Chemistry, biogenesis and physiology of the carotenoids. (Carotenoids associated with chlorophyll.)

  • T. W. Goodwin
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)


The orange-red pigment “carotene” was first obtained crystalline from carrot roots by Wackenroder in 1831 and in 1837 Berzelius obtained ethanol-soluble “xanthophylls” from yellow autumn leaves. It was not, however, until 1860–1864 that similar compounds, the lipochromes were found to occur in green leaves. They are there masked by the chlorophylls but in the autumn the chlorophylls are destroyed more quickly than the lipochromes, which are then revealed to the naked eye. Another forty years elapsed before carrot carotene was shown to be identical with leaf carotene. This was mainly due to the complex nature of the mixture of leaf lipochromes, which only began to be fully appreciated during the classical work of Tswett around 1911 on its chromatographic separation. Later, brilliant applications of this technique allowed Karrer and Kuhn, among others, to separate, crystallize and establish the structure of many of the naturally occurring carotenoids, as the lipochrome were now called. The work leading up to the eventual elucidation of the structure of these pigments has been fully discussed by Zechmeister (1934) and Karrer and Jucker (1951) and need not be outlined here. Up to the present some 80–100 different carotenoids have now been detected (Goodwin 1952, 1955a) and the structures of at least 35 have been fully established (Karrer and Jucker 1951).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, I. C., R. C. Fuller and J. A. Bergeron: Environmental effects on photo-phosphorylation by bacterial chromatophores. Plant Physiol. 33, xiii.Google Scholar
  2. Arens, K.: Meta-morfose doe plastidios em Potamogeton. Rodriguesia 4, 167–177 (1940).Google Scholar
  3. Arnold, W., and J. R. Oppenheimer: Internal conversion in the photosynthesis of blue-green algae. J. gen. Physiol. 33, 423–435 (1950).PubMedCrossRefGoogle Scholar
  4. Bandurski, R. S.: Synthesis of carotenoid pigments in detached bean leaves. Bot. Gaz. 111, 95–109 (1949).CrossRefGoogle Scholar
  5. Bandurski, R. S., F. M. Scott, M. Pflug and F. W. Went: The effect of temperature on the colour and anatomy of the tomato leaves. Amer. J. Bot. 40, 41–46 (1953).CrossRefGoogle Scholar
  6. Barlow, G. B., and A. D. Patrick: Uptake and utilization of dl-[2-14C] mevalonic acid by Hevea brasiliensis. Nature (Lond.) 182, 662–663 (1958).CrossRefGoogle Scholar
  7. Barnes, W. C.: Effects of some environmental factors on growth and color of carrots. Cornell Univ. Agric. Memoirs, No 186 (1936).Google Scholar
  8. Barrenscheen, H. K., J. Pany u. E. Srb: Synthetische Leistung des Keimlings. I. Mitt. Die Bildung von Ascorbinsäure und der Carotinoide in etiolierten Weizenkeimlingen. Biochem. Z. 310, 285–291 (1942a).Google Scholar
  9. II, Mitt. Zur Frage der Bildung der Carotinoide und des Chlorophylls in etiolierten Weizenkeimlingen. Biochem. Z. 310, 335–343 (1942b).Google Scholar
  10. Bauer, A.: Beitrage zur Pigmentphysiologie der Blätter von Aurea-Varietäten. Beitr. Biol. Pflanz. 32, 403–426 (1956).Google Scholar
  11. Beck, A. W.: The development of plant pigments in seedlings grown in the dark. Stud. Inst. Divi Thomae 1, 109–116 (1937).Google Scholar
  12. Beekmann, H.: Über den Umsatz von Carotinoiden in höheren Pflanzen. Naturwissenschaften 40, 486–487 (1953).CrossRefGoogle Scholar
  13. Beenstein, L., and J. F. Thompson: Studies on the carotene destroying process in drying bean leaves. Bot. Gaz. 109, 204–219 (1947).CrossRefGoogle Scholar
  14. Bicknell, A. K.: The occurrence of a green sulphur bacterium in Sodon lake. Lloydia 12, 183–184 (1949).Google Scholar
  15. Bickoff, E. M., A. L. Livingston, G. F. Bailey and C. R. Thompson: Xantho-phylls in fresh and dehydrated alfalfa. Agric. Food Chem. 2, 563–567 (1954).CrossRefGoogle Scholar
  16. Bishop, N. I.: β-Carotene and its effect on the oxygen-producing mechanism of photosynthesis. Plant Physiol. 32, liv. (1957).Google Scholar
  17. Vitamin K1, an essential factor for the photochemical activity of isolated chloroplasts. Proc. nat. Acad. Sci. (Wash.) 44, 501–504 (1958).Google Scholar
  18. Blaauw-Jansen, G., J. G. Komen and J. B. Thomas: On the relation between the formation of assimilatory pigments and the rate of photosynthesis in etiolated oat seedlings. Biochim. biophys. Acta 5, 179–185 (1950).PubMedCrossRefGoogle Scholar
  19. Blinks, L. R.: The photosynthetic function of pigments other than chlorophyll. Ann. Rev. Plant Physiol. 5, 93–114 (1954a).CrossRefGoogle Scholar
  20. The role of accessory pigments in photosynthesis in autotrophic microorganisms. In: Autotrophic Micro-organisms, edit. B. A. Fry and J. L. Peel, p. 224–246. Cambridge: Cambridge University Press 1954b.Google Scholar
  21. Bolle-Jones, E. W., and B. A. Notton: The relative proportions of the chloroplast pigments as influenced by different levels of iron and potassium supply. Plant and Soil 5, 87–100 (1953).CrossRefGoogle Scholar
  22. Booth, V. H.: α-Carotene in leaves of the carrot plant. J. Sci. Food Agric. 6, 386–389 (1956).CrossRefGoogle Scholar
  23. Carotene, its determination in biological materials. Cambridge: Heffer 1957a.Google Scholar
  24. Carotene in the leaves of the carrot. J. Sci. Food Agric. 8, 371–376 (1957b).Google Scholar
  25. The stability of carotene in vegetable foods and forages. Qual. Plant Mat. Veget. 3–4, 317–326 (1958).Google Scholar
  26. Braithwaite, G. D., and T. W. Goodwin: Biosynthesis of carotene from dl-β-hydroxy-β-methyl-γ-[2-14C] valerolactone by Phycomyces blakesleeanus and carrot slices. Biochem. J. 67, 13 P (1957).Google Scholar
  27. Origin of the methoxyl groups in spirilloxanthin, a caro-tenoid synthesized by the photosynthetic bacterium Rhodospirillum rubrum. Nature (Lond.) 182, 1304–1305 (1958).Google Scholar
  28. Bressani, R., and I. J. Johnson: Effects of grass-legume associations, environment and genotype on carotene and nitrogen content of forage crops. Agron. J. 44, 414–420 (1953).CrossRefGoogle Scholar
  29. Bünning, E., u. G. Schneiderhöhn: Über das Aktionsspektrum der phototaktischen Reaktion von Euglena. Arch. Mikrobiol. 24, 80–90 (1956).PubMedCrossRefGoogle Scholar
  30. Calvin, M., and V. Lynch: Grana like structure of Synechococcus cedorum. Nature (Lond.) 169, 455–456 (1952).CrossRefGoogle Scholar
  31. Carter, P. W., I. M. Heilbron and B. Lythgoe: The lipochromes and the sterols of the algal classes. Proc. roy. Soc. B 12, 82–109 (1939).CrossRefGoogle Scholar
  32. Chen, S. L.: The action spectrum for the photochemical evolution of oxygen by isolated chloroplasts. Plant Physiol. 27, 35–48 (1952).PubMedCrossRefGoogle Scholar
  33. Cholnoky, L., C. Györgyfy, E. Nagy and M. Pánczél: Function of carotenoids in chlorophyll-containing organs. Nature (Lond.) 178, 410–411 (1956).CrossRefGoogle Scholar
  34. Claes, H.: Analyse der biochemischen Synthesekette für Carotinoide mit Hilfe von Chlorella-Mutanten. Z. Naturforsch. 9b, 462–469 (1954).Google Scholar
  35. Biosynthese von Carotinoiden bei Chlorella. Z. Naturforsch. 11b, 260–266 (1956).Google Scholar
  36. Biosynthese von Carotinoiden bei Chlorella. III. Z. Naturforsch. 12b, 401–407 (1957).Google Scholar
  37. Biosynthese von Carotinoiden bei Chlorella. IV. Die Carotinsynthese einer Chlorella-Mutante bei anaerober Belichtung. Z. Naturforsch. 13b, 222–224 (1958).Google Scholar
  38. Clarke, M. F.: A study of the carotene and crude protein content of orchard grass (Dactylis glomerata L.). Variation due to stage of growth, cutting management and clones. Canad. J. Agric. Sci. 33, 246–253 (1953).Google Scholar
  39. Clayton, R. K.: Studies in the phototaxis of Rhodospirillum rubrum. II. The relation between phototaxis and photosynthesis. Arch. Mikrobiol. 19, 125–140 (1953).PubMedCrossRefGoogle Scholar
  40. Cohen-Bazire, G., W. R. Sistrom and R. Y. Stanier: Kinetic studies of pigment synthesis by non-sulphur purple bacteria. J. cell. comp. Physiol. 49, 25–67 (1957).CrossRefGoogle Scholar
  41. Cohen-Bazire, G., and R. Y. Stanier: Specific inhibition of carotenoid synthesis in a photosynthetic bacterium and its physiological consequences. Nature (Lond.) 181, 250–252 (1958).CrossRefGoogle Scholar
  42. Cook, A. H.: Algal pigments and their significance. Biol. Rev. 20, 115–132 (1945).CrossRefGoogle Scholar
  43. Davis, C.: New interpretation of role of carotenoids in photosynthesis. Fed. Proc. 14, 200 (1955).Google Scholar
  44. De, N. K.: Factors affecting the carotene content of certain vegetable foodstuffs. Indian J. med. Res. 24, 201–212 (1937).Google Scholar
  45. Dersch, G.: Mineralsalzmangel und Sekundärcarotinoide in Grünalgen. Diss. Marburg 1959.Google Scholar
  46. Flora (Jena) 149 (1960, in press).Google Scholar
  47. Dorough, G. D., and M. Calvin: The pathway of oxygen in photosynthesis. J. Amer. chem. Soc. 73, 2362–2365 (1951).CrossRefGoogle Scholar
  48. Douin, R.: Pigments chlorophylliens des Bryophyta. Carotenoides de Bryales. C. R. Acad. Sci. (Paris) 243, 1051–1054 (1956).Google Scholar
  49. Droop, M. R.: Conditions governing haematochrome formation and loss in the alga Haematococcus pluvialis. Arch. Mikrobiol. 20, 391–397 (1964).CrossRefGoogle Scholar
  50. Duchow, E., and H. C. Douglas: Rhodomicrobium vannielii, a new photoheterotrophic bacterium. J. Bact. 58, 409–416 (1949).PubMedGoogle Scholar
  51. Dutton, H. J., and C. Juday: Chromatic adaptation in relation to color and depth distribution of fresh water phytoplankton and large aquatic plants. Ecology 25, 273–282 (1944).CrossRefGoogle Scholar
  52. Dutton, H. J., and W. M. Manning: Evidence for carotenoid sensitized photosynthesis in the diatom Nitzschia closterium. Amer. J. Bot. 28, 516–526 (1941).CrossRefGoogle Scholar
  53. Dutton, H. J., W. M. Manning and B. M. Duggar: Chlorophyll fluorescence and energy transfer in the diatom Nitzschia closterium. J. Phys. Chem. 47, 308–313 (1943).CrossRefGoogle Scholar
  54. Duysens, L. N. M.: Transfer of light energy within the pigment systems present in photosynthesizing cells. Nature (Lond.) 168, 548–550 (1951).CrossRefGoogle Scholar
  55. Transfer of excitation energy in photosynthesis. Univ. of Utrecht, Holland, 96 pp. 1952.Google Scholar
  56. Egle, K.: Untersuchungen über die Resistenz der Piastidenfarbstoffe. Bot. Archiv 45, 93–148 (1944).Google Scholar
  57. Elbers, P. F., K. Minnaert and J. B. Thomas: Submicroscopic structures of some chloroplasts. Acta bot. neerl. 6, 345–350 (1957).Google Scholar
  58. Emebson, R., and C. M. Lewis: The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. Amer. J. Bot. 30, 165–178 (1943).CrossRefGoogle Scholar
  59. Engelmann, T. W.: Farbe und Assimilation. Bot. Ztg 41, 1, 17 (1883).Google Scholar
  60. Untersuchungen über die quantitativen Beziehungen zwischen Absorption des Lichtes und Assimilation in Pflanzenzellen. Bot. Ztg 42, 81, 97 (1884).Google Scholar
  61. Eny, D. M.: Colorless polyenes in green leaves and latex. Arch. Biochem. 46, 18–21 (1953).PubMedCrossRefGoogle Scholar
  62. Eugster, C. H., E. Linner, A. H. Trivedi u. P. Karrer: Carotinoidsynthesen. XIX. Synthese eines 6, 7, 6′, 7′-tetrahydrolycopins und dessen Beziehung zum Neurosporin. Helv. chim. Acta 39, 690–698 (1956).CrossRefGoogle Scholar
  63. Evans, H. J., and M. E. Weeks: The influence of nitrogen, potassium and magnesium salts on the composition of hurley tobacco. Soil Sci. 12, 315–322 (1947).Google Scholar
  64. Fox, D. L., and M. C. Sargent: Variations in chlorophyll and carotenoid pigments of the brine flagellate, Dunaliella salina, induced by environmental concentrations of sodium chloride. Chem. and. Ind. 57, 1111 (1938).Google Scholar
  65. Frank, S. R.: The effectiveness of the spectrum in chlorophyll formation. J. gen. Physiol. 29, 157–179 (1946).CrossRefGoogle Scholar
  66. The relation between carotenoid and chlorophyll pigments in Avena coleoptiles. Arch. Biochem. 30, 52–61 (1951).Google Scholar
  67. Frank, S. R., and A. L. Kenney: Chlorophyll and carotenoid destruction in the absence of light in seedlings of Zea mays L. Plant Physiol. 30, 413–418 (1955).PubMedCrossRefGoogle Scholar
  68. Freeland, R. O.: Plastid pigments of gametophytes and sporophytes of musci. Plant Physiol. 32, 64–66 (1957).PubMedCrossRefGoogle Scholar
  69. Friend, j.: The oxidation of β-carotene by a lipoxidase-linoleate system. Biochem. J. 64, 19P–20P (1956).Google Scholar
  70. Fritsch, F. E.: The structure and reproduction of the algae, vol. 1. Cambridge 1935. 791 pp.Google Scholar
  71. Fujita, A., u. M. Ajisaka: Über die Verteilung des Provitamins A. Biochem. Z. 308, 430–438 (1941).Google Scholar
  72. Fuller, R. C., and I. C. Anderson: Supression of carotenoid synthesis and its effect on the activity of photosynthetic bacterial chromatophores. Nature (Lond.) 181, 252–254 (1958).CrossRefGoogle Scholar
  73. Galston, a. W.: Phototropism. Bot. Review 16, 361–378 (1950).CrossRefGoogle Scholar
  74. Gibson, J.: The chromatophores of Chlorobium thiosvlphatophilum. J. gen. Microbiol. 16, ix–x (1957).Google Scholar
  75. Giesberger, G.: Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum species. Antonie v. Leeuwenhoek 13, 135–148 (1947).CrossRefGoogle Scholar
  76. Gillam, A. E., and M. S. El Ridi: The isomerization of carotenes by chromatographic adsorption. I. Pseudo-α-carotene. Biochem. J. 30, 1735–1742 (1936).PubMedGoogle Scholar
  77. Glover, J., and E. R. Redfearn: Biosynthesis of 14C-β carotene. Biochem. J. 54, viii (1953).PubMedGoogle Scholar
  78. Glover, J., and P. P. Shah: The biosynthesis of 14C-β-carotene. Biochem. J. 67, 15P (1957).Google Scholar
  79. Godnev, T. N., and A. A. Shlyk: Glucose as the raw material for assimilating pigments of plants. Dokl. Akad. Nauk SSSR. 91, 599–600 (1953).PubMedGoogle Scholar
  80. Goedheer, J. C.: Orientation of the pigment molecules in the chloroplast. Biochem. biophys. Acta 16, 471–476 (1955).PubMedCrossRefGoogle Scholar
  81. Goodwin, T. W.: The Comparative Biochemistry of the Carotenoids, pp. 356. London: Chapman & Hall 1952.Google Scholar
  82. Some observations on carotenoid synthesis by the alga Chlorella vulgaris. Experientia (Basel) 10, 213 (1954).Google Scholar
  83. Carotenoids. Ann. Rev. Biochem. 24, 497–522 (1955a).Google Scholar
  84. Carotenoids. In: Modern methods of plant analysis, edit. K. Paech and M. V. Tracey, vol. III, p. 272–311. 1955b.Google Scholar
  85. The nature, biosynthesis and function of the carotenoids in the photosynthetic bacteria. Souvenir Soc. Biol. Chem. India 1955c, 271–276.Google Scholar
  86. Studies in carotenogenesis. XXII. The structure of echinenone. Biochem. J. 63, 481–484 (1956a).Google Scholar
  87. The carotenoids of photosynthetic bacteria. II. The carotenoids of a number of non-sulphur purple photosynthetic bacteria (Athiorhodaceae). Arch. Mikrobiol. 24, 313–322 (1956b).Google Scholar
  88. Studies in carotenogenesis. XXIV. The changes in carotenoid and chlorophyll pigments in the leaves of deciduous trees during autumn necrosis. Biochem. J. 68, 503–511 (1958a).Google Scholar
  89. Studies in carotenogenesis. XXV. The incorporation of 14CO2, [2-14C] acetate and [2-14C] mevalonate into β-carotene by etiolated maize seedlings. Biochem. J. 70, 612–617 (1958b).Google Scholar
  90. Carotenoids. Handbuch der Pflanzenphysiologie, Bd. X, S. 186. 1958c).Google Scholar
  91. The biosynthesis of vitamin A active carotenoids. Proc. Symp. 4th Internat. Congr. of Biochemistry, Vienna 1958d.Google Scholar
  92. Some problems of carotenoid formation in photosynthetic tissues. Qual. Plant Mat. Veg. 3–4, 262–280 (1958e).Google Scholar
  93. A comparison of the incorporation of labelled CO2, acetate and mevalonate into carotenoids in a number of carotenogenic systems. CIBA Symp. on the Biosynthesis of Terpenes and Sterols (Ed. G. E. W. Wolstenholme and M. O’Connor). London: Churchill 1959a.Google Scholar
  94. The biosynthesis and function of the carotenoid pigments. Advanc. Enzymol. 21, 295–368 (1959b).Google Scholar
  95. Goodwin, T. W., and J. A. Gross: The carotenoid distribution in various bleached sub-strains of Euglena gracilis. J. Protozool. 5, 292–296 (1958).Google Scholar
  96. Goodwin, T. W., and M. Jamlkorn: Studies in carotenogenesis. XI Carotenoid synthesis in the alga Haematococcus pluvialis. Biochem. J. 57, 376–381 (1954a).Google Scholar
  97. Studies in carotenogenesis. Some observations on carotenoid synthesis in two varieties of Euglena gracilis. J. Protozool. 1, 216–219 (1954b).Google Scholar
  98. Goodwin, T. W., and D. G. Land: Studies in carotenogenesis. XX. Carotenoids of some species of Chlorobium. Biochem. J. 62, 553–556 (1956).PubMedGoogle Scholar
  99. Goodwin, T. W., D. G. Land and H. G. Osman: Studies in carotenogenesis. XIV. Carotenoid biosynthesis in the photosynthetic bacterium Rhodopseudomonas spheroides. Biochem. J. 59, 491–496 (1955).PubMedGoogle Scholar
  100. Goodwin, T. W., D. G. Land and M. E. Sissins: Studies in carotenogenesis. XXIII. The nature of the carotenoids in the photosynthetic bacterium Rhodopseudomonas spheroides (Athiorhodaceae). Biochem. J. 64, 486–492 (1956).PubMedGoogle Scholar
  101. Goodwin, T. W., and H. G. Osman: Studies in carotenogenesis. IX. General cultural conditions controlling carotenoid (spirilloxanthin) synthesis in the photosynthetic bacterium Rhodospirillum rubrum. Biochem. J. 53, 541–546 (1953).PubMedGoogle Scholar
  102. Studies in carotenogenesis. X. Spirilloxanthin synthesis by washed cells of Rhodospirillum rubrum. Biochem. J. 56, 222–230 (1954).Google Scholar
  103. ζ-carotene. Arch. Biochem. 47, 215 (1953).Google Scholar
  104. Goodwin, T. W., and M. M. Taha: a study of the carotenoids echinenone and myxoxanthin with special reference to their probable identity. Biochem. J. 48, 513–514 (1951).PubMedGoogle Scholar
  105. Granick, S.: Magnesium vinyl phaeoporphyrin a5, another intermediate in the biological synthesis of chlorophyll. J. biol. Chem. 183, 713–730 (1950).Google Scholar
  106. Griffith, R. B., and R. N. Jeffrey: Determining chlorophyll, carotene and xanthophylls in plants. Industr. Engin. Chem., Anal. Ed. 16, 438–440 (1944).CrossRefGoogle Scholar
  107. Griffith, R. B., and C. R. Thompson: Factors affecting the destruction of carotene in alfalfa. Bot. Gaz. 111, 165–175 (1949).CrossRefGoogle Scholar
  108. Griffiths, M., W. R. Sistrom, G. Cohen-Bazire and R. Y. Stanier: Function of carotenoids in photosynthesis. Nature (Lond.) 176, 1211–1215 (1955).CrossRefGoogle Scholar
  109. Griffiths, M., and R. Y. Stanier: Some mutational changes in the photosynthetic pigment system of Rhodopseudomonas spheroides. J. gen. Microbiol. 14, 698–715 (1956).PubMedCrossRefGoogle Scholar
  110. Grob, E. C.: Die Mevalonsäure als Vorstufe in der Biosynthese der Carotenoide bei Mucor hiemalis. Chimia 11, 338–339 (1957).Google Scholar
  111. Gross, J. A., T. L. Jahn and E. Bernstein: The effect of anti-histamines on the pigments of green protista. J. Protozool. 2, 71–75 (1955).Google Scholar
  112. Halldal, p.: Action spectra of phototaxis and related problems in Volvocales, Ulva gametes and Dinophyceae. Physiol. Plantarum (Cph.) 11, 118–153 (1958).CrossRefGoogle Scholar
  113. Ham, W. E., and H. M. Tysdal: The carotene content of alfalfa strains and hybrids with different degrees of resistance to leaf hopper injury. J. Amer. Soc. Agron. 38, 68–74 (1946).CrossRefGoogle Scholar
  114. Handke, H. H.: Quantitative Untersuchungen über die alkohollöslichen Pigmente bei Cyano-phyceen. Wiss. nat. Z. Martin Luther Univ. Halle-Wittenberg 4, 89–94 (1954).Google Scholar
  115. Haxo, P., and L. R. Blinks: Photosynthetic action spectra of marine algae. J. gen. Physiol. 33, 389–422 (1950).PubMedCrossRefGoogle Scholar
  116. Haxo, F. T., and K. A. Clendenning: Photosynthesis and phototaxis in Ulva lactuca gametes. Biol. Bull. 105, 103–114 (1953).CrossRefGoogle Scholar
  117. Haxo, F. T., and P. S. Norris: Photosynthetic activity of phycobilins in some red and blue-green algae. Biol. Bull. 105, 374 (1953).CrossRefGoogle Scholar
  118. Heilbron, I. M.: Some aspects of algal chemistry. J. chem. Soc. 1942, 79–89.Google Scholar
  119. Heilbron, I. M., H. Jackson and R. N. Jones: The lipochromes of sea anemones. I. Carotenoid pigments of Actinia equina, Anemonia sulcata, Actinoloba dianthus and Tealia felina. Biochem. J. 29, 1384–1388 (1935).PubMedGoogle Scholar
  120. Heilbron, I. M., and R. F. Phipers: The lipochromes of Fucus vesiculosus. Biochem. J. 29, 1369–1375 (1935).PubMedGoogle Scholar
  121. Hey, D. H.: Eloxanthin—a new carotenoid pigment from the pondweed Elodea canadensis. Biochem. J. 31, 532–534 (1937).PubMedGoogle Scholar
  122. Holman, R. T.: Lipoxidase activity and fat composition of germinating soybeans. Arch. Biochem. 17, 51–57 (1948).Google Scholar
  123. Spectrophotometric studies of the oxidation of fats. VIII. Coupled oxidation of carotene. Arch. Biochem. 21, 51–57 (1949).Google Scholar
  124. Isler, O., W. Guex, R. Rüegg, U. Schwieter, G. Saucy, A. Winterstein, U. Gloor and O. Wiss: Carotinoidcarbonsäuren vom Typus des Torularhodins. Proc. 4th Int. Congr. Biochem. 1958, p. 89.Google Scholar
  125. Jamikorn, M.: Ph. D. Thesis; The University of Liverpool 1954.Google Scholar
  126. Jeffrey, R. N., and R. B. Griffith: Changes in the chlorophyll and carotene contents of curing burley tobacco cut at different stages of maturity. Plant Physiol. 22, 34–41 (1947).PubMedCrossRefGoogle Scholar
  127. Jensen, S. L., G. Cohen-Bazire, T. O. M. Nakayama and R. Y. Stanier: The path of carotenoid synthesis in a photosynthetic bacterium. Biochim. biophys. Acta 29, 477–498 (1958).PubMedCrossRefGoogle Scholar
  128. Kandler, O., u. F. Schötz: Untersuchungen über die photooxydative Farbstoffzerstörung, Stoffwechselhemmung bei Chlorella-Mutanten und panaschierten Oenotheren. Z. Naturfosch. 11b, 708–718 (1956).Google Scholar
  129. Karrer, P., W. Fatzer, M. Favarger u. E. Jucker: Die Antheridienfarbstoffe von Chara-Arten (Armleuchtergewächse). Helv. chim. Acta 26, 2121–2122 (1943).CrossRefGoogle Scholar
  130. Karber, P., u. E. Jucker: Partialsynthesen des Flavoxanthins, Chrys-anthemaxanthins, Antheraxanthins, Violaxanthins, Mutatoxanthins und Auroxanthins. Helv. chim. Acta 27, 300–315 (1945).Google Scholar
  131. Carotenoids (Trs. E. A. Braude), p. 384. London: Elsevier 1951.Google Scholar
  132. Karrer, P., E. Krause-Voith u. K. Steinlin: Ein neuer Blattfarbstoff, Xantho-phyllepoxyd. Helv. chim. Acta 31, 113–120 (1948).PubMedCrossRefGoogle Scholar
  133. Karrer, P., F. Rübel u. F. M. Strong: Notizen über Vorkommen von Carotinoiden in Pflanzen. Helv. chim. Acta 19, 28–29 (1936).CrossRefGoogle Scholar
  134. Karrer, P., u. J. Rutschmann: Beitrag zur Kenntnis der Carotinoide aus Oscillatoria rubescens. Helv. chim. Acta 27, 1691–1695 (1944).CrossRefGoogle Scholar
  135. Über Torularhodin. III. Helv. chim. Acta 1946, 355–356.Google Scholar
  136. Karrer, P., u. U. Solmssen: Die Carotinoide der Purpurbakterien. I. Helv. chim. Acta 18, 1306–1315 (1935).CrossRefGoogle Scholar
  137. II. Über Rhodoviolascin. Helv. chim. Acta 19, 1–5 (1936a).Google Scholar
  138. Carotinoide aus Purpurbakterien. III. Helv. chim. Acta 19, 1019–1024 (1936b).Google Scholar
  139. Karrer, P., u. O. Walker: Pflanzenfarbstoffe. LVI. Untersuchungen über die herbstlichen Färbungen der Blätter. Helv. chim. Acta 17, 43–54 (1934).CrossRefGoogle Scholar
  140. Katz, E., and E. C. Wassink: Infrared absorption spectrum of chlorophyllous pigments in living cells and extracellular states. Enzymologia 7, 97–112 (1939).Google Scholar
  141. Kay, R. E., and B. Phinney: Plastid pigment changes in the early seedling leaves of Zea mays L. Plant Physiol. 31, 226–231 (1956).PubMedCrossRefGoogle Scholar
  142. Kemmerer, A. R., J. F. Fudge and G. S. Fraps: Constitutents of the crude carotene of some forages. J. Amer. Soc. Agron. 36, 683–687 (1944).CrossRefGoogle Scholar
  143. Knox, W. E.: The action of peroxidase with enzymically generated peroxide in the presence of catalase. Biochim. biophys. Acta 14, 117–126 (1954).PubMedCrossRefGoogle Scholar
  144. Koe, B. K., and L. Zechmeister: In vitro conversion of phytofluene and phytoene into carotenoid pigments. Arch. Biochem. 41, 236–238 (1952).PubMedCrossRefGoogle Scholar
  145. Kuhn, R., u. H. Brockmann: Bestimmung von Carotinoiden. Hoppe-Seylers Z. physiol. Chem. 206, 41 (1932).CrossRefGoogle Scholar
  146. Kuhn, R., A. Winterstein u. E. Lederer: Zur Kenntnis der Xanthophylle. Hoppe-Seylers Z. physiol. Chem. 197, 141–160 (1931).CrossRefGoogle Scholar
  147. Kylin, H.: Über die Karotinoidenfarbstoffe der Algen. Hoppe-Seylers Z. physiol. Chem. 166, 39–77 (1927).CrossRefGoogle Scholar
  148. Bemerkungen über die Carotinoidenfarbstoffe der Algen. Kgl. fysiogr. Sällsk. Lund Förh. 9, 213–231 (1939).Google Scholar
  149. Larsen, B., and A. Haug: Carotene isomers in some red algae. Acta chem. scand. 10, 470–472 (1956).CrossRefGoogle Scholar
  150. Leyon, H.: The structure of chloroplasts. III. A study of pyrenoids. Exp. Cell Res. 6, 497–505 (1954).PubMedCrossRefGoogle Scholar
  151. Links, J.: The carotenoids, steroids and higher fatty acids of Polytoyma uvella. Proc. 8th. Int. Congr. Botany Sect. 17. 1954.Google Scholar
  152. Lippmaa, T.: Über den vermuteten Rhodoxanthingehalt der Chloroplasten. Ber. dtsch. hot. Ges. 44, 643–648 (1926).Google Scholar
  153. Lynch, V. H., and C. S. French: β-Carotene, an active component of chloroplasts. Arch. Biochem. 70, 382–391 (1957).PubMedCrossRefGoogle Scholar
  154. Mackinney, G.: Leaf carotenes. J. biol. Chem. 111, 75–84 (1935a).Google Scholar
  155. On the plastid pigments of the marsh dodder. J. biol. Chem. 112, 421–424 (1935b).Google Scholar
  156. Manten, A.: Photo-taxis, phototropism and photosynthesis in purple bacteria and blue-green algae. Utrecht, Thesis 1948.Google Scholar
  157. Mapson, L. W., and E. M. Cruickshank: Effect of various salts on the synthesis of ascorbic acid and carotene in cress seedlings. Biochem. J. 41, 197–205 (1947).PubMedGoogle Scholar
  158. Mc Clendon, J. H., and L. R. Blinks: Use of high molecular weight solutes in the study of isolated intracellular structures. Nature (Lond.) 170, 577–578 (1952).CrossRefGoogle Scholar
  159. Mechsner, K.: Physiologische und morphologische Untersuchungen an Chlorobakterien. Arch. Mikrobiol. 26, 32–51 (1957).PubMedCrossRefGoogle Scholar
  160. Milatz, J. M. W., and A. Manten: The quantitative determination of the spectral distribution of phototactic sensitivity in the purple bacterium Rhodospirillum rubrum. Biochim. biophys. Acta 11, 17–27 (1954).CrossRefGoogle Scholar
  161. Milner, M.: A fat soluble component of chloroplasts necessary for photochemical activity. Carnegie Inst. Washington Year Book 56, 271–272 (1957).Google Scholar
  162. Mitchell, H. L., and S. M. Hauge: Factors affecting the enzymic destruction of carotene in alfalfa. J. biol. Chem. 164, 543–550 (1946).PubMedGoogle Scholar
  163. Montfort, C.: Die Photosynthese brauner Zellen in Zusammenwirkung von Chlorophyll und Carotinoiden. Z. physik. Chem. A 186, 57 (1941).Google Scholar
  164. Moster, J. B., and F. W. Quackenbush: The effect of temperature and light on the carotenoids of seedlings grown from three corn hybrids. Arch. Biochem. 38, 297–303 (1952).PubMedCrossRefGoogle Scholar
  165. Moster, J. B., F. W. Quackenbush and J. W. Porter: The carotenoids of com seedlings. Arch. Biochem. 38, 287–296 (1952).PubMedCrossRefGoogle Scholar
  166. Mothes, H. K., u. Sagromsky: Über experimentelle chromatische Adaption bei grünen und braunen Meeresalgen. Naturwissenschaften 29, 271–272 (1941).CrossRefGoogle Scholar
  167. Murneek, A. E.: The internal mechanism of photoperiodism. Missouri Agric. Exp. Stat. Bull. 310, 44–45 (1932).Google Scholar
  168. Nagel, W.: Leaf pigments of tobacco. Bot. Archiv 40, 1–57 (1940).Google Scholar
  169. Nakayama, T. O. M.: The carotenoids of Rhodopseudomonas. I. Carotenoids of the green mutant. Arch. Biochem. 75, 352–355 (1958a).CrossRefGoogle Scholar
  170. The carotenoids of Rhodopseudomonas. II. A comparative study of mutants and the wild type. Arch. Biochem. 75, 356–360 (1958b).Google Scholar
  171. Nash, H. A., F. W. Quackenbush and J. W. Porter: Studies on the structure of ζ-carotene. J. Amer. chem. Soc. 70, 3613–3615 (1948).CrossRefGoogle Scholar
  172. Netien, G., et J. Lacharme: Recherche sur l’action de la terramycine dans la formation des pigments de la plantule de radis. Bull. Soc. Chim. biol. 37, 643–653 (1955).PubMedGoogle Scholar
  173. Newton, J. W., and G. A. Newton: Composition of the photoactive subcellular particles from Chromatium. Arch. Biochem. 71, 259–265 (1957).CrossRefGoogle Scholar
  174. Niel, C. B. van: The culture, general physiology, morphology and classification of the non-sulphur purple and brown bacteria. Bact. Rev. 8, 1–18 (1944).PubMedGoogle Scholar
  175. Studies on the pigments of the purple bacteria. III. The yellow and red pigments of Rhodopseudomonas spheroides. Leeuwenhoek ned. T. 12, 156–166 (1947).Google Scholar
  176. The chemoautotrophic and photosynthetic bacteria. Ann. Rev. Microbiol. 8, 105–132 (1954).Google Scholar
  177. Niel, C. B. van, T. W. Goodwin and M. E. Sissins: studies in carotenogenesis. XXI. The nature of the changes in carotenoid synthesis in Rhodospirillum rubrum during growth. Biochem. J. 63, 408–412 (1956).Google Scholar
  178. Niel, C. B. van, and J. H. C. Smith: Pigments of the purple bacteria. I. Spirilloxanthin a component of the pigment complex of Spirillum rubrum. Arch. Mikrobiol. 6, 219–229 (1935).CrossRefGoogle Scholar
  179. Nishimura, M., and K. A. Takamatsu: A carotene-protein complex isolated from green leaves. Nature (Lond.) 180, 699–700 (1957).CrossRefGoogle Scholar
  180. Paech, K.: Colour development in flowers. Ann. Rev. Plant Physiol. 6, 273–298 (1955).CrossRefGoogle Scholar
  181. Palmer, L. S.: Carotinoids and related pigments. New York: Reinhold 1922.Google Scholar
  182. Pardee, A. B., H. K. Schachman and R. Y. Stanier: Chromatophores of Rhodospirillum rubrum. Nature (Lond.) 169, 282–283 (1952).CrossRefGoogle Scholar
  183. Pepkowitz, L. P.: The stability of carotene in acetone and petroleum ether extracts of green vegetables. I. The photochemical destruction of carotene in the presence of chlorophyll. II The stabilizing effect of sodium cyanide. J. biol. Chem. 149, 465–471 (1943).Google Scholar
  184. Pinckard, J. H., J. S. Kittredge, D. L. Fox, F. T. Haxo and L. Zechmeister: Pigments from a marine “red water” population of the dino-flagellate Prorocentrum micans. Arch. Biochem. 44, 189–199 (1953).PubMedCrossRefGoogle Scholar
  185. Polgár, A., C. B. van Niel and L. Zechmeister: Studies on the pigments of the purple bacteria. II. A spectroscopic and stereochemical investigation of spirilloxanthin. Arch. Biochem. 5, 243–264 (1944).Google Scholar
  186. Porter, J. W., F. W. Strong, R. A. Brink and N. R. Neal: Carotene content of the com plant. J. agric. Res. 72, 169–187 (1946).PubMedGoogle Scholar
  187. Porter, J. W., and F. P. Zscheile: Carotenes of Lycopersicon species and strains. Arch. Biochem. 10, 537–545 (1946).PubMedGoogle Scholar
  188. Prat, S.: Die Farbstoffe der Potamogeton-Blätter. Biochem. Z. 152, 495–497 (1924).Google Scholar
  189. Provasoli, L., S. H. Hutner and A. Schatz: Streptomycin induced chlorophyll-less races of Euglena. Proc. Soc. exp. Biol. (N. Y.) 69, 279–282 (1948).CrossRefGoogle Scholar
  190. Rabourn, W. J., and F. W. Quackenbush: The occurrence of phytoene in various plant materials. Arch. Biochem. 44, 159–164 (1953).PubMedCrossRefGoogle Scholar
  191. The stracture of phytoene. Arch. Biochem. 61, 111–118 (1956).Google Scholar
  192. Raper, J. R.: Chemical regulation of sexual processes in the Thallophytes. Bot. Review 18, 447–545 (1952).CrossRefGoogle Scholar
  193. Redfearn, E. R., and A. M. Pumphrey: The reactivation of the succinate-cytochrome c reductase of a heart muscle preparation extracted with isooctane. Biochim. biophys. Acta 30, 437 (1958).PubMedCrossRefGoogle Scholar
  194. Reinert, J.: Über die Wirkung von Riboflavin und Carotin beim Phototropismus von Avena-Koleoptilen und bei anderen pflanzlichen Lichtreizreaktionen. Z. Bot. 41, 103–122 (1953).Google Scholar
  195. Roberts, R. H.: Blossoming and pigment content. Plant Physiol. 23, 379–387 (1948).PubMedCrossRefGoogle Scholar
  196. Romariz, C.: Unusual carotenoids in young leaves. Port. Acta biol. A 1, 235–250 (1946).Google Scholar
  197. Roux, E., et C. Husson: Pigments des chloroplastes et photosynthèse. C. R. Acad. Sci. (Paris) 234, 1573–1574 (1952).Google Scholar
  198. Rudolph, H.: Über die Einwirkung des farbigen Lichtes auf die Entstehung der Chloroplastenfarbstoffe. Planta (Berl.) 21, 104–115 (1933).CrossRefGoogle Scholar
  199. Ryan, F. J.: Attempt to reproduce some of Moewus’ experiments on Chlamydomonas and Polytoma. Science 122, 470 (1956).CrossRefGoogle Scholar
  200. Sager, R., and M. Zalokar: Pigments and photosynthesis in a carotenoid deficient mutant of Chlamydomonas. Nature (Lond.) 182, 98–100 (1958).CrossRefGoogle Scholar
  201. Schachman, H. K., A. B. Pardee and R. Y. Stanier: Studies on the macromolecular organization of microbial cells. Arch. Biochem. 38, 245–260 (1952).PubMedCrossRefGoogle Scholar
  202. Schopfer, W. H., E. Grob et G. Besson: Recherches sur les inhibiteurs de la croissance et de la biogenèse des carotenoides. II. L’hydrazide de l’acide maleique et l’hydrazide de l’acide isonicotinique. Arch. Sci. Genève 5, 5–8 (1952).Google Scholar
  203. Schopfer, W. H., E. Grob, G. Besson et V. Keller: Recherches sur les inhibiteurs du developpment et de la biogenèse des carotenoides. I. La streptomycine. Arch. Sci. Genève 5, 1–4 (1952).Google Scholar
  204. Seshadri, T. R., and S. S. Subramanian: Indian lichens. VIII. Lichens growing on sandal trees. Proc. Indian Acad. Sci., Sect. A 30, 15–22 (1949).Google Scholar
  205. Seshan, P. A., and K. C. Sen: The development and distribution of carotene in the plant and the carotene content of some feeding stuffs. J. agric. Sci. 32, 202–216 (1942).CrossRefGoogle Scholar
  206. Seybold, A., u. K. Egle: Lichtfeld und Blattfarbstoffe. II. Planta (Berl.) 28, 87–123 (1938a).CrossRefGoogle Scholar
  207. Quantitative Untersuchungen über Chlorophyll und Carotinoide der Meeresalgen. Jb. wiss. Bot. 86, 50–80 (1938b).Google Scholar
  208. Seybold, A., K. Egle u. W. Hülsbruch: Chlorophyll- und Carotinoidbestimmungen von Süßwasseralgen. Bot. Archiv 42, 239–253 (1941).Google Scholar
  209. Shcherbakov, A. P.: Effect of calcium and magnesium on the chlorophyll and yellow pigments content in soybean leaves. Biochimija 14, 331–337 (1949).Google Scholar
  210. Sheets, O., O. A. Leonard and M. Geiger: Distribution of minerals and vitamins in different parts of leafy vegetables. Food Res. 6, 553–569 (1941).CrossRefGoogle Scholar
  211. Shibata, K., A. A. Benson and M. Calvin: The absorption spectra of suspensions of living microorganisms. Biochim. biophys. Acta 15, 461–470 (1954).PubMedCrossRefGoogle Scholar
  212. Sideris, C. P., and H. Y. Young: Effects of iron on chlorophyll pigments, ascorbic acid, acidity and carbohydrates of Ananas comosus (L.) Merr., supplied with nitrate or ammonium salts. Plant Physiol. 19, 52–75 (1944).PubMedCrossRefGoogle Scholar
  213. Effects of nitrogen on chlorophyll, acidity, ascorbic acid and carbohydrate fractions of Ananas comosus (L.) Merr. Plant Physiol. 22, 97–116 (1947).Google Scholar
  214. Singalovsky, Z.: Etude morphologique, cytologique et biologique du mildiou de la betterave (Pernospora schachtii Fuckel). Ann. Epiphyties et Phytogénetique 3, 551–618 (1937).Google Scholar
  215. Sironval, C., and O. Kandler: Photo-oxidation processes in normal green Chlorella cells. Biochim. biophys. Acta 29, 359–368 (1958).PubMedCrossRefGoogle Scholar
  216. Sissins, M. E.: Ph. D. Thesis, University of Liverpool 1957.Google Scholar
  217. Smith, J. H. C., L. J. Durham and C. F. Wurster: An enquiry into the causes of albinism. Carnegie Inst. Washington Year Book 56, 279–281 (1957).Google Scholar
  218. Smits, B. L., and W. J. Peterson: Carotenoids of telial galls of Gymnosporangium juniperi-virginianae Lk. Science 96, 210–211 (1942).PubMedCrossRefGoogle Scholar
  219. Snyder, W. W., and L. A. Moore: The carotene content of several herbages during the growing season. J. Dairy Sci. 23, 363–371 (1940).CrossRefGoogle Scholar
  220. Sörensen, N. A.: Plantekjemiske Streiftog. T. Kjemi, Bergresen Met. 6, 95–100 (1948).Google Scholar
  221. Sörensen, N. A., and S. Liaaen: Proc. 2nd Internat. Seaweed Symp. 1955. London: Pergamon Press 1956.Google Scholar
  222. Staker, E. V., and B. H. Crandall: Comparison of the carotene and nitrogen contents of alfalfa forage from selected clonal lines. Agron. J. 45, 66–68 (1953).CrossRefGoogle Scholar
  223. Stanier, R. Y.: The plasticity of enzymatic patterns in microbial cells. In: Aspects of synthesis and order in growth, edit. D. Rudnick, p. 43–67. Princeton: University Press 1955.Google Scholar
  224. Stanier, R. Y., and G. Cohen-Bazire: The role of light in the microbial world; some facts and speculations. In: Microbial Ecology, ed. R. E. O. Williams and C. C. Spicer. London: Cambridge University Press 1957.Google Scholar
  225. Strain, H. H.: Leaf xanthophylls. Carnegie Inst. Publ. 1938, No 490, 1–147.Google Scholar
  226. Leaf xanthophylls. J. Amer. chem. Soc. 70, 1672 (1948).Google Scholar
  227. The pigments of algae. In G. M. Smith, A Manual of Phycology, p. 243–262. Waltham: Chronica Botanica 1951.Google Scholar
  228. Leaf xanthophylls: the action of acids on violaxanthin, violeoxanthin, taraxanthin and tareoxanthin. Arch. Biochem. 48, 458–468 (1954).Google Scholar
  229. Strain, H. H., and W. M. Manning: The occurrence and interconversion of various fucoxanthins. J. Amer. chem. Soc. 64, 1235 (1942).CrossRefGoogle Scholar
  230. A unique polyene pigment of the marine diatom Navicula torquatum. J. Amer. chem. Soc. 65, 2258–2259 (1943).Google Scholar
  231. Strain, H. H., W.M. Manning and G. Hardin: Xanthophylls and carotenes of diatoms, brown algae, dinoflagellates and sea anemones. Biol. Bull. 86, 169–191 (1944).CrossRefGoogle Scholar
  232. Sullivan, J. T., and S. J. P. Chilton: The effect of leaf rust on the carotene content of white clover. Phytopathology 21, 554–557 (1941).Google Scholar
  233. Tanada, T.: The photosynthetic efficiency of carotenoid pigments in Navicula minima. Amer. J. Bot. 38, 276–283 (1951).CrossRefGoogle Scholar
  234. Teale, F. W. j.: Carotenoid-sensitized fluorescence of chlorophyll in vitro. Nature (Lond.) 181, 415–416 (1958).CrossRefGoogle Scholar
  235. Thimann, K. V.: Phototrop-ism in the visible and ultraviolet. Atti 20 congr. int. fotobiol. 1958, p. 439.Google Scholar
  236. Thomas, J. B.: On the role of carotenoids in photosynthesis in Rhodospirillum rubrum. Biochim. biophys. Acta 5, 186–196 (1950).PubMedCrossRefGoogle Scholar
  237. Thomas, J. B., and L. E. Nijenhuis: On the relation between phototaxis and photosynthesis in Rhodospirillum rubrum. Biochim. biophys. Acta 6, 317–324 (1950).PubMedCrossRefGoogle Scholar
  238. Thomas, J. B., and W. De Rover: On phycocyanin participation in the Hill reaction of the blue-green alga Synechococcus cedorum. Biochim. biophys. Acta 16, 391–395 (1955).PubMedCrossRefGoogle Scholar
  239. Tischer, J.: Über die Carotinoide und die Bildung von Ionon in Trentepohlia nebst Bemerkungen über den Gehalt dieser Alge an Erythrit. Hoppe-Seylers Z. physiol. Chem. 243, 103–118 (1936).CrossRefGoogle Scholar
  240. Über die Polyenpigmente der Blaualge Aphani-zomenon flos-aquae. II. Hoppe-Seylers Z. physiol. Chem. 260, 257–271 (1939).Google Scholar
  241. Über die Identität von Euglenarhodon mit Astacin. Hoppe-Seylers Z. physiol. Chem. 267, 281–284 (1941).Google Scholar
  242. Carotinoide der Süßwasseralgen. X. Über die Carotinoide aus Cladophora fracta. Hoppe-Seylers Z. physiol. Chem. 310, 50–58 (1958a).Google Scholar
  243. Carotinoide der Süßwasseralgen. XI. Über die Carotinoide aus Oscillatoria amoena. Hoppe-Seylers Z. physiol. Chem. 311, 140–147 (1958b).Google Scholar
  244. Torto, F. G., and B. C. L. Weedon: Spectral properties and oxidation of fucoxanthin. Chem. and Ind. 1955, 1219–1220.Google Scholar
  245. Underwood, E. j., and J. Conochie: Vitamin A in the nutrition of sheep in Western Australia. Aust. vet. J. 19, 37–42 (1943).CrossRefGoogle Scholar
  246. Vallentyne, J. R.: Biochemical limnology. Science 119, 605–606 (1954).PubMedCrossRefGoogle Scholar
  247. Virtanen, A. I.: Increasing the vitamin content of agricultural products. Suom. Kem. A 14, 6–10 (1941).Google Scholar
  248. Virtanen, A. I., S. V. Hansen u. S. Saastamoinen: Untersuchungen über die Vitammbildung in Pflanzen. I. Biochem. Z. 267, 179–191 (1933).Google Scholar
  249. Voerkel, S. H.: Untersuchungen über die Phototaxis der Chloroplasten. Planta (Berl.) 21, 156–205 (1934).CrossRefGoogle Scholar
  250. Vogt-Beekmann, H.: Über den Zusammenhang zwischen farblosen Polyenen und Caro-tinoiden. Z. Bot. 44, 289–296 (1956).Google Scholar
  251. Volk, W. A., and D. Pennington: The pigments of the photosynthetic bacterium Rhodomicrobium vannielii. J. Bact. 59, 169–170 (1950).PubMedGoogle Scholar
  252. Wai, K. N. t., J. C. Bishop, P. B. Mack and R. H. Cotton: The vitamin content of soybeans and soybean sprouts as a function of germination time. Plant Physiol. 22, 117–126 (1947).PubMedCrossRefGoogle Scholar
  253. Wallace, R. H., and A. E. Schwarting: A study of chlorophyll in a white mutant strain of Helianthus annuus. Plant Physiol. 29, 431–440 (1954).PubMedCrossRefGoogle Scholar
  254. Walsh, K. A., and S. M. Hauge: Carotene: factors affecting destruction in alfalfa. J. agric. Food Chem. 1, 1001 (1953).CrossRefGoogle Scholar
  255. Wassink, E. C., et J. A. H. Kersten: Observations sur le spectre d’absorption et sur le role des carotinoides dans la photosynthese des diatomées. Enzymologia 12, 3–32 (1946).Google Scholar
  256. Wassink, E. C., and J. A. J. Stolwijk: Effects of light quality on plant growth. Ann. Rev. Plant Physiol. 7, 373–400 (1956).CrossRefGoogle Scholar
  257. Weier, T. E.: Carotene degradation in dehydrated carrots. I. Cytological changes in carotene and fat droplets under conditions favorable for carotene degradation. Amer. J. Bot. 31, 34–346 (1944).Google Scholar
  258. Weier, T. E., and C. R. Stocking: The chloroplast: structure, inheritance and enzymology. Bot. Review 18, 14–75 (1952).CrossRefGoogle Scholar
  259. Wilcox, E. B., and L. S. Galloway: Ascorbic acid and carotene in fresh and stored celery. J. Amer. diet. Ass. 27, 965–967 (1951).PubMedGoogle Scholar
  260. Withrow, R. B., W. H. Klein, L. Price and V. Elstad: Influence of visible and near infrared radiant energy on organ development and pigment synthesis in bean and corn. Plant Physiol. 28, 1–14 (1953).PubMedCrossRefGoogle Scholar
  261. Wolken, J. J.: A molecular morphology of Euglena gracilis var. bacillaris. J. Protozool. 3, 211–221 (1956).Google Scholar
  262. Wolken, J. J., and A. D. Mellon: The relationship between chlorophyll and the carotenoids in the algal flagellate, Euglena. J, gen. Physiol. 39, 675–685 (1956).PubMedCrossRefGoogle Scholar
  263. Wolken, J. J., A. D. Mellon and C. L. Greenblatt: Environmental factors affecting growth and chlorophyll synthesis in Euglena. I. Physical and chemical. II. Effectiveness of the spectrum for chlorophyll synthesis. J. Protozool. 2, 89–96 (1955).Google Scholar
  264. Wolken, J. J., and F. A. Schwertz: Chlorophyll monolayers in chloroplasts. J. gen. Physiol. 37, 111–120 (1953).PubMedCrossRefGoogle Scholar
  265. Wurtz, A.: Croissance d’ Haematococcus pluvialis flot. et formation du pigment carotenoide. Proc. VIII. Congr. Int. de Bot. 17, 38–39 (1954).Google Scholar
  266. Wynd, F. L., and G. R. Noggle: Relationship between phosphorus fractions in soil and carotene in leaves of cereals. Food Res. 11, 358–364 (1946).PubMedCrossRefGoogle Scholar
  267. Zalokar, M.: Biosynthesis of carotenoids in Neurospora. Action spectrum of photo-activation. Arch. Biochem. 56, 318–325 (1955).PubMedCrossRefGoogle Scholar
  268. Zechmeister, L.: Carotinoide, p. 338. Berlin: Springer 1934.CrossRefGoogle Scholar
  269. Cis-trans isomerization and stereochemistry of carotenoids and diphenylpolyenes. Chem. Rev. 34, 267–344 (1944).Google Scholar
  270. Some stereochemical aspects of polyenes. Experientia (Basel) 10, 1–11 (1954).Google Scholar
  271. Some in vitro conversions of naturally occurring carotenoids. Fortschr. Chem. org. Naturstoffe 15, 31–82 (1958).Google Scholar
  272. Zechmeister, L., and G. Karmakar: The occurrence of phytofluene in green plant organs. Arch. Biochem. 47, 160–164 (1953).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • T. W. Goodwin

There are no affiliations available

Personalised recommendations