Advertisement

Culture of unicellular algae. Manometric techniques for measuring photosynthesis

  • Jack Myers
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 5)

Abstract

In 1919 Warburg introduced to the study of photosynthesis a new method of measurement of gas exchange and a new experimental material, the green alga Chlorella. The sensitivity, precision, and versatility of the manometric method has led to general use with modification for special problems. Chlorella has proved to be an excellent experimental organism: it is rich in photosynthetic machinery and can be grown readily in the laboratory under conditions subject to precise control. In the course of time other algae with special pigments or metabolic or nutritional characteristics have been used to attack certain portions of the photosynthesis problem. The present section is concerned with the methodology of algal culture and manometric measurement. However, it is desirable to examine first some important considerations of comparative physiology.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Algeus, S.: Studies on the cultivation of algae in artificial light. Physiol. Plantarum (Cph.) 4, 742–753 (1951).CrossRefGoogle Scholar
  2. Arnold, W. A, E. W. Burdette and J. B. Davidson: A recording Warburg apparatus. Science 114, 364–367 (1951).PubMedCrossRefGoogle Scholar
  3. Arnon, D. I., P. S. Ichioka, W. Gunilla, A. Fujiwara and J. T. Wooley: Molybdenum in relation to nitrogen metabolism. Physiol. Plantarum (Cph.) 8, 538–551 (1955).CrossRefGoogle Scholar
  4. Barker, H. A.: The culture and physiology of the marine dinoflagellates. Arch. Mikrobiol. 6, 157–181 (1935).CrossRefGoogle Scholar
  5. Benson, A. A., M. Calvin, V. A. Haas, S. Aronoff, A. G. Hall, J. A. Bassham and J. W. Weigl: C14 in Photosynthesis. In: Photosynthesis in Plants, edit. by J. Franck and W. E. Looms, p. 381–401. Ames, Iowa: Iowa State College Press 1949.Google Scholar
  6. Bongers, L. H. J.: Changes in photosynthetic activity during algal growth and multiplication. Medel. Landbouwhogesch. Wageningen 58, 1–10 (1958).Google Scholar
  7. Bfrk, D., and G. Hobby: Hydraulic leverage principles for magnification of sensitivity of gas change in free and fixed volume manometry. Science 120, 640–648 (1954).CrossRefGoogle Scholar
  8. Burk, D., G. Hobby and J. Hunter: Observations and reflections on manometric calculations with air. Arch. Biochem. 69, 228–258 (1957).PubMedCrossRefGoogle Scholar
  9. Burk, D., u. O. Warburg: Ein- Quanten-Reaktion und Kreisprozeß der Energie bei der Photosynthese. Z. Naturforsch. 6b, 12–22 (1951).Google Scholar
  10. Clendenning, K. A., T. E. Brown and H. C. Eyster: Comparative studies of photosynthesis in Nostoc muscorum and Chlorella pyrenoidosa. Canad. J. Bot. 34, 943–966 (1956).CrossRefGoogle Scholar
  11. Cramer, M., and J. Myers: Nitrate reduction and assimilation in Chlorella. J. gen. Physiol. 32, 93–102 (1948).PubMedCrossRefGoogle Scholar
  12. Effects of starvation on the metabolism of Chlorella. Plant Physiol. 24, 255–264 (1949).Google Scholar
  13. Growth and photosynthetic characteristics of Euglena gracilis. Arch. Mikrobiol. 17, 384–402 (1952).Google Scholar
  14. Dixon, M.: Manometric Methods, 3. edit. Cambridge: University Press 1951.Google Scholar
  15. Dutton, H. J., and W. M. Manning: Evidence for carotenoid-sensitized photosynthesis in the diatom Nitzschia closterium. Amer. J. Bot. 28, 516–526 (1941).CrossRefGoogle Scholar
  16. Emerson, P., and R. Chalmers: Transient changes in cellular gas exchange and the problem of maximum efficiency of photosynthesis. Plant Physiol. 30, 504–529 (1955).PubMedCrossRefGoogle Scholar
  17. Emerson, R., and L. Green: Effect of hydrogen ion concentration on Chlorella photosynthesis. Plant Physiol. 13, 157–168 (1938).PubMedCrossRefGoogle Scholar
  18. Emerson, R., and C. M. Lewis: The photosynthetic efficiency of phycocyanin in Chroococcus. J. gen. Physiol. 25, 579–595 (1942).PubMedCrossRefGoogle Scholar
  19. Foster, J. W.: Some introspections on mold metabolism. Bact. Rev. 11, 167–188 (1947).PubMedGoogle Scholar
  20. Frenkel, A.: Hydrogen evolution in the flagellate green alga, Chlamydomonas Moewusii. Arch. Biochem. 38, 219–230 (1952).PubMedCrossRefGoogle Scholar
  21. Frenkel, A. W., and R. A. Lewin: Photoreduction by Chlamydomonas. Amer. J. Bot. 41, 586–589 (1954).CrossRefGoogle Scholar
  22. Gaffron, H.: Methoden zur Untersuchung der Kohlensäureassimilation. In Abderhaldens Handbuch der biologischen Arbeitsmethoden, Abt. XI, Teil 4, Hälfte 1, S. 101–160. Berlin: Urban & Schwarzenberg 1939.Google Scholar
  23. Carbon dioxide reduction with molecular hydrogen in green algae. Amer. J. Bot. 27, 273–283 (1940).Google Scholar
  24. Reduction of carbon dioxide coupled with the oxyhydrogen reaction in algae. J. gen. Physiol. 26, 219–267 (1942).Google Scholar
  25. Hutner, S. H., L. Provasoli, A. Schatz and C. P. Haskins: Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc. Amer. Philos. Soc. 94, 152–170 (1950).Google Scholar
  26. Iwamura, T.: Change of nucleic acid content in Chlorella cells during the course of their life-cycle. J. Biochem. 42, 575T–589 (1955).Google Scholar
  27. Katz, E., E. C. Wassink and R. Dorrestein: On some methodological problems in the study of photosynthesis of unicellular organisms. Enzymologia 10, 269–284 (1942).Google Scholar
  28. Kok, B.: On the efficiency of Chlorella growth. Acta hot. neerl. 1, 445–467 (1952).Google Scholar
  29. Some sensitive and recording volumeters. Biochim. biophys. Acta 16, 35–44 (1955).Google Scholar
  30. Kratz, W. A., and J. Myers: Photosynthesis and respiration in three blue-green algae. Plant Physiol. 30, 275–280 (1955).PubMedCrossRefGoogle Scholar
  31. Krebs, H. A.: The use of CO2 buffers in manometric measurements of cell metabolism. Biochem. J. 48, 349–359 (1951).PubMedGoogle Scholar
  32. Lobenzen, H.: Synchrone Zellteilungen von Chlorella bei verschiedenen Licht- Dunkel- Wechseln. Flora (Jena) 144, 473–496 (1957).Google Scholar
  33. Die photosynthetische Sauerstoffproduktion von Chlorella bei langfristig intermittierender Belichtung. Flora (Jena) 147, 382–404 (1959).Google Scholar
  34. Lorenzen, H., u. H. G. Ruppel: Versuche zur Gliederung des Entwicklungsverlaufs der Chlorlla-Zelle. Planta (Berl.) 54, 394–403 (1960).CrossRefGoogle Scholar
  35. Mac Innes, D. A., and D. Belcher: The thermodynamic ionization constants of carbonic acids. J. Amer. chem. Soc. 55, 2630–2646 (1933).CrossRefGoogle Scholar
  36. Monod, J.: La technique de culture continue theorie et applications. Ann. Inst. Pasteur 79, 390–410 (1950).Google Scholar
  37. Myers, J.: Influence of light intensity on cellular and photosynthetic characteristics of Chlorella. J. gen. Physiol. 29, 419–427, 429–440 (1946).CrossRefGoogle Scholar
  38. Oxidative assimilation in relation to photosynthesis in Chlorella. J. Amer. Physiol. 30, 217–227 (1947).Google Scholar
  39. The pattern of photosynthesis in Chlorella. In: Photosynthesis in Plants, edit. by J. Franck and W. E. Looms, p. 349–364. Ames, Iowa: Iowa State College Press 1949.Google Scholar
  40. Myers, J., and L. B. Clark: An apparatus for the continuous culture of Chlorella. J. gen. Physiol. 28, 103–112 (1944).PubMedCrossRefGoogle Scholar
  41. Myers, J., and J. R. Graham: The role of photosynthesis in the physiology of Ochromonas. J. cell. comp. Physiol. 47, 397–414 (1956).CrossRefGoogle Scholar
  42. Myers, J., and F. A. Matsen: Kinetic characteristics of Warburg manometry. Arch. Biochem. 55, 373–388 (1955).CrossRefGoogle Scholar
  43. Myers, J., J. N. Phillips and J. R. Graham: On the mass culture of algae. Plant Physiol. 26, 539–548 (1951).PubMedCrossRefGoogle Scholar
  44. Neeb, O.: Hydrodictyon als Objekt einer vergleichenden Untersuchung physiologischer Größen. Flora (Jena) 139, 39–95 (1954).Google Scholar
  45. Niel, C. B. van, M. B. Allen and B. E. Wright: On the photochemical reduction of nitrate by algae. Biochim. biophys. Acta 12, 67–74 (1953).CrossRefGoogle Scholar
  46. Nihei, T., T. Sasa, S. Miyachi, K. Suzuki and H. Tamiya: Change of photosynthetic activity of Chlorella cells during the course of their normal life cycle. Arch. Mikrobiol. 21, 156–166 (1954).PubMedGoogle Scholar
  47. Nishimura, M. S., C. P. Whittingham and R. Emerson: The maximum efficiency of photosynthesis. Symp. Soc. exp. Biol. 5, 176–210 (1951).Google Scholar
  48. Novick, A., and L. Szilard: Description of the chemostat. Science 112, 715–716 (1950).PubMedCrossRefGoogle Scholar
  49. Oorschot, J. L. P. van: Conversion of light energy in algal culture. Diss. Wageningen 1955. Medelingen Landbouwhoogeschool Wageningen 55, 225–276 (1955).Google Scholar
  50. Pardee, A. B.: Measurement of oxygen uptake under controlled pressures of carbon dioxide. J. biol. Chem. 179, 1085–1091 (1949).PubMedGoogle Scholar
  51. Phillips, J. N., and J. Myers: Growth rate of Chlorella in flashing light. Plant Physiol. 29, 152–161 (1954).PubMedCrossRefGoogle Scholar
  52. Person, A., u. H. Döring: Induzierte Wachstumsperioden bei Grünalgen. Flora (Jena) 139, 314–328 (1952).Google Scholar
  53. Pirson, A., I. Krollpfeiffer u. G. Schaefer: Leistungsfähigkeit und Fehlerquellen manometrischer Stoffwechselmessungen. Marburger S.- B. 76, 1–27 (1953).Google Scholar
  54. Person, A., H. Lorenzen and A. Koepper: A sensitive stage in Synchronized cultures of Chlorella. Plant Physiol. 34, 353–355 (1959).CrossRefGoogle Scholar
  55. Pratt, R.: Influence on photosynthesis of prolonged exposure to sodium bicarbonate and potassium bicarbonate. Amer. J. Bot. 30, 626–629 (1943).CrossRefGoogle Scholar
  56. Rabinowitch, E. I.: Photosynthesis, vol. 1. New York: Interscience Publishers 1945.Google Scholar
  57. Rieke, F. F.: Quantum efficiencies for photosynthesis and photoreduction in green plants. In: Photosynthesis in Plants, edit. by J. Franck and W. E. Looms, p. 251–272. Ames, Iowa: Iowa State College Press 1949.Google Scholar
  58. Sorokin, C.: Studies on high-temperature algae. Diss. Univ. Texas 1955.Google Scholar
  59. Changes in photosynthetic activity in the course of cell development in Chlorella. Physiol. Plantarum (Cph.) 10, 659–666 (1957).Google Scholar
  60. A reversible inhibition of photosynthesis in synchronized cultures of algae. Nature (Lond.) 185, 933–935 (1960).Google Scholar
  61. Sorokin, C., and J. Myers: A high-temperature strain of Chlorella. Science 117, 330–331 (1953).PubMedCrossRefGoogle Scholar
  62. Spoehr, H. A., and H. W. Milner: The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol. 24, 120–149 (1949).PubMedCrossRefGoogle Scholar
  63. Steemann Nielsen, E.: Carbon dioxide as carbon source and narcotic in photosynthesis and growth of Chlorella pyrenoidosa. Physiol. Plantarum (Cph.) 8, 317–335 (1955).CrossRefGoogle Scholar
  64. Syrett, P. J.: Effect of cyanide on the respiration and the oxidative assimilation of glucose by Chlorella vulgaris. Ann. Bot. (Lond.) 15, 473–492 (1951).Google Scholar
  65. Tamiya, H., T. Iwamura, K. Shibata, E. Hase and T. Nihei: Correlation between photosynthesis and light-dependent metabolism in the growth of Chlorella. Biochim. biophys. Acta 12, 23–40 (1953).PubMedCrossRefGoogle Scholar
  66. Taylor, F. J.: Oxidative assimilation of glucose by Scenedesmus quadricauda. J. exp. Bot. 1, 301–321 (1950).CrossRefGoogle Scholar
  67. Umbreit, W. W., R. H. Burris and J. F. Stauffer: Manometric Techniques. Rev. edit. Minneapolis: Burgess 1949.Google Scholar
  68. Walker, J. B.: Inorganic micronutrient requirements of Chlorella. Arch. Biochem. 53, 1–8 (1954).PubMedCrossRefGoogle Scholar
  69. Warburg, O.: Manometrische Messung des Zellstoffwechsels in Serum. Biochem. Z. 164, 481–503 (1925).Google Scholar
  70. Über den Stoffwechsel der Tumoren. Berlin: Springer 1926.Google Scholar
  71. Über die Berücksichtigung der Retention der Kohlensäure bei Messungen der Photosynthese in Kulturlösungen. Z. Naturforsch. 9b, 302–303 (1954).Google Scholar
  72. Warburg, O., H. Geleick u. K. Briese: Über die Messung der Photosynthese in Carbonat- Bicarbonat- Gemischen. Z. Naturforsch. 7b, 141–144 (1952).Google Scholar
  73. Warburg, O., u. G. Krippahl: Messung der Lichtabsorption in Chlorella mit der Ulbrichtschen Kugel. Z. Naturforsch. 9b, 181–182 (1954).Google Scholar
  74. Winokur, M.: Aging effects in Chlorella cultures. Amer. J. Bot. 36, 287–291 (1949).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • Jack Myers

There are no affiliations available

Personalised recommendations