Advertisement

Relationship of chlorophyll to protein and lipoids; molecular and colloidal solutions. Chlorophyll units

  • D. W. Kupke
  • C. S. French
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)

Abstract

What is the chemical environment of chlorophyll in the plant? The importance of this question lies in the premise that only when the architectural relations of chlorophyll molecules, both to themselves and to other substances, is known, will it become possible to describe the mechanism by which chlorophyll takes part in the conversion of light energy to chemical energy by means of photosynthesis. The chemical nature of chlorophyll in vivo continues to be one of the major unsolved problems of plant physiology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Albertsson, P. a., and H. Leyon: The structure of chloroplasts. I. Chlorella pyrenoidosa Pringsheim studied by means of electron microscopy. Exp. Cell Res. 7, 288–290 (1954).PubMedCrossRefGoogle Scholar
  2. Anderson, D. R., J. S. Spikes and R. Lumry: Studies on a reported crystalline chloro-phyll-lipoprotein. Biochim. biophys. Acta 15, 298–299 (1954).PubMedCrossRefGoogle Scholar
  3. Anson, M. L.: Lubimenko extracts of chlorophyll-protein. Sci. 93, 186–187 (1941).CrossRefGoogle Scholar
  4. Bishop, N. I.: The role of vitamin K in the Hill reaction. In: The Photochemical Apparatus, pp. 332–338. Brookhaven Symposium, Upton N. Y. 1959.Google Scholar
  5. Bot, G. M.: The chemical composition of chloroplast granules in relation to their structure. Chron. bot. 7, 66–67 (1942).Google Scholar
  6. Bracco, M., u. H. V. Euler: Chloroplasten und Chloroplastin in Blattzellen normaler und mit Streptomycin gekeimter junger Pflanzen. Kemiska Arb. Ny Foljd II 10, 5 pp. (1947).Google Scholar
  7. Calvin, M., and V. Lynch: Grana-like structure of Synechococcus cedorum. Nature (Lond.) 169, 455–456 (1952).CrossRefGoogle Scholar
  8. Chargaff, E.: Recent studies on cellular lipo-proteins. Discuss. Faraday Soc. 6, 118–124 (1949).CrossRefGoogle Scholar
  9. Chiba, Y.: Two components in crystalline chlorophyll-lipoprotein. Arch. Biochem. 54, 83–92 (1955).PubMedCrossRefGoogle Scholar
  10. Chibnall, A. C.: Protein metabolism in the plant, p. 1–306. Yale Univ. Press 1939.Google Scholar
  11. Comar, C. L.: Chloroplast substance of spinach leaves. Bot. Gaz. 104, 122–127 (1942).CrossRefGoogle Scholar
  12. Cooper, W. D., and H. S. Loring: The ribonucleic acid composition and phosphorus distribution of chloroplasts from normal and diseased turkish tobacco plants. J. biol. Chem. 228, 813–822 (1957).PubMedGoogle Scholar
  13. Danielson, C. E.: Plant proteins. Ann. Rev. Plant Physiol. 7, 215–236 (1956).CrossRefGoogle Scholar
  14. Eggman, L., S. J. Singer and S. G. Wildman: The proteins of green leaves. V. A cytoplasmic nucleoprotein from spinach and tobacco leaves. J. biol. Chem. 205, 969–984 (1953).PubMedGoogle Scholar
  15. Eisler, M., u. L. Portheim: Über Fällungsreaktionen in Chlorophyll- und anderen Farbstofflösungen. Biochem. Z. 130, 497–532 (1922).Google Scholar
  16. Über die Bildung von Sauerstoff aus Kohlendioxyd durch Eiweiß-Chlorophyllösungen. Biochem. Z. 135, 293–298 (1923).Google Scholar
  17. Emerson, R., and W. Arnold: The photochemical reaction in photosynthesis. J. gen. Physiol. 16, 191–205 (1932).PubMedCrossRefGoogle Scholar
  18. Frank, S. R.: The effectiveness of the spectrum in chlorophyll formation. J. gen. Physiol. 29, 157–179 (1946).CrossRefGoogle Scholar
  19. French, C. S.: The chromoproteins of photosynthetic purple bacteria. Sci. 88, 60–62 (1938).CrossRefGoogle Scholar
  20. The pigment protein compound in photosynthetic bacteria. I. The extraction and properties of photosynthin. J. gen. Physiol. 23, 469–481 (1940).Google Scholar
  21. The pigment-protein compound in photosynthetic bacteria. II. The absorption curves of photosynthin from several species of bacteria. J. gen. Physiol. 23, 483–494 (1940).Google Scholar
  22. French, C. S., A. S. Holt, R. D. Powell and M. L. Anson: The evolution of oxygen from illuminated suspensions of frozen-dried and homogenized chloroplasts. Sci. 103, 505–506 (1946).CrossRefGoogle Scholar
  23. French, C. S., and H. W. Milner: The photochemical reduction process in photosynthesis. Symp. Soc. exp. Biol. 5, 232–250 (1951).Google Scholar
  24. Frey-Wyssling, A.: Der Aufbau der Chlorophyllkömer. Protoplasma (Wien) 29, 279–299 (1937).CrossRefGoogle Scholar
  25. Submicroscopic morphology of protoplasm. Amsterdam: Elsevier Publ. Co. 1953.Google Scholar
  26. Frey-Wyssling, A., u. K. Mühlethaler: Vjschr. naturforsch. Ges. Zürich 94, 179–183 (1949).Google Scholar
  27. Frey-Wyssling, A., u. E. Steinmann: Ergebnisse der Feinbauanalyse der Chloroplasten. Vjschr. naturforsch. Ges. Zürich 98, 20–29 (1953).Google Scholar
  28. Geitler, L.: Über den Granabau der Piastiden. Planta (Berl.) 86, 463–469 (1936).Google Scholar
  29. Godnev, T. N., and M. V. Terent’eva: Transformation of protochlorophyll to chlorophyll in etiolated corn leaves by infiltration with an extract of spruce seedlings. Dokl. Akad. Nauk SSSR. 88, 725–727 (1953) [Russian].PubMedGoogle Scholar
  30. Granick, S.: Chloroplast nitrogen of some higher plants. Amer. J. Bot. 25, 561–567 (1938).CrossRefGoogle Scholar
  31. Heitz, E.: Die Herkunft der Chromocentren. Planta (Berl.) 18, 571–636 (1932).CrossRefGoogle Scholar
  32. Herlitzka, A.: Über den Zustand des Chlorophylls in der Pflanze und über kolloidales Chlorophyll. Biochem. Z. 38, 321–330 (1912).Google Scholar
  33. Hodge, A. J., J. D. Mc Lean and F. V. Mercer: Ultrastructure of the lamellae and grana in the chloroplasts of Zea mays L. J. biophys. biochem. Cytol. 1, 605–613 (1955).PubMedCrossRefGoogle Scholar
  34. Hubert, B.: The physical state of chlorophyll in the living plastid. Rec. Trav. bot. néerl. 32, 323–387 (1935).Google Scholar
  35. Hygen, G.: Über den Granabau bei Micrasterias-Plastiden. Planta (Berl.) 27, 378–380 (1937).CrossRefGoogle Scholar
  36. Inman, O. L., and M. Crowell: Condition of chlorophyll in the leaf. Plant Physiol. 14, 388–390 (1939).PubMedCrossRefGoogle Scholar
  37. Jakoby, W. B., D. O. Brummond and S. Ochoa: Formation of three-phosphoglyceric acid by carbon dioxide fixation with spinach leaf enzymes. J. biol. Chem. 218, 811–821 (1956).PubMedGoogle Scholar
  38. Katz, E., and E. C. Wassink: Infrared absorption spectra of chlorophyllous pigments in living cells and in extra-cellular states. Enzymologia 7, 97–112 (1939).Google Scholar
  39. Kauzmann, W. J., J. E. Walter and H. Eyring: Theories of optical rotatory power. Chem. Reviews 26, 339–407 (1940).CrossRefGoogle Scholar
  40. Ke, B., and K. A. Clendenning: Properties of chloroplast dispersions in the presence of detergents. Biochim. biophys. Acta 19, 74–83 (1956).PubMedCrossRefGoogle Scholar
  41. Komen, J. G.: Observation on the infrared absorption spectrum of bacteriochlorophyll. Biochim. biophys. Acta 22, 9–15 (1956).PubMedCrossRefGoogle Scholar
  42. Koski, V. M., C. S. French and J. H. C. Smith: The action spectrum for the transformation of protochlorophyll to chlorophyll a in normal and Albino com seedlings. Arch. Biochem. 31, 1–17 (1951).PubMedCrossRefGoogle Scholar
  43. Krasnovskii, A. A., and G. P. Brin: The nature of the crystalline formation of chlorophyll precipitated in the system, water-picoline-dioxane. Dokl. Akad. Nauk SSSR. 95, 611–614 (1954) [Russian].Google Scholar
  44. Krasnovskii, A. A., and L. M. Kosobutskaya: Spectral analysis of the constitution of chlorophyll during its formation in plants and in colloidal solutions of the substance of etiolated leaves. Dokl. Akad. Nauk SSSR. 85, 177–180 (1952) [Russian].Google Scholar
  45. Krasnovskii, A. A., and L. M. Kosobutskaya: Different conditions of chlo-rophyll in plant leaves. Dokl. Akad. Nauk SSSR. 91, 343–346 (1953) [Russian].PubMedGoogle Scholar
  46. Krasnovskii, A. A., and K. K. Voinovskaya and L. M. Kosobutskaya: The natural state of bacteriochlorophyll and the spectral properties of its solutions and solid films. Dokl. Akad. Nauk SSSR. 85, 389–392 (1952) [Russian].PubMedGoogle Scholar
  47. Kupke, D. W.: Unpublished experiments 1956.Google Scholar
  48. Levy, R., G. Tessier et R. Wurmser: Étude des pigments d’une bact. sulph. Chroma-tium. Ann. physiol. physiochim. Biol. 1, 298 (1925).Google Scholar
  49. Leyon, H.: The structure of chloroplasts. III. A study of pyrenoids. Exp. Cell Res. 6, 497–505 (1954a).CrossRefGoogle Scholar
  50. The structure of chloroplasts. IV. The development and structure of the Aspidistra chloroplast. Exp. Cell Res. 7, 265–273 (1954b).Google Scholar
  51. Linderstrøm-Lang, K.: Proteins and enzymes. Lane medical lectures, p. 1–115. Stanford, Calif.: Stanford Univ. Press 1952.Google Scholar
  52. Loring, H. S., H. T. Osborn and R. W. G. Wyckoff: Ultracentrifugal isolation of high molecular weight proteins from broad bean and pea plants. Proc. Soc. exp. Biol. (N. Y.) 38, 239–241 (1938).CrossRefGoogle Scholar
  53. Lubimenko, V.: Recherches sur les pigments des plastes et sur la photosynthesis. I. Les pigments des plastes et leur transformation dans les tissues vivants de la plante. 1. Les pigments des chloroplasts. Rev. gén. Bot. 39, 547–559 (1927).Google Scholar
  54. Lumry, R., and H. Eyring: Conformation changes of proteins. J. phys. Chem. 58, 110–120 (1954).CrossRefGoogle Scholar
  55. Lynch, V. H., and C. S. French: β-Caro-tene. An active component of chloroplasts. Arch. Biochem. 70, 382–391 (1957).PubMedCrossRefGoogle Scholar
  56. Lyttleton, J. W.: Relationship between photosynthesis and a homogeneous protein component of plant cytoplasm. Nature (Lond.) 177, 283–284 (1956).CrossRefGoogle Scholar
  57. Lyttleton, J. W., and P. O. P. Ts’O: The localization of fraction-I protein of green leaves in the chloroplasts. Arch. Biochem. 73, 120–126 (1958).PubMedCrossRefGoogle Scholar
  58. Mc Clendon, J. H.: The physical environment of chloroplasts as related to their morphology and activity in vitro. Plant Physiol. 29, 448–458 (1954).PubMedCrossRefGoogle Scholar
  59. Menke, W.: Untersuchungen über das Protoplasma grüner Pflanzenzellen. I. Isolierung von Chloroplasten aus Spinatblättern. Hoppe-Seylers Z. physiol. Chem. 257, 43–48 (1938).Google Scholar
  60. Untersuchung der einzelnen Zellorgane in Spinatblättern auf Grund präparativ-chemischer Methodik. Z. Bot. 32, 273–295 (1938).Google Scholar
  61. Untersuchungen über das Protoplasma grüner Pflanzenzellen. II. Z. physiol. Chem. 263, 100–103 (1940).Google Scholar
  62. Mercer, F. V., A. J. Hodge, A. B. Hope and J. D. Mc Lean: The structure and swelling properties of Nitella chloroplasts. Aust. J. biol. Sci. 8, 1–18 (1955).Google Scholar
  63. Mestre, H.: The investigation of the pigments of the living photosynthetic cell. In Contrib. to Marine Biol., p. 170–187. Stanford, Calif.: Stanford Univ. Press 1930.Google Scholar
  64. Milner, H. W., M. L. G. Koenig and N. S. Lawrence: Reactivation of dispersed chloroplast material by reaggregation. Arch. Biochem. 28, 185–192 (1950).PubMedGoogle Scholar
  65. Milner, H. W., N. S. Lawrence and C. S. French: Colloidal dispersion of chloroplast material. Sci. 111, 633–634 (1950).CrossRefGoogle Scholar
  66. Milner, M., C. S. French and H. W. Milner: Effect of petroleum ether extraction and various petroleum ether-soluble compounds on the photochemical activity of isolated chloroplasts. Plant Physiol. 33, 367–372 (1958).PubMedCrossRefGoogle Scholar
  67. Mommaerts, W. F. H. M.: Some chemical properties of the plastid-granum. Proc. roy. Neth. Acad. Sci. 41, 896–903 (1938).Google Scholar
  68. Noack, K.: Der Zustand des Chlorophylls in der lebenden Pflanze. Biochem. Z. 183, 135–152 (1927).Google Scholar
  69. Pardee, A. B., H. K. Schachman and R. Y. Stanier: Chromatophores of Rhodospirillum rubrum. Nature (Lond.) 169, 282–283 (1952).CrossRefGoogle Scholar
  70. Pirie, N. W.: Proteins. Methods for separating protein from non-protein nitrogenous material. Mod. Meth. Plant Analysis 4, 23–58 (1955).Google Scholar
  71. Price, W. C., and R. W. G. Wyckoff: Ultracentrifugation of proteins of cucumber viruses 3 and 4. Nature (Lond.) 141, 685–686 (1938).CrossRefGoogle Scholar
  72. Rabinowttch, E. I. (Translator): Fluorescence and photochemistry of chlorophyll; papers of A. A. Krasnovskii, V. B. Evstigneev and coworkers. U. S. Atomic Energy Comm. Tech. Inf. Ext. Oak Ridge, Tenn. Available from: Off. of Tech. Serv. Dept. of Comm. Wash. 25, D.C. 1956b.Google Scholar
  73. Photosynthesis and related processes, Vol. I, pp. 1–599, 1945; Vol. II/1, pp. 603–1208, 1951; Vol. II/2, pp. 1211–2088, 1956.Google Scholar
  74. Rodrigo, F. A.: Preliminary note on experiments concerning the state of chlorophyll in the plant. Biochim. biophys. Acta 10, 342 (1953).PubMedCrossRefGoogle Scholar
  75. Experiments concerning the state of chlorophyll in the plant. Diss. Utrecht, Netherlands, Uitgeverij Excelsior, The Hague 1955. S. 1–94.Google Scholar
  76. Röbbelen, G.: Über die Protochlorophyllreduktion in einer Mutante von Arabidipsis thaliana (L.) Heynh. Planta (Berl.) 47, 532–546 (1956).CrossRefGoogle Scholar
  77. Sager, R.: Personal Comm. 1956.Google Scholar
  78. Sager, R., and G. E. Palade: Chloroplast structure in green and yellow strains of Chiamydomonas. Exp. Cell Res. 7, 584–588 (1954).PubMedCrossRefGoogle Scholar
  79. Sapozhnikov, D. I., and T. G. Maslova: The state of chlorophyll in leaves of green plants. Trans. bot. Inst., A. N. SSSR., Ser. IV 11, 97–115 (1956) [Russian].Google Scholar
  80. Schachman, H. K., A. B. Pardee and R. Y. Stanier: Studies on the macromolecular organization of microbial lcels. Arch. Biochem. 38, 245–260 (1952).PubMedCrossRefGoogle Scholar
  81. Seybold, A., u. K. Egle: Über den physikalischen Zustand des Chlorophylls in den Plastiden. Bot. Archiv 41, 578–603 (1940).Google Scholar
  82. Sherratt, H. S. A., and W.C. Evans: A crystalline chlorophyllprotein complex from Chlamy-domonas. Nature (Lond.) 173, 540–541 (1954).CrossRefGoogle Scholar
  83. Shibata, K..: Spectroscopic studies on chlorophyll formation in intact leaves. J. Biochem. (Tokyo) 44, 147–173 (1957).Google Scholar
  84. Spectroscopic studies on chlorophyll formation in intact leaves. Carnegie Inst. Wash. Year Book 55, 248–250 (1956a).Google Scholar
  85. Spectral measurements of true absorption and reflection of trans ucent materials. Carnegie Inst. Wash. Year Book 55, 252–256 (1956b).Google Scholar
  86. Shibata, K., IA. A. Benson and M. Calvin: The absorption spectra of suspensions of living organisms. Bio chim. biophys. Acta 15, 461–470 (1954).CrossRefGoogle Scholar
  87. Singer, S. J., L. Eggman, J. M. Campbell and S. G. Wildman: The proteins of green leaves. IV. A high molecular weight protein comprising a large part of the cytoplasmic proteins. J. biol Chem. 197, 233–239 (1952).PubMedGoogle Scholar
  88. Smith, E. L.: Solutions of chlorophyll-protein compounds. Sci. 88, 170–171 (1938).CrossRefGoogle Scholar
  89. Chlorophyll as the prosthetic group of a protein in the green leaf. Sci. 91, 199–200 (1940a).Google Scholar
  90. An ultracentrifugal study of the action of some detergents on the chlorophyll-protein compound of spinach. Amer. J. Physiol. 129, 466–467 (1940b).Google Scholar
  91. The chlorophyll-protein compound of the green leaf. J. gen. Physiol. 24, 565–582 (1941a).Google Scholar
  92. The action of sodium dodecyl sulfate on the chlorophyll-protein compound of the spinach leaf. J. gen. Physiol. 24, 583–596 (1941b).Google Scholar
  93. The chlorophyll-protein compound of the green leaf. Chron. bot. 7, 148–149 (1942).Google Scholar
  94. Smith, E. L., and E. G. Pickels: The effect of detergents on the chlorophyll-protein compound of spinach as studied in the ultracentrifuge. J. gen. Physiol. 24, 753–764 (1941).PubMedCrossRefGoogle Scholar
  95. Smith, J. H. C.: Protochlorophyll, precursor of chlorophyll. Arch. Biochem. 19, 449–454 (1948).PubMedGoogle Scholar
  96. Factors affecting the transformation of protochlorophyll to chlorophyll. Carnegie Inst. Wash. Year Book 51, 151–153 (1952).Google Scholar
  97. The development of chlorophyll and oxygen-evolving power in etiolated Barley leaves when illuminated. Plant Physiol. 29, 143–148 (1954).Google Scholar
  98. Smith, J. H. C., and A. Benttez: The protochloro-phyll-chlorophyll transformation: The nature of protochlorophyll in leaves. Carnegie Inst. Wash. Year Book 52, 149–153 (1953).Google Scholar
  99. The effect of temperature on the conversion of protochlorophyll to chlorophyll a in etiolated barley leaves. Plant Physiol. 29, 135–143 (1954).Google Scholar
  100. Smith, J. H. C., and V. M. Koski: Chlorophyll formation. Carnegie Inst. Wash. Year Book 47, 93–96 (1948).Google Scholar
  101. Smith, J. H. C., and D. W. Kupke: Some properties of extracted protochlorophyll holochrome. Nature (Lond.) 178, 751–752 (1956).CrossRefGoogle Scholar
  102. Smith, J. H. C., D. W. Kupke, S. E. Loeffler, I. Ahrne and A. T. Giese: The natural state of protochlorophyll. Research in photosynthesis, pp. 464–474. Intersci. Publ. 1957.Google Scholar
  103. Smith, J. H. C., D. W. Kupke and A. T. Giese: On the preparation, purification and nature of the protochlorophyll holochrome. Carnegie Inst. Wash. Year Book 55, 243–248 (1956).Google Scholar
  104. Smith, J. H. C., and V. M. K. Young: Chlorophyll formation and accumulation in plants. Radiat. Biol. 3, 393–442 (1956).Google Scholar
  105. Spikes, J. D., R. Lumry and F. Fujii: Spectral properties of a reported crystalline chlorophyll-lipoprotein as isolated from plants of different species. Proc. Utah Acad. Sci. Arts and Letters 31, 106 (1954).Google Scholar
  106. Steinmann, E.: An electron microscope study of the lamellar structure of chloroplasts. Exp. Cell Res. 3, 367–372 (1952).CrossRefGoogle Scholar
  107. Steinmann, E., and F. S. Sjöstrand: The ultrastructure of chloroplasts. Exp. Cell Res. 8, 15–23 (1955).PubMedCrossRefGoogle Scholar
  108. Stoll, A.: Zusammenhänge zwischen der Chemie des Chlorophylls und seiner Funktion in der Photosynthese. Naturwissenschaften 24, 53–59 (1936).CrossRefGoogle Scholar
  109. Stoll, A., u. A. Rüegger: Unpublished. Listed in Stoll and Wiedemann 1952.Google Scholar
  110. Stoll, A., u. E. Wiedemann: Chlorophyll. Fortschr. Chem. organ. Naturstoffe 1, 159–254 (1938).CrossRefGoogle Scholar
  111. Über die Verwandtschaft des Blutfarbstoffes mit dem Blattgrün. Schweiz. med. Wschr. 1947, 664.Google Scholar
  112. Chlorophyll. Fortschr. chem. Forsch. 2, 538–608 (1952).Google Scholar
  113. Takashima, S.: Chlorophyll-lipoprotein obtained in crystals. Nature (Lond.) 169, 182 to 183 (1952).CrossRefGoogle Scholar
  114. Thomas, J. B.: A note on the occurence of grana in algae and in photosynthesi-zing bacteria. Proc. roy. Neth. Acad. C 55, 207–208 (1952).Google Scholar
  115. Thomas, J. B., O. H. Blaauw and L. N. M. Duysens: On the relation between size and photochemical activity of fragments of spinach grana. Biochim. biophys. Acta 9, 575 (1952).PubMedCrossRefGoogle Scholar
  116. On the relation between size and photochemical activity of fragments of spinach grana. Biochim. biophys. Acta 10, 230–240 (1953).Google Scholar
  117. Thomas, J. B., and W. De Rover: On phycocyanin participation in the Hill reaction of the blue-green algae Synechococcus cedorum. Biochim. biophys. Acta 16, 391–395 (1955).PubMedCrossRefGoogle Scholar
  118. Thomas, J. B., J. C. Goedheer and J. G. Komen: pH induced changes of the infrared absorption spectra of purple bacteria. Biochim. biophys. Acta 22, 1–8 (1956).PubMedCrossRefGoogle Scholar
  119. Thomas, J. B., L. C. M. Post and N. Vertregt: Localization of chlorophyll within the chloroplast. Biochim. biophys. Acta 13, 20–30 (1954).PubMedCrossRefGoogle Scholar
  120. Timm, E.: Vergleichende Untersuchung der Proteine in den Chloroplasten und in Cytoplasma des Spinatblatts. Z. Bot. 38, 1–25 (1942).Google Scholar
  121. Tswett, M. S.: Chlorophyllous grains. Travaux Soc. Kazan 35, 1–268 (1901) [Russian].Google Scholar
  122. Vatter, a.: Unpublished (Ph. D. thesis, cited in Rabinowitch 1956).Google Scholar
  123. Vishniac, W.: Light-dependent reductions in a cell-free system. Research in Photosynthesis, pp. 285–287. Intersci. Publ. 1957.Google Scholar
  124. Vorob’eva, L. M., and A. A. Krasnovskii: The photochemically active form of chlorophyll in leaves and its transformations. Biochimija 21, 126–136 (1956) [Russian].Google Scholar
  125. Wassink, E. C.: Some remarks on chromophyllin and on the paths of energy-transfer in photosynthesis. Enzymologia 12, 362–372 (1948).Google Scholar
  126. Wassink, E. C., E. Katz and R. Dorrestein: Infrared absorption spectra of various strains of purple bacteria. Enzymologia 7, 113–129 (1939).Google Scholar
  127. Weissbach, A., B. L. Hobecker, and J. Hurwitz: The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J. biol. Chem. 218, 795–810 (1956).PubMedGoogle Scholar
  128. Wettstein, D. V.: Chlorophyll-letale und der submikroskopische Formwechsel der Piastiden. Exp. Cell Res. 12, 427–506 (1957).CrossRefGoogle Scholar
  129. Wolken, J. J., and G. E. Palade: Fine structure of chloroplasts in two flagellates. Nature (Lond.) 170, 114–115 (1952).CrossRefGoogle Scholar
  130. Wolken, J. J., and F. A. Schwertz: Chlorophyll monolayers in chloroplasts. J. gen. Physiol. 37, 111–120 (1953).PubMedCrossRefGoogle Scholar
  131. Molecular weight of algal chloroplastin. Nature Lond.) 177, 136–138 (1956).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • D. W. Kupke
  • C. S. French

There are no affiliations available

Personalised recommendations