Skip to main content

Die Mikrobiologie des Bodens

  • Chapter
Heterotrophie / Heterotrophy

Part of the book series: Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology ((532,volume 11))

  • 68 Accesses

Zusammenfassung

Die oberen Schichten des Bodens tragen stets eine äußerst kompliziert zusammengesetzte Bevölkerung von lebenden Organismen, deren Lebensvorgänge dazu beitragen, den biologischen Stoffkreislauf im Gange zu halten und so den Boden zu einem geeigneten Standort für die höheren Pflanzen zu machen. Die gesamte Bodenpopulation umfaßt ein sehr breites Spektrum von Lebensformen, das sich von einzelligen Organismen bis zu Säugetieren (Maulwürfen) und Wurzeln der höheren Pflanzen erstreckt. Hiervon repräsentieren die Mikroorganismen einen sehr wichtigen Bestandteil sowohl rein quantitativ in Form von lebender Masse als auch mit Rücksicht auf die biologische Tätigkeit, die sie entfalten. Die Mikroorganismen des Bodens sind ganz überwiegend pflanzlicher Natur: Bakterien (einschließlich Strahlenpilze), niedere Algen und Pilze (obwohl die höheren Formen der letzteren nicht eigentlich mikroskopisch sind). Hierzu kommen noch tierische Bodenbewohner wie Protozoen, Nematoden und andere niedere Metazoen. Die Mikrobiologie des Bodens im eigentlichen Sinne umfaßt die Kenntnis von der Natur und Identität dieser Organismen, ihrem Vorkommen und ihrer Wirksamkeit im Erdboden selbst. Wie Winogradsky hervorgehoben hat, ist dagegen ihr Verhalten in Reinkultur unter künstlichen Bedingungen streng gesprochen als ein Zweig der allgemeinen Mikrobiologie anzusehen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur

  • Adams, F., and C. P. Conrad: Transition of phosphite to phosphate in soils. Soil Sci. 75, 361–371 (1953).

    CAS  Google Scholar 

  • Alexander, F. E. S., and R. M. Jackson: Examination of soil microorganisms in their natural environment. Nature (Lond.) 174, 750–751 (1954).

    CAS  Google Scholar 

  • Allison, F. E.: The enigma of soil nitrogen balance sheets. Advanc. Agronomy 7, 213–250 (1955).

    Google Scholar 

  • Allison, F. E., J. H. Doetsch and E. M. Roller: Ammonium fixation and availability in Harpster clay loam. Soil. Sci. 72, 187–200 (1951).

    CAS  Google Scholar 

  • Anderson, G. R. : Nitrogen fixation by Pseudomonas-like soil bacteria. J. Bact. 70, 129–133 (1955).

    PubMed  CAS  Google Scholar 

  • Anderson, O. N., and E. R. Purvis: Effect of low temperature on nitrification of ammonia in soils. Soil Sci. 80, 313–318 (1955).

    CAS  Google Scholar 

  • Arnold, P. W. : Losses of nitrous oxide from soil. J. Soil Sci. 5, 116–128 (1954).

    CAS  Google Scholar 

  • Bengtsson, N., and C. Barthel: The decomposition of the organic compounds in barnyard manure. Ann. roy. Agric. Coll. Sweden 8, 55–69 (1940).

    Google Scholar 

  • Bjälfve, G.: Fixation of atmospheric nitrogen. Ann. roy. Agric. Coll. Sweden 22, 193–217 (1955).

    Google Scholar 

  • Brian, P. W., J. M. Wright, J. Stubbs, and A. M. Way: Uptake of antibiotic metabolites of soil microorganisms by plants. Nature (Lond.) 167, 347 (1951).

    CAS  Google Scholar 

  • Broadbent, F. E.: Denitrification in some californian soils. Soil. Sci. 72, 129–137 (1951).

    CAS  Google Scholar 

  • Broadbent, F. E., and A. G. Norman: Some factors affecting the availability of the organic nitrogen in soil — a preliminary report. Soil. Sci. Soc. Amer. Proc. 11, 264–267 (1947).

    CAS  Google Scholar 

  • Bromfield, S. M.: Sulphate reduction in partially sterilized soil exposed to air. J. gen. Microbiol. 8, 378–390 (1953).

    PubMed  CAS  Google Scholar 

  • The reduction of iron oxide by soil bacteria. J. Soil. Sci. 5, 129–139 (1954).

    Google Scholar 

  • Bunt, J. S., and A. D. Rovira: The effect of temperature and heat treatment on soil metabolism. J. Soil Sci. 6, 129–136 (1955).

    Google Scholar 

  • Burrichter, E.: Beiträge zur Beurteilung von Böden auf Grund fluorescenz-mikroskopischer Untersuchung ihrer Mikroflora. Pflanzenernährg, Düngung Bodenk. 63 (108), 154–171 (1953).

    Google Scholar 

  • Die bakteriologische Kartierung und Beurteilung der Kulturböden. Landwirtsch. Forsch. 8, 14–25 (1955).

    Google Scholar 

  • Burton, M. O., and A. G. Lochhead : Studies on the production of vitamin B12-active substances by microorganisms. Canad. J. Bot. 29, 352–359 (1951).

    CAS  Google Scholar 

  • Nutritional requirements of Arthrobacter terregens. Canad. J. Bot. 31, 145–161 (1953).

    Google Scholar 

  • Chang, S. C.: The transformation of phosphorus during the decomposition of plant materials. Soil. Sci. 48, 85–99 (1939).

    CAS  Google Scholar 

  • Assimilation of phosphorus by a mixed soil population and by pure cultures of soil fungi. Soil Sci. 49, 197–210 (1940).

    Google Scholar 

  • Chesters, C. G. C.: A contribution to the study of fungi in the soil. Trans. brit. mycol. Soc. 30, 100–117 (1948).

    Google Scholar 

  • Cholodny, N. : Über eine neue Methode zur Untersuchung der Bodenmikroflora. Arch. Mikrobiol. 1, 620–652 (1930).

    Google Scholar 

  • Clark, F. E. : Azotobacter inoculation of crops. III. Recovery of Azotobacter from the rhizosphere. Soil. Sci. 65, 193–202 (1948).

    Google Scholar 

  • The generic classification of certain cellulolytic bacteria. Soil Sci. Soc. Amer. Proc. 15, 180–182 (1951).

    Google Scholar 

  • Conn, H. J. : The microscopic study of bacteria and fungi in soil. N. Y. Agric. exp. St. techn. Bull. 64 (1918).

    Google Scholar 

  • Certain abundant non-spore-forming bacteria in soil. Zbl. Bakt., II. Abt. 76, 65–88 (1928).

    Google Scholar 

  • Conn, H. J., and M. A. Darrow: Characteristics of certain bacteria belonging to the autochtonous microflora of soil. Soil Sci. 39, 95–110 (1935).

    CAS  Google Scholar 

  • Conn, H. J., and I. Dimmick: Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J. Bact. 54, 291–303 (1947).

    Google Scholar 

  • De, P. K. : The role of blue-green algae in nitrogen fixation in rice fields. Proc. roy. Soc. B 127, 121–139 (1939).

    CAS  Google Scholar 

  • De, P. K., and N. L. Mandal: Fixation of nitrogen by algae in rice soils. Soil Sci. 81, 453–458 (1956).

    CAS  Google Scholar 

  • Delwiche, C. C., and J. Wijler: Non-symbiotic nitrogen fixation in soil. Plant & Soil 7, 113–129 (1956).

    CAS  Google Scholar 

  • Derx, H. G. : Beijerinckia, a new genus of nitrogenfixing bacteria in tropical soils. Proc. kon. ned. Akad. Wet. 53, 140–147 (1950).

    CAS  Google Scholar 

  • Dhar, N. R. : The role of organic matter in soil fertility. Ann. roy. Agric. Coll. Sweden 21, 105–160 (1954).

    Google Scholar 

  • Dhar, N. R., E. V. Seshacharayulu u. S. K. Mukerji: Photochemie der Stickstoff-Festlegung im Boden und Ähnlichkeit zwischen Stickstoff-Fest-legung und Photosynthese. Bodenk. u. Pflanzenernährg 12, 222–231 (1939).

    CAS  Google Scholar 

  • Downs, S. C., T. M. McCalla and F. A. Haskins: Stachybotrys atra, an effective aggregator of Peorian loess. Soil. Sci. Soc. Amer. Proc. 19, 179–181 (1955).

    CAS  Google Scholar 

  • Dubos, R. J.: Influence of environmental conditions on the activities of cellulose-decomposing organisms in the soil. Ecology 9, 12–27 (1928).

    CAS  Google Scholar 

  • Ensminger, L. E., and J. E. Gieseking: Resistance of clay-absorbed proteins to proteolytic hydrolysis. Soil Sci. 53, 205–209 (1942).

    CAS  Google Scholar 

  • Erikson, D.: Studies on some lake-mud strains of Micromonospora. J. Bact. 41, 277–300 (1941).

    PubMed  CAS  Google Scholar 

  • Differentiation of the vegetative and sporogenous phase of the actinomycetes. 4. The partial acid-fast proactinomycetes. J. gen. Microbiol. 3, 361–368 (1949).

    Google Scholar 

  • Evans, E., and D. Gottlieb: Gliotoxin in soils. Soil Sci. 80, 295–301 (1955).

    CAS  Google Scholar 

  • FÅHRÆus, G.: Studies in the cellulose decomposition by Cytophaga. Symb. bot. Upsal. 16, Nr 2 (1947).

    Google Scholar 

  • Fehér, D. : Untersuchungen über die Schwankungen der Bodenatmung. Arch. Mikrobiol. 5, 421–435 (1934).

    Google Scholar 

  • Felsz-Karnicka, H.: Sur la décomposition de la cellulose dans les sols acides [Polnisch mit franz. Zus.fass.]. Mém. Inst. nat. pol. Econ. Rurale Pulawy 16, Nr 240 (1936).

    Google Scholar 

  • Fischer, G.: Untersuchungen über den biologischen Abbau der Lignine durch Mikroorganismen. Arch. Mikrobiol. 18, 397–424 (1953).

    PubMed  CAS  Google Scholar 

  • Fisher, T., E. Fisher and M. D. Appleman: Nitrite production by heterotrophic bacteria. J. gen. Microbiol. 14, 238–247 (1956).

    PubMed  CAS  Google Scholar 

  • Flaig, W., E. Küster, G. Segle-Holzweissig u. H. Beutelspacher : Zur Kenntnis der Huminsäuren. V. Pflanzenernährg, Düngung Bodenk. 57 (102), 42–51 (1952).

    CAS  Google Scholar 

  • Fogg, G. E., and M. Wolfe: The nitrogen metabolism of the blue-green algae (Myxophyceae). In: Autotrophic Microorganisms. Fourth Symp. Soc. Gen. Microbiol., Cambridge, p. 99–125, 1954.

    Google Scholar 

  • Forsyth, W. G. C., and D. M. Webley: The synthesis of polysaccharides by bacteria isolated from soil. J. gen. Microbiol. 3, 395–399 (1949).

    PubMed  CAS  Google Scholar 

  • Frederick, L. R., R. L. Starkey and W. Segal: Decomposability of some organic sulfur compounds in soil. Soil Sci. Soc. Amer. Proc. 21, 287–292 (1957).

    CAS  Google Scholar 

  • Fuller, W. H., and A. G. Norman: Characteristic of some soil Cytophagas. J. Bact. 45, 545–572 (1943a).

    Google Scholar 

  • Cellulose decomposition by aerobic mesophilic bacteria from soil I.—III, J. Bact. 46, 273–297 (1943b).

    Google Scholar 

  • Garrett, S. D. : Ecological groups of soil fungi. New Phytologist 50, 149–165 (1951).

    Google Scholar 

  • Geoghegan, M. J., and R. C. Brian: Aggregate formation in soil. Biochem. J. 43, 5–13 (1948).

    CAS  Google Scholar 

  • Gerretsen, F. C.: Enkele waarnemingen betreffende den invloed van de tem-peratur op de nitrificatie en vastlegging van de stikstof. Landbouwk. T. 5, 573–583 (1942).

    Google Scholar 

  • The influence of microorganisms on the phosphate intake by the plant. Plant & Soil 1, 51–81 (1948).

    Google Scholar 

  • Gilman, J. C.: A Manual of Soil Fungi. Ames, Iowa: Collegiate Press Inc. 1957.

    Google Scholar 

  • Glathe, H., C. v. Bernstorff u. A. Arnold: Lebensgemeinschaft von Mikroorganismen und höheren Pflanzen im Bereich der Rhizosphäre. Zbl. Bakt., II. Abt. 107, 481–488 (1954).

    Google Scholar 

  • Gleen, H.: Biological oxidation of iron in soil. Nature (Lond.) 166, 871 (1950).

    CAS  Google Scholar 

  • Goldberg, S. H., and P. L. Gainey: Role of surface phenomena in nitrification. Soil Sci. 80, 43–53 (1955).

    CAS  Google Scholar 

  • Gottlieb, S., and M. J. Pelczar: Microbiological aspects of lignin degradation. Bact. Rev. 15, 55–76 (1951).

    PubMed  CAS  Google Scholar 

  • Greenwood, D. J., and H. Lees: Studies in the decomposition of amino acids in soils. Plant & Soil 7, 253–268 (1956).

    CAS  Google Scholar 

  • Grossbard, E.: Antibiotic production by fungi in organic manures and in soil. J. gen. Microbiol. 6, 295–310 (1952).

    PubMed  CAS  Google Scholar 

  • Gyllenberg, H.: Studies of thermophilic bacteria of the genus Bacillus Cohn. Acta agric. fenn. 73, 1–88 (1951).

    Google Scholar 

  • HaarløV, N., and T. Weis-Fogh: A microscopic technique for studying the undisturbed texture of soil. Oikos 4, 44–57 (1952).

    Google Scholar 

  • Hamilton, P. B., W. E. Magee and L. E. Mortenson: Nitrogen fixation by Aerobacter aerogenes and cell-free extracts of the Azotobacter vinelandii. Bact. Proc. 1953, 28.

    Google Scholar 

  • Harmsen, G. W.: The influence of the method of sampling on the accuracy of the determination of bacterial numbers in the soil. Antonie v. Leeuwenhoek 6, 178–199 (1940).

    Google Scholar 

  • Onderzoekingen over de aërobe celluloseontleding in den grond. Groningen: Wolters 1946. Harmsen, G. W., and D. A. van Schreven: Mineralization of organic nitrogen in soil. Advanc. Agronomy 7, 299–398 (1955).

    Google Scholar 

  • Henderson, M. E. K., and V. C. Farmer: Utilization by soil fungi of p-hydroxybenzaldehyde, ferulic acid, syring-aldehyde and vanillin. J. gen. Microbiol. 12, 37–49 (1955).

    PubMed  CAS  Google Scholar 

  • Henriksen, A., and H. L. Jensen: Chemical and microbiological determination of copper in soil. Acta agric. scand. 8, 441–469 (1958).

    CAS  Google Scholar 

  • Hofmann, E.: Enzymreaktionen und ihre Bedeutung für die Bestimmung der Bodenfruchtbarkeit. Pflanzenernährg, Düngung, Bodenk. 56 (101), 68–72 (1952).

    CAS  Google Scholar 

  • Hofmann, E., u. G. Hoffmann: Über Herkunft, Bestimmung und Bedeutung der Enzyme im Boden. Pflanzenernährg, Düngung, Bodenk. 70 (115), 9–16 (1955).

    Google Scholar 

  • Hopf, M.: Untersuchungen über die natürliche Mikroflora des Bodens. Arch. Mikrobiol. 14, 661–677 (1949).

    Google Scholar 

  • Hungate, R. E. : The anaerobic mesophilic cellulolytic bacteria. Bact. Rev. 14, 1–49 (1950).

    PubMed  CAS  Google Scholar 

  • Hutton, W. E., and C. E. ZoBell: Production of nitrite from ammonia by methane oxidizing bacteria. J. Bact. 65, 216–219 (1953).

    PubMed  CAS  Google Scholar 

  • Isenberg, H. D., A. Schatz, A. A. Angrist, V. Schatz and G. S. Trelawney: Microbial metabolism of carbamates. II. J. Bact. 68, 5–9 (1954).

    PubMed  CAS  Google Scholar 

  • Isotalo, A. : Studies on the ecology and physiology of cellulose-decomposing bacteria in raised bogs. Acta agric. fenn. 74, 1–106 (1951).

    Google Scholar 

  • Jackman, R. H., and C. A. Black: Phytase activity in soil. Soil Sci. 73, 117–125 (1952).

    CAS  Google Scholar 

  • Janke, A., F. Sekera u. A. Szilvinyi: Mikrobiologische Boden-Untersuchungen im Lunzer Gebiet. Arch. Mikrobiol. 5, 233–245 (1934).

    Google Scholar 

  • Jansson, S. L.: Tracer studies on nitrogen transformations in soil. Ann. roy. Agric. Coll. Sweden 24, 101–361 (1958).

    CAS  Google Scholar 

  • Jansson, S. L., M. J. Hallam and W. V. Bartholomew: Preferential utilization of ammonium over nitrate by microorganisms in the decomposition of oats straw. Plant & Soil 6, 382–390 (1955).

    CAS  Google Scholar 

  • Jefferys, E. G.: The stability of antibiotics in soil. J. gen. Microbiol. 7, 295–312 (1952).

    PubMed  CAS  Google Scholar 

  • Jefferys, E. G., P. W. Brian, H. S. Hemming and D. Lowe: Antibiotic production by the microfungi of acid heath soils. J. gen. Microbiol. 9, 314–341 (1953).

    PubMed  CAS  Google Scholar 

  • Jensen, H. L. : Contributions to the microbiology of Australian soils. V. Proc. Linnean Soc.N. S.Wales 61, 27–55 (1936).

    CAS  Google Scholar 

  • VI. Proc. Linnean Soc. N. S. Wales 64, 601–608 (1939).

    Google Scholar 

  • Contributions to the nitrogen problem of Australian wheat soils. Proc. Linnean Soc. N. S. Wales 65, 1–122 (1940).

    Google Scholar 

  • Nitrogen fixation and cellulose decomposition by soil microorganisms. III. Proc. Linnean Soc. N. S. Wales 66, 239–249 (1941).

    Google Scholar 

  • Observations on the vegetative growth of actinomy-cetes in the soil. Proc. Linnean Soc. N. S. Wales 68, 67–71 (1943).

    Google Scholar 

  • The occurrence of Azotobacter in cultivated soils of Denmark. [Dänisch mit engl. Zus.fass.] T. Planteavl 53, 622–649 (1950).

    Google Scholar 

  • On the microbiological decomposition of farmyard manure. [Dänisch mit engl. Zus.fass.] T. Planteavl 55, 237–264 (1952).

    Google Scholar 

  • Biological transformations of thiourea. Arch. Mikrobiol. 28, 145–152 (1957).

    Google Scholar 

  • Jensen, H. L., and R. J. Swaby: Nitrogen fixation and cellulose decomposition by soil microorganisms. II. Proc. Linnean Soc. N. S. Wales 66, 89–106 (1941).

    CAS  Google Scholar 

  • Jensen, V. : Nitrogen fixation by strains of Aerobacter aerogenes. Physiol. Plantarum (Cph.) 9, 130–136 (1956).

    CAS  Google Scholar 

  • Jensen, V., and E. J. Petersen: Taxonomic studies on Azotobacter chroococcum Beij. and Azotobacter beijerinckii Lipman. Königl Tierärztl. u. Landwirtsch. Hochschule Kopenhagen, Jb. 1955, S. 107–126 (1955).

    Google Scholar 

  • Jones, P. C. T., and J. E. Mollison: A technique for the quantitative estimation of soil organisms. J. gen. Microbiol. 2, 54–69 (1948).

    CAS  Google Scholar 

  • Kaila, A. : Biological absorption of phosphorus. Soil Sci. 68, 279–289 (1949).

    CAS  Google Scholar 

  • Nitrification in decomposing organic matter. Acta agric. scand. 4, 17–32 (1954a).

    Google Scholar 

  • Über mikrobiologische Festlegung und Mineralisierung des Phosphors bei der Zersetzung organischer Stoffe. Pflanzenernährg, Düngung, Bodenk. 64 (109), 27–35 (1954b).

    Google Scholar 

  • Katznelson, H.: The “rhizosphere effect” of mangels on certain groups of soil microroganisms. Soil. Sci. 62, 343–354 (1946).

    CAS  Google Scholar 

  • Katznelson, H., A. G. Lochhead and M. I. Timonin: Soil microorganisms and the rhizosphere. Bot. Rev. 14, 543–587 (1948).

    Google Scholar 

  • Killian, D., et D. Fehér: Recherches sur les phénomènes microbiologiques dans les sols sahariens. Ann. Inst. Pasteur 55, 573–622 (1935).

    CAS  Google Scholar 

  • Kingma Boltjes, T. Y.: Onderzoekingen over nitrificeerende bactérien. Meinema (Delft) 1934.

    Google Scholar 

  • Kluyver, A. J.: Some aspects of nitrate reduction. VI. Congr. Int. Microbiol. (Roma), Symp. Microbial Metabolism, p. 71–91, 1953.

    Google Scholar 

  • Kluyver, A. J., and J. H. Becking: Some observations on the nitrogenfixing bacteria of the genus Beijerinckia. Ann. Acad. Sci. fenn. A 60, 367–380 (1955).

    Google Scholar 

  • Koffmann, M. : Die Mikrofauna des Bodens, ihr Verhältnis zu anderen Mikroorganismen und ihre Rolle bei den mikrobiologischen Vorgängen im Boden. Arch. Mikrobiol. 5, 246–302 (1934).

    Google Scholar 

  • Konetzka, W. A., M. J. Pelczar and S. Gottlieb: The biological degradation of lignin. III. J. Bact. 63, 771–778 (1952).

    PubMed  CAS  Google Scholar 

  • Kox, E.: Der durch Pilze und aerobe Bakterien verursachte Pektin- und Zelluloseabbau im Hochmoor unter besonderer Berücksichtigung des Sphagnum-Abbaus. Arch. Mikrobiol. 20, 111–140 (1954).

    PubMed  CAS  Google Scholar 

  • Krzemieniewski, H., and S. Krzemie-niewski: Die zellulosezersetzenden Myxobakterien. Bull. int. Acad. pol. Sci. Lettr., Cl. Sci. Math. Nat. B 1–5b, 11–31, 34–59 (1937).

    Google Scholar 

  • Kubiena, W.: Über Fruchtkörperbildung und engen Standortwahl von Pilzen in Bodenhohlräumen. Arch. Mikrobiol. 3, 507–542 (1932).

    Google Scholar 

  • Micropedology. Ames, Iowa: Collegiate Press Inc. 1938.

    Google Scholar 

  • Die mikroskopische Humusuntersuchung. Forschungsdienst 17, Sonderh., 62–70 (1941).

    Google Scholar 

  • Kubiena, W., and C. E. Renn: Micropedological studies on the influence of different organic compounds on the microflora of the soil. Zbl. Bakt., II. Abt. 91, 267–292 (1935).

    CAS  Google Scholar 

  • Küster, E.: Untersuchungen über die Bildung und Zersetzung von Humusstoffen durch Mikroorganismen. Arch. Mikrobiol. 15, 1–12 (1950).

    Google Scholar 

  • Umwandlung von Mikroorganismen-Farbstoffen in Humusstoffe. Pflanzenernährg, Düngung, Bodenk. 57 (102), 51–57 (1952).

    Google Scholar 

  • Landerkin, G. B., J. R. G. Smith and A. G. Lochhead : A study of the antibiotic activity of actinomycetes from soils of Northern Canada. Canad. J. Res., C 28, 690–698 (1950).

    Google Scholar 

  • Ledingham, G. A., and G. A. Adams: Biological decomposition of chemical lignin. Canad. J. Res., C 20, 13–27 (1942).

    Google Scholar 

  • Lees, H.: Biochemistry of Autotrophic Bacteria. London: Butterworth Sci. Publ. 1955.

    Google Scholar 

  • Lees, H., and J. W. Porteous: The release of carbon dioxid from soils percolated with various organic materials. Plant & Soil 2, 231–241 (1950).

    CAS  Google Scholar 

  • Lees, H., and J. H. Quastel: Biochemistry of nitrification in soil. I—II. Biochem. J. 40, 803–823 (1946).

    Google Scholar 

  • Lees, H., and J. R. Simpson: The biochemistry of the nitrifying organisms. V. Nitrite oxidation by Nitrobacter. Biochem. J. 65, 297–305 (1957).

    PubMed  CAS  Google Scholar 

  • Leroux, D.: Sur la combustion de la matière organique des sols agricoles. Annales agronom., N. S. 4, 26–52 (1934).

    Google Scholar 

  • Lindeberg, G.: Über die Physiologie ligninabbauen-der Bodenhymenomyzeten. Symb. bot. Upsal. 8, Nr 2 (1944).

    Google Scholar 

  • On the decomposition of lignin and cellulose in litter caused by soil-inhabiting hymenomycetes. Ark. Bot. A 33, Nr 10, 1–16 (1946).

    Google Scholar 

  • Ligninabbau und Phenoloxydasebildung der Bodenhymenomyceten. Pflanzenernährg, Düngung, Bodenk. 69 (114), 142–150 (1955).

    Google Scholar 

  • Linford, M. B.: Methods of observing soil flora and fauna associated with roots. Soil. Sci. 53, 93–103 (1942).

    Google Scholar 

  • Lochhead, A. G., and F. E. Chase: Qualitative studies of soil microorganisms. V. Nutritional requirements of the predominant bacterial flora. Soil. Sci. 55, 185–195 (1943).

    Google Scholar 

  • Lochhead, A. G., and R. H. Thexton: A four-year quantitative study of nitrogen-fixing bacteria in soils of different fertilizer treatment. Canad. J. Res., C 14, 166–177 (1936).

    Google Scholar 

  • Qualitative studies of soil microorganisms. III. Influence of plant growth on the character of the bacterial flora. Canad. J. Res., C 18, 42–53 (1940).

    Google Scholar 

  • Qualitative studies of soil microorganisms. VII. The “rhizosphere effect” in relation to the amino acid nutrition of bacteria. Canad, J. Res., C 25, 20–26 (1947).

    Google Scholar 

  • Qualitative studies of soil microorganisms. X. Bacteria requiring Vitamin B12 as growth factor. J. Bact. 63, 219–226 (1952).

    Google Scholar 

  • Löhnis, F.: Handbuch der landwirtschaftlichen Bakteriologie. Teil 2: Bakteriologie des Bodens, von H. Glathe neubearbeitet, 2. Aufl. Berlin: Gebrüder Bornträger 1935.

    Google Scholar 

  • Lund, A.: Studies on the Ecology of Yeasts. Kopenhagen: Munksgaard 1954.

    Google Scholar 

  • Lundegårdh, H.: Klima und Boden in ihrer Wirkung auf das Pflanzenleben, 3. Aufl. Jena: Gustav Fischer 1949.

    Google Scholar 

  • Madhok, M. R.: Cellulose decomposition in synthetic and natural soil. Soil Sci. 44, 385–397 (1937).

    CAS  Google Scholar 

  • Martin, J. P., and S. A. Waksman: Influence of microorganisms on soil aggregation and erosion. Soil Sci. 50, 29–47 (1940).

    CAS  Google Scholar 

  • Microorganisms and soil aggregation. II. Soil Sci. 61, 157–166 (1946).

    Google Scholar 

  • Mattson, S., and E. Koutler-Andersson: The acid-base condition in vegetation, litter and humus. VI. Ammonia fixation and humus nitrogen. Ann. roy. Agric. Coll. Sweden 11, 107–134 (1943).

    CAS  Google Scholar 

  • Metcalfe, G., and M. E. Brown: Nitrogen fixation by new species of Nocardia. J. gen. Microbiol. 17, 567–572 (1957).

    PubMed  CAS  Google Scholar 

  • Metcalfe, G., S. Chayon, E. R. Roberts and T. G. G. G. Wilson: Nitrogen fixation by soil yeasts. Nature (Lond.) 174, 841–842 (1954).

    CAS  Google Scholar 

  • Metz, H.: Untersuchungen über die Rhizo-sphäre. Arch. Mikrobiol. 23, 297–326 (1955).

    PubMed  CAS  Google Scholar 

  • Mortland, M. M. and J. E. Gieseking: The influence of clay minerals on the enzymatic hydrolysis of phosphorus compounds. Soil Sci. Soc. Amer. Proc. 16, 10–13 (1952).

    CAS  Google Scholar 

  • Newman, A. S., and A. G. Norman: The activity of subsurface soil populations. Soil Sci. 55, 377–391 (1943).

    CAS  Google Scholar 

  • Niethammer, A.: Die mikroskopischen Bodenpilze. s’Graven-hage: Junk 1937.

    Google Scholar 

  • Nômmik, H.: Investigations on denitrification in soil. Acta agric. scand. 6, 195–228 (1956).

    Google Scholar 

  • Fixation and defixation of ammonium in soils. Acta agr. scand. 7, 395–436 (1957).

    Google Scholar 

  • Norman, A. G.: The biological decomposition of plant materials. II. The biological activities on straw of some cellulose-decomposing fungi. Ann. appl. Biol. 18, 244–257 (1931).

    CAS  Google Scholar 

  • The biological decomposition of plant materials. IX. The aerobic decomposition of hemicelluloses. Ann. appl. Biol. 21, 454–475 (1934).

    Google Scholar 

  • The place of microbiology in soil science. Advanc. Agronomy 7, 399–407 (1955).

    Google Scholar 

  • Oetker, H. : Untersuchungen über die Ernährung einiger Mykobakterien. Arch. Mikrobiol. 19, 206–246 (1953).

    PubMed  CAS  Google Scholar 

  • Olsen, C.: On the significance of hydrogen-ion concentration for the cycle of nitrogen transformation in the soil. C. R. Lab. Carlsberg 17, Nr 8 (1928).

    Google Scholar 

  • Studies of nitrogen fixation. I. Nitrogen fixation in the dead leaves of forest beds. C. R. Lab. Carlsberg 19, Nr 9 (1932).

    Google Scholar 

  • Overgaard Nielsen, C.: Studies on the soil micro-fauna. II. The soil-inhabiting nematodes. Natura Jutlandica 2, 1–131 (1949).

    Google Scholar 

  • Parker, C. A. : Non-symbiotic nitrogen fixation in soil. I. Studies on Clostridium butyricum. Aust. J. Agric. Res. 5, 90–98 (1954).

    CAS  Google Scholar 

  • Petersen, J. B.: Studies on the biology and taxonomy of soil algae. Dansk bot. Ark. 8, Nr 9 (1935).

    Google Scholar 

  • Pinck, L. A., and F. E. Allison: The synthesis of lignin-like complexes by soil fungi. Soil. Sci. 57, 155–161 (1944).

    CAS  Google Scholar 

  • Pinck, L. A., R. S. Dyal and F. E. Allison: Protein-montmorillonite complexes, their preparation and the effect of soil microorganisms on their decomposition. Soil Sci. 78, 109–118 (1954).

    CAS  Google Scholar 

  • Plotho, O. v. : Untersuchungen zur Morphologie und Biologie der Mycobakterien des Bodens. Arch. Mikrobiol. 13, 93–139 (1942).

    Google Scholar 

  • Untersuchungen an Proactinomyceten. Arch. Mikrobiol. 14, 12–45 (1945).

    Google Scholar 

  • Pochon, J., et Y. T. Tchan: Humus et biologie des sols. Rev. gén. Bot. 57, 257–277, 321–347 (1950).

    Google Scholar 

  • Quastel, J. H.: Soil metabolism. Proc. roy. Soc. B 143, 159–178 (1955).

    CAS  Google Scholar 

  • Quastel, J. H., and P. G. Scholefield: Biochemistry of nitrification in soil. Bact. Rev. 15, 1–53 (1951).

    PubMed  CAS  Google Scholar 

  • Quastel, J. H., P. G. Scholefield and J. W. Stevenson: Oxidation of pyruvic acid oxime by soil microorganisms. Biochem. J. 51, 278–286 (1952).

    PubMed  CAS  Google Scholar 

  • Quispel, A., G. W. Harmsen and D. Otzen: Contribution to the chemical and bacteriological oxidation of pyrite in soil. Plant & Soil 4, 43–55 (1952).

    CAS  Google Scholar 

  • Rippel, A.: Mikrobiologie des Bodens. In E. Blancks Handbuch der Bodenlehre, Erg.-Bd. I. Berlin: Springer 1939.

    Google Scholar 

  • Rippel-Baldes, A.: Grundriß der allgemeinen Mikrobiologie, 2. Aufl. Berlin-Göttingen-Heidelberg: Springer 1953.

    Google Scholar 

  • Rossi, G. : Direct microscopic and bacteriological examination of the soil. Soil. Sci. 41, 53–66 (1936).

    CAS  Google Scholar 

  • Rovira, A. D. : Factors influencing soil metabolism and the relationship between plant roots and soil micro-organisms. Thesis, Univ. of Sydney 1955.

    Google Scholar 

  • Plant root excretions in relation to the rhizosphere effect. I–II. Plant & Soil 7, 178–208 (1956).

    Google Scholar 

  • Ruinen, J.: Occurrence of Beijerinckia species in the “phyllosphere”. Nature (Lond.) 177, 220–221 (1956.)

    Google Scholar 

  • Russell, E. J.: Soil conditions and plant growth, 8. Aufl., von W. Russell neubearbeitet. London: Longmans, Green & Co. 1950.

    Google Scholar 

  • Salton, M. J.: Isolation of Streptomyces spp. capable of decomposing preparations of cell walls of various microorganisms. J. gen. Microbiol. 12, 25–30 (1955).

    PubMed  CAS  Google Scholar 

  • Schatz, A., N. D. Cheronis, V. Schatz and G. S. Trelawny: Chelation (Sequestration) as a biological weathering factor in soil biogenesis. Proc. Pennsylv. Acad. Sci. 28, 44–51 (1954).

    CAS  Google Scholar 

  • Schlich-ting, E. : Kupferbindung und -fixierung durch Humusstoffe. Acta agric. scand. 5, 313–356 (1955).

    CAS  Google Scholar 

  • Schmidt, E. L.: Soil microorganisms and plant growth substances. I. Historical. Soil Sci. 71, 129–140 (1950).

    Google Scholar 

  • Nitrate formation by a soil fungus. Science 119, 187–189 (1954).

    Google Scholar 

  • Schmidt, E. L., and R. L. Starkey: Soil microorganisms and plant growth substances. II. Transformations of certain B-vitamins in soil. Soil Sci. 71, 221–231 (1950).

    Google Scholar 

  • Schmidt-Lorenz, W., u. A. Rippel-Baldes: Wirkung des Sauerstoff-Partialdrucks auf Wachstum und Stickstoffbindung von Azotobacter chroococcum Beij. Arch. Mikrobiol. 28, 45–68 (1957).

    PubMed  CAS  Google Scholar 

  • Schönbrunn, B.: Über den zeitlichen Verlauf der Nitrifikation. Zbl. Bakt., II. Abt. 56,545–565 (1922).

    Google Scholar 

  • Shrikande, J. G. : The production of mucus during the decomposition of plant materials. Biochem. J. 27, 1563–1574 (1933).

    Google Scholar 

  • Singh, B. N. : Myxobacteria in soils and composts : their distribution, number and lytic action on bacteria. J. gen. Microbiol. 1–10 (1947a).

    Google Scholar 

  • Studies on soil Acrasieae. I.—II. J. gen. Microbiol. 1, 11–21, 361–367 (1947b).

    Google Scholar 

  • Skinner, C. E., and E. M. Mellem: Further experiments to determine the organisms responsible for the decomposition of cellulose in soil. Ecology 25, 360–365 (1944).

    CAS  Google Scholar 

  • Skinner, F. A. : A method for distinguishing between viable spores and mycelial fragments of actinomycetes in soil. J. gen. Microbiol. 5, 159–166 (1951).

    PubMed  CAS  Google Scholar 

  • Skinner, F. A., P. C. T. Jones and J. E. Mollison: A comparison of a direct and a plate-counting technique for the quantitative estimation of soil microorganisms. J. gen. Microbiol. 6, 261–271 (1952).

    PubMed  CAS  Google Scholar 

  • Sobels, J. C. : Nutrition de quelques myxomycètes en cultures pures et associées et leurs propriétés antibiotiques. Gouda: Koch & Knüttel 1950.

    Google Scholar 

  • Sørensen, H.: Microbial decomposition of xylan. Acta agr. scand., Suppl. 1, 1–86 (1957).

    Google Scholar 

  • Spicher, G.: Untersuchungen über die Wechselbeziehung zwischen Azotobacter und höherer Pflanze. Zbl. Bakt., II. Abt. 107, 353–383 (1954).

    CAS  Google Scholar 

  • Stallings, J. H.: Soil-produced antibiotics — plant disease and insect control. Bact. Rev. 18, 131–146 (1954).

    PubMed  CAS  Google Scholar 

  • Stanier, R. Y. : The Cytophaga group: a contribution to the biology of myxobacteria. Bact. Rev. 6, 143–196 (1942).

    PubMed  CAS  Google Scholar 

  • Stapp, C. : Azotomonas insolita, ein neuer aerober stickstoffbindender Organismus. Zbl. Bakt., II. Abt 102, 1–19 (1940)

    Google Scholar 

  • Stapp, C., u. H. Bortels: Mikrobiologische Untersuchungen über die Zersetzung von Waldstreu. Zbl. Bakt., II. Abt. 90, 28–66 (1934).

    CAS  Google Scholar 

  • Starc, A.: Zur Frage der Rhizo-sphäre und Bodenimpfung mit Azotobacter. Arch. Mikrobiol. 13, 164–181 (1942).

    Google Scholar 

  • Starkey, R. L. : Some influences of the development of higher plants upon microorganisms in the soil. Soil. Sci. 45, 207–249 (1938).

    CAS  Google Scholar 

  • Relations of microorganisms to transformation of sulfur in soil. Soil Sci. 70, 55–65 (1950).

    Google Scholar 

  • Starkey, R. L., and P. K. De : A new species of Azotobacter. Soil Sci. 47, 329–343 (1939).

    CAS  Google Scholar 

  • Stille, B.: Untersuchungen über die Bedeutung der Rhizo-sphäre. Arch. Mikrobiol. 9, 477–485 (1938).

    Google Scholar 

  • Stöckli, A.: Die Verbreitung der Azoto-bacterorganismen in der Schweiz. Landwirtsch. Jb. Schweiz. 58, 67–105 (1944).

    Google Scholar 

  • Die Zahl, Größe, Form und Verteilung der autochthonen Bodenbakterien. Landwirtsch. Jb. Schweiz 70, 47–65 (1956a).

    Google Scholar 

  • Über den Anteil der Bodenpilze an der organischen Substanz des Bodens. Mitt. Schweiz. Landwirtsch. 4, 125–130 (1956b).

    Google Scholar 

  • Stojanovic, B. J., and M. Alexander: Effect of inorganic nitrogen on nitrification. Soil Sci. 86, 208–215 (1958).

    CAS  Google Scholar 

  • Stokes, J. L. : The role of algae in the nitrogen cycle of the soil. Soil Sci. 49, 265–275 (1940).

    CAS  Google Scholar 

  • Strugger, S.: Fluorescense microscopic examinations of bacteria in soil. Canad. J. Res., C 26, 188–193 (1948).

    CAS  Google Scholar 

  • Suto, T.: An acid-fast Azotobacter in a volcanic ash soil. Sci. Rep. Res. Inst. Tôhoku Univ. (D) 6, 25–31 (1954).

    Google Scholar 

  • Swaby, R. J.: The occurrence and activity of Azotobacter and Clostridium in Victorian soils. Aust. J. exp. Biol. med. Sci. 17, 401–423 (1939).

    CAS  Google Scholar 

  • The relationship between micro-organisms and soil aggregation. J. gen. Microbiol. 3, 236–254 (1949 a).

    Google Scholar 

  • The influence of humus on soil aggregation. J. Soil Sci. 1, 182–194 (1949b). Swaby, R. J., and B. J. Passey: A simple macrorespirometer for studies in soil microbiology. Aust. J. agric. Res. 4, 334–339 (1953).

    Google Scholar 

  • Taylor, C. B.: Short-period fluctuations in the numbers of bacterial cells in soil. Proc. roy. Soc. B 119, 269–295 (1936).

    CAS  Google Scholar 

  • Tchan, Y. T.: Studies of nitrogen-fixing bacteria. III. Proc. Linnean Soc. N. S. Wales 78, 83–84 (1953a).

    Google Scholar 

  • Studies of nitrogen-fixing bacteria. V. Proc. Linnean Soc. N. S. Wales 78, 171–178 (1953b).

    Google Scholar 

  • Thompson, L. M., C. A. Black and F. E. Clark: Accumulation and mineralization of microbial organic phosphorus in soil materials. Soil Sci. Soc. Amer. Proc. 13, 242–245 (1949).

    CAS  Google Scholar 

  • Thornton, H. G., and P. H. H. Gray: The fluctuations of bacterial numbers and nitrate content of field soil. Proc. roy. Soc. B 106, 399–417 (1930).

    CAS  Google Scholar 

  • The numbers of bacterial cells in field soils as estimated by the ratio method. Proc. roy Soc. B 115, 522–543 (1934).

    Google Scholar 

  • Thornton, H. G., and C. B. Taylor: Short-period fluctuations in bacterial numbers in soil. Trans. Third Int. Congr. Soil Sci. 1, 175–179 (1935).

    CAS  Google Scholar 

  • Timonin, M. I.: The interaction of higher plants and soil microorganisms. Canad. J. Res., C 18, 307–317 (1940).

    Google Scholar 

  • Topping, L. E.: The predominant micro-organisms in soils. Zbl. Bakt., II. Abt. 97, 289–304 (1937).

    Google Scholar 

  • Tschapek, N., and N. Giambiani: Nitrogen fixation of Azotobacter in soil. Arch. Mikrobiol. 21, 376–390 (1955).

    PubMed  CAS  Google Scholar 

  • Vartiovaara, U. : The influence of the duration of the growth of fungal tissue upon its decomposition. J. Sci. agric. Soc. Finland 10, 312–325 (1938).

    CAS  Google Scholar 

  • Veldkamp, H.: A study of the aerobic decomposition of chitin by microorganisms. Mededel. Landbouwhogesch. Wageningen 55, 127–174 (1955).

    CAS  Google Scholar 

  • Verhoeven, W. : Aerobic sporeforming nitrate reducing bacteria. Delft: Waltman 1952.

    Google Scholar 

  • Waksman, S.A.: Principles of Soil Microbiology, 2. Ausg. Baltimore: Williams & Wilkins Company 1932.

    Google Scholar 

  • Humus: Origin, Chemical Composition, and Importance in Nature, 2. Aufl. Baltimore: Williams & Wilkins Company 1938.

    Google Scholar 

  • The Actinomycetes: their Nature,

    Google Scholar 

  • Occurrence, Activities, and Importance. Waltham, Mass.: Chronica Botanica Co. 1950.

    Google Scholar 

  • Waksman, S. A., and R. A. Diehm: On the decomposition of hemicelluloses by microorganisms. I.–III. Soil. Sci. 32, 73–139 (1931).

    CAS  Google Scholar 

  • Waksman, S. A., and F. C. Gerretsen: Influence of temperature and moisture upon the nature and extent of decomposition of plant residues. Ecology 12, 33–60 (1931).

    CAS  Google Scholar 

  • Waksman, S. A., and I. J. Hutchings: Decomposition of lignin by microorganisms. Soil. Sci. 42, 119–130 (1936).

    CAS  Google Scholar 

  • Waksman, S. A., and M. R. Madhok: Influence of light and heat upon the formation of nitrate in the soil. Soil Sci. 44, 361–375 (1937).

    CAS  Google Scholar 

  • Waksman, S. A., and E. R. Purvis: The microbiological population of peat. Soil. Sci. 34, 95–110 (1932).

    CAS  Google Scholar 

  • Waksman, S. A., W. W. Umbreit and T. C. Cordon: Thermophilic actinomycetes and fungi in soils and composts. Soil Sci. 47, 37–61 (1939)

    CAS  Google Scholar 

  • Wallhäuser, K.: Die antibiotischen Beziehungen einer natürlichen Mikroflora. Arch. Mikrobiol. 16, 201–236 (1951a)

    Google Scholar 

  • Untersuchungen über das antibiotische Verhalten von Mikroorganismen am natürlichen Standort. Arch. Mikrobiol. 16, 237–251 (1951b).

    Google Scholar 

  • Welsch, M. : Phénomènes d’antibiose chez les actinomycètes. Rev. belge Path. 13, Suppl. II (1947).

    Google Scholar 

  • West, P. M. : Excretion of thiamin and biotin by the roots of higher plants. Nature (Lond.) 144, 1050–1051 (1939).

    CAS  Google Scholar 

  • Wieringa, K. T.: Der Abbau der Pektine: der erste Angriff der organischen Pflanzensubstanz. Pflanzenernährg., Düng., Bodenk. 69 (114), 150–155 (1955).

    Google Scholar 

  • The problems of standardization of methods in use in microbiological soil research. Netherl. J. agr. Sci. 6, 61–67 (1958).

    Google Scholar 

  • Wijler, J., and C. C. Delwiche: Investigations on the denitrification process in soil. Plant & Soil 5, 155–169 (1954).

    CAS  Google Scholar 

  • Winogradsky, S.: Études la microbiologie du sur sol. I. Sur la méthode. Ann. Inst. Pasteur 39, 299–354 (1925).

    Google Scholar 

  • II. Sur les microbes fixateurs de l’azote. Ann. Inst. Pasteur 40, 445–520 (1926).

    Google Scholar 

  • III. Sur le pouvoir fixateur des terres. Ann. Inst. Pasteur 42, 36–62 (1928).

    Google Scholar 

  • IV. Sur la dégradation de la cellulose dans le sol. Ann. Inst. Pasteur 43, 549–633 (1929).

    Google Scholar 

  • VII. Nouvelles recherches sur les microorganismes de la nitrification. Ann. Inst. Pasteur 50, 350–432 (1933).

    Google Scholar 

  • Winter, A. G. : Untersuchungen über die Aufnahme von Penicillin und Streptomycin durch die Wurzeln von Lepidium sativum und ihre Beständigkeit im Boden. Z. Bot. 40, 153–172 (1952).

    Google Scholar 

  • Winter, A. G., u. R. v. Rümker: Die Mikroflora der Rhizosphäre als resistenzbestimmender Faktor. Arch. Mikrobiol. 15, 72–84 (1950).

    Google Scholar 

  • Wright, J. M.: The production of antibiotics in soil. III. Production of gliotoxin in wheatstraw buried in soil. Ann. appl. Biol. 44, 461–466 (1956).

    CAS  Google Scholar 

  • Ziemecka, J.: Sur la déstruction des pentosanes [Polnisch mit franz. Zus.fass.]. Rocz. Nauk Robn. Lecn. 25, 313–332 (1931).

    Google Scholar 

  • The Azotobacter test of soil fertility applied to the classical fields at Rothamsted. J. agric. Sci. 27, 797–810 (1932).

    Google Scholar 

  • The use of a modified Rossi-Cholodny technique for studying the organisms that decompose certain organic compounds in soil. Zbl. Bakt., II. Abt. 91, 379–394 (1935).

    Google Scholar 

Literatur

  • Abelson, P. H. : Palaeobiochemistry (Papers Geophys. Lab. Carnegie Inst. of Washington No 1256). Sci. Amer. 1956.

    Google Scholar 

  • Allen, Mary Belle: The thermophilic aerobic sporeforming bacteria. Bact. Rev. 17, 125–173 (1953).

    PubMed  CAS  Google Scholar 

  • Andersen, S. Th., and K. Gundersen: Ether soluble pigments in interglacial gyttja. Experientia (Basel) 11, 345–348 (1955).

    CAS  Google Scholar 

  • Arrhenius, G. : Carbon and nitrogen in subaquatic sediments. Geochim. et Cosmochim Acta 1, 15–21 (1950).

    CAS  Google Scholar 

  • Baars, J. K. : Over sulfaatreductie door bacterien. Diss. Delft 1930.

    Google Scholar 

  • Bader, R. G. : The lignin fraction of marine sediments. Deep Sea Res. 4, 15–22 (1956).

    Google Scholar 

  • Baier, C. R. : Die Bedeutung der Bakterien für den Kalktransport in den Gewässern. Geol. Meere u. Binnengew. 1, 75–105 (1937).

    Google Scholar 

  • Ballantine, D., and B. C. Abbott: Toxic marine flagellates; their occurrence and physiological effects on animals. J. gen. Microbiol. 16, 274–281 (1957).

    PubMed  CAS  Google Scholar 

  • Bargagli-Petrucci, G. : Studi sulla flora microscopica della regione boracifera toscana. I. Bac. boracicola n. sp. Nuovo Giorn. bot. ital. 20, 1–39 (1913).

    Google Scholar 

  • Barghoorn, E. S., and D. H. Linder: Marine fungi: Their taxonomy and biology. Farlowia 1, 395–467 (1944).

    Google Scholar 

  • Bartholomew, J. W., and S. C. Rittenberg: Thermophilic bacteria from deep ocean bottom cores. J. Bact. 57, 658 (1949).

    Google Scholar 

  • Bass-Becking, L., C. F. Tolman, H. C. McMillin, J. Field and T. Hashimoto : Preliminary statement regarding the diatom “epidemics” at Copalis beach, Wash., and an analysis of diatom oil. Economic. Geol. 22, 356–368 (1927).

    Google Scholar 

  • Bavendamm, W. : Die mikrobiologische Kalkfällung in der tropischen See. Arch. Mikrobiol. 3, 205–276 (1932).

    CAS  Google Scholar 

  • Benda, Irmgard: Mikrobiologische Untersuchungen über das Auftreten von Schwefelwasserstoff in den anaeroben Zonen des Hochmoores. Arch. Mikrobiol. 27, 337–374 (1957).

    PubMed  CAS  Google Scholar 

  • Birge, E. A., and C. Juday: Particulate and dissolved organic matter in inland lakes. Ecol. Monogr. 4, 440–474 (1934).

    CAS  Google Scholar 

  • Böcher, T. W. : Studies on the sapropelic flora of the lake Flyndersø with special reference to the Oscillatoriaceae. Kong. danske Vidensk. Selsk., Biol. Meddel. 21, Nr 1 (1949).

    Google Scholar 

  • Breed, R. S., E. G. D. Murray and N. R. Smith: Bergey’s Manual of Determinative Bacteriology. 7. Aufl. Baltimore: Williams & Wilkins Co. 1957.

    Google Scholar 

  • Bruun, A. Fr.: The abyssal fauna: its ecology, distribution and origin. Nature (Lond.) 177, 1105—1108 (1956).

    Google Scholar 

  • Bünning, E., u. Hedwig Herdle: Physiologische Untersuchungen an thermophilen Blaualgen. Z. Natur-forsch. 1, 93–99 (1946).

    Google Scholar 

  • Burgeff, A.: Mikrobiologie des Hochmoores mit besonderer Berücksichtigung der Ericaceen-Pilzsymbiose. Ber. dtsch. bot. Ges. 69, 257–262 (1956).

    Google Scholar 

  • Butkevich, V. S.: Die Bildung der Eisenmangan-Ablagerungen am Meeresboden und die daran beteiligten Mikroorganismen. Ber. wiss. Meeresinst. Moskau (russ.) 3 (3), 5–81 (1928).

    Google Scholar 

  • On the bacterial population of the Caspian and Asov seas. Mikrobiologija 7, 1005–1021 (1938).

    Google Scholar 

  • Butlin, K. R., and J. R. Postgate: The microbiological formation of sulphur in Cyrenaican lakes. In J. L. Cloudsley-Thompson, Biology of deserts. London 1954.

    Google Scholar 

  • Campbell jr., L., H. A. Frank and Elizabeth R. Hall: Studies on thermophilic sulfate reducing bacteria. I. Identification of Sporovibrio desulfuricans as Clostridium nigrificans. J. Bact. 73, 516–521 (1957).

    PubMed  CAS  Google Scholar 

  • Campbell jr., L. L., and O. B. Williams: A study of chitin-decomposing microorganisms of marine origin. J. gen. Microbiol. 5, 894–905 (1951).

    PubMed  CAS  Google Scholar 

  • The effect of temperature on the nutritional requirements of facultative and obligate thermophilic bacteria. J. Bact. 65, 141–145 (1953).

    Google Scholar 

  • Christian, J. H. B., and M. Ingram: The freezing points of bacterial cells in relation to halophilism. J. gen. Microbiol. 20, 27–31 (1959).

    PubMed  CAS  Google Scholar 

  • Collins, Vera G. : Planktonic bacteria. J. gen. Microbiol. 16, 268–272 (1957).

    PubMed  CAS  Google Scholar 

  • Copeland, J. J.: Yellowstone thermal myxophyceae. Ann. N. Y. Acad. Sci. 36, 1–232 (1936).

    Google Scholar 

  • Couch, J. N. : A new genus and family of the Actinomycetales with a revision of the genus Actinoplanes. J. Elisha Mitchell Sci. Soc. 71, 148–155 (1955).

    Google Scholar 

  • Cviic, V.: On the ecological relations of marine bacteria and plankton. Proc. 6th Intern. Congr. of Microbiol. Rome 7, 366–367 (1953).

    Google Scholar 

  • Czurda, V.: Über eine neue autotrophe und thermophile Schwefelbakteriengesellschaft. Zbl. Bakt., II. Abt. 92, 407–414 (1935).

    Google Scholar 

  • Dahl, E.: Ecological salinity boundaries in poikilohaline water. Øikos (Cph.) 7, 1–21 (1956).

    Google Scholar 

  • Delany, M. J.: The mass culture of a presumably autotrophic dinoflagellate. Amer. Midland Naturalist 56, 126–132 (1956).

    Google Scholar 

  • Droop, M. R.: Auxotrophy and organic compounds in the nutrition of marine phytoplankton. J. gen. Microbiol. 16, 286–293 (1957).

    PubMed  CAS  Google Scholar 

  • Eardley, A. J. : Sediments of Great Salt Lake, Utah. Bull. Amer. Ass. Petrol. Geol. 22, 1305–1411 (1938).

    CAS  Google Scholar 

  • Elazari-Volcani, B.: Studies on the microflora of the Dead Sea. Thesis Jerusalem 1940.

    Google Scholar 

  • Fischer, B.: Die Bakterien des Meeres. Erg. Plankton-Exped. Humboldt-Stiftg 4, 1–83 (1894).

    Google Scholar 

  • Flannery, W. L.: Current status of knowledge of halophilic bacteria. Bact. Rev. 20, 49–66 (1956).

    PubMed  CAS  Google Scholar 

  • Gaertner, H. R. v., u. H. Kroepelin : Petrographische und chemische Untersuchungen am Posidonienschiefer Nordwestdeutschlands. II. Untersuchungen über die organische Substanz des Posidonienschiefers. Erdöl u. Kohle 9, 690–682 (1956).

    Google Scholar 

  • Gale, H. S.: Salines in the Owens, Searles, and Panamint Basins, southeastern California. U.S. Geol. Surv. Bull. 580, 251–323 (1913), (Washington 1915).

    Google Scholar 

  • Geitler, L.: Zur Kenntnis der Bewohner des Ober-flächenhäutchens einheimischer Gewässer. Biol. generalis (Wien) 16, 450–475 (1942).

    Google Scholar 

  • Goldacre, R. J. : Surface films on natural bodies of water. J. anim. Ecol. 18, 36–39 (1949).

    Google Scholar 

  • Harvey, H. W. : Biological chemistry and physics of seawater. Cambridge : Univ. Press 1928.

    Google Scholar 

  • Hecht, F.: Der Verbleib der organischen Substanz der Tiere bei meerischer Einbettung. Senckenbergiana 15, 165–249 (1933).

    Google Scholar 

  • Bemerkungen zu Trasks Methode der Bestimmung des organischen Gehaltes meerischer Sedimente. Senckenbergiana 16, 21–24 (1934).

    Google Scholar 

  • Henrici, A. T.: Studies of freshwater bacteria. III. Quantitative aspects of the direct microscopic method. J. Bact. 32, 265–280 (1936).

    PubMed  CAS  Google Scholar 

  • Höhnk, W. : Studien zur Brack-und Seewassermykologie. IV. Ascomyceten des Küstensandes. V. Höhere Pilze des sub-mersen Holzes. VI. Über die pilzliche Besiedlung verschieden salziger submerser Standorte. Veröff. Inst. Meeresforsch. Bremerhaven 3, 27–33 (1954); 3, 199–227 (1955); 4, 195–213 (1956).

    Google Scholar 

  • Fortschritte der marinen Mykologie in jüngster Zeit. Naturw. Rundsch. 11, 39–44 (1958).

    Google Scholar 

  • Houwink, A. L.: Flagella, gas vacuoles, and cellwall structure in Halobacterium halobium; an electron microscope study. J. gen. Microbiol. 15, 146–150 (1956).

    PubMed  CAS  Google Scholar 

  • Ingold, C. T. : Actinospora megalospora n. g., n. sp., an aquatic hyphomycete. Trans. Brit. Mycol. Soc. 35, 66–70 (1952).

    Google Scholar 

  • Ingold, C. T., and B. Chapman: Aquatic Asco-mycetes: Loramyces juncicola Weston and L. macrospora n. sp. Trans. Brit. Mycol. Soc. 35, 268–272 (1952).

    Google Scholar 

  • Ingold, C. T., and E.A. Ellis: On some hyphomycete spores, including those of Tetracladium maxilliformis from Wheatfen. Trans. Brit. Mycol. Soc. 35, 158–161 (1952).

    Google Scholar 

  • Issachenko, B. L. : Biogenous formation of calcium carbonate. Mikrobiologija 17, 118–125 (1948).

    Google Scholar 

  • Jannasch, H. W. : Ökologische Untersuchungen der planktischen Bakterienflora im Golf von Neapel. Naturwissenschaften 41, 42 (1954).

    Google Scholar 

  • Zur Ökologie der zymogenen plank-tischen Bakterienflora natürlicher Gewässer. Arch. Mikrobiol. 23, 146–180 (1955).

    Google Scholar 

  • Jørgensen, E. G.: Growth inhibiting substances formed by algae. Physiol. Plantarum (Cph.) 9, 712–726 (1956).

    Google Scholar 

  • Diatom periodicity and silicon assimilation. Experimental and ecological investigations. Dansk bot. Ark. 18, 1–54 (1957).

    Google Scholar 

  • Johnson, Fr. H., H. Ey-ring and M. J. Polissar: The kinetic basis of molecular biology. New York: Wiley & Sons; London: Chapman & Hall 1954.

    Google Scholar 

  • Kadota, H.: A study of the marine aerobic cellulose-decomposing bacteria. Mem. Coll. Agricult. Kyoto Univ. No 74, 1–128 (1956).

    Google Scholar 

  • Kalle, K.: Das Meerwasser. In Handbuch der Pflanzenphysiologie, Bd. III, S. 37–42. Berlin: Springer 1956.

    Google Scholar 

  • Katznelson, H., and A. G. Lochhead: Growth factor requirements of halophilic bacteria. J. Bact. 64, 97–103 (1952).

    PubMed  CAS  Google Scholar 

  • Kitching, J. A. : Effects of high hydrostatic pressure on the activity of flagellates and ciliates. J. exp. Biol. 34, 494–510 (1957).

    Google Scholar 

  • Klieneberger-Nobel, Emmy: Über Kapsel- und Schleimbildung bei Bakterien. Schweiz. Z. Path. 11. 336–345 (1948).

    CAS  Google Scholar 

  • Koffler, H.: Protoplasmatic differences between Mesophiles and Thermophiles. Bact. Rev. 21, 227–240 (1957).

    PubMed  CAS  Google Scholar 

  • Kohn, E.: Zur Biologie der Wasserbakterien. Zbl. Bakt., II. Abt. 15, 690–708, 777–786 (1906).

    Google Scholar 

  • Kolbe, R. W.: Zur Ökologie, Morphologie und Systematik der Brackwasser-Diatomeen. Die Kieselalgen des Sperenberger Salzgebietes. Pflanzenforschung, H. 7. Jena 1927.

    Google Scholar 

  • Kolkwitz, R., u. M. Marsson: Ökologie der pflanzlichen Saprobien. Ber. dtsch. bot. Ges. 26, 505–519 (1908).

    CAS  Google Scholar 

  • Koppe, F. : Die Schlammflora der ostholsteinischen Seen und des Bodensees. Arch. Hydro-biol. 14, 619–672 (1924).

    Google Scholar 

  • Kox, Elisabeth: Der durch Pilze und aerobe Bakterien ver-anlaßte Pectin- und Cellulose-Abbau im Hochmoor unter besonderer Berücksichtigung des Sphagnum-Abbaus. Arch. Mikrobiol. 20, 111–140 (1954).

    PubMed  CAS  Google Scholar 

  • Krassilnikov, N. A. : Die bakterizide Wirkung des Meerwassers. Mikrobiologija 7, 329–333 (1938).

    Google Scholar 

  • Krassilnikoviac: A new class of microorganisms found in sea and ocean depths. J. gen. Microbiol. 20, 1–12 (1959).

    Google Scholar 

  • Kriss, A. E. : Mikroorganismen und biologische Produktivität der Wasserläufe. Priroda (Leningrad) 1953, 49–59.

    Google Scholar 

  • Kriss, A. E., u. M. J. Novezilova: Sind Hefeorganismen Bewohner von Meeren und Ozeanen? Mikrobiologija 23, 669–683 (1954).

    CAS  Google Scholar 

  • Kriss, A. E., u. E. A. Rukina: Die Mikroorganismen in Bodenablagerungen der Ozeangebiete. [Russisch.] Izv. Akad. Nauk SSSR., Ser. Biol. 1952, Nr 6, 67–79. Ref. Ber. wiss. Biol. 86, 103 (1954).

    Google Scholar 

  • Kriss, A. E., E. A. Rukina u. V. J. Birjuzova: Das Schicksal der toten organischen Substanz im Schwarzen Meer. Mikrobiologija 20, 90–102 (1951).

    CAS  Google Scholar 

  • Kriss, A. E., E. A. Rukina u. A. S. Tichonenko: Die Biomasse der Mikroorganismen in der Tiefe des Schwefelwasserstoffgebietes des Schwarzen Meeres. Dokl. Akad. Nauk SSSR. 75, 453–456 (1950).

    Google Scholar 

  • Kriss, A. J., W. I. Birjuzowa, A. S. Tichonenko u. W. A. Lambina: Mikroorganismen im nördlichen Eismeer. Dokl. Akad. Nauk SSSR., N. S. 101, 173–176 (1955).

    CAS  Google Scholar 

  • Kriss, A. J., u. I. N. Mizkewitsch: Eine neue Klasse von Mikroorganismen aus der Tiefsee (Krassilnikoviae). Usp. sovr. Biol. Moskva 44, 2, 269–280 (1957).

    Google Scholar 

  • Krogh, A. : Life at great depths in the ocean. Ecol. Monogr. 4, 430–439 (1934).

    CAS  Google Scholar 

  • Kühn, A. : Vorlesungen über Entwicklungsphysiologie. Berlin-Göttingen-Heidelberg 1955.

    Google Scholar 

  • Kuznetzow, S. I.: Die quantitative Bestimmung der Mikroflora im Zusammenhang mit mikrozonalen Daten des Seeschlamms. Mikrobiologija 7, 36–49 (1938).

    Google Scholar 

  • Lassleben, P.: Zur Oberflächenspannung des Wassers in natürlichen stehenden und fließenden Gewässern. Naturwiss. 44, 556 (1957).

    CAS  Google Scholar 

  • Lewin, J. C.: Silicon metabolism in diatoms. IV. Growth and frustule formation in Navicula pelliculosa. Canad. J. Microbiol. 3, 427–434 (1957).

    CAS  Google Scholar 

  • MacLeod, R. A., Eva Onofrey and Margaret E. Norris: Nutrition and metabolism of marine bacteria. I. Survey of nutritional requirements. J. Bact. 68, 680–686 (1954).

    PubMed  CAS  Google Scholar 

  • Marsh, C. L., and D. K. Larsen: Characterization of some thermophilic bacteria from the hot springs of Yellowstone Park. J. Bact. 65, 193–197 (1953).

    PubMed  CAS  Google Scholar 

  • Meyers, S. P.: Marine fungi in Biscayne Bai, Florida. II. Further studies of occurrence and distribution. Bull. Marine Sci. Gulf and Caribbean 3, 307–327 (1954).

    Google Scholar 

  • Miyoshi, M.: Studien über die Schwefelrasenbildung und die Schwefelbacterien der Thermen von Yumoto bei Niko. J. Coll. Sci. Imp. Univ. Tokyo 10, 143–174 (1896/98).

    Google Scholar 

  • Molisch, H.: Pflanzenbiologie in Japan auf Grund eigener Beobachtungen. Jena 1926.

    Google Scholar 

  • Morita, R. Y., and Cl. E. Zo Bell: Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific-Expedition. Deep Sea Res. 3, 66–73 (1955).

    CAS  Google Scholar 

  • Mortimer, Cl. H.: The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29, 280–329 (1941); 30, 147–201 (1942).

    CAS  Google Scholar 

  • Nadson, G. A. : Mikroorganismen als geologische Faktoren. [Russisch.] St. Petersburg 1903.

    Google Scholar 

  • Beitrag zur Kenntnis der bakteriogenen Kalkfällung. Arch. Hydrobiol. 19, 154–164 (1928).

    Google Scholar 

  • Nadson, G., u. G. Burgwitz: Hefen des Nördlichen Eismeeres. C. R. Acad. Sci. USSR. 1931, 103–110.

    Google Scholar 

  • Naumann, E. : Beiträge zur Kenntnis des Teichnannoplanktons. Biol. Zbl. 37, 98–106 (1917).

    Google Scholar 

  • Nipkow, H. F. : Vorläufige Mitteilungen über Untersuchungen des Schlammabsatzes im Zürichsee. Z. Hydrol. (Aarau) 1, 100–122 (1920).

    Google Scholar 

  • Nowobrantzew, P. W.: Die Entwicklung der Bakterien der Süßwässer (Seen) in Abhängigkeit von dem Gehalt an leicht assimilierbaren organischen Stoffen im Wasser. Mikrobiologija 6, 28–36 (1937).

    Google Scholar 

  • Pelsh, A. D. : The “biological zone” of Sacki mud. Mikrobiologija 6, 1079–1088 (1937).

    Google Scholar 

  • Perfiliev, B. W. : Zur Mikrobiologie der Bodenablagerungen. Verh. internat. Ver. Limnologie 4, 107–143 (1929).

    Google Scholar 

  • Prescott, S. C., Ch.-E. A. Winslow and M. H. McCrady : Water bacteriology. New York: Wiley & Sons; London: Chapman & Hall 1950.

    Google Scholar 

  • Prévot, A. R. : Les barégines. Congr. Internat. Le Soufre, Cauterets 1948, 145–160, Union Thermale Pyrénéenne, Paris 1948.

    Google Scholar 

  • Pringsheim, E. G.: The Vitraeoscillaceae: A family of colourless gliding filamentous organisms. J. gen. Microbiol. 5, 124–149 (1951).

    PubMed  CAS  Google Scholar 

  • Reuther, G.: Wechselbeziehungen zwischen Bakterien und Pilzen des Hochmoores. Arch. Mikrobiol. 26, 93–131 (1957).

    PubMed  CAS  Google Scholar 

  • Rippel-Baldes, A. : Grundriß der Mikrobiologie. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Rittenberg, S. C.: Bacteriological analysis of some long cores of marine sediments. Sears Found. J. Marine Res. 2, 191–201 (1940).

    Google Scholar 

  • Rittenberg, S. C., K. O. Emery and Wilson L. Orv: Regeneration of nutrients in sediments of marine basins. Deep Sea Res. 3, 23–45 (1955).

    Google Scholar 

  • Robinson, J., N. E. Gibbons and F. S. Thatcher: A mechanism of halophilism in Micrococcus halodenitrificans. J. Bact. 64, 69–77 (1952).

    PubMed  CAS  Google Scholar 

  • Rosanova, E. P., and M. J. Novojilova: Quantitative distribution and species composition of yeasts of the Rybinsk reservoir. Mikrobiologija 27, 371–376 (1958).

    Google Scholar 

  • Rubentschik, L. J., et S. S. Chait: Étude sur la vitalité des microbes. Ann. Inst. Pasteur 58, 446–458 (1937).

    Google Scholar 

  • Rubentschik, L. J., and D. G. Goicherman: The influence of a decrease in salt content in limans on the microflora of medicinal muds. Arkh. biol. Nauk, Ser. II–III 43, 217–227 (1936).

    Google Scholar 

  • Microbiology of mud lakes. II. Investigation of the Golopristansk lake. Mikrobiologija 6, 916–924 (1937).

    Google Scholar 

  • Rubentschik, L. J., M. Roisin and F. M. Bieljansky: Adsorption von Bakterien in Salzgewässern. Mikrobiologija 3, 16–43 (1934).

    Google Scholar 

  • Adsorption of bacteria in salt lakes. J. Bact. 32, 11–31 (1936).

    Google Scholar 

  • Ruttner, F.: Grundriß der Limnologie (Hydrobiologie des Süßwassers), 2. Aufl. Berlin 1952.

    Google Scholar 

  • Das Süßwasser. In Handbuch der Pflanzenphysiologie, Bd. III, S. 30–36. Berlin: Springer 1956.

    Google Scholar 

  • Ryther, J. H. : Ecology of autotrophic marine dinoflagellates with reference to red water conditions. In: The luminescence of biological systems, edit, by F. H. Johnston, S. 387–414. Washington D.O. 1955.

    Google Scholar 

  • Schroeder, Mathilde: Die Assimilation des Luftstickstoffs durch einige Bakterien. Zbl. Bakt., II. Abt. 85, 177–212 (1931/32).

    Google Scholar 

  • Schwartz, W.: Nachweis und Vorkommen lebender Mikroorganismen in alten marinen Sedimenten. Atti del VI. Congr. Internaz. di Microb., Roma 1953, 7, 358–359.

    Google Scholar 

  • Die Schwefelspezialisten unter den Mikroorganismen. In: Handbuch der Pflanzenphysiologie, Bd. IX, S. 89–102. Berlin-Göttingen-Heidelberg: Springer 1958.

    Google Scholar 

  • Schwartz, W., u. Adelheid Müller: Methoden der Geomikrobiologie. Freiberger Forschungsheft C 48. Berlin: Akademie-Verlag 1958.

    Google Scholar 

  • Siebert, G., u. W. Schwartz: Untersuchungen über das Vorkommen von Mikroorganismen in entstehenden Sedimenten. Arch. Hydrobiol. 52, 321–366 (1956).

    Google Scholar 

  • Snow, M. Laetitia and E. B. Fred: Some characteristics of the bacteria of Lake Mendota. Trans. Wisconsin Acad. Sci., Arts, Letters 22, 143–154 (1926).

    Google Scholar 

  • Sobotka, H., H. Baker, Anita V. Luisada-Opper et S. H. Hutner: La biochimie des bactéries thermophiles. Rev. Ferment. Industr. Aliment. (Brüssel) 12, 51–56 (1956).

    Google Scholar 

  • Sobotka, H., and Anita V. Luisada-Opper: The chemical composition of thermophilic bacteria. Arch. Biochem. 69, 548–554 (1957).

    PubMed  CAS  Google Scholar 

  • Sorokin, Y. J. : The role of chemosynthesis in the production of organic substance in water reservoir. III. Summer productivity of chemosynthesis in water. Mikrobiologija 27, 357–365 (1958).

    CAS  Google Scholar 

  • Sorokina, V. A.: Exchange of substance between slime and water as influenced by the formation of a bacterial film on the surface of the slime. Mikrobiologija 7, 579–591 (1938).

    CAS  Google Scholar 

  • Sparrow, F. K. : Biological observations on the marine fungi of Woods Hole waters. Biol. Bull. 70, 236–263 (1936).

    Google Scholar 

  • Spruit, C. J. P., and A. Pijper: An obligate halophilic bacterium from solar salt. Antonie v. Leeuwenhoek 18, 190–200 (1952).

    CAS  Google Scholar 

  • Sramek-Husek, R. : Zur biologischen Charakteristik der höheren Saprobitätsstufen. Arch. Hydrobiol. 51, 376–390 (1956).

    Google Scholar 

  • Stanier, R. Y. : Studies on marine agardigesting bacteria. J. Bact. 42, 527–559 (1941).

    PubMed  CAS  Google Scholar 

  • Steiner, J. F., and V. W. Meloche: A study of ligneous substances in lacustrine materials. Trans. Wisconsin Acad. Sci., Arts, Letters 29, 389–402 (1935).

    CAS  Google Scholar 

  • Stosch, H.-A. v.: Die zentrischen Grunddiatomeen. Beiträge zur Floristik und Ö kologie einer Pflanzengesellschaft der Nordsee. Helgoländer wiss. Meeresunters. 5, 273–291 (1956).

    Google Scholar 

  • Sturm, G.: Die Wirkung hoher hydrostatischer Drücke auf Süßwasseralgen. Arch. Mikrobiol. 28, 109–125 (1957).

    PubMed  CAS  Google Scholar 

  • Taylor, C. : Bacteriology of fresh water. III. The types of bacteria present in lakes and streams and their relationship to the bacterial flora of soil. J. Hyg. (Lond.) 42, 284–296 (1942).

    CAS  Google Scholar 

  • Trask, P. D. : Origin and environment of source sediments of petroleum. Houston, Texas 1932.

    Google Scholar 

  • Twenhofel, W. H.: Principles of sedimentation. New York-Toronto-London: McGraw Hill Co. 1950.

    Google Scholar 

  • Umbreit, W. W., and Elisabeth McCoy: The occurrence of Actinomycetes of the genus Micromonospora in inland lakes. Sympos. on Hydrobiol. Univ. of Wisconsin 1941, 106–114.

    Google Scholar 

  • Utermöhl, H: Limnologische Phytoplanktonstudien. Arch. Hydrobiol. Suppl. 5, 1–527 (1925).

    Google Scholar 

  • Vägö, S.: Das mikroskopische Bild von mit Mercurochrom-Pyoktanin behandelten Oberflächenfilmen natürlicher Gewässer. Mikroskopie 4, 228–239 (1949).

    PubMed  Google Scholar 

  • Vallentyne, J. R., and R. G. S. Bidwell: The relation between free sugars and sedimentary chlorophyll in lake muds. Ecology 37, 495–500 (1956).

    Google Scholar 

  • Voroschilova, A., and E. Dianova: The role of plancton in the multiplication of bacteria in isolated samples of sea water. Mikrobiologija 6, 741–753 (1937).

    Google Scholar 

  • Vouk, V.: Grundriß zu einer Balneologie der Thermen. Basel 1950.

    Google Scholar 

  • Waksman, S. A. : On the distribution of organic matter in the sea bottom and the chemical nature and origin of marine humus. Soil Sci. 36, 125–147 (1933).

    CAS  Google Scholar 

  • Waksman, S. A., and Cornelia L. Carey: Decomposition of organic matter in sea water by bacteria. II. Influence of addition of organic substances upon bacterial activities. J. Bact. 29, 545–561 (1935).

    PubMed  CAS  Google Scholar 

  • Waksman, S. A., and K. R. Stevens: Contribution to the chemical composition of peat. V. The role of microorganisms in peat formation and decomposition. Soil Sci. 28, 315–340 (1929).

    CAS  Google Scholar 

  • Watson, St. W., and E. J. Ordal: Techniques for the isolation of Labyrinthula and Traustochytrium in pure culture. J. Bact. 73, 589–590 (1957).

    PubMed  CAS  Google Scholar 

  • Watson, St. W., and K. B. Raper: Labyrinthula minuta sp. nov. J. gen. Microbiol. 17, 368–377 (1957).

    PubMed  CAS  Google Scholar 

  • Welch, P. S.: Limnology, 1. Aufl. New York: McGraw Hill Book Co. 1935.

    Google Scholar 

  • Wetzel, A.: Der Faulschlamm und seine ziliaten Leitformen. Z. Morph, u. Ökol. Tiere 13, 179–328 (1929).

    Google Scholar 

  • Wetzel, W.: Kalkfällende Organismen und ihre Produkte im Loa-Becken der mittleren Atacama-Wüste. Zbl. Mineral., Geol. Paläont., Abt. B 1926, 354–361.

    Google Scholar 

  • Wolters, N., u. W. Schwartz: Untersuchungen über Vorkommen und Verhalten von Mikroorganismen in reinen Grundwässern. Arch. Hydrobiol. 51, 500–541 (1956).

    Google Scholar 

  • Wood, E. J. F. : Heterotrophic bacteria in marine environments of eastern Australia. Austral. J. marine and freshwater Res. 4, 160—200 (1953).

    Google Scholar 

  • Diatoms in the ocean deeps. Pacific Sci. 10, 377–381 (1956).

    Google Scholar 

  • The significance of marine microbiology. Bact. Rev. 22, 1–19 (1958).

    Google Scholar 

  • ZoBell, Cl. E.: Bactericidal action of sea water. Proc. Soc. exp. Biol. (N. Y.) 95, 113–116 (1936).

    Google Scholar 

  • Studies on the bacterial flora of marine bottom sediments. J. sediment. Petrol. 8, 10–18 (1938).

    Google Scholar 

  • Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J. Marine Res. 4, 42–75 (1941).

    Google Scholar 

  • Marine microbiology, a monograph on hydrobacteriology. Waltham, Mass.: Chronica Botanica Co. 1946.

    Google Scholar 

  • Microbial transformation of molecular hydrogen in marine sediments with particular reference to petroleum. Bull. Amer. Ass. Petrol. Geol. 31, 1709–1751 (1947).

    Google Scholar 

  • Assimilation of hydrocarbons by microorganisms. Advanc. Enzymol. 10, 443–486 (1950).

    Google Scholar 

  • Bacterial life at the bottom of the Philippine trench. Science 115, 507–508 (1952).

    Google Scholar 

  • The occurrence of bacteria in the deep sea and their significance for animal life. XIV. Intern. Zool. Congr. Copenhagen 1953, IUBS Deep Sea Colloqu.

    Google Scholar 

  • Zo Bell, Cl. E., D. Q. Anderson and W. W. Smith: The bacteriostatic and bactericidal action of Great Salt Lake water. J. Bact. 33, 253–262 (1937;.

    CAS  Google Scholar 

  • Zo Bell, Cl. E., and C. W. Grant: Bacterial utilization of low concentrations of organic matter. J. Bact. 45, 555–564 (1943).

    CAS  Google Scholar 

  • Zo Bell, Cl. E., and Fr. H. Johnson: The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J. Bact. 57, 179–189 (1949).

    Google Scholar 

  • Zo Bell, Cl. E., and R. Y. Morita: Basophilic bacteria in some deep sea sediments. J. Bact. 73, 563–568 (1957).

    CAS  Google Scholar 

  • Zo Bell, Cl. E., and C. H. Oppenheimer : Some effects of hydrostatic pressure on the multiplication and morphology of marine bacteria. J. Bact. 60, 771–781 (1950).

    CAS  Google Scholar 

  • Zo Bell, Cl. E., and H. C. Upham: A list of marine bacteria including descriptions of sixty new species. Bull. Scripps Inst. Oceanogr. La Jolla 5, 239–292 (1944).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1959 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Jensen, H.L., Schwartz, W. (1959). Die Mikrobiologie des Bodens. In: Mothes, K. (eds) Heterotrophie / Heterotrophy. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94753-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94753-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94754-4

  • Online ISBN: 978-3-642-94753-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics