Chromoproteins of algae

  • F. T. Haxo
  • C. Ó hEocha
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)


It is generally accepted that all photosynthetic pigments exist in combination with protein. The chlorophylls and carotenoids are easily separated from the proteins, and these pigments have been studied mostly in the protein-free state and are discussed as such in the preceding1 chapters. On the other hand, the phycoerythrins and phycocyanins, which form the subject of this section, contain strongly attached chromophores and most of the available information on these pigments refers to the undissociated chromoproteins.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Airth, R. L.: The phycobilin pigments from Porphyra naiadum. Doctoral Thesis. California: Stanford University 1955.Google Scholar
  2. Airth, R. L., and L. R. Blinks: A new phycoerythrin from Porphyra naiadum. Biol. Bull. 111, 321–327 (1956).CrossRefGoogle Scholar
  3. Characterization of phycoerythrin from Porphyra naiadum. J. gen. Physiol. 41, 77–90 (1957).Google Scholar
  4. Allen, Mary B.: Studies on a blue-green Chlorella. Congr. intern, botan., Paris. Rapps. et communs 8 (Sect. 17), 41 (1954).Google Scholar
  5. Allen, Mary B., and D. I. Arnon: Studies on nitrogen-fixing blue-green algae II. The sodium requirement of Anabaena cylindrica. Physiol. Plantarem (Copenh.) 8, 653–660 (1955).CrossRefGoogle Scholar
  6. Bannister, T. T.: Energy transfer between chromophore and protein in phycocyanin. Arch. Biochem. 49, 222–233 (1954).PubMedCrossRefGoogle Scholar
  7. Blinks, L. R.: The role of accessory pigments in photosynthesis. Autotrophic microorganisms (B. A. Fry and J. L. Peel, ed.). Cambridge: University Press 1954a.Google Scholar
  8. The photosynthetic function of pigments other than chlorophyll. Ann. Rev. Plant Physiol. 5, 93–114 (1954b).Google Scholar
  9. Boresch, K.: Die Färbung von Cyanophyceen und Chlorophyceen in ihrer Abhängigkeit vom Stickstoffgehalt des Substrates. Jb. wiss. Bot. 52, 145–185 (1913).Google Scholar
  10. Ein Fall von Eisenchlorose bei Cyanophyceen. Z. Bot. 13, 64–78 (1921a).Google Scholar
  11. Phykoerythrin in Cyanophyceen. Ber. dtsch. bot. Ges. 39, 93–98 (1921b).Google Scholar
  12. Die wasserlöslichen Farbstoffe der Schizophyceen. Biochem. Z. 119, 167–214 (1921c).Google Scholar
  13. Die komplementäre chromatische Adaptation. Arch. Protistenk. 44, 1–70 (1921d).Google Scholar
  14. Über die Pigmente der Alge Palmellococcus miniatus var. porphyrea. Ber. dtsch. bot. Ges. 40, 288–292 (1922).Google Scholar
  15. Algenfarbstoffe. In Handbuch der Pflanzenanalyse, Bd. III. (G. Klein ed.) Berlin: Springer 1932.Google Scholar
  16. Bouillenne-Walrand, M., and L. Delarge: Contribution à l’étude des pigments végétaux. I. Extraction et crystallization de la phycocyanine de Phormidium uncinatum Gom. Rev. gén. Bot. 49, 537–557 (1937).Google Scholar
  17. Calvin, M., and V. Lynch: Grana-like structures of Synechococcus cedorum. Nature (Lond.) 169, 455–456 (1952).CrossRefGoogle Scholar
  18. Clendenning, K. A., T.E. Brown and E. E. Waldov: Causes of increased and stabilized Hill reaction rates in polyethylene glycol solutions. Physiol. Plantarum (Copenh.) 9, 519–532 (1956).CrossRefGoogle Scholar
  19. Clendenning, K. A., B. Ke and T. Curry: Unpublished studies 1955.Google Scholar
  20. Cook, A. H.: Algal pigments and their significance. Biol. Rev. 20, 115–132 (1945).CrossRefGoogle Scholar
  21. Czapek, F.: Biochemie der Pflanzen. Jena: Gustav Fischer 1922.Google Scholar
  22. Dhéré, C., et M. Fontaine: Recherches sur la fluorescence des algues et de leurs constituants pigmentaires. Ann. Inst. Oceanogr., N. S. 10, 245–280 (1931).Google Scholar
  23. Duysens, L. N. M.: Transfer of excitation energy in photosynthesis. Utrecht: Kemink 1952.Google Scholar
  24. Egle, K.: Die Farbstoffe. Handbuch der Pflanzenphysiologie, Bd. I. (W. Ruhland ed.) Berlin: Springer 1955.Google Scholar
  25. Emerson, R., and C. M. Lewis: The photosynthetic efficiency of phycocyanin in Chroococcus, and the problem of carotenoid participation in photosynthesis. J. gen. Physiol. 25, 579–595 (1942).PubMedCrossRefGoogle Scholar
  26. Eriksson-Quensel, Inga-Britta: The molecular weights of phycoerythrin and phycocyan. I. Biochem. J. 82, 585–589 (1938).Google Scholar
  27. Esenbeck, N. V.: Über einen blau-rothen Farbstoff, der sich bei der Zersetzung von Oscillatorien bildet. Justus Liebigs Ann. Chem. 17, 75–82 (1836).Google Scholar
  28. Feldman, J., et R. Tixier: Sur la floridorubine, pigment rouge des plastes d’une Rhodophycée (Rytiphlea tinctoria Clem. C. Ag.) Rev. gen. Bot. 54, 341–354 (1947).Google Scholar
  29. Fogg, G. E.: The production of extracellular nitrogenous substances by a blue-green alga. Proc. roy. Soc. B 139, 372–597 (1952).CrossRefGoogle Scholar
  30. French, C. S., J. H. C. Smith, H. I. Virgin and R. L. Airth: Fluorescence-spectrum curves of chlorophylls, pheophytins, phycoerythrins, phycocyanins and hypericin. Plant Physiol. 31, 369–374 (1956).PubMedCrossRefGoogle Scholar
  31. French, C. S., and Violet M. K. Young: The absorption, action and fluorescence spectra of photosynthetic pigments in living cells and in solutions. Radiation Biology III. (A. Hollaender, ed.) New York: McGraw Hill 1956. Fujiwara, T.: Chromoproteins in Japanese nori (Porphyra tenera). I. A new method for the crystallization of phycoerythrin and phycocyanin. J. Biochem. (Tokyo) 42, 411–417 (1955).Google Scholar
  32. Chromoproteins in Japanese nori (Porphyra tenera). II. Amino acid compositions of phycoerythrins and phycocyanins. J. Biochem. (Tokyo) 43, 195–203 (1956).Google Scholar
  33. Studies on chromoproteins in Japanese nori (Porphyra tenera). III. Chromopeptides derived from phycoerythrin by peptic digestion. J. Biochem. (Tokyo) 44, 723–733 (1957).Google Scholar
  34. Geitler, L.: Über den Granabau der Piastiden. Planta (Berl.) 26, 463–469 (1937).CrossRefGoogle Scholar
  35. Goedheer, J. C.: Optical properties and in vivo orientation of photosynthetic pigments. Doctoral thesis, Rijksuniversiteit, Utrecht, 1957.Google Scholar
  36. Granick, S.: Chlorophyll and photosynthesis. Chem. and Eng. News 31, 748–751 (1953).CrossRefGoogle Scholar
  37. Gray, C. H.: The Bile Pigments. London: Methuen 1953.Google Scholar
  38. Haxo, F., and N. Belser: Unpublished observations 1956–1957.Google Scholar
  39. Haxo, F.T., and L.’R. Blinks: Photosynthetic action spectra of marine algae. J. gen. Physiol. 33, 389–422 (1950).PubMedCrossRefGoogle Scholar
  40. Haxo, F.T., C. Óh Eocha and Phyllis Norris: Comparative studies of chromatographically purified phycoerythrins and phycocyanins. Arch. Biochem. 54, 162–173 (1955).PubMedCrossRefGoogle Scholar
  41. Haxo, F., and Phyllis Strout: Nitrogen deficiency and coloration in red algae. Biol. Bull. 99, 360–361 (1950).PubMedGoogle Scholar
  42. Jones, R. F., and L. R. Blinks: The amino acid constituents of the phycobilin chromoproteins of the red alga Porphyra. Biol. Bull. 112, 363–370 (1957).CrossRefGoogle Scholar
  43. Ke, B., and K. A. Clendenning: Properties of chloroplast dispersions in the presence of detergents. Biochim. biophys. Acta 19, 74–33 (1956).PubMedCrossRefGoogle Scholar
  44. Kitasato, Z.: Biochemische Studien über Phykoerythrin und Phykocyan. Acta phytochim. (Japan) 2, 75–97 (1925).Google Scholar
  45. Koch, W.: Untersuchungen an bakterienfreien Massenkulturen der einzelligen Rotalge Porphyridium cruentum Naegli. Arch. Mikrobiol. 18, 232–241 (1953).PubMedCrossRefGoogle Scholar
  46. Krasnovskii, A. A., V. B. Evstigneev, G. P. Brin and V. A. Gavrilova: The isolation of phycoerythrin from red seaweed and its spectral and photochemical properties. [Russian.] Dokl. Akad. Nauk. SSSR. 82, 947–950 (1952).PubMedGoogle Scholar
  47. Kützing, F. T.: Phycologia generalis, oder Anatomie, Physiologie und Systemkunde der Tange. Leipzig: F. A. Brockhaus 1843.Google Scholar
  48. Kylin, H.: Über Phycoerythrin und Phykocyan bei Ceramium rvbrum (Huds.) Ag. Hoppe-Seylers Z. physiol. Chem. 69, 169–239 (1910).CrossRefGoogle Scholar
  49. Über die roten und blauen Farbstoffe der Algen. Hoppe-Seylers Z. physiol. Chem. 76, 397–425 (1912).Google Scholar
  50. Einige Bemerkungen über Phykoerythrin und Phykocyan. Hoppe-Seylers Z. physiol. Chem. 197, 1–6 (1931).Google Scholar
  51. Über die Farbstoffe und die Farbe der Cyanöphyceen. Itgl. Fysiogr. Sällsk. Lund. Forh. 7, 131–158 (1937a).Google Scholar
  52. Anatomie der Rhodophyceen. Berlin: Gebrüder Bornträger 1937b.Google Scholar
  53. Lemberg, R.: Die Chromoproteide der Rotalgen. I. Justus Liebigs Ann. Chem. 461, 46–89 (1928).CrossRefGoogle Scholar
  54. Die Chromoproteide der Rotalgen. II. Spaltung mit Pepsin und Säuren. Isolierung eines Pyrrolfarbstoffes. Justus Liebigs Ann. Chem. 477, 195–245 (1930a).Google Scholar
  55. Die Lichtextinktionen der Algenchromoproteide. Biochem. Z. 219, 255–257 (1930b).Google Scholar
  56. Lemberg, R., u. G.Bader: Die Phycobiline der Rotalgen. Überführung in Mesobilirubin und Dehydromesobilirubin. Justus Liebigs Ann. Chem. 505, 151–177 (1933).CrossRefGoogle Scholar
  57. Lemberg, R., and J. W. Legge: Hematin Compounds and Bile Pigments. New York: Interscience 1949.Google Scholar
  58. Molisch, H.: Das Phykoerythrin, seine Krystallisierbarkeit und chemische Natur. Bot. Ztg 52, 177–189 (1894).Google Scholar
  59. Das Phykocyan, ein krystallisierbarer Eiweißkörper. Bot. Ztg 53, 131–135 (1895).Google Scholar
  60. Myers, J., and W. A. Kratz: Relations between pigment content and photosynthetic characteristics in a blue-green alga. J. gen. Physiol. 39, 11–22 (1955).PubMedCrossRefGoogle Scholar
  61. Myers, A., R. D. Preston and G. W. Ripley: Fine structure in the red algae. I. X-ray and electronmicroscope investigation of Griffithsia flosculosa. Proc. roy. Soc. B 144, 450–459 (1956).CrossRefGoogle Scholar
  62. Ó h Eocha, C.: The comparative biochemistry of phycoerythrins and phycocyanins. Doctoral thesis, University of California 1955a.Google Scholar
  63. Unpublished observations 1955b.Google Scholar
  64. Comparative biochemical studies of the phycobilins. Arch. Biochem. 73, 207–219 (1958).Google Scholar
  65. Óh Eocha, C., and M. Óreachtaire: Unpublished observations 1958.Google Scholar
  66. Rabinowitch, E. I.: Photosynthesis. I. New York: Interscience 1945.Google Scholar
  67. Photosynthesis. II, Part I. New York: Interscience 1951.Google Scholar
  68. Photosynthesis. II, Part II. New York: Interscience 1956.Google Scholar
  69. Roche, J.: Notes sur les pigments des algues rouges et bleues (phycoerythrines et phycocyanines). Arch. phys. biol. 10, 91–101 (1933).Google Scholar
  70. Schachman, H. K., A.B. Pardee and R. Y. Stanier: Studies on the macromolecular organization of microbial cells. Arch. Biochem. 38, 245–260 (1952).PubMedCrossRefGoogle Scholar
  71. Schindler, B.: Über den Farbenwechsel der Oscillarien. Z. Bot. 5, 497–575 (1913).Google Scholar
  72. Schütt, F.: Über das Phykoerythrin. Ber. dtsch. bot. Ges. 6, 36–51 (1888).Google Scholar
  73. Siedel, W.: Synthese des Glaucobilins, sowie über Urobilin und Mesobiliviolin. Hoppe-Seylers Z. physiol. Chem. 237, 8–34 (1935).CrossRefGoogle Scholar
  74. Chemie und Physiologie des Blutfarbstoffabbaues. Ber. dtsch. chem. Ges. A 77, 21–42 (1944).Google Scholar
  75. Sisakyan, N. M., E. N. Bezinger and F. R. Kivkutzan: Amino-acid composition of phycoerythrin. [Russian.] Dokl. Akad. Nauk. SSSR. 98, 111–114 (1954).Google Scholar
  76. Sorby, H. C.: On the characteristic colouring-matters of the red groups of algae. J. Linnean Soc. Bot. 15, 34–40 (1877).CrossRefGoogle Scholar
  77. Strain, H. H.: Problems in chromatography and in colloid chemistry illustrated by leaf pigments. J. physic. Chem. 46, 1151–1161 (1942).CrossRefGoogle Scholar
  78. The pigments of algae. Manual of Phycology. (G. M. Smith, ed.) Waltham, Mass.: Chronica Botanica 1951.Google Scholar
  79. Svedberg, T., and Inga-Britta Eriksson: The molecular weights of phycocyan and phycoerythrin. III. J. Amer. chem. Soc. 54, 3998–4010 (1932).CrossRefGoogle Scholar
  80. Svedberg, T., and T. Katsurai: The molecular weights of phycocyan and phycoerythrin from Porphyra tenera and of phycocyan from Aphanizomenon flos aquae. J. Amer. chem. Soc. 51, 3573–3583 (1929).CrossRefGoogle Scholar
  81. Svedberg, T., and N.B. Lewis: The molecular weights of phycoerythrin and of phycocyan. J. Amer. chem. Soc. 50, 525–536 (1928).CrossRefGoogle Scholar
  82. Swingle, S. M., and A.Tiselius: Tricalcium phosphate as an adsorbent in the chromatography of proteins. Biochem. J. 48, 171–174 (1951).PubMedGoogle Scholar
  83. Thomas, J. B., and W. de Rover: On phycocyanin participation in the Hill reaction of the blue-green alga, Synechococcus cedrorum. Biochim. biophys. Acta 16, 391–395 (1955).PubMedCrossRefGoogle Scholar
  84. Tiselius, A.: The moving boundary method of studying the electrophoresis of proteins. Nova Acta Reg. Soc. Sci. Upsaliensis 7, 1–107 (1930).Google Scholar
  85. Quoted by E.L. Durrum. J. Amer, chem. Soc. 72, 2943–2948 (1950).Google Scholar
  86. Chromatography of proteins on calcium phosphate columns. Ark. Kemi 7, 443–449 (1954).Google Scholar
  87. Tiselius, A., S. Hjertén and Ó. Levin: Protein chromatography on calcium phosphate columns. Arch. Biochem. 65, 132–155 (1956).PubMedCrossRefGoogle Scholar
  88. Wassink, E. C.: Chromophyllins and the path of energy transfer in photosynthesis. Enzymologia 12, 362–372 (1948).Google Scholar
  89. Wassink, E.C., and H. W. J. Ragetli: Paper chromatography of hydrolysed Oscillatoria phycocyanin. Proc. kon. ned. Akad. Wet. C 55, 462–470 (1952).Google Scholar
  90. Yakushiji, E.: Über das Vorkommen des Cytochromes in höheren Pflanzen und in Algen. Acta phytochim. (Japan) 8, 325–329 (1935).Google Scholar

Additional literature: Cryptomonad biliproteins

  1. Allen, Mary B., E. C. Dougherty and J. J. A. Mc Laughlin: Chromoprotein pigments of some cryptomonad flagellates. Nature (Lond.) 184, 1047–1049 (1959).CrossRefGoogle Scholar
  2. Haxo, F. T., and D. C. Fork: Photosynthetically active accessory pigments of cryptomonads. Nature (Lond.) 184, 1051–1052 (1959).CrossRefGoogle Scholar
  3. Ó h Eocha, C., and M. Raftery: Phycoerythrins and phycocyanins of cryptomonads. Nature (Lond.) 184, 1049–1051 (1959).CrossRefGoogle Scholar

Effect of nature and intensity of illumination on biliprotein composition of algae

  1. Brody, Marcia, and R. Emerson: The effect of wavelength and intensity of light on the proportion of pigments in Porphyridium cruentum. Amer. J. Bot. 46, 433–440 (1959).CrossRefGoogle Scholar
  2. Halldal, P.: Pigment formation and growth in blue-green algae in crossed gradients of light intensity and temperature. Physiol. Plantarum (Cph.) 11, 401–420 (1958).CrossRefGoogle Scholar

Properties of crystalline C-phycoerythrin, C-phycocyanin and allophycocyanin

  1. Hattori, A., and Y. Fujita: Crystalline phycobilin chromoproteins obtained from a blue-green alga, Tolypthrix tenuis. J. Biochem. (Tokyo) 46, 633–644 (1959).Google Scholar

Amino acid composition of biliproteins

  1. Kimmel, J. R., and E. L. Smith: The amino acid composition of crystalline pumpkin seed globulin, edestin, C-phycocyanin and R-phycoerythrin. Bull. Soc. Chim. biol. 40, 2049–2065 (1958).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • F. T. Haxo
  • C. Ó hEocha

There are no affiliations available

Personalised recommendations