: The occurrence of di- and triphosphopyridine nucleotides in green leaves. J. biol. Chem. 207, 613–620 (1954).PubMedGoogle Scholar
  4. Anderson, I., and H.J. Evans: Effect of manganese and certain other metal cations on isocitric dehydrogenase and malic enzyme activities in Phaseolus vulgaris. Plant Physiol. 31, 22–28 (1956).PubMedCrossRefGoogle Scholar
  5. Andreeva, F. T., and E. G. Plyshevskaya: Dokl. Akad. Nauk SSSR. 87, 301 (1952). Ref. 1954 Deken-Grenson, M. de.PubMedGoogle Scholar
  6. Appleman, D., and H. T. Pyfrom: Changes in catalase activity and other responses induced in plants by red and blue light. Plant Physiol. 30, 543–549 (1955).PubMedCrossRefGoogle Scholar
  7. Arnold, W., and E. S. Meek: The polarization of fluorescence and energy transfer in grana. Arch. Biochem. 60, 82–90 (1956).PubMedCrossRefGoogle Scholar
  8. Arnold, W., and J. R. Oppenheimer: Internal conversion in the photosynthetic mechanism of blue-green algae. J. gen. Physiol. 33, 423–435 (1950).PubMedCrossRefGoogle Scholar
  9. Arnon, D. I.: Localization of polyphenoloxidase in chloroplasts of Beta vulgaris. Nature (Lond.) 162, 341–342 (1948).CrossRefGoogle Scholar
  10. Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).Google Scholar
  11. Glyceraldehyde phosphate dehydrogenase of green plants. Science 116, 635–637 (1952).Google Scholar
  12. The chloroplasts as a complete photosynthetic unit. Science 122, 9–16 (1955).Google Scholar
  13. Localization of photosynthesis in chloroplasts, p. 279–305. Henry Ford Hospital Int. Symp. Enzymes. New York: Academic Press 1956.Google Scholar
  14. Arnon, D. I., M. B. Allen and F. R. Whatley: Photosynthesis by isolated chloroplasts. Nature (Lond.) 174, 394 (1954).CrossRefGoogle Scholar
  15. Photosynthesis by isolated chloroplasts. IV. General concept and comparison of three photochemical reactions. Biochim. biophys. Acta 20, 449–461 (1956).Google Scholar
  16. Arnon, D.I., and F. R. Whatley: Metabolism of isolated cellular particles from photosynthetic tissues. I. Oxygen uptake and carbon dioxide evolution in the dark. Physiol. Plantarum (Cph.) 7, 602–613 (1954).CrossRefGoogle Scholar
  17. Arnon, D. I., F. R. Whatley and M. B. Allen: Vitamin K as a cofactor of photosynthetic phosphorylation. Biochim. biophys. Acta 16, 607–608 (1955).PubMedCrossRefGoogle Scholar
  18. Avron, M. (Abramsky), and A. T. Jagendorf: A TPNH-diaphorase from chloroplasts. Arch. Biochem. 65, 475–490 (1956).PubMedCrossRefGoogle Scholar
  19. Axelrod, B., R. S. Bandurski, C. M. Greiner and R. Jang: The metabolism of hexose and pentose phosphates in higher plants. J. biol. Chem. 202, 619–634 (1953).PubMedGoogle Scholar
  20. Axelrod, B., and H. Beevers: Mechanism of carbohydrate breakdown in plants. Ann. Rev. Plant Physiol. 7, 267–298 (1956).CrossRefGoogle Scholar
  21. Axelrod, B., and R. Jang: Purification and properties of phosphoriboisomerase from Alfalfa. J. biol. Chem. 209, 847–855 (1954).PubMedGoogle Scholar
  22. Baldwin, E.: Dynamic aspects of biochemistry, 1. and 2. edition. Cambridge: University Press 1949, 1953.Google Scholar
  23. Bandurski, R. S., and C. M. Greiner: The enzymatic synthesis of oxalacetate from phosphoryl-enolpyruvate and carbon dioxide. J. biol. Chem. 204, 781–786 (1953).PubMedGoogle Scholar
  24. Bannister, T. T.: Energy transfer between chromophore and protein in phycocyanin. Arch. Biochem. 49, 222–233 (1954).PubMedCrossRefGoogle Scholar
  25. Bett, C., H. A. Stafford, E. E. Conn and B. Vennesland: Phosphogluconic dehydrogenase in higher plants. Plant Physiol. 28, 115–122 (1953).CrossRefGoogle Scholar
  26. Bean, R. C., and W. Z. Hassid: Carbohydrate oxidase from a red alga, Iridophycus flaccidum. J. biol. Chem. 218, 425–436 (1956).PubMedGoogle Scholar
  27. Becker, R.: Theorie der Elektrizität. Leipzig: Teubner 1933.Google Scholar
  28. Berger, J., and M. J. Johnson: Metal activation of peptidases. J. biol. Chem. 130. 641–654 (1939a).Google Scholar
  29. The leucylpeptidases of malt, cabbage, and spinach. J. biol. Chem. 130, 655–667 (1939b).Google Scholar
  30. Bishop, N. I.: Vitamin K, an essential factor for the photochemical activity of isolated chloroplasts. Proc. nat. Acad. Sci. (Wash.) 44, 501–504 (1958).CrossRefGoogle Scholar
  31. Böing, J.: Vitaluntersuchungen über die Kontinuität der Granastruktur in den Chloroplasten von Helodea densa. Protoplasma (Wien) 45, 55–72 (1955/56).CrossRefGoogle Scholar
  32. Böttger, I., u. R. Wollgiehn: Untersuchungen über den Zusammenhang zwischen Nucleinsäure- und Eiweißstoffwechsel in grünen Blättern höherer Pflanzen. Flora (Jena) 146, 302–320 (1958).Google Scholar
  33. Boichenko, E. A.: Hydrogenase of isolated chloroplasts. Biokhimiya 12, 153–162 (1947). Ref. Weier and Stocking 1952.Google Scholar
  34. Bonner, J., and A. Millerd: Oxidative phosphorylation by plant mitochondria. Arch. Biochem. 42, 135–148 (1953).PubMedCrossRefGoogle Scholar
  35. Bonner, J., and S. G. Wildman: Enzymatic mechanisms in the respiration of spinach leaves. Arch. Biochem. 10, 497–518 (1946).PubMedGoogle Scholar
  36. Boroughs, H.: Studies on the acid phosphatases of green leaves. Arch. Biochem. 49, 30–42 (1954).PubMedCrossRefGoogle Scholar
  37. Separation of phosphatase activity from the bulk protein of leaves. Arch. Biochem. 53, 94–98 (1954).Google Scholar
  38. Bot, G. M.: The chemical composition of chloroplast granules (grana) in relation to their structure. Chron. bot. 7, 66–67 (1942/43).Google Scholar
  39. Box, S. R.: Role of pyrenoids in algae and of vacuoles in plastids of higher plants and in fungi. Bot. Gaz. 104, 633–638 (1942/43).Google Scholar
  40. Bradfield, J. R. G.: Plant carbonic anhydrase. Nature (Lond.) 159, 467–468 (1947).CrossRefGoogle Scholar
  41. Brawerman, G., and E. Chargaff: On the distribution and biological significance of the nucleoside phosphotransferases. Biochim. biophys. Acta 16, 524–532 (1955).PubMedCrossRefGoogle Scholar
  42. Brown, A. H., and A. W. Frenkel: Photosynthesis. Ann. Rev. Biochem. 22, 423–458 (1953).PubMedCrossRefGoogle Scholar
  43. Brown, T. E., and H. C. Eyster: Carbonic anhydrase in certain species of plants. Ohio J. Sci. 55, 257–262 (1955).Google Scholar
  44. Brummond, D. O., M. Staehelin and S. Ochoa: Enzymatic synthesis of polynucleotides. II. Distribution of polynucleotide Phosphorylase. J. biol. Chem. 225, 835–849 (1957).PubMedGoogle Scholar
  45. Bukatsch, F.: Über die Rolle der Ascorbinsäure in den Chloroplasten. Planta (Berl.) 31, 209–221 (1940/41).CrossRefGoogle Scholar
  46. Bulen, W. A.: The isolation and characterization of glutamic dehydrogenase from corn leaves. Arch. Biochem. 62, 173–183 (1956).PubMedCrossRefGoogle Scholar
  47. Burma, D. P., and D. C. Mortimer: The biosynthesis of uridine diphosphate glucose and sucrose in sugar beet leaf. Arch. Biochem. 62, 16–28 (1956).PubMedCrossRefGoogle Scholar
  48. Butterfass, Th.: Über Grana, Karyoide und Pyrenoide von Spirogyra. Protoplasma 48, 368–381 (1957).CrossRefGoogle Scholar
  49. Buy, H. G. du, and M. W. Woods: Evidence for the evolution of phytopathogenic viruses from mitochondria and their derivatives. II. Chemical evidence. Phytopathology 33, 766–777 (1943).Google Scholar
  50. Buy, H. G. du, M. W. Woods and M. D. Lackey: Enzymatic activity of isolated normal and mutant mitochondria and plastids of higher plants. Science 111, 572–574 (1950).CrossRefGoogle Scholar
  51. Calvin, M.: The photosynthetic carbon cycle. Proc. 3. Int. Congr. Biochem. Brussels 1955, p. 211–227. New York: Academic Press 1956.Google Scholar
  52. Calvin, M., and V. Lynch: Granalike structures of Synechococcus cedrorum. Nature (Lond.) 169, 455 (1952).CrossRefGoogle Scholar
  53. Chiba, Y. and K. Sugahara: The nucleic acid content of chloroplasts isolated from spinach and tobacco leaves. Arch. Biochem. 71, 367–376 (1957).PubMedCrossRefGoogle Scholar
  54. Chibnall, A.C.: Protein metabolism in the plant. New Haven: Yale University Press 1939.Google Scholar
  55. Clagett, C. O., N. E. Tolbert and R. H. Burris: Oxidation of α-hydroxy acids by enzymes from plants. J. biol. Chem. 178, 977–987 (1949).PubMedGoogle Scholar
  56. Clayton, R. K:. Studies in the phototaxis of Rhodospirillum rubrum. H. The relation between phototaxis and photosynthesis. Arch. Mikrobiol. 19, 125–140 (1953).PubMedCrossRefGoogle Scholar
  57. Clendenning, K. A., T.E. Brown and E.E. Walldov: Causes of increased and stabilized Hill reaction rates in polyethylene glycol solutions. Physiol. Plantarum (Cph.) 9, 519 (1950).CrossRefGoogle Scholar
  58. Clendenning, K. A., E. R. Waygood and P. Weinberger: The carboxylases of leaves, and their role in photosynthesis. Canad. J. Bot. 30, 395–409 (1952).CrossRefGoogle Scholar
  59. Cohen, M., and E. Bowler: Lamellar structure of the tobacco chloroplast. Protoplasma (Wien) 42, 414–416 (1953).CrossRefGoogle Scholar
  60. Cohen, M., W. Ginoza, R. W. Dorner, W. R. Hudson and S. G. Wildman: Solubility and color characteristics of leaf proteins prepared in air or nitrogen. Science 124, 1081–1082 (1956).PubMedCrossRefGoogle Scholar
  61. Comar, C. L.: Chloroplast substance of spinach leaves. Bot. Gaz. 104, 122–127 (1942).CrossRefGoogle Scholar
  62. Conn, E., B. Vennesland and L. M. Kraemer: Distribution of a triphosphopyridine nucleotide-specific enzyme catalyzing the reversible oxidative decarboxylation of malic acid in higher plants. Arch. Biochem. 23, 179–197 (1949).PubMedGoogle Scholar
  63. Crook, E. M., and E. J. Morgan: The reduction of dehydroascorbic acid in plant extracts. Biochem. J. 88, 10–15 (1944).Google Scholar
  64. Daly, J. M., and A. H. Brown: The in vivo demonstration of cytochrome oxidase in leaves of higher plants. Arch. Biochem. 52, 380–387 (1954).PubMedCrossRefGoogle Scholar
  65. Dam, H.: Vitamin K, its chemistry and physiology. Advanc. Enzymol. 2, 286–324 (1942).Google Scholar
  66. Vitamin K in unicellular photosynthesizing organisms. Amer. J. Bot. 31, 492–493 (1944).Google Scholar
  67. Dam, H., J. Glavind u. N. Nielsen: Weitere Untersuchungen über die Bildung und Bedeutung des Vitamin K im Pflanzenorganismus. Hoppe-Seylers Z. physiol. Chem. 265, 80–87 (1940).CrossRefGoogle Scholar
  68. Datta, P. K., and B. J. D. Meeuse: Moss oxalic acid oxidase. A flavoprotein. Biochim. biophys. Acta 17, 602–603 (1955).CrossRefGoogle Scholar
  69. Davenport, H. E.: Cytochrome components in chloroplasts. Nature (Lond.) 170, 1112 (1952).CrossRefGoogle Scholar
  70. Davenport, H. E., and R. Hill: The preparation and some properties of cytochrome f. Proc. roy. Soc. B 189, 327–345 (1952).CrossRefGoogle Scholar
  71. Day, R., and J. Franklin: Plant carbonic anhydrase. Science 104, 363–365 (1946).CrossRefGoogle Scholar
  72. Deken-Grenson, M. de: Grana formation and synthesis of chloroplastic proteins induced by light in portions of etiolated leaves. Biochim. biophys. Acta 14, 203–211 (1954).CrossRefGoogle Scholar
  73. Action de la streptomycine sur la formation des chloroplastes. Biochim. biophys. Acta 17, 35–47 (1955).Google Scholar
  74. Delavan, L. A., and A. A. Benson: Chloroplast respiration of glycolate and acetate. Fed. Proc. 16, 171 (1957).Google Scholar
  75. Desruisseaux, G., et N. Baudoin: Sur le système phosphatasique d’une algue calcaire «Corattina officinalis» L. et sur son rôle physiologique. C. R. Soc. Biol. (Paris) 143, 519–520 (1949).Google Scholar
  76. Drews, G.: Untersuchungen zur Substruktur der „Chromatophoren“ von Rhodospirillum rubrum und Bhodospirillum molischianum. Arch. Mikrobiol. 36, 99–108 (1960).PubMedCrossRefGoogle Scholar
  77. Drews, G., u. W. Niklowitz: Beiträge zur Cytologie der Blaualgen. II. Zentroplasma und granuläre Einschlüsse von Phormidium uncinatum. Arch. Mikrobiol. 24, 147–162 (1956).PubMedCrossRefGoogle Scholar
  78. Beiträge zur Cytologie der Blaualgen. III. Untersuchungen über die granulären Einschlüsse der Hormogonales. Arch. Mikrobiol. 25, 333–351 (1957).Google Scholar
  79. Ducet, G., et A. J. Rosenberg: Activités cytochrome-oxidasique chez quelques végétaux supérieurs. Bull. Soc. Chim. biol (Paris) 33, 321–326 (1951).Google Scholar
  80. Düvel, D.: Beiträge zur Kenntnis der Struktur und Entwicklung der Chloroplasten Protoplasma (Wien) 44, 239–258 (1955).CrossRefGoogle Scholar
  81. Düvel, D., u. W. Mevius jr.: Zur Fluoreszenz der Granen im Chloroplasten. Naturwissenschaften 39, 23 (1952).CrossRefGoogle Scholar
  82. Dutton, H. J., and W. M. Manning: Evidence for carotenoid-sensitized photosynthesis in the diatom Nitzschia closterium. Amer. J. Bot. 28, 516–526 (1941).CrossRefGoogle Scholar
  83. Dutton, H. J., W.M. Manning and B. M. Duggar: Ghlorophyll fluorescence and energy transfer in the diatom Nitzschia closterium. J. phys. Chem. 47, 308–313 (1943).CrossRefGoogle Scholar
  84. Duysens, L. N. M.: Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature (Lond.) 168, 548 (1951).CrossRefGoogle Scholar
  85. Transfer of excitation energy in photosynthesis. Thesis, Utrecht 1952.Google Scholar
  86. Reversible photo-oxidation of a cytochrome pigment in photosynthesizing Rhodospirillum rubrum. Nature (Lond.) 173, 692 (1954).Google Scholar
  87. Role of cytochrome and pyridine nucleotide in algal photosynthesis. Science 121, 210–211 (1955).Google Scholar
  88. Eggman, L., S. J. Singer and S. G. Wildman: The proteins of green leaves. V. A cytoplasmic nucleoprotein from spinach and tobacco leaves. J. biol. Chem. 205, 969–983 (1953).PubMedGoogle Scholar
  89. Eisenberg, M. A.: The tricarboxylic acid cycle in Rhodospirilum rubrum. J. biol. Chem. 203, 815–836 (1953).PubMedGoogle Scholar
  90. The acetate-activating enzyme of Rhodospirillum rubrum. Biochim. biophys. Acta 16, 58–65 (1955).Google Scholar
  91. Elbers, P. F., K. Minnaert and J. B. Thomas: Submicroscopic structure of some chloroplasts. Acta bot. neerl. 6, 345–350 (1957).Google Scholar
  92. Emerson, R., and C. M. Lewis: Carbon dioxide exchange and the measurement of the quantum yield of photosynthesis. Amer. J. Bot. 28, 789–804 (1941).CrossRefGoogle Scholar
  93. The photosynthetic efficiency of phycocyanin in Chroococcus and the problem of carotenoid participation in photosynthesis. J. gen. Physiol. 25, 579–595 (1942).Google Scholar
  94. The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. Amer. J. Bot. 30, 165–178 (1943).Google Scholar
  95. Engelmann, T. W.: Farbe und Assimilation. Bot. Z. 41, 1–13, 17–29 (1883).Google Scholar
  96. Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. Bot. Z. 42, 81–93, 97–105 (1884).Google Scholar
  97. Euler, H. V., B. Bergman u. H. Hellström: Über das Verhältnis von Chloroplastenzahl und Chlorophyllkonzentration bei Elodea densa. Ber. dtsch. bot. Ges. 52, 458–462 (1934).Google Scholar
  98. Evans, H. J.: Studies on cytochrome reductase in higher plants. Plant Physiol. 30, 437–444 (1955).PubMedCrossRefGoogle Scholar
  99. Evans, H. J., and A. Nason: Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol. 28, 233–254 (1953).PubMedCrossRefGoogle Scholar
  100. Fager, E. W.: Phosphoglyceric acid formation by carbon dioxide fixation in plant extracts. Biochem. J. 57, 264–272 (1954).PubMedGoogle Scholar
  101. Finkle, B. J., and D. I. Arnon: Metabolism of isolated cellular particles from photosynthetic tissues. II. Oxidative decarboxylation of oxalic acid. Physiol. Plantarum (Cph.) 7, 614–624 (1954).CrossRefGoogle Scholar
  102. Fishman, M., and L. S. Moyer: The chlorophyll-protein complex. I. Electrophoretic properties and isoelectric point. J. gen. Physiol. 25, 755–764 (1941/42).CrossRefGoogle Scholar
  103. Fleet, D. S. van: Histochemicallocalization of enzymes in vascular plants. Bot. Rev. 18, 354–398 (1952).CrossRefGoogle Scholar
  104. Förster, T.: Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physik 2, 55–75 (1948).CrossRefGoogle Scholar
  105. Fowden, L.: The enzymic decarboxylation of γ-methylene glutamic acid by plant extracts. J. exp. Bot. 5, 28–36 (1954).CrossRefGoogle Scholar
  106. The deamidase of groundnut plants (Arachis hypogaea). J. exp. Bot. 6, 362–370 (1955).Google Scholar
  107. Franck, J., and K. F. Herzfeld: Contribution to a theory of photosynthesis. J. phys. Chem. 45, 978–1025 (1941).CrossRefGoogle Scholar
  108. Franke, W., and I. Schulz: Zur Kenntnis der pflanzlichen Glycolico-Dehydrase. Naturwissenschaften 39, 453–454 (1952).CrossRefGoogle Scholar
  109. Frederick, J. F.: Preliminary studies on the synthesis of polysaccharides in the algae. V. Kinetics of polysaccharide formation in extracts of Oscillatoria princeps. Physiol. Plantarum (Cph.) 7, 182–189 (1954).CrossRefGoogle Scholar
  110. Frederick, J. F., and F. J. Mulligan jr.: Mechanism of action of branching enzyme from Oscillatoria and the structure of the branched dextrins. Physiol. Plantarum (Cph.) 8, 74–83 (1955a).CrossRefGoogle Scholar
  111. Frederick, J. F., and A. F. Mancini: Paper electrophoresis patterns of enzymes involved in polyglucoside synthesis in Oscillatoria princeps and its low temperature strain. Physiol. Plantarum (Cph.) 8, 936–944 (1955b).CrossRefGoogle Scholar
  112. French, C. S., and V. K. Young: The fluorescence spectra of red algae and the transfer of energy from phycoerythrin to phycocyanin and chlorophyll. J. gen. Physiol. 35, 873–890 (1952).PubMedCrossRefGoogle Scholar
  113. Frenkel, A.: Light induced phosphorylation by cell-free preparations of photosynthetic bacteria. J. Amer. chem. Soc. 76, 5568 (1954).CrossRefGoogle Scholar
  114. Frenkel, A. W.: Photophosphorylation of adenine nucleotides by cell-free preparations of purple bacteria. J. biol. Chem. 222, 823–834 (1956). Light-induced reactions of bacterial chromatophores and their relation to photosynthesis. Ann. Rev. Plant Physiol. 10, 53–70 (1959).PubMedGoogle Scholar
  115. Frey-Wyssling, A.: Myelinartige Verquellung der Chloroplasten in Rohrzuckerlösung. Protoplasma (Wien) 46, 194–197 (1956).CrossRefGoogle Scholar
  116. Macromolecules in cell structure. Nature (Lond.) 179, 941–943 (1957).Google Scholar
  117. Frey-Wyssling, A., u. E. Steinmann: Die Schichtendoppelbrechung großer Chloroplasten. Biochim. biophys. Acta 2, 254–259 (1948).PubMedCrossRefGoogle Scholar
  118. Ergebnisse der Feinbau-Analyse der Chloroplasten. Vjschr. naturforsch. Ges. Zürich 98, 20–29 (1953).Google Scholar
  119. Frey-Wyssling, A., u. K. Wuhrmann: Zur Optik der Chloroplasten. Helv. chim. Acta 30, 20–23 (1947).PubMedCrossRefGoogle Scholar
  120. Fuhs, G. W.: Zur Cytologie physiologisch junger Zellen von Oscillatoria amoena (Kütz.) Gomont. Diss., Math.-naturw. Fak. Univ. Bonn 1956.Google Scholar
  121. Gage, R. S., and S. Aronoff: Chlorophyllase in soybean. Plant Physiol. 31, 477–478 (1956).PubMedCrossRefGoogle Scholar
  122. Galston, A. W.: The isolation, agglutination, and nitrogen analysis of intact oat chloroplasts. Amer. J. Bot. 30, 331–334 (1943).CrossRefGoogle Scholar
  123. Galston, A. W., R. K. Bonnichsen and D. I. Arnon: The preparation of highly purified spinach leaf catalase. Acta chem. scand. 5, 781–790 (1951).CrossRefGoogle Scholar
  124. Gest, H.: Properties of cell-free hydrogenases of Escherichia coli and Rhodospirillum rubrum. J. Bact. 63, 111–121 (1952).PubMedGoogle Scholar
  125. Gibbs, M.: Triosephosphate dehydrogenase and glucose-6-phosphate dehydrogenase in the pea plant. Nature (Lond.) 170, 164–165 (1952).CrossRefGoogle Scholar
  126. Gibbs, M., and B. L. Horecker: The mechanism of pentose phosphate conversion to hexose monophosphate. II. With pea leaf and pea root preparations. J. biol. Chem. 208, 813–820 (1954).PubMedGoogle Scholar
  127. Gibson, J., and H. Larsen: Cytochromes from Chlorobium thiosulphatophilum. Biochem. J. 60, XXVII (1955).PubMedGoogle Scholar
  128. Giroud, A.: L’acide ascorbique dans la cellule et les tissues. Berlin: Gebrüder Bornträger 1938. Ref. Photosynthesis and related processes. New York: Intersci. Publ. 1945.Google Scholar
  129. Goedheer, J. C.: Orientation of the pigment molecules in the chloroplast. Biochim. biophys. Acta 16, 471–476 (1955).PubMedCrossRefGoogle Scholar
  130. Optical properties and in vivo orientation of photosynthetic pigments. Thesis, Utrecht 1957.Google Scholar
  131. Gotō, Y., and M. Yatazawa: Plant nutritional analysis of additional dressing. Part 6. Fluctuation of catalase activities in leaves of rice plant at different stages of development and the influence of dressing to it. Sci. Rep. Shiga Agric. Coll. Jap. 1953, No 3, 8–11.Google Scholar
  132. Granick, S.: Quantitative isolation of chloroplasts from higher plants. Amer. J. Bot. 25, 558–561 (1938a).CrossRefGoogle Scholar
  133. Chloroplast nitrogen of some higher plants. Amer. J. Bot. 25, 561–567 (1938b).Google Scholar
  134. The chloroplasts: their structure, composition, and development. Photosynthesis in Plants, p. 113–132. Ames, Iowa: State Coll. Press 1949.Google Scholar
  135. Grave, G.: Studien über die Entwicklung der Chloroplasten bei Agapanthus umbellatus. Protoplasma (Wien) 44, 273–298 (1955).CrossRefGoogle Scholar
  136. Griessmeyer, H.: Über experimentelle Beeinflussung des Eisens in Chloroplasten. Planta (Berl.) 11, 331–358 (1930).CrossRefGoogle Scholar
  137. Hackett, D. P.: Recent studies on plant mitochondria. Int. Rev. Cytol. 4, 143–196 (1955).CrossRefGoogle Scholar
  138. Hageman, R. H., and D. I. Arnon: Changes in glyceraldehyde phosphate dehydrogenase during the life cycle of a green plant. Arch. Biochem. 57, 421–426 (1955).PubMedCrossRefGoogle Scholar
  139. Hägen, C. E., and V. V. Jones: Factors in the determination of the intracellular localisation of enzymes. Bot. Gaz. 114, 130–134 (1952).CrossRefGoogle Scholar
  140. Hanahan, D. J., and I. L. Chaikoff: On the nature of the phosphorus-containing lipides of cabbage leaves and their relation to a phospholipide-splitting enzyme contained in these leaves. J. biol. Chem. 172, 191–198 (1948).PubMedGoogle Scholar
  141. Hanson, E. A.: A note on the metabolism of chloroplast protein. Aust. J. exp. Biol. med. Sci. 19, 157–159 (1941).CrossRefGoogle Scholar
  142. Hanson, E. A., B. S. Barrien and J. G. Wood: Relations between protein-nitrogen, protein-sulphur and chlorophyll in leaves of Sudan grass. Aust. J. exp. Biol. med. Sci. 19, 231–234 (1941).CrossRefGoogle Scholar
  143. Haskins, F. A.: Changes in the activities of several enzymes during germination and seedling development in corn (Zea Mays L.). Plant Physiol. 30, 74–78 (1955).PubMedCrossRefGoogle Scholar
  144. Haskins, F. A., and H. W. Chapman: Effects of irradiation, maleic hydrazide, temperature, and age on enzyme activity in seedlings of corn (Zea Mays L.). Physiol. Plantarum (Cph.) 9, 356–362 (1956).CrossRefGoogle Scholar
  145. Hassid, W., E. W. Putman and V. Ginsburg: Metabolism of galactose in Canna leaves and wheat seedlings. Biochim. biophys. Acta 20, 17–22 (1956).PubMedCrossRefGoogle Scholar
  146. Haxo, F., and L. R. Blinks: Photosynthetic action spectra of marine algae. J. gen. Physiol. 33, 389–421 (1950).PubMedCrossRefGoogle Scholar
  147. Heitz, E.: Untersuchungen über den Bau der Piastiden. Planta (Berl.) 26, 134–162 (1937).CrossRefGoogle Scholar
  148. Kristallgitterstruktur in den jungen Chloroplasten einer Dikotyledone (Eranthemum leueoneurum). Experientia (Basel) 12, 476 (1956).Google Scholar
  149. Hendley, D.D., and E. E. Conn: Enzymatic reduction and oxidation of glutathione by illuminated chloroplasts. Arch. Biochem. 46, 454–464 (1953).PubMedCrossRefGoogle Scholar
  150. Herrmann, K.: Über das Vorkommen von o-Phenolase in Labiatenblättern. Pharmazie 8, 853–855 (1952).Google Scholar
  151. Hill, R., and H. Lehmann: Studies in iron in plants with special observations on the chlorophyll: iron ratio. Biochem. J. 35, 1190–1199 (1941).PubMedGoogle Scholar
  152. Hill, R., D. H. Northcote and H. E. Davenport: Active chloroplast preparations from Chlorella pyrenoidosa. Nature (Lond.) 172, 947 (1953).CrossRefGoogle Scholar
  153. Hill, R., and R. Scarisbrick: The haematin compounds of leaves. New Phytologist 50, 98–111 (1951).CrossRefGoogle Scholar
  154. Hodge, A. J.: Effects of the physical environment on some lipoprotein layer systems and observations on their morphogenesis. J. biophys. biochem. Cytol. 2, Suppl., 221–228 (1956).PubMedCrossRefGoogle Scholar
  155. Hodge, A. J., J. D. Mc Lean and F. V. Mercer: Ultrastructure of the lamellae and grana in the chloroplasts of Zea Mays L. J. biophys. biochem. Cytol. 1, 605–614 (1955).PubMedCrossRefGoogle Scholar
  156. Holden, M.: Studies on pectase. Biochem. J. 40, 103–108 (1946).PubMedGoogle Scholar
  157. Holden, M., and N. W. Pirie: The partial purification of leaf ribonuclease. Biochem. J. 60, 39–46 (1955).PubMedGoogle Scholar
  158. Holzer, H.: Chemie und Energetik der pflanzlichen Photosynthese. Angew. Chem. 66, 65–75 (1954).CrossRefGoogle Scholar
  159. Holzer, H., u. E. Holzer: Enzyme des Kohlenhydratstoffwechsels in Chlorella. Chem. Ber. 85, 655–663 (1952).CrossRefGoogle Scholar
  160. Hood, S. L.: Glutamic acid decarboxylase of squash and radish. Bot. Gaz. 116, 86–92 (1954).CrossRefGoogle Scholar
  161. Horecker, B. L.: Discussion. Fed. Proc. 13, 711–712 (1954).PubMedGoogle Scholar
  162. Horecker, B. L., J. Hurwitz and P. Z. Smyrniotis: Xylulose 5-phosphate and the formation of sedoheptulose 7-phosphate with liver transketolase. J. Amer. chem. Soc. 78, 692–694 (1956).CrossRefGoogle Scholar
  163. Horecker, B. L., J. Hurwitz and A. Weissbach: The enzymatic synthesis and properties of ribulose 1, 5-diphosphate. J. biol. Chem. 218, 785–794 (1956).PubMedGoogle Scholar
  164. Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of seduheptulose phosphate from pentose phosphate. J. biol. Chem. 205, 661–682 (1953).PubMedGoogle Scholar
  165. Hurwitz, J., A. Weissbach, B. L. Horecker and P. Z. Smyrniotis: Spinach phosphoribulokinase. J. biol. Chem. 218, 769–783 (1956).PubMedGoogle Scholar
  166. Irmak, L. R.: Photosynthesis by isolated chloroplasts. Rev. Fac. Sei. Istanbul B 20, 237–243 (1955).Google Scholar
  167. Izawa, S., and A. Tsukamoto: The oxidation mechanism of glycolic and 1-lactic acids by the enzyme from leaves. J. Biochem. (Tokyo) 41, 187–198 (1954).Google Scholar
  168. Jacobi, G.: Enzyme des Kohlenhydratstoffwechsels in Extrakten von Ulva lactuca. Planta (Berl.) 49, 1–10 (1957).CrossRefGoogle Scholar
  169. Fermente des Aminosäurestoffwechsels in Ulva lactuca. Naturwissenschaften 44, 265–266 (1957).Google Scholar
  170. Jagendorf, A. T.: Oxidation and reduction of pyridine nucleotides in purified chloroplasts. Arch. Biochem. 62, 141–150 (1956).PubMedCrossRefGoogle Scholar
  171. Jagendorf, A. T., and S. G. Wildman: The proteins of green leaves. VI. Centrifugal fractionation of tobacco leaf homogenates and some properties of isolated chloroplasts. Plant Physiol. 29, 270–279 (1954).PubMedCrossRefGoogle Scholar
  172. Jakoby, W. B., D. O. Brummond and S. Ochoa: Formation of 3-phosphoglyceric acid by carbon dioxide fixation with spinach leaf enzymes. J. biol. Chem. 218, 811–822 (1956).PubMedGoogle Scholar
  173. Jono, Y.: Studien über die nukleinsäurespaltenden Fermente. Acta Sch. med. Kioto 13, 162–175 (1930).Google Scholar
  174. Jung, F.: Strukturprobleme am roten Blutkörperchen. III. Blutkörperchenschatten. Naturwissenschaften 37, 254–260 (1950).CrossRefGoogle Scholar
  175. Kaja, H.: Untersuchungen über die Chromatophoren und Pyrenoide der Anthocerales. Protoplasma (Wien) 44, 136–153 (1955).CrossRefGoogle Scholar
  176. Kamen, M. D., and H. Gest: Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirillum rubrum. Science 109, 560 (1949).PubMedCrossRefGoogle Scholar
  177. Kamen, M. D., and L. P. Vernon: Enzymatic activities affecting cytochromes in photosynthetic bacteria. J. biol. Chem. 211, 663–675 (1954).PubMedGoogle Scholar
  178. Comparative studies on bacterial cytochromes. Biochim. biophys. Acta 17, 10–22 (1955).Google Scholar
  179. Kates, M.: Lecithinase activity of chloroplasts. Nature (Lond.) 172, 814–815 (1953).CrossRefGoogle Scholar
  180. Lecithinase systems in sugar beet, spinach, cabbage and carrot. Canad. J. Biochem. 32, 571–583 (1954).Google Scholar
  181. Hydrolysis of lecithin by plant plastid enzymes. Canad. J. Biochem. 33, 575–589 (1955).Google Scholar
  182. Katz, E., and E. C. Wassink: Infrared absorption spectra of chlorophyllous pigments in living cells and in extra-cellular states. Enzymologia 7, 97–112 (1939).Google Scholar
  183. Kessler, E.: Reduction of nitrite with molecular hydrogen in algae containing hydrogenase. Arch. Biochem. 62, 241–242 (1956).PubMedCrossRefGoogle Scholar
  184. Kinzel, H., u. W. Url: Katalasebestimmungen an grünen Blättern unter Berücksichtigung des Säurefehlers. Physiol. Plantarum (Cph.) 7, 835–850 (1954).CrossRefGoogle Scholar
  185. Király, Z., and G. L. Farkas: On the role of ascorbic oxidase in the parasitically increased respiration of wheat. Arch. Biochem. 66, 474–485 (1957).PubMedCrossRefGoogle Scholar
  186. Knudson, L.: Has the chloroplast a semipermeable membrane? Amer. J. Bot. 23, 694 (1936).Google Scholar
  187. Krall, A. R., and R. H. Burris: Evidence for the participation of cytochrome oxidase in photosynthetic fixation of carbon dioxide. Physiol. Plantarum (Cph.) 7, 768–776 (1954).CrossRefGoogle Scholar
  188. Krossing, G.: Versuche zur Lokalisation einiger Fermente in den verschiedenen Zellbestandteilen der Spinatblätter. Biochem. Z. 305, 359–373 (1940).Google Scholar
  189. Laties, G. G.: An oxidative, cyanide-insensitive enzyme system in the chloroplasts of a higher plant. Arch. Biochem. 27, 404–409 (1950).PubMedGoogle Scholar
  190. Leonard, M. J. K, and R. H. Burris: A survey of transaminases in plants. J. biol. Chem. 170, 701–709 (1947).Google Scholar
  191. Leyon, H.: The structure of chloroplasts. III. A study of pyrenoids. Exp. Cell Res. 6, 497–505 (1954a).CrossRefGoogle Scholar
  192. IV. The development and structure of the Aspidistra chloroplast. Exp. Cell Res. 7, 265–273 (1954b).Google Scholar
  193. The structure of chloroplasts. Svensk kern. T. 68, 70–89 (1956).Google Scholar
  194. Leyon, H., u. D. V. Wettstein: Der Chromatophoren-Feinbau bei den Phaeophyceen. Z. Naturforsch. 9b, 471–475 (1954).Google Scholar
  195. Li, L. P., and J. Bonner: Experiments on the localization and nature of tea oxidase. Biochem. J. 41, 105–110 (1947).Google Scholar
  196. Lich.: Quantitativ-chemische Untersuchungen über das Eisen in den Chloroplasten und übrigen Zellbestandteilen von Spinacia oleracea. Z. Bot. 37, 129–157 (1941).Google Scholar
  197. Lugg, J. W. H.: Preparation of some protein samples from fresh leaves of plants and the sulphur distribution of the preparations. Biochem. J. 32, 2114–2122 (1938a).Google Scholar
  198. The amide, tyrosine and tryptophan contents and the sulphur distributions (cystine plus cysteine and methionine contents) of some plant leaf protein preparations. Biochem. J. 32, 2123–2128 (1938b).Google Scholar
  199. The representativeness of extracted samples and the efficiency of extraction of protein from the fresh leaves of plants; and some partial analyses of the whole proteins of leaves. Biochem. J. 33, 110–122 (1939).Google Scholar
  200. Tissue proteins of some cryptogams: the amide, tyrosine and tryptophan contents. Biochem. J. 34, 1549–1553 (1940).Google Scholar
  201. Plant proteins. Advanc. Protein Chem. 5, 229–304 (1949).Google Scholar
  202. Lyttleton, J. W.: Relationship between photosynthesis and a homogeneous protein component of plant cytoplasm. Nature (Lond.) 177, 283–284 (1956).CrossRefGoogle Scholar
  203. Mac Dowall, F. D. H.: Absence of acid phosphate from chloroplasts of spinach and Iris. Plant Physiol. 28, 317–318 (1953).PubMedCrossRefGoogle Scholar
  204. Madison jr., J. H.: The intracellular location of Phosphorylase in tobacco (Nicotiana tabacum L.). Plant Physiol. 31, 387–392 (1956).PubMedCrossRefGoogle Scholar
  205. Mann, P. J. G.: Purification and properties of the amine oxidase of pea seedlings. Biochem. J. 59, 609–620 (1955).PubMedGoogle Scholar
  206. Mayaudon, J., A. A. Benson and M. Calvin: Ribulose-1, 5-diphosphate from and CO2 fixation by Tetragonia expansa leaves extract. Biochim. biophys. Acta 23, 342–351 (1957).PubMedCrossRefGoogle Scholar
  207. Mazelis, M.: Particulate adenylic kinase in higher plants. Plant Physiol. 31, 37–43 (1956).PubMedCrossRefGoogle Scholar
  208. Mc Clendon, J. H.: The intracellular localization of enzymes in tobacco leaves. I. Identification of components of the homogenate. Amer. J. Bot. 39, 275–282 (1952).CrossRefGoogle Scholar
  209. II. Cytochrome oxidase, catalase, and polyphenol oxidase. Amer. J. Bot. 40, 260–266 (1953).Google Scholar
  210. Mc Clendon, J. H., and L. R. Blinks: Use of high molecular weight solutes in the study of isolated intracellular structures. Nature (Lond.) 170, 577 (1952).CrossRefGoogle Scholar
  211. Menke, W.: Chloroplastenstudien. Protoplasma (Wien) 21, 279–298 (1934).CrossRefGoogle Scholar
  212. Untersuchung der einzelnen Zellorgane in Spinatblättern auf Grund präparativ-chemischer Methodik. Z. Bot. 32, 273–295 (1938a).Google Scholar
  213. Untersuchungen über das Protoplasma grüner Pflanzenzellen. I. Isolierung von Chloroplasten aus Spinatblättern. Hoppe-Seylers Z. physiol. Chem. 257, 43–48 (1938b).Google Scholar
  214. II. Der Chlorophyllgehalt der Chloroplasten aus Spinatblättern. Hoppe-Seylers Z. physiol. Chem. 263, 100–103 (1940).Google Scholar
  215. III. Der Gehalt der Spinat-Chloroplasten an Kalium, Magnesium, Calcium und Phosphor. Hoppe-Seylers Z. physiol. Chem. 263, 104–106 (1940).Google Scholar
  216. Dichroismus und Doppelbrechung der Plastiden. Biol. Zbl. 63, 326–349 (1943).Google Scholar
  217. Artefakte in elektronenmikroskopischen Präparaten. I. Mitt. Anisotrope Volumänderungen von Chloroplasten. Z. Naturforsch. 12b, 654–656 (1957a).Google Scholar
  218. II. Mitt. Zur Fixierung von Chloroplasten mit Osmiumtetroxyd. Z. Naturforsch. 12b, 656–659 (1957b).Google Scholar
  219. III. Mitt. Zur Kontrastierung mit Uranylazetat. Z. Naturforsch. 12b, 659–660 (1957c).Google Scholar
  220. Lichtinterferenzen an Chloroplasten. Z. Naturforsch. 12b, 407–411 (1957d).Google Scholar
  221. Menke, W., u. E. Jacob: Untersuchungen über das Protoplasma grüner Pflanzenzellen. IV. Die Lipoide der Spinatchloroplasten. Hoppe-Seylers Z. physiol. Chem. 272, 227–231 (1942).CrossRefGoogle Scholar
  222. Menke, W., u. G. Menke: Dispersion der Chloroplasten-Doppelbrechung und Dichroismus. Z. Naturforsch. 10b, 416–419 (1955).Google Scholar
  223. Wasser und Lipide in Chloroplasten. Protoplasma (Wien) 46, 535–546 (1956).Google Scholar
  224. Mercer, F. V., A. J. Hodge, A. B. Hope and J. D. Mc Lean: The structure and swelling properties of Nitella chloroplasts. Aust. J. biol. Sci. 8, 1–18 (1955).Google Scholar
  225. Metzner, H: Die Reduktion wäßriger Silbernitratlösungen durch Chloroplasten und andere Zellbestandteile. Protoplasma (Wien) 41, 129–167 (1952).CrossRefGoogle Scholar
  226. Über den Nachweis von Nukleinsäuren in den Chloroplasten höherer Pflanzen. Naturwissenschaften 39, 64–65 (1952a).Google Scholar
  227. Cytochemische Untersuchungen über das Vorkommen von Nukleinsäuren in Chloroplasten. Biol. Zbl. 71, 257–272 (1952b).Google Scholar
  228. Metzner, P.: Bericht über die 51. Generalversammlung. Ber. dtsch. bot. Ges. 55, (16) (1937).Google Scholar
  229. Untersuchungen zur Kenntnis der Piastiden. Flora (Jena) 142, 81–109 (1955).Google Scholar
  230. Meyer, H.: Untersuchungen über die Chlorophyllase. Planta (Berl.) 11, 294–330 (1930).CrossRefGoogle Scholar
  231. Miller, I. H., and R. H. Burris: Effect of plant growth substances upon oxidation of ascorbic and glycolic acids by cell-free enzymes from barley. Amer. J. Bot. 38, 547–549 (1951).CrossRefGoogle Scholar
  232. Mommaerts, W. F. H. M.: Some chemical properties of the plastid-granum. Proc. kon. Ned. Akad. Wet. 41, 896–903 (1938).Google Scholar
  233. A chloroplastis szerkezeterol. Arb. ung. biol. Forsch.-Inst. 15, 468–497 (1943). Ref. Biol. Abstr. 23, 582 (1949).Google Scholar
  234. Morrison, J. F.: Enzymatic mechanisms in the respiration of rhubarb leaves. Aust. J. exp. Biol. med. Sci. 28, 311–320 (1950).PubMedCrossRefGoogle Scholar
  235. Moyer, L. S., and M. M. Fishman: The chlorophyll-protein complex. II. Species relationships in certain legumes as shown by electric mobility curves. Bot. Gaz. 104, 449–454 (1942/43).CrossRefGoogle Scholar
  236. Mudrack, K.: Über Größen- und Strukturänderungen der Chloroplasten in Rohrzucker unet Elektrolytlösungen. Protoplasma (Wien) 47, 461 (1956a).CrossRefGoogle Scholar
  237. Experimentelle Untersuchungen an isolierten Chloroplasten. Protoplasma (Wien) 46, 556–578 (1956b).Google Scholar
  238. Mühlethaler, K.: Untersuchungen über die Struktur und Entwicklung der Proplastiden. Protoplasma (Wien) 45, 264–279 (1955).CrossRefGoogle Scholar
  239. Der gegenwärtige Stand der elektronenmikroskopischen Erforschung der Pflanzenzelle. Naturwissenschaften 44, 204–213 (1957).Google Scholar
  240. Nakamura, H: Über die quantitativen Beziehungen zwischen der Katalase in Chloroplasten und dem Chlorophyll, nebst einigen Bemerkungen über die Rolle der Katalase im Assimilationsvorgang. Jap. J. Bot. 11, 221–236 (1940/41).Google Scholar
  241. Nason, A., R. C. Abraham and B. C. Averbach: The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides. Biochem. biophys. Acta 15, 159–161 (1954).PubMedCrossRefGoogle Scholar
  242. Neish, A. C.: Studies on chloroplasts. I. Separation of chloroplasts, a study of factors affecting their flocculation and the calculation of the chloroplast content of leaf tissue from chemical analysis. Biochem. J. 33, 293–299 (1939a).Google Scholar
  243. II. Their chemical composition and the distribution of certain metabolites between the chloroplast and the remainder of the leaf. Biochem. J. 33, 300–308 (1939b).Google Scholar
  244. Neubauer, M.: Das Vitamin C in der Pflanze. Protoplasma (Wien) 33, 345–370 (1939).CrossRefGoogle Scholar
  245. Neufeld, E. F., V. Ginsburg, E. W. Putman, D. Fanthier and W. Z. Hassid: Formation and interconversion of sugarnucleotides by plant extracts. Fed. Proc. 16, 226 (1957).Google Scholar
  246. Newton, J. W., and M. D. Kamen: Chromatium cytochrome. Biochim. biophys. Acta 21, 71–80 (1956).PubMedCrossRefGoogle Scholar
  247. Nezgovorov, L.: Amylase in the chloroplasts. C. R. (Doklady) Acad. Sci. URSS. 29, 624–627 (1940).Google Scholar
  248. Zur Frage über das Vorhandensein von gebundener Amylase in den Chloroplasten. C. R. (Doklady) Acad. Sci. URSS. 30, 260–263 (1941).Google Scholar
  249. Nicholas, D. J. D., and A. Nason: Role of molybdenum as a constituent of nitrate reductase from soybean leaves. Plant Physiol. 30, 135–138 (1955).PubMedCrossRefGoogle Scholar
  250. Nieman, R. H., and B. Vennesland: Cytochrome-c photo-oxidase. Fed. Proc. 16, 226 (1957a).Google Scholar
  251. Cytochrome c photooxidase in spinach chloroplasts. Science 125, 353–354 (1957b).Google Scholar
  252. Niklowitz, W., u. G. Drews: Zur elektronenmikroskopischen Darstellung der Feinstruktur von Rhodospirillum rubrum. Ergebnisse einer neuen, einfachen Dünnschnittmethode. Arch. Mikrobiol. 23, 123–129 (1955).PubMedCrossRefGoogle Scholar
  253. Beiträge zur Cytologie der Blaualgen. I. Untersuchungen zur Substruktur von Phormidium uncinatum Gom. Arch. Mikrobiol. 24, 134–146 (1956).Google Scholar
  254. Noack, K.: Der Zustand des Chlorophylls in der lebenden Pflanze. Biochem. Z. 183, 135–152 (1927).Google Scholar
  255. Über das Chloroplasteneisen. Z. Bot. 23, 957–966 (1930).Google Scholar
  256. Noack, K., u. H. Liebich: Die Eisengarnitur der Chloroplasten vom Spinat. Naturwissenschaften 29, 302 (1941).CrossRefGoogle Scholar
  257. Noack, K., u. E. Timm: Vergleichende Untersuchung der Proteine in den Chloroplasten und im Cytoplasma des Spinatblatts. Naturwissenschaften 30, 453 (1942).CrossRefGoogle Scholar
  258. Noll jr., C. R., and R. H. Burris: Nature and distribution of glycolic acid oxidase in plants. Plant Physiol. 29, 261–265 (1954).PubMedCrossRefGoogle Scholar
  259. Norman, A. W. van, C. S. French and F. D. H. Mac Dowall: The absorption and fluorescence spectra of two red marine algae. Plant Physiol. 23, 455–466 (1948).PubMedCrossRefGoogle Scholar
  260. Olson, J. M.: A spectrophotometric study of intracellular oxidation-reduction reactions in the photosynthetic bacterium Chromatium. Thesis, University of Pennsylvania, Philadelphia 1957.Google Scholar
  261. Paech, K., u. E. Krech: Über die Stärkebildung in den Piastiden. Planta (Berl.) 41, 391–395 (1953).CrossRefGoogle Scholar
  262. Pandya, K.P., and C. V. Ramakrishnan: Biosynthesis of sucrose in sugarcane leaves. Naturwissenschaften 43, 85 (1956).CrossRefGoogle Scholar
  263. Perner, E. S.: Die Sphärosomen (Mikrosomen) pflanzlicher Zellen. Protoplasma (Wien) 42, 457–481 (1953).CrossRefGoogle Scholar
  264. Pierpoint, W. S.: The chromatography of leaf ribonuclease. Biochim. biophys. Acta 21, 136–141 (1956).PubMedCrossRefGoogle Scholar
  265. The phosphatase and metaphosphatase activities of pea extracts. Biochem. J. 65, 67–76 (1957).Google Scholar
  266. Punnett, T.: Some properties of algal chloroplast material. Bull. Fermentations 1956, No 5, 1–4.Google Scholar
  267. Quayle, J. R., R. C. Fuller, A. A. Benson and M. Calvin: Enzymatic carboxylation of ribulose diphosphate. J. Amer. chem. Soc. 76, 3610–3611 (1954).CrossRefGoogle Scholar
  268. Rabinowitch, E. I.: Photosynthesis and related processes, vol. I. New York: Interscience Publ. 1945.CrossRefGoogle Scholar
  269. Photosynthesis and related processes, vol. II, part. 1. New York: Interscience Publ. 1951.Google Scholar
  270. Photosynthesis. Ann. Rev. Plant Physiol. 3, 229–264 (1952).Google Scholar
  271. Photosynthesis and related processes, vol. II, part. 2. New York: Interscience Publ. 1956.Google Scholar
  272. Racker, E.: Synthesis of carbohydrates from carbon dioxide and hydrogen in a cell-free system. Nature (Lond.) 175, 249–251 (1955).CrossRefGoogle Scholar
  273. Rajarao, T., M. M. Laloraya and Govindjee: Absence of some free amino acids from the diseased leaves of Trichosanthes anguina. Naturwissenschaften 43, 301 (1956).CrossRefGoogle Scholar
  274. Rezende-Pinto, M. de, u. A. de Lemos Pereira: Über die Struktur der Chloroplasten von Oedogonium. Protoplasma (Wien) 44, 468–469 (1955).CrossRefGoogle Scholar
  275. Richter, G.: Zur Papierchromatographie von Enzymgemischen aus Grünalgen. Flora (Jena) 143, 161–164 (1956a).Google Scholar
  276. Enzymologische Untersuchungen an Hydrodictyon reticulatum (L.) Lagerh. mit besonderer Berücksichtigung periodischer Aktivitätsschwankungen. Inaug.-Diss. Marburg 1956b.Google Scholar
  277. Roberts, D. W. A.: The wheat leaf phosphatases. I. A survey of the inhibitors at pH 5.7. J. biol. Chem. 219, 711–718 (1956a).Google Scholar
  278. II. Pathways of hydrolysis of some nucleotides at pH 5.5. J. biol. Chem. 222, 258–270 (1956b).Google Scholar
  279. Rosenberg, A. J., et G. Ducet: Activité cytochrome-oxidasique chez l’épinard. C. R. Acad. Sci. (Paris) 229, 391–393 (1949).Google Scholar
  280. Activités respiratoires des végétaux supérieurs. V. Présence de cytochrome-oxydase dans les chloroplastes; réduction de cytochrome c dans la réaction de Hill. C. R. Acad. Sci. (Paris) 233, 1674–1676 (1951).Google Scholar
  281. Rosenberg, L. L., and D.I. Arnon: The preparation and properties of a new glyceraldehyde-3-phosphate dehydrogenase from photosynthetic tissues. J. biol. Chem. 217, 361–371 (1955).PubMedGoogle Scholar
  282. Sadron, C.: Methods of determining the form and dimensions of particles in solution: a critical survey. Progr. Biophysics 3, 237–304 (1953).Google Scholar
  283. Sager, R., and G. E. Palade: Chloroplast structure in green and yellow strains of Chlamydomonas. Exp. Cell Res. 7, 584–588 (1954).PubMedCrossRefGoogle Scholar
  284. San Pietro, A., and H. M. Lang: Accumulation of reduced pyridine nucleotides by illuminated grana. Science 124, 118–119 (1956).CrossRefGoogle Scholar
  285. Scarth, G. W.: Colloidal changes associated with protoplasmatic concentration. Quart. J. exp. Physiol. 14, 99–113 (1924). Eef. Biol. Zbl. 63, 349 (1943).Google Scholar
  286. Schachman, H. K., A. B. Pardee and R. Y. Stanier: Studies on the macromolecular organization of microbial cells. Arch. Biochem. 38, 245–260 (1952).PubMedCrossRefGoogle Scholar
  287. Schales, O., V. Mims and S. S. Schales: Glutamic acid decarboxylase of higher plants. I. Distribution; preparation of clear solution; nature of prosthetic group. Arch. Biochem. 10, 455–465 (1946).PubMedGoogle Scholar
  288. Schiesler, L., L. E. Mc Lure and M. S. Dunn: The biosynthesis of C14 amino acids with Chlorella. J. biol. Chem. 203, 1039–1044 (1953).Google Scholar
  289. Skitter, E.: The occurrence of coenzyme A in plants. Plant Physiol. 29, 403–406 (1954).CrossRefGoogle Scholar
  290. Senn, G.: Die Gestalts- und Lageveränderung der Pflanzenchromatophoren. Leipzig: Wilhelm Engelmann 1908.Google Scholar
  291. Shaw, M.: Phosphorylase in the chloroplasts of wheat. Canad. J. Bot. 32, 523–536 (1954).CrossRefGoogle Scholar
  292. Shiro, T., and A. Mitsui: Photochemical phosphate transfer in green leaves. J. Biochem. (Tokyo) 41, 443–450 (1954).Google Scholar
  293. Siddiqi, A. M., and A. L. Tappel: Alfalfa lipoxidase. Plant Physiol. 31, 320–321 (1936).CrossRefGoogle Scholar
  294. Singer, S. J., L. Eggman, J. M. Campbell and S. G. Wildman: The proteins of green leaves. IV. A high molecular weight protein comprising a large part of the cytoplasmic proteins. J. biol. Chem. 197, 233–239 (1952).PubMedGoogle Scholar
  295. Sissakyan, N. M.: La biochimie des plastides. Résumés des communications de la délégation soviétique au VIII. congrès international de botanique. Ed. Acad. Sci. URSS., Moscou, pp. 91–94, 1954.Google Scholar
  296. Propriétés biochimiques des plastides. Comm. Rapp. 3. congrès international de biochimie. Ed. Acad. Sci. URSS. 1955.Google Scholar
  297. Sissakyan, N. M., and K. G. Chamova: Dehydrogenases of plastids. Dokl. Akad. Nauk SSSR. 67, 337–340 (1949). [In Russian.] Ref. Weier and Stocking 1952.Google Scholar
  298. Sissakyan, N. M., and I.I. Filippovitch: Cytochrome oxidase of isolated plastids. [In Russian.] Dokl. Akad. Nauk SSSR. 67, 517–520 (1949). Ref. Jagendorf and Wildman 1954.Google Scholar
  299. Sissakyan, N.M., and A. M. Kobyakova: Biochimija 13, 88 (1948). Ref. Rabinowtich 1952.Google Scholar
  300. Phosphorylase in isolated (plant) plastids. Dokl. Akad. Nauk SSSR. 61, 1065–1067 (1948). [In Russian.] Ref. Weier and Stocking 1952.Google Scholar
  301. Dokl. Akad. Nauk SSSR. 67, 703 (1949). Ref. Stumpf 1952.-— Smith, A. M., and T. Wang: The cystine and methionine in certain species of grassland herbage. Biochem. J. 35, 404–412 (1941).Google Scholar
  302. Smith, E. L., and E. G. Pickels: The effect of detergents on the chlorophyll-protein compound of spinach as studied in the ultracentrifuge. J. gen. Physiol. 24, 753–764 (1941).PubMedCrossRefGoogle Scholar
  303. Smith, J. H. C., D. W. Kupke and A. T. Giese: On the preparation, purification and nature of the protochlorophyll holochrome. Carnegie Inst. Washington Year Book 55, 243–248 (1956).Google Scholar
  304. Smith, J. H. C., and D. W. Kupke: Some properties of extracted protochlorophyll holochrome. Nature (Lond.) 178, 751–752 (1956).CrossRefGoogle Scholar
  305. Sreerangachar, H. B.: Studies on the fermentation of Ceylon tea. VIII. Further observations on the relationship of tea fermentations to normal respiration. Biochem. J. 44, 23–27 (1949).Google Scholar
  306. Stafford, H.A.: Dehydrogenase activity of hydroxymalonate and related acids in higher plants. Plant Physiol. 31, 135–141 (1956).PubMedCrossRefGoogle Scholar
  307. Stafford, H. A., and A. Magaldi: A developmental study of D-glyceric acid dehydrogenase. Plant Physiol. 29, 504–508 (1954a).CrossRefGoogle Scholar
  308. Stafford, H. A., A. Magaldi and B. Vennesland: The enzymic reduction of hydroxypyruvic acid to D-glyceric acid in higher plants. J. biol. Chem. 207, 621–629 (1954b).Google Scholar
  309. Enzymatic oxidation of DPNH by diketosuccinate and dihydroxyfumarate. Science 120, 265–266 (1954).Google Scholar
  310. Steemann Nielsen, E., and J.-Kristiansen: Carbonic anhydrase in submersed autotrophic plants. Physiol. Plantarum (Cph.) 2, 325–331 (1949).CrossRefGoogle Scholar
  311. Steffen, K., u. F. Walter: Licht- und elektronenoptische Untersuchungen über den Feinbau des Chromatophors von Ankistrodesmus Braunii (Nägeli) Brunnthaler. Planta (Berl.) 45, 395–404 (1955).CrossRefGoogle Scholar
  312. Steinmann, E., and F. S. Sjöstrand: The ultrastructure of chloroplasts. Exp. Cell Res. 8, 15–23 (1955).PubMedCrossRefGoogle Scholar
  313. Stocking, C. R.: The intracellular location of Phosphorylase in leaves. Amer. J. Bot. 39, 283–287 (1952).CrossRefGoogle Scholar
  314. Stocking, C. R., and E. M. Gifford jr.: Incorporation of thymidine into chloroplasts of Spirogyra. Biochem. and biophys. Res. Comm. 1, 159–163 (1959).CrossRefGoogle Scholar
  315. Stoll, A., u. E. Wiedemann: Verh. Schweiz, naturforsch. Ges. Basel 1941, 125. Ref. Submicroscopic morphology of protoplasm. Amsterdam, Elsevier Publ. 1953.Google Scholar
  316. Stone, W.: Ascorbic acid oxidase and the state of ascorbic acid in vegetable tissues. Biochem. J. 31, 508–512 (1937).PubMedGoogle Scholar
  317. Strugger, S.: Über den Bau der Proplastiden und Chloroplasten. Naturwissenschaften 37, 166 (1950).CrossRefGoogle Scholar
  318. Elektronenmikroskopische Beobachtungen an den Chloroplasten von Chlorophytum comosum. Ber. dtsch. bot. Ges. 69, 177 (1956).Google Scholar
  319. Strugger, S., u. M. Losada-Villasante: Die Piastiden in den albicaten Geweben der Blatter einer mediovariegaten Form von Chlorophytum comosum. Protoplasma (Wien) 45, 540–551 (1955/56).CrossRefGoogle Scholar
  320. Strugger, S., u. E. Perner: Beobachtungen zur Frage der ontogenetischen Entwicklung des somatischen Chloroplasten. Protoplasma (Wien) 46, 711–742 (1956).CrossRefGoogle Scholar
  321. Stubbe, W., u. D. V. Wettstein: Zur Struktur erbheh verschiedener Chloroplasten von Oenothera. Protoplasma (Wien) 45, 241–250 (1955).CrossRefGoogle Scholar
  322. Stumpf, P. K.: Glycolytic enzymes in higher plants. Ann. Rev. Plant Physiol. 3, 17–34 (1952).CrossRefGoogle Scholar
  323. Suzuki, Y.: Oxidation of phenols by polyphenolase from the leaf of Scopolia japonica. Naturwissenschaften 43, 252–253 (1956).CrossRefGoogle Scholar
  324. Szent-Györgyi, A.: On the function of hexuronic acid in the respiration of the cabbage leaf. J. biol. Chem. 90, 385–393 (1931).Google Scholar
  325. Takano, K.: Acceptor relations in the enzymatic transfer of b-glycosyl and b-galactosyl groups. J. Biochem. (Tokyo) 43, 205–216 (1956).Google Scholar
  326. Takashima, S., and A. Mitsui: Photochemical phosphate transfer in green leaves. J. Biochem. (Tokyo) 41, 443–450 (1954).Google Scholar
  327. Tanada, T.: Photosynthetic efficiency of carotenoid pigments in Navicula minima. Amer. J. Bot. 38, 276–283 (1951).CrossRefGoogle Scholar
  328. Tewfik, S., and P. K. Stumpf: Carbohydrate metabolism in higher plants. II. The distribution of aldolase in plants. Amer. J. Bot. 36, 567–571 (1949).CrossRefGoogle Scholar
  329. Thaler, I.: Die Piastiden der Cerinthe-Epidermis. Protoplasma (Wien) 45, 483–485 (1955/56).CrossRefGoogle Scholar
  330. Thomas, J. B.: On the rôle of the carotenoids in photosynthesis in Rhodospirillum rubrum. Biochim. biophys. Acta 5, 186–196 (1950).PubMedCrossRefGoogle Scholar
  331. A note on the occurrence of grana in algae and in photosynthesizing bacteria. Proc. kon. Ned. Akad. Wet. C 55, 207–208 (1952).Google Scholar
  332. Some data and remarks on the structure of the chloroplast. Rapp. Comm. Sec. 11–12. 8. Congr. Int. Bot. Paris, p. 28–29, 1954.Google Scholar
  333. Structure and function of the chloroplast. Progr. Biophysics 5, 109–139 (1955).Google Scholar
  334. Thomas, J. B., O. H. Blaauw and L. N. M. Duysens: On the relation between size and photochemical activity of fragments of spinach grana. Biochem. biophys. Acta 10, 230–240 (1953).PubMedCrossRefGoogle Scholar
  335. Thomas, J. B., F. J. M. Daemen and A. Schaap: To be published 1958.Google Scholar
  336. Thomas, J. B., J. C. Goedheer and J. G. Komen: pH-Dependence of bacteriochlorophyll fluorescence in aqueous extracts of purple bacteria. Biochim. biophys. Acta 22, 342–348 (1956).PubMedCrossRefGoogle Scholar
  337. Thomas, J. B., and A. M. J. Haans: Photosynthetic activity of fragments of Spirogyra chloroplasts. Biochim. biophys. Acta 18, 287–288 (1955).Google Scholar
  338. Thomas, J. B., A. M. J. Haans, A. A. J. van der Leun and J. Koning: Photosynthetic activity of isolated chloroplast fragments of Spirogyra. Biochim. biophys. Acta 25, 453–462 (1957).PubMedCrossRefGoogle Scholar
  339. Thomas, J. B., A. A. J. van der Leun and J. Koning: Photosynthetic activity of fragments of Spirogyra chloroplasts. II. Measurements with the mass spectrometer. Biochim. biophys. Acta 23, 443–444 (1957).PubMedCrossRefGoogle Scholar
  340. Thomas, J. B., K. Minnaert and P. F. Elbers: Chlorophyll concentrations in plastids of different groups of plants. Acta bot. neerl. 5, 315–321 (1956).Google Scholar
  341. Thomas, J. B., and J. F. W. Nuboer: To be published 1958.Google Scholar
  342. Thomas, J. B., L. C. Post and N. Vertregt: Localisation of chlorophyll within the chloroplast. Biochim. biophys. Acta 13, 20–30 (1954).PubMedCrossRefGoogle Scholar
  343. Thomas, J. B., and W. de Rover: On phycocyanin participation in the Hill reaction of the blue-green alga Synechococcus cedrorum. Biochim. biophys. Acta 16, 391–395 (1955).PubMedCrossRefGoogle Scholar
  344. Timm, E.: Vergleichende Untersuchung der Proteine in den Chloroplasten und im Cytoplasma des Spinatblatts. Z. Bot. 38, 1–25 (1942/43).Google Scholar
  345. Tolbert, N. E., C. O. Clagett and R. H. Burris: Products of the oxidation of glycolic acid and 1-lactic acid by enzymes from tobacco leaves. J. biol. Chem. 181, 905–914 (1949).PubMedGoogle Scholar
  346. Tolbert, N. E., and M. S. Cohan: Activation of gly colic acid oxidase in plants. J. biol. Chem. 204, 639–648 (1953a).Google Scholar
  347. Products formed from glycolic acid oxidase in plants. J. biol. Chem. 204, 649–654 (1953b).Google Scholar
  348. Tolbert, N. E., and L. P. Zill: Photosynthesis by protoplasm extruded from Chara and Nitella. J. gen. Physiol. 37, 575–588 (1954).PubMedCrossRefGoogle Scholar
  349. Tookey, H. L., and A. K. Balls: Plant phospholipase D. I. Studies on cottonseed and cabbage phospholipase D. J. biol. Chem. 218, 213–224 (1956).PubMedGoogle Scholar
  350. Trim, A. R.: Histochemical and quantitative observations on the distribution of galiosinase in the shoots of Stellateae. J. exp. Bot. 6, 100–125 (1955).CrossRefGoogle Scholar
  351. Tristram, G. R.: The basic amino-acids of leaf proteins. With a discussion of various methods of analysis. Biochem. J. 33, 1271–1283 (1939).PubMedGoogle Scholar
  352. Ueda, R.: Photosynthesis of isolated chloroplasts and their autonomy. Bot. Mag. Tokyo 62, 62–63 (1949).Google Scholar
  353. Vernon, L. P., and M. D. Kamen: Studies on the metabolism of photosynthetic bacteria. XV. Photoautoxidation of ferrocytochrome c in extracts of Rhodospirillum rubrum. Arch. Biochem. 44, 298–311 (1953).PubMedCrossRefGoogle Scholar
  354. Vickery, H. B., and J. K. Palmer: The metabolism of the organic acids of tobacco leaves. XII. Effect of culture of excised leaves in solutions of malonate at pH 4 to pH 7. J. biol. Chem. 225, 629–640 (1957).PubMedGoogle Scholar
  355. Vishniac, W., and S. Ochoa: Fixation of carbon dioxide coupled to photochemical reduction of pyridine nucleotides by chloroplast preparations. J. biol. Chem. 195, 75–93 (1952).PubMedGoogle Scholar
  356. Wagenknecht, A. C., A. J. Riker, T. C. Allen and R. H. Burris: Plant growth substances and the activity of cell-free respiratory enzymes. Amer. J. Bot. 38, 550–554 (1951).CrossRefGoogle Scholar
  357. Walker, D. A.: Malate synthesis in a cell-free extract from a crassulacean plant. Nature (Lond.) 178, 593–594 (1956).CrossRefGoogle Scholar
  358. Walker, J. B., and J. Myers: The formation of arginosuccinic acid from arginine and fumarate. J. biol. Chem. 203, 143–152 (1953).PubMedGoogle Scholar
  359. Warburg, O., H. Klotzsch u. G. Krippahl: Glutaminsäure-Decarboxylase in Chlorella. Naturwissenschaften 44, 235 (1957).CrossRefGoogle Scholar
  360. Wassink, E. C., et J. A. H. Kersten: Observations sur le spectre d’absorption et sur le rôle des carotenoïdes dans la photosynthèse des diatomées. Enzymologia 12, 3–32 (1946).Google Scholar
  361. Waygood, E. R., and K. A. Clendenning: Carbonic anhydrase in green plants. Canad. J. Res. C 28, 673–689 (1950).CrossRefGoogle Scholar
  362. Intracellular localisation and distribution of carbonic anhydrase in plants. Science 113, 177–179 (1951).Google Scholar
  363. Weast, C. A., and G. Mackinney: Chlorophyllase. J. biol. Chem. 133, 551–558 (1940).Google Scholar
  364. Weber, F.: Myelinfiguren und Sphärolithe aus Spirogyra-Chloroplasten. Protoplasma (Wien) 19, 455–462 (1933).CrossRefGoogle Scholar
  365. Webster, G. C.: The occurrence of a cytochrome oxidase in the tissues of higher plants. Amer. J. Bot. 39, 739–745 (1952).CrossRefGoogle Scholar
  366. Enzymatic synthesis of glutamine in higher plants. Plant Physiol. 28, 724–727 (1953).Google Scholar
  367. Weier, T. E., and C. R. Stocking: The chloroplast: structure, inheritance and enzymology. II. Bot. Rev. 18, 14–75 (1952).CrossRefGoogle Scholar
  368. Weinberger, P., and K. A. Clendenning: Glutamic carboxylase of the mature wheat leaf. Canad. J. Bot. 30, 755–763 (1952).CrossRefGoogle Scholar
  369. Weinstein, L. H., and W. R. Robbins: Effect of light on the catalyse and cytochrome oxidase activities of leaf tissue of green and albino sunflower plants. Contrib. Boyce Thompson Inst. 18, 225–230 (1955).Google Scholar
  370. Weinstein, L. H., W. R. Robbins and W. W. Waino: Assay of cytochrome oxidase activity of sunflower leaf tissue in relation to pH value and cation concentration of the buffer. Plant Physiol. 29, 398–399 (1954).PubMedCrossRefGoogle Scholar
  371. Weissbach, A., B. L. Horecker and J. Hurwitz: The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J. biol. Chem. 218, 795–810 (1956).PubMedGoogle Scholar
  372. Weissbach, A., P. Z. Smyrniotis and B. L. Horecker: Pentose phosphate and CO2 fixation with spinach extracts. J. Amer. chem. Soc. 76, 3611 (1954a).CrossRefGoogle Scholar
  373. The enzymatic formation of ribulose diphosphate. J. Amer. chem. Soc. 76, 5572–5573 (1954b).Google Scholar
  374. Werle, E., u. F. Roewer: Monoaminoxydase in Pflanzen. Biochem. Z. 320, 298–301 (1950).PubMedGoogle Scholar
  375. Wessels, J. S. C.: A possible function of vitamin K in photosynthesis. Rec. Trav. chim. Pays-Bas 73, 529–536 (1954).CrossRefGoogle Scholar
  376. Wettstein, D. V.: Chlorophyll-Letale und der submikroskopische Formwechsel der Piastiden. Exp. Cell Res. 12, 427–506 (1957).CrossRefGoogle Scholar
  377. Whatley, F. R.: Isocitric dehydrogenase in green leaves. New Phytologist 50, 258–267 (1951).CrossRefGoogle Scholar
  378. Whatley, F. R., M. B. Allen, L. L. Rosenberg, J. B. Capindale and D. L Arnon: Photosynthesis by isolated chloroplasts. V. Phosphorylation and carbon dioxide fixation by broken chloroplasts. Biochim. biophys. Acta 20, 462–468 (1956).PubMedCrossRefGoogle Scholar
  379. Wieler, A.: Über Beziehungen zwischen maskierten Eisen und Säuren. Jb. wiss. Bot. 86, 387–400 (1938).Google Scholar
  380. Wildman, S. G., and J. Bonner: The proteins of green leaves. I. Isolation, enzymatic properties and auxin content of spinach cytoplasmatic proteins. Arch. Biochem. 14, 381–413 (1947).PubMedGoogle Scholar
  381. Wildman, S. G., and A. T. Jagendorf: Leaf proteins. Ann. Rev. Plant Physiol. 3, 131–148 (1952).CrossRefGoogle Scholar
  382. Willstätter, R., u. A. Stoll: Untersuchungen über das Chlorophyll. Berlin: Springer 1913.Google Scholar
  383. Wolken, J. J.: A molecular morphology of Euglena gracilis var. bacillaris. J. Protozool. 3, 211–221 (1956a).Google Scholar
  384. Photoreceptor structures. I. Pigment monolayers and molecular weight. J. cell. comp. Physiol. 48, 349–369 (1956b).Google Scholar
  385. Wolken, J. J., and G. E. Palade: Fine structure of chloroplasts in two flagellates. Nature (Lond.) 170, 114 (1952).CrossRefGoogle Scholar
  386. Wolken, J. J., and F. A. Schwertz: Chlorophyll monolayers in chloroplasts. J. gen. Physiol. 37, 111–120 (1953).PubMedCrossRefGoogle Scholar
  387. Yamafuji, K., M. Shimamura and H. Takahashi: Oximase and transoximase in green algae. Enzymologia 17, 110–112 (1954).PubMedGoogle Scholar
  388. Yatazawa, M., and K. Tai: On the urease activities of plant leaves. Studies on the foliage dressing of nutrient elements. (Part 2). J. Sci. Soil Manure Jap. 23, 205–206 (1953).Google Scholar
  389. Yemm, E. W.: Respiration of barley plants. IV. Protein catabolism and the formation of amides in starving leaves. Proc. roy. Soc. B 136, 632–349 (1949/50).CrossRefGoogle Scholar
  390. Yemm, E. W., and B. F. Folkes: The amino acids of cytoplasmic and chloroplastic proteins of barley. Biochem. J. 55, 700–706 (1953).PubMedGoogle Scholar
  391. Yin, H. C.: Phosphorylase in plastids. Nature (Lond.) 162, 928–929 (1948).CrossRefGoogle Scholar
  392. Zelitch, I.: Oxidation and reduction of glycolic and glyoxylic acids in plants. II. Glyoxylic acid reductase. J. biol. Chem. 201, 719–727 (1953).PubMedGoogle Scholar
  393. The isolation and action of crystalline glyoxylic acid reductase from tobacco leaves. J. biol. Chem. 216, 553–575 (1955).Google Scholar
  394. DPN-linked oxidation of amino acids by enzymes from tobacco leaves. Fed. Proc. 16, 276 (1957).Google Scholar
  395. Zelitch, I., and S. Ochoa: Oxidation and reduction of glycolic and glyoxylic acids in plants. I. Glycolic acid oxidase. J. biol. Chem. 201, 707–719 (1953).PubMedGoogle Scholar
  396. Zurzycka, A., and J. Zurzycki: Studies on the phototactic movements of chloroplasts. II. Acta Soc. Bot. Polon. 23, 279–288 (1954).Google Scholar
  397. Zurzycki, J.: Chloroplast arrangement as a factor in photosynthesis. Acta Soc. Bot. Polon. 24, 27–63 (1955).Google Scholar
  398. Zurzycki, J., and A. Zurzycka: Influence of some catalyst poisons on phototactic movements of chloroplasts. Acta Soc. Bot. Polon. 24, 663–674 (1955).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • J. B. Thomas

There are no affiliations available

Personalised recommendations