Advertisement

Die Mikrobiologie des Bodens

  • H. L. Jensen
  • W. Schwartz
Chapter
  • 45 Downloads
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 11)

Zusammenfassung

Die oberen Schichten des Bodens tragen stets eine äußerst kompliziert zusammengesetzte Bevölkerung von lebenden Organismen, deren Lebensvorgänge dazu beitragen, den biologischen Stoffkreislauf im Gange zu halten und so den Boden zu einem geeigneten Standort für die höheren Pflanzen zu machen. Die gesamte Bodenpopulation umfaßt ein sehr breites Spektrum von Lebensformen, das sich von einzelligen Organismen bis zu Säugetieren (Maulwürfen) und Wurzeln der höheren Pflanzen erstreckt. Hiervon repräsentieren die Mikroorganismen einen sehr wichtigen Bestandteil sowohl rein quantitativ in Form von lebender Masse als auch mit Rücksicht auf die biologische Tätigkeit, die sie entfalten. Die Mikroorganismen des Bodens sind ganz überwiegend pflanzlicher Natur: Bakterien (einschließlich Strahlenpilze), niedere Algen und Pilze (obwohl die höheren Formen der letzteren nicht eigentlich mikroskopisch sind). Hierzu kommen noch tierische Bodenbewohner wie Protozoen, Nematoden und andere niedere Metazoen. Die Mikrobiologie des Bodens im eigentlichen Sinne umfaßt die Kenntnis von der Natur und Identität dieser Organismen, ihrem Vorkommen und ihrer Wirksamkeit im Erdboden selbst. Wie Winogradsky hervorgehoben hat, ist dagegen ihr Verhalten in Reinkultur unter künstlichen Bedingungen streng gesprochen als ein Zweig der allgemeinen Mikrobiologie anzusehen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur

  1. Adams, F., and C. P. Conrad: Transition of phosphite to phosphate in soils. Soil Sci. 75, 361–371 (1953).Google Scholar
  2. Alexander, F. E. S., and R. M. Jackson: Examination of soil microorganisms in their natural environment. Nature (Lond.) 174, 750–751 (1954).Google Scholar
  3. Allison, F. E.: The enigma of soil nitrogen balance sheets. Advanc. Agronomy 7, 213–250 (1955).Google Scholar
  4. Allison, F. E., J. H. Doetsch and E. M. Roller: Ammonium fixation and availability in Harpster clay loam. Soil. Sci. 72, 187–200 (1951).Google Scholar
  5. Anderson, G. R. : Nitrogen fixation by Pseudomonas-like soil bacteria. J. Bact. 70, 129–133 (1955).PubMedGoogle Scholar
  6. Anderson, O. N., and E. R. Purvis: Effect of low temperature on nitrification of ammonia in soils. Soil Sci. 80, 313–318 (1955).Google Scholar
  7. Arnold, P. W. : Losses of nitrous oxide from soil. J. Soil Sci. 5, 116–128 (1954).Google Scholar
  8. Bengtsson, N., and C. Barthel: The decomposition of the organic compounds in barnyard manure. Ann. roy. Agric. Coll. Sweden 8, 55–69 (1940).Google Scholar
  9. Bjälfve, G.: Fixation of atmospheric nitrogen. Ann. roy. Agric. Coll. Sweden 22, 193–217 (1955).Google Scholar
  10. Brian, P. W., J. M. Wright, J. Stubbs, and A. M. Way: Uptake of antibiotic metabolites of soil microorganisms by plants. Nature (Lond.) 167, 347 (1951).Google Scholar
  11. Broadbent, F. E.: Denitrification in some californian soils. Soil. Sci. 72, 129–137 (1951).Google Scholar
  12. Broadbent, F. E., and A. G. Norman: Some factors affecting the availability of the organic nitrogen in soil — a preliminary report. Soil. Sci. Soc. Amer. Proc. 11, 264–267 (1947).Google Scholar
  13. Bromfield, S. M.: Sulphate reduction in partially sterilized soil exposed to air. J. gen. Microbiol. 8, 378–390 (1953).PubMedGoogle Scholar
  14. The reduction of iron oxide by soil bacteria. J. Soil. Sci. 5, 129–139 (1954).Google Scholar
  15. Bunt, J. S., and A. D. Rovira: The effect of temperature and heat treatment on soil metabolism. J. Soil Sci. 6, 129–136 (1955).Google Scholar
  16. Burrichter, E.: Beiträge zur Beurteilung von Böden auf Grund fluorescenz-mikroskopischer Untersuchung ihrer Mikroflora. Pflanzenernährg, Düngung Bodenk. 63 (108), 154–171 (1953).Google Scholar
  17. Die bakteriologische Kartierung und Beurteilung der Kulturböden. Landwirtsch. Forsch. 8, 14–25 (1955).Google Scholar
  18. Burton, M. O., and A. G. Lochhead : Studies on the production of vitamin B12-active substances by microorganisms. Canad. J. Bot. 29, 352–359 (1951).Google Scholar
  19. Nutritional requirements of Arthrobacter terregens. Canad. J. Bot. 31, 145–161 (1953).Google Scholar
  20. Chang, S. C.: The transformation of phosphorus during the decomposition of plant materials. Soil. Sci. 48, 85–99 (1939).Google Scholar
  21. Assimilation of phosphorus by a mixed soil population and by pure cultures of soil fungi. Soil Sci. 49, 197–210 (1940).Google Scholar
  22. Chesters, C. G. C.: A contribution to the study of fungi in the soil. Trans. brit. mycol. Soc. 30, 100–117 (1948).Google Scholar
  23. Cholodny, N. : Über eine neue Methode zur Untersuchung der Bodenmikroflora. Arch. Mikrobiol. 1, 620–652 (1930).Google Scholar
  24. Clark, F. E. : Azotobacter inoculation of crops. III. Recovery of Azotobacter from the rhizosphere. Soil. Sci. 65, 193–202 (1948).Google Scholar
  25. The generic classification of certain cellulolytic bacteria. Soil Sci. Soc. Amer. Proc. 15, 180–182 (1951).Google Scholar
  26. Conn, H. J. : The microscopic study of bacteria and fungi in soil. N. Y. Agric. exp. St. techn. Bull. 64 (1918).Google Scholar
  27. Certain abundant non-spore-forming bacteria in soil. Zbl. Bakt., II. Abt. 76, 65–88 (1928).Google Scholar
  28. Conn, H. J., and M. A. Darrow: Characteristics of certain bacteria belonging to the autochtonous microflora of soil. Soil Sci. 39, 95–110 (1935).Google Scholar
  29. Conn, H. J., and I. Dimmick: Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J. Bact. 54, 291–303 (1947).Google Scholar
  30. De, P. K. : The role of blue-green algae in nitrogen fixation in rice fields. Proc. roy. Soc. B 127, 121–139 (1939).Google Scholar
  31. De, P. K., and N. L. Mandal: Fixation of nitrogen by algae in rice soils. Soil Sci. 81, 453–458 (1956).Google Scholar
  32. Delwiche, C. C., and J. Wijler: Non-symbiotic nitrogen fixation in soil. Plant & Soil 7, 113–129 (1956).Google Scholar
  33. Derx, H. G. : Beijerinckia, a new genus of nitrogenfixing bacteria in tropical soils. Proc. kon. ned. Akad. Wet. 53, 140–147 (1950).Google Scholar
  34. Dhar, N. R. : The role of organic matter in soil fertility. Ann. roy. Agric. Coll. Sweden 21, 105–160 (1954).Google Scholar
  35. Dhar, N. R., E. V. Seshacharayulu u. S. K. Mukerji: Photochemie der Stickstoff-Festlegung im Boden und Ähnlichkeit zwischen Stickstoff-Fest-legung und Photosynthese. Bodenk. u. Pflanzenernährg 12, 222–231 (1939).Google Scholar
  36. Downs, S. C., T. M. McCalla and F. A. Haskins: Stachybotrys atra, an effective aggregator of Peorian loess. Soil. Sci. Soc. Amer. Proc. 19, 179–181 (1955).Google Scholar
  37. Dubos, R. J.: Influence of environmental conditions on the activities of cellulose-decomposing organisms in the soil. Ecology 9, 12–27 (1928).Google Scholar
  38. Ensminger, L. E., and J. E. Gieseking: Resistance of clay-absorbed proteins to proteolytic hydrolysis. Soil Sci. 53, 205–209 (1942).Google Scholar
  39. Erikson, D.: Studies on some lake-mud strains of Micromonospora. J. Bact. 41, 277–300 (1941).PubMedGoogle Scholar
  40. Differentiation of the vegetative and sporogenous phase of the actinomycetes. 4. The partial acid-fast proactinomycetes. J. gen. Microbiol. 3, 361–368 (1949).Google Scholar
  41. Evans, E., and D. Gottlieb: Gliotoxin in soils. Soil Sci. 80, 295–301 (1955).Google Scholar
  42. FÅHRÆus, G.: Studies in the cellulose decomposition by Cytophaga. Symb. bot. Upsal. 16, Nr 2 (1947).Google Scholar
  43. Fehér, D. : Untersuchungen über die Schwankungen der Bodenatmung. Arch. Mikrobiol. 5, 421–435 (1934).Google Scholar
  44. Felsz-Karnicka, H.: Sur la décomposition de la cellulose dans les sols acides [Polnisch mit franz. Zus.fass.]. Mém. Inst. nat. pol. Econ. Rurale Pulawy 16, Nr 240 (1936).Google Scholar
  45. Fischer, G.: Untersuchungen über den biologischen Abbau der Lignine durch Mikroorganismen. Arch. Mikrobiol. 18, 397–424 (1953).PubMedGoogle Scholar
  46. Fisher, T., E. Fisher and M. D. Appleman: Nitrite production by heterotrophic bacteria. J. gen. Microbiol. 14, 238–247 (1956).PubMedGoogle Scholar
  47. Flaig, W., E. Küster, G. Segle-Holzweissig u. H. Beutelspacher : Zur Kenntnis der Huminsäuren. V. Pflanzenernährg, Düngung Bodenk. 57 (102), 42–51 (1952).Google Scholar
  48. Fogg, G. E., and M. Wolfe: The nitrogen metabolism of the blue-green algae (Myxophyceae). In: Autotrophic Microorganisms. Fourth Symp. Soc. Gen. Microbiol., Cambridge, p. 99–125, 1954.Google Scholar
  49. Forsyth, W. G. C., and D. M. Webley: The synthesis of polysaccharides by bacteria isolated from soil. J. gen. Microbiol. 3, 395–399 (1949).PubMedGoogle Scholar
  50. Frederick, L. R., R. L. Starkey and W. Segal: Decomposability of some organic sulfur compounds in soil. Soil Sci. Soc. Amer. Proc. 21, 287–292 (1957).Google Scholar
  51. Fuller, W. H., and A. G. Norman: Characteristic of some soil Cytophagas. J. Bact. 45, 545–572 (1943a).Google Scholar
  52. Cellulose decomposition by aerobic mesophilic bacteria from soil I.—III, J. Bact. 46, 273–297 (1943b).Google Scholar
  53. Garrett, S. D. : Ecological groups of soil fungi. New Phytologist 50, 149–165 (1951).Google Scholar
  54. Geoghegan, M. J., and R. C. Brian: Aggregate formation in soil. Biochem. J. 43, 5–13 (1948).Google Scholar
  55. Gerretsen, F. C.: Enkele waarnemingen betreffende den invloed van de tem-peratur op de nitrificatie en vastlegging van de stikstof. Landbouwk. T. 5, 573–583 (1942).Google Scholar
  56. The influence of microorganisms on the phosphate intake by the plant. Plant & Soil 1, 51–81 (1948).Google Scholar
  57. Gilman, J. C.: A Manual of Soil Fungi. Ames, Iowa: Collegiate Press Inc. 1957.Google Scholar
  58. Glathe, H., C. v. Bernstorff u. A. Arnold: Lebensgemeinschaft von Mikroorganismen und höheren Pflanzen im Bereich der Rhizosphäre. Zbl. Bakt., II. Abt. 107, 481–488 (1954).Google Scholar
  59. Gleen, H.: Biological oxidation of iron in soil. Nature (Lond.) 166, 871 (1950).Google Scholar
  60. Goldberg, S. H., and P. L. Gainey: Role of surface phenomena in nitrification. Soil Sci. 80, 43–53 (1955).Google Scholar
  61. Gottlieb, S., and M. J. Pelczar: Microbiological aspects of lignin degradation. Bact. Rev. 15, 55–76 (1951).PubMedGoogle Scholar
  62. Greenwood, D. J., and H. Lees: Studies in the decomposition of amino acids in soils. Plant & Soil 7, 253–268 (1956).Google Scholar
  63. Grossbard, E.: Antibiotic production by fungi in organic manures and in soil. J. gen. Microbiol. 6, 295–310 (1952).PubMedGoogle Scholar
  64. Gyllenberg, H.: Studies of thermophilic bacteria of the genus Bacillus Cohn. Acta agric. fenn. 73, 1–88 (1951).Google Scholar
  65. HaarløV, N., and T. Weis-Fogh: A microscopic technique for studying the undisturbed texture of soil. Oikos 4, 44–57 (1952).Google Scholar
  66. Hamilton, P. B., W. E. Magee and L. E. Mortenson: Nitrogen fixation by Aerobacter aerogenes and cell-free extracts of the Azotobacter vinelandii. Bact. Proc. 1953, 28.Google Scholar
  67. Harmsen, G. W.: The influence of the method of sampling on the accuracy of the determination of bacterial numbers in the soil. Antonie v. Leeuwenhoek 6, 178–199 (1940).Google Scholar
  68. Onderzoekingen over de aërobe celluloseontleding in den grond. Groningen: Wolters 1946. Harmsen, G. W., and D. A. van Schreven: Mineralization of organic nitrogen in soil. Advanc. Agronomy 7, 299–398 (1955).Google Scholar
  69. Henderson, M. E. K., and V. C. Farmer: Utilization by soil fungi of p-hydroxybenzaldehyde, ferulic acid, syring-aldehyde and vanillin. J. gen. Microbiol. 12, 37–49 (1955).PubMedGoogle Scholar
  70. Henriksen, A., and H. L. Jensen: Chemical and microbiological determination of copper in soil. Acta agric. scand. 8, 441–469 (1958).Google Scholar
  71. Hofmann, E.: Enzymreaktionen und ihre Bedeutung für die Bestimmung der Bodenfruchtbarkeit. Pflanzenernährg, Düngung, Bodenk. 56 (101), 68–72 (1952).Google Scholar
  72. Hofmann, E., u. G. Hoffmann: Über Herkunft, Bestimmung und Bedeutung der Enzyme im Boden. Pflanzenernährg, Düngung, Bodenk. 70 (115), 9–16 (1955).Google Scholar
  73. Hopf, M.: Untersuchungen über die natürliche Mikroflora des Bodens. Arch. Mikrobiol. 14, 661–677 (1949).Google Scholar
  74. Hungate, R. E. : The anaerobic mesophilic cellulolytic bacteria. Bact. Rev. 14, 1–49 (1950).PubMedGoogle Scholar
  75. Hutton, W. E., and C. E. ZoBell: Production of nitrite from ammonia by methane oxidizing bacteria. J. Bact. 65, 216–219 (1953).PubMedGoogle Scholar
  76. Isenberg, H. D., A. Schatz, A. A. Angrist, V. Schatz and G. S. Trelawney: Microbial metabolism of carbamates. II. J. Bact. 68, 5–9 (1954).PubMedGoogle Scholar
  77. Isotalo, A. : Studies on the ecology and physiology of cellulose-decomposing bacteria in raised bogs. Acta agric. fenn. 74, 1–106 (1951).Google Scholar
  78. Jackman, R. H., and C. A. Black: Phytase activity in soil. Soil Sci. 73, 117–125 (1952).Google Scholar
  79. Janke, A., F. Sekera u. A. Szilvinyi: Mikrobiologische Boden-Untersuchungen im Lunzer Gebiet. Arch. Mikrobiol. 5, 233–245 (1934).Google Scholar
  80. Jansson, S. L.: Tracer studies on nitrogen transformations in soil. Ann. roy. Agric. Coll. Sweden 24, 101–361 (1958).Google Scholar
  81. Jansson, S. L., M. J. Hallam and W. V. Bartholomew: Preferential utilization of ammonium over nitrate by microorganisms in the decomposition of oats straw. Plant & Soil 6, 382–390 (1955).Google Scholar
  82. Jefferys, E. G.: The stability of antibiotics in soil. J. gen. Microbiol. 7, 295–312 (1952).PubMedGoogle Scholar
  83. Jefferys, E. G., P. W. Brian, H. S. Hemming and D. Lowe: Antibiotic production by the microfungi of acid heath soils. J. gen. Microbiol. 9, 314–341 (1953).PubMedGoogle Scholar
  84. Jensen, H. L. : Contributions to the microbiology of Australian soils. V. Proc. Linnean Soc.N. S.Wales 61, 27–55 (1936).Google Scholar
  85. VI. Proc. Linnean Soc. N. S. Wales 64, 601–608 (1939).Google Scholar
  86. Contributions to the nitrogen problem of Australian wheat soils. Proc. Linnean Soc. N. S. Wales 65, 1–122 (1940).Google Scholar
  87. Nitrogen fixation and cellulose decomposition by soil microorganisms. III. Proc. Linnean Soc. N. S. Wales 66, 239–249 (1941).Google Scholar
  88. Observations on the vegetative growth of actinomy-cetes in the soil. Proc. Linnean Soc. N. S. Wales 68, 67–71 (1943).Google Scholar
  89. The occurrence of Azotobacter in cultivated soils of Denmark. [Dänisch mit engl. Zus.fass.] T. Planteavl 53, 622–649 (1950).Google Scholar
  90. On the microbiological decomposition of farmyard manure. [Dänisch mit engl. Zus.fass.] T. Planteavl 55, 237–264 (1952).Google Scholar
  91. Biological transformations of thiourea. Arch. Mikrobiol. 28, 145–152 (1957).Google Scholar
  92. Jensen, H. L., and R. J. Swaby: Nitrogen fixation and cellulose decomposition by soil microorganisms. II. Proc. Linnean Soc. N. S. Wales 66, 89–106 (1941).Google Scholar
  93. Jensen, V. : Nitrogen fixation by strains of Aerobacter aerogenes. Physiol. Plantarum (Cph.) 9, 130–136 (1956).Google Scholar
  94. Jensen, V., and E. J. Petersen: Taxonomic studies on Azotobacter chroococcum Beij. and Azotobacter beijerinckii Lipman. Königl Tierärztl. u. Landwirtsch. Hochschule Kopenhagen, Jb. 1955, S. 107–126 (1955).Google Scholar
  95. Jones, P. C. T., and J. E. Mollison: A technique for the quantitative estimation of soil organisms. J. gen. Microbiol. 2, 54–69 (1948).Google Scholar
  96. Kaila, A. : Biological absorption of phosphorus. Soil Sci. 68, 279–289 (1949).Google Scholar
  97. Nitrification in decomposing organic matter. Acta agric. scand. 4, 17–32 (1954a).Google Scholar
  98. Über mikrobiologische Festlegung und Mineralisierung des Phosphors bei der Zersetzung organischer Stoffe. Pflanzenernährg, Düngung, Bodenk. 64 (109), 27–35 (1954b).Google Scholar
  99. Katznelson, H.: The “rhizosphere effect” of mangels on certain groups of soil microroganisms. Soil. Sci. 62, 343–354 (1946).Google Scholar
  100. Katznelson, H., A. G. Lochhead and M. I. Timonin: Soil microorganisms and the rhizosphere. Bot. Rev. 14, 543–587 (1948).Google Scholar
  101. Killian, D., et D. Fehér: Recherches sur les phénomènes microbiologiques dans les sols sahariens. Ann. Inst. Pasteur 55, 573–622 (1935).Google Scholar
  102. Kingma Boltjes, T. Y.: Onderzoekingen over nitrificeerende bactérien. Meinema (Delft) 1934.Google Scholar
  103. Kluyver, A. J.: Some aspects of nitrate reduction. VI. Congr. Int. Microbiol. (Roma), Symp. Microbial Metabolism, p. 71–91, 1953.Google Scholar
  104. Kluyver, A. J., and J. H. Becking: Some observations on the nitrogenfixing bacteria of the genus Beijerinckia. Ann. Acad. Sci. fenn. A 60, 367–380 (1955).Google Scholar
  105. Koffmann, M. : Die Mikrofauna des Bodens, ihr Verhältnis zu anderen Mikroorganismen und ihre Rolle bei den mikrobiologischen Vorgängen im Boden. Arch. Mikrobiol. 5, 246–302 (1934).Google Scholar
  106. Konetzka, W. A., M. J. Pelczar and S. Gottlieb: The biological degradation of lignin. III. J. Bact. 63, 771–778 (1952).PubMedGoogle Scholar
  107. Kox, E.: Der durch Pilze und aerobe Bakterien verursachte Pektin- und Zelluloseabbau im Hochmoor unter besonderer Berücksichtigung des Sphagnum-Abbaus. Arch. Mikrobiol. 20, 111–140 (1954).PubMedGoogle Scholar
  108. Krzemieniewski, H., and S. Krzemie-niewski: Die zellulosezersetzenden Myxobakterien. Bull. int. Acad. pol. Sci. Lettr., Cl. Sci. Math. Nat. B 1–5b, 11–31, 34–59 (1937).Google Scholar
  109. Kubiena, W.: Über Fruchtkörperbildung und engen Standortwahl von Pilzen in Bodenhohlräumen. Arch. Mikrobiol. 3, 507–542 (1932).Google Scholar
  110. Micropedology. Ames, Iowa: Collegiate Press Inc. 1938.Google Scholar
  111. Die mikroskopische Humusuntersuchung. Forschungsdienst 17, Sonderh., 62–70 (1941).Google Scholar
  112. Kubiena, W., and C. E. Renn: Micropedological studies on the influence of different organic compounds on the microflora of the soil. Zbl. Bakt., II. Abt. 91, 267–292 (1935).Google Scholar
  113. Küster, E.: Untersuchungen über die Bildung und Zersetzung von Humusstoffen durch Mikroorganismen. Arch. Mikrobiol. 15, 1–12 (1950).Google Scholar
  114. Umwandlung von Mikroorganismen-Farbstoffen in Humusstoffe. Pflanzenernährg, Düngung, Bodenk. 57 (102), 51–57 (1952).Google Scholar
  115. Landerkin, G. B., J. R. G. Smith and A. G. Lochhead : A study of the antibiotic activity of actinomycetes from soils of Northern Canada. Canad. J. Res., C 28, 690–698 (1950).Google Scholar
  116. Ledingham, G. A., and G. A. Adams: Biological decomposition of chemical lignin. Canad. J. Res., C 20, 13–27 (1942).Google Scholar
  117. Lees, H.: Biochemistry of Autotrophic Bacteria. London: Butterworth Sci. Publ. 1955.Google Scholar
  118. Lees, H., and J. W. Porteous: The release of carbon dioxid from soils percolated with various organic materials. Plant & Soil 2, 231–241 (1950).Google Scholar
  119. Lees, H., and J. H. Quastel: Biochemistry of nitrification in soil. I—II. Biochem. J. 40, 803–823 (1946).Google Scholar
  120. Lees, H., and J. R. Simpson: The biochemistry of the nitrifying organisms. V. Nitrite oxidation by Nitrobacter. Biochem. J. 65, 297–305 (1957).PubMedGoogle Scholar
  121. Leroux, D.: Sur la combustion de la matière organique des sols agricoles. Annales agronom., N. S. 4, 26–52 (1934).Google Scholar
  122. Lindeberg, G.: Über die Physiologie ligninabbauen-der Bodenhymenomyzeten. Symb. bot. Upsal. 8, Nr 2 (1944).Google Scholar
  123. On the decomposition of lignin and cellulose in litter caused by soil-inhabiting hymenomycetes. Ark. Bot. A 33, Nr 10, 1–16 (1946).Google Scholar
  124. Ligninabbau und Phenoloxydasebildung der Bodenhymenomyceten. Pflanzenernährg, Düngung, Bodenk. 69 (114), 142–150 (1955).Google Scholar
  125. Linford, M. B.: Methods of observing soil flora and fauna associated with roots. Soil. Sci. 53, 93–103 (1942).Google Scholar
  126. Lochhead, A. G., and F. E. Chase: Qualitative studies of soil microorganisms. V. Nutritional requirements of the predominant bacterial flora. Soil. Sci. 55, 185–195 (1943).Google Scholar
  127. Lochhead, A. G., and R. H. Thexton: A four-year quantitative study of nitrogen-fixing bacteria in soils of different fertilizer treatment. Canad. J. Res., C 14, 166–177 (1936).Google Scholar
  128. Qualitative studies of soil microorganisms. III. Influence of plant growth on the character of the bacterial flora. Canad. J. Res., C 18, 42–53 (1940).Google Scholar
  129. Qualitative studies of soil microorganisms. VII. The “rhizosphere effect” in relation to the amino acid nutrition of bacteria. Canad, J. Res., C 25, 20–26 (1947).Google Scholar
  130. Qualitative studies of soil microorganisms. X. Bacteria requiring Vitamin B12 as growth factor. J. Bact. 63, 219–226 (1952).Google Scholar
  131. Löhnis, F.: Handbuch der landwirtschaftlichen Bakteriologie. Teil 2: Bakteriologie des Bodens, von H. Glathe neubearbeitet, 2. Aufl. Berlin: Gebrüder Bornträger 1935.Google Scholar
  132. Lund, A.: Studies on the Ecology of Yeasts. Kopenhagen: Munksgaard 1954.Google Scholar
  133. Lundegårdh, H.: Klima und Boden in ihrer Wirkung auf das Pflanzenleben, 3. Aufl. Jena: Gustav Fischer 1949.Google Scholar
  134. Madhok, M. R.: Cellulose decomposition in synthetic and natural soil. Soil Sci. 44, 385–397 (1937).Google Scholar
  135. Martin, J. P., and S. A. Waksman: Influence of microorganisms on soil aggregation and erosion. Soil Sci. 50, 29–47 (1940).Google Scholar
  136. Microorganisms and soil aggregation. II. Soil Sci. 61, 157–166 (1946).Google Scholar
  137. Mattson, S., and E. Koutler-Andersson: The acid-base condition in vegetation, litter and humus. VI. Ammonia fixation and humus nitrogen. Ann. roy. Agric. Coll. Sweden 11, 107–134 (1943).Google Scholar
  138. Metcalfe, G., and M. E. Brown: Nitrogen fixation by new species of Nocardia. J. gen. Microbiol. 17, 567–572 (1957).PubMedGoogle Scholar
  139. Metcalfe, G., S. Chayon, E. R. Roberts and T. G. G. G. Wilson: Nitrogen fixation by soil yeasts. Nature (Lond.) 174, 841–842 (1954).Google Scholar
  140. Metz, H.: Untersuchungen über die Rhizo-sphäre. Arch. Mikrobiol. 23, 297–326 (1955).PubMedGoogle Scholar
  141. Mortland, M. M. and J. E. Gieseking: The influence of clay minerals on the enzymatic hydrolysis of phosphorus compounds. Soil Sci. Soc. Amer. Proc. 16, 10–13 (1952).Google Scholar
  142. Newman, A. S., and A. G. Norman: The activity of subsurface soil populations. Soil Sci. 55, 377–391 (1943).Google Scholar
  143. Niethammer, A.: Die mikroskopischen Bodenpilze. s’Graven-hage: Junk 1937.Google Scholar
  144. Nômmik, H.: Investigations on denitrification in soil. Acta agric. scand. 6, 195–228 (1956).Google Scholar
  145. Fixation and defixation of ammonium in soils. Acta agr. scand. 7, 395–436 (1957).Google Scholar
  146. Norman, A. G.: The biological decomposition of plant materials. II. The biological activities on straw of some cellulose-decomposing fungi. Ann. appl. Biol. 18, 244–257 (1931).Google Scholar
  147. The biological decomposition of plant materials. IX. The aerobic decomposition of hemicelluloses. Ann. appl. Biol. 21, 454–475 (1934).Google Scholar
  148. The place of microbiology in soil science. Advanc. Agronomy 7, 399–407 (1955).Google Scholar
  149. Oetker, H. : Untersuchungen über die Ernährung einiger Mykobakterien. Arch. Mikrobiol. 19, 206–246 (1953).PubMedGoogle Scholar
  150. Olsen, C.: On the significance of hydrogen-ion concentration for the cycle of nitrogen transformation in the soil. C. R. Lab. Carlsberg 17, Nr 8 (1928).Google Scholar
  151. Studies of nitrogen fixation. I. Nitrogen fixation in the dead leaves of forest beds. C. R. Lab. Carlsberg 19, Nr 9 (1932).Google Scholar
  152. Overgaard Nielsen, C.: Studies on the soil micro-fauna. II. The soil-inhabiting nematodes. Natura Jutlandica 2, 1–131 (1949).Google Scholar
  153. Parker, C. A. : Non-symbiotic nitrogen fixation in soil. I. Studies on Clostridium butyricum. Aust. J. Agric. Res. 5, 90–98 (1954).Google Scholar
  154. Petersen, J. B.: Studies on the biology and taxonomy of soil algae. Dansk bot. Ark. 8, Nr 9 (1935).Google Scholar
  155. Pinck, L. A., and F. E. Allison: The synthesis of lignin-like complexes by soil fungi. Soil. Sci. 57, 155–161 (1944).Google Scholar
  156. Pinck, L. A., R. S. Dyal and F. E. Allison: Protein-montmorillonite complexes, their preparation and the effect of soil microorganisms on their decomposition. Soil Sci. 78, 109–118 (1954).Google Scholar
  157. Plotho, O. v. : Untersuchungen zur Morphologie und Biologie der Mycobakterien des Bodens. Arch. Mikrobiol. 13, 93–139 (1942).Google Scholar
  158. Untersuchungen an Proactinomyceten. Arch. Mikrobiol. 14, 12–45 (1945).Google Scholar
  159. Pochon, J., et Y. T. Tchan: Humus et biologie des sols. Rev. gén. Bot. 57, 257–277, 321–347 (1950).Google Scholar
  160. Quastel, J. H.: Soil metabolism. Proc. roy. Soc. B 143, 159–178 (1955).Google Scholar
  161. Quastel, J. H., and P. G. Scholefield: Biochemistry of nitrification in soil. Bact. Rev. 15, 1–53 (1951).PubMedGoogle Scholar
  162. Quastel, J. H., P. G. Scholefield and J. W. Stevenson: Oxidation of pyruvic acid oxime by soil microorganisms. Biochem. J. 51, 278–286 (1952).PubMedGoogle Scholar
  163. Quispel, A., G. W. Harmsen and D. Otzen: Contribution to the chemical and bacteriological oxidation of pyrite in soil. Plant & Soil 4, 43–55 (1952).Google Scholar
  164. Rippel, A.: Mikrobiologie des Bodens. In E. Blancks Handbuch der Bodenlehre, Erg.-Bd. I. Berlin: Springer 1939.Google Scholar
  165. Rippel-Baldes, A.: Grundriß der allgemeinen Mikrobiologie, 2. Aufl. Berlin-Göttingen-Heidelberg: Springer 1953.Google Scholar
  166. Rossi, G. : Direct microscopic and bacteriological examination of the soil. Soil. Sci. 41, 53–66 (1936).Google Scholar
  167. Rovira, A. D. : Factors influencing soil metabolism and the relationship between plant roots and soil micro-organisms. Thesis, Univ. of Sydney 1955.Google Scholar
  168. Plant root excretions in relation to the rhizosphere effect. I–II. Plant & Soil 7, 178–208 (1956).Google Scholar
  169. Ruinen, J.: Occurrence of Beijerinckia species in the “phyllosphere”. Nature (Lond.) 177, 220–221 (1956.)Google Scholar
  170. Russell, E. J.: Soil conditions and plant growth, 8. Aufl., von W. Russell neubearbeitet. London: Longmans, Green & Co. 1950.Google Scholar
  171. Salton, M. J.: Isolation of Streptomyces spp. capable of decomposing preparations of cell walls of various microorganisms. J. gen. Microbiol. 12, 25–30 (1955).PubMedGoogle Scholar
  172. Schatz, A., N. D. Cheronis, V. Schatz and G. S. Trelawny: Chelation (Sequestration) as a biological weathering factor in soil biogenesis. Proc. Pennsylv. Acad. Sci. 28, 44–51 (1954).Google Scholar
  173. Schlich-ting, E. : Kupferbindung und -fixierung durch Humusstoffe. Acta agric. scand. 5, 313–356 (1955).Google Scholar
  174. Schmidt, E. L.: Soil microorganisms and plant growth substances. I. Historical. Soil Sci. 71, 129–140 (1950).Google Scholar
  175. Nitrate formation by a soil fungus. Science 119, 187–189 (1954).Google Scholar
  176. Schmidt, E. L., and R. L. Starkey: Soil microorganisms and plant growth substances. II. Transformations of certain B-vitamins in soil. Soil Sci. 71, 221–231 (1950).Google Scholar
  177. Schmidt-Lorenz, W., u. A. Rippel-Baldes: Wirkung des Sauerstoff-Partialdrucks auf Wachstum und Stickstoffbindung von Azotobacter chroococcum Beij. Arch. Mikrobiol. 28, 45–68 (1957).PubMedGoogle Scholar
  178. Schönbrunn, B.: Über den zeitlichen Verlauf der Nitrifikation. Zbl. Bakt., II. Abt. 56,545–565 (1922).Google Scholar
  179. Shrikande, J. G. : The production of mucus during the decomposition of plant materials. Biochem. J. 27, 1563–1574 (1933).Google Scholar
  180. Singh, B. N. : Myxobacteria in soils and composts : their distribution, number and lytic action on bacteria. J. gen. Microbiol. 1–10 (1947a).Google Scholar
  181. Studies on soil Acrasieae. I.—II. J. gen. Microbiol. 1, 11–21, 361–367 (1947b).Google Scholar
  182. Skinner, C. E., and E. M. Mellem: Further experiments to determine the organisms responsible for the decomposition of cellulose in soil. Ecology 25, 360–365 (1944).Google Scholar
  183. Skinner, F. A. : A method for distinguishing between viable spores and mycelial fragments of actinomycetes in soil. J. gen. Microbiol. 5, 159–166 (1951).PubMedGoogle Scholar
  184. Skinner, F. A., P. C. T. Jones and J. E. Mollison: A comparison of a direct and a plate-counting technique for the quantitative estimation of soil microorganisms. J. gen. Microbiol. 6, 261–271 (1952).PubMedGoogle Scholar
  185. Sobels, J. C. : Nutrition de quelques myxomycètes en cultures pures et associées et leurs propriétés antibiotiques. Gouda: Koch & Knüttel 1950.Google Scholar
  186. Sørensen, H.: Microbial decomposition of xylan. Acta agr. scand., Suppl. 1, 1–86 (1957).Google Scholar
  187. Spicher, G.: Untersuchungen über die Wechselbeziehung zwischen Azotobacter und höherer Pflanze. Zbl. Bakt., II. Abt. 107, 353–383 (1954).Google Scholar
  188. Stallings, J. H.: Soil-produced antibiotics — plant disease and insect control. Bact. Rev. 18, 131–146 (1954).PubMedGoogle Scholar
  189. Stanier, R. Y. : The Cytophaga group: a contribution to the biology of myxobacteria. Bact. Rev. 6, 143–196 (1942).PubMedGoogle Scholar
  190. Stapp, C. : Azotomonas insolita, ein neuer aerober stickstoffbindender Organismus. Zbl. Bakt., II. Abt 102, 1–19 (1940)Google Scholar
  191. Stapp, C., u. H. Bortels: Mikrobiologische Untersuchungen über die Zersetzung von Waldstreu. Zbl. Bakt., II. Abt. 90, 28–66 (1934).Google Scholar
  192. Starc, A.: Zur Frage der Rhizo-sphäre und Bodenimpfung mit Azotobacter. Arch. Mikrobiol. 13, 164–181 (1942).Google Scholar
  193. Starkey, R. L. : Some influences of the development of higher plants upon microorganisms in the soil. Soil. Sci. 45, 207–249 (1938).Google Scholar
  194. Relations of microorganisms to transformation of sulfur in soil. Soil Sci. 70, 55–65 (1950).Google Scholar
  195. Starkey, R. L., and P. K. De : A new species of Azotobacter. Soil Sci. 47, 329–343 (1939).Google Scholar
  196. Stille, B.: Untersuchungen über die Bedeutung der Rhizo-sphäre. Arch. Mikrobiol. 9, 477–485 (1938).Google Scholar
  197. Stöckli, A.: Die Verbreitung der Azoto-bacterorganismen in der Schweiz. Landwirtsch. Jb. Schweiz. 58, 67–105 (1944).Google Scholar
  198. Die Zahl, Größe, Form und Verteilung der autochthonen Bodenbakterien. Landwirtsch. Jb. Schweiz 70, 47–65 (1956a).Google Scholar
  199. Über den Anteil der Bodenpilze an der organischen Substanz des Bodens. Mitt. Schweiz. Landwirtsch. 4, 125–130 (1956b).Google Scholar
  200. Stojanovic, B. J., and M. Alexander: Effect of inorganic nitrogen on nitrification. Soil Sci. 86, 208–215 (1958).Google Scholar
  201. Stokes, J. L. : The role of algae in the nitrogen cycle of the soil. Soil Sci. 49, 265–275 (1940).Google Scholar
  202. Strugger, S.: Fluorescense microscopic examinations of bacteria in soil. Canad. J. Res., C 26, 188–193 (1948).Google Scholar
  203. Suto, T.: An acid-fast Azotobacter in a volcanic ash soil. Sci. Rep. Res. Inst. Tôhoku Univ. (D) 6, 25–31 (1954).Google Scholar
  204. Swaby, R. J.: The occurrence and activity of Azotobacter and Clostridium in Victorian soils. Aust. J. exp. Biol. med. Sci. 17, 401–423 (1939).Google Scholar
  205. The relationship between micro-organisms and soil aggregation. J. gen. Microbiol. 3, 236–254 (1949 a).Google Scholar
  206. The influence of humus on soil aggregation. J. Soil Sci. 1, 182–194 (1949b). Swaby, R. J., and B. J. Passey: A simple macrorespirometer for studies in soil microbiology. Aust. J. agric. Res. 4, 334–339 (1953).Google Scholar
  207. Taylor, C. B.: Short-period fluctuations in the numbers of bacterial cells in soil. Proc. roy. Soc. B 119, 269–295 (1936).Google Scholar
  208. Tchan, Y. T.: Studies of nitrogen-fixing bacteria. III. Proc. Linnean Soc. N. S. Wales 78, 83–84 (1953a).Google Scholar
  209. Studies of nitrogen-fixing bacteria. V. Proc. Linnean Soc. N. S. Wales 78, 171–178 (1953b).Google Scholar
  210. Thompson, L. M., C. A. Black and F. E. Clark: Accumulation and mineralization of microbial organic phosphorus in soil materials. Soil Sci. Soc. Amer. Proc. 13, 242–245 (1949).Google Scholar
  211. Thornton, H. G., and P. H. H. Gray: The fluctuations of bacterial numbers and nitrate content of field soil. Proc. roy. Soc. B 106, 399–417 (1930).Google Scholar
  212. The numbers of bacterial cells in field soils as estimated by the ratio method. Proc. roy Soc. B 115, 522–543 (1934).Google Scholar
  213. Thornton, H. G., and C. B. Taylor: Short-period fluctuations in bacterial numbers in soil. Trans. Third Int. Congr. Soil Sci. 1, 175–179 (1935).Google Scholar
  214. Timonin, M. I.: The interaction of higher plants and soil microorganisms. Canad. J. Res., C 18, 307–317 (1940).Google Scholar
  215. Topping, L. E.: The predominant micro-organisms in soils. Zbl. Bakt., II. Abt. 97, 289–304 (1937).Google Scholar
  216. Tschapek, N., and N. Giambiani: Nitrogen fixation of Azotobacter in soil. Arch. Mikrobiol. 21, 376–390 (1955).PubMedGoogle Scholar
  217. Vartiovaara, U. : The influence of the duration of the growth of fungal tissue upon its decomposition. J. Sci. agric. Soc. Finland 10, 312–325 (1938).Google Scholar
  218. Veldkamp, H.: A study of the aerobic decomposition of chitin by microorganisms. Mededel. Landbouwhogesch. Wageningen 55, 127–174 (1955).Google Scholar
  219. Verhoeven, W. : Aerobic sporeforming nitrate reducing bacteria. Delft: Waltman 1952.Google Scholar
  220. Waksman, S.A.: Principles of Soil Microbiology, 2. Ausg. Baltimore: Williams & Wilkins Company 1932.Google Scholar
  221. Humus: Origin, Chemical Composition, and Importance in Nature, 2. Aufl. Baltimore: Williams & Wilkins Company 1938.Google Scholar
  222. The Actinomycetes: their Nature,Google Scholar
  223. Occurrence, Activities, and Importance. Waltham, Mass.: Chronica Botanica Co. 1950.Google Scholar
  224. Waksman, S. A., and R. A. Diehm: On the decomposition of hemicelluloses by microorganisms. I.–III. Soil. Sci. 32, 73–139 (1931).Google Scholar
  225. Waksman, S. A., and F. C. Gerretsen: Influence of temperature and moisture upon the nature and extent of decomposition of plant residues. Ecology 12, 33–60 (1931).Google Scholar
  226. Waksman, S. A., and I. J. Hutchings: Decomposition of lignin by microorganisms. Soil. Sci. 42, 119–130 (1936).Google Scholar
  227. Waksman, S. A., and M. R. Madhok: Influence of light and heat upon the formation of nitrate in the soil. Soil Sci. 44, 361–375 (1937).Google Scholar
  228. Waksman, S. A., and E. R. Purvis: The microbiological population of peat. Soil. Sci. 34, 95–110 (1932).Google Scholar
  229. Waksman, S. A., W. W. Umbreit and T. C. Cordon: Thermophilic actinomycetes and fungi in soils and composts. Soil Sci. 47, 37–61 (1939)Google Scholar
  230. Wallhäuser, K.: Die antibiotischen Beziehungen einer natürlichen Mikroflora. Arch. Mikrobiol. 16, 201–236 (1951a)Google Scholar
  231. Untersuchungen über das antibiotische Verhalten von Mikroorganismen am natürlichen Standort. Arch. Mikrobiol. 16, 237–251 (1951b).Google Scholar
  232. Welsch, M. : Phénomènes d’antibiose chez les actinomycètes. Rev. belge Path. 13, Suppl. II (1947).Google Scholar
  233. West, P. M. : Excretion of thiamin and biotin by the roots of higher plants. Nature (Lond.) 144, 1050–1051 (1939).Google Scholar
  234. Wieringa, K. T.: Der Abbau der Pektine: der erste Angriff der organischen Pflanzensubstanz. Pflanzenernährg., Düng., Bodenk. 69 (114), 150–155 (1955).Google Scholar
  235. The problems of standardization of methods in use in microbiological soil research. Netherl. J. agr. Sci. 6, 61–67 (1958).Google Scholar
  236. Wijler, J., and C. C. Delwiche: Investigations on the denitrification process in soil. Plant & Soil 5, 155–169 (1954).Google Scholar
  237. Winogradsky, S.: Études la microbiologie du sur sol. I. Sur la méthode. Ann. Inst. Pasteur 39, 299–354 (1925).Google Scholar
  238. II. Sur les microbes fixateurs de l’azote. Ann. Inst. Pasteur 40, 445–520 (1926).Google Scholar
  239. III. Sur le pouvoir fixateur des terres. Ann. Inst. Pasteur 42, 36–62 (1928).Google Scholar
  240. IV. Sur la dégradation de la cellulose dans le sol. Ann. Inst. Pasteur 43, 549–633 (1929).Google Scholar
  241. VII. Nouvelles recherches sur les microorganismes de la nitrification. Ann. Inst. Pasteur 50, 350–432 (1933).Google Scholar
  242. Winter, A. G. : Untersuchungen über die Aufnahme von Penicillin und Streptomycin durch die Wurzeln von Lepidium sativum und ihre Beständigkeit im Boden. Z. Bot. 40, 153–172 (1952).Google Scholar
  243. Winter, A. G., u. R. v. Rümker: Die Mikroflora der Rhizosphäre als resistenzbestimmender Faktor. Arch. Mikrobiol. 15, 72–84 (1950).Google Scholar
  244. Wright, J. M.: The production of antibiotics in soil. III. Production of gliotoxin in wheatstraw buried in soil. Ann. appl. Biol. 44, 461–466 (1956).Google Scholar
  245. Ziemecka, J.: Sur la déstruction des pentosanes [Polnisch mit franz. Zus.fass.]. Rocz. Nauk Robn. Lecn. 25, 313–332 (1931).Google Scholar
  246. The Azotobacter test of soil fertility applied to the classical fields at Rothamsted. J. agric. Sci. 27, 797–810 (1932).Google Scholar
  247. The use of a modified Rossi-Cholodny technique for studying the organisms that decompose certain organic compounds in soil. Zbl. Bakt., II. Abt. 91, 379–394 (1935).Google Scholar

Literatur

  1. Abelson, P. H. : Palaeobiochemistry (Papers Geophys. Lab. Carnegie Inst. of Washington No 1256). Sci. Amer. 1956.Google Scholar
  2. Allen, Mary Belle: The thermophilic aerobic sporeforming bacteria. Bact. Rev. 17, 125–173 (1953).PubMedGoogle Scholar
  3. Andersen, S. Th., and K. Gundersen: Ether soluble pigments in interglacial gyttja. Experientia (Basel) 11, 345–348 (1955).Google Scholar
  4. Arrhenius, G. : Carbon and nitrogen in subaquatic sediments. Geochim. et Cosmochim Acta 1, 15–21 (1950).Google Scholar
  5. Baars, J. K. : Over sulfaatreductie door bacterien. Diss. Delft 1930.Google Scholar
  6. Bader, R. G. : The lignin fraction of marine sediments. Deep Sea Res. 4, 15–22 (1956).Google Scholar
  7. Baier, C. R. : Die Bedeutung der Bakterien für den Kalktransport in den Gewässern. Geol. Meere u. Binnengew. 1, 75–105 (1937).Google Scholar
  8. Ballantine, D., and B. C. Abbott: Toxic marine flagellates; their occurrence and physiological effects on animals. J. gen. Microbiol. 16, 274–281 (1957).PubMedGoogle Scholar
  9. Bargagli-Petrucci, G. : Studi sulla flora microscopica della regione boracifera toscana. I. Bac. boracicola n. sp. Nuovo Giorn. bot. ital. 20, 1–39 (1913).Google Scholar
  10. Barghoorn, E. S., and D. H. Linder: Marine fungi: Their taxonomy and biology. Farlowia 1, 395–467 (1944).Google Scholar
  11. Bartholomew, J. W., and S. C. Rittenberg: Thermophilic bacteria from deep ocean bottom cores. J. Bact. 57, 658 (1949).Google Scholar
  12. Bass-Becking, L., C. F. Tolman, H. C. McMillin, J. Field and T. Hashimoto : Preliminary statement regarding the diatom “epidemics” at Copalis beach, Wash., and an analysis of diatom oil. Economic. Geol. 22, 356–368 (1927).Google Scholar
  13. Bavendamm, W. : Die mikrobiologische Kalkfällung in der tropischen See. Arch. Mikrobiol. 3, 205–276 (1932).Google Scholar
  14. Benda, Irmgard: Mikrobiologische Untersuchungen über das Auftreten von Schwefelwasserstoff in den anaeroben Zonen des Hochmoores. Arch. Mikrobiol. 27, 337–374 (1957).PubMedGoogle Scholar
  15. Birge, E. A., and C. Juday: Particulate and dissolved organic matter in inland lakes. Ecol. Monogr. 4, 440–474 (1934).Google Scholar
  16. Böcher, T. W. : Studies on the sapropelic flora of the lake Flyndersø with special reference to the Oscillatoriaceae. Kong. danske Vidensk. Selsk., Biol. Meddel. 21, Nr 1 (1949).Google Scholar
  17. Breed, R. S., E. G. D. Murray and N. R. Smith: Bergey’s Manual of Determinative Bacteriology. 7. Aufl. Baltimore: Williams & Wilkins Co. 1957.Google Scholar
  18. Bruun, A. Fr.: The abyssal fauna: its ecology, distribution and origin. Nature (Lond.) 177, 1105—1108 (1956).Google Scholar
  19. Bünning, E., u. Hedwig Herdle: Physiologische Untersuchungen an thermophilen Blaualgen. Z. Natur-forsch. 1, 93–99 (1946).Google Scholar
  20. Burgeff, A.: Mikrobiologie des Hochmoores mit besonderer Berücksichtigung der Ericaceen-Pilzsymbiose. Ber. dtsch. bot. Ges. 69, 257–262 (1956).Google Scholar
  21. Butkevich, V. S.: Die Bildung der Eisenmangan-Ablagerungen am Meeresboden und die daran beteiligten Mikroorganismen. Ber. wiss. Meeresinst. Moskau (russ.) 3 (3), 5–81 (1928).Google Scholar
  22. On the bacterial population of the Caspian and Asov seas. Mikrobiologija 7, 1005–1021 (1938).Google Scholar
  23. Butlin, K. R., and J. R. Postgate: The microbiological formation of sulphur in Cyrenaican lakes. In J. L. Cloudsley-Thompson, Biology of deserts. London 1954.Google Scholar
  24. Campbell jr., L., H. A. Frank and Elizabeth R. Hall: Studies on thermophilic sulfate reducing bacteria. I. Identification of Sporovibrio desulfuricans as Clostridium nigrificans. J. Bact. 73, 516–521 (1957).PubMedGoogle Scholar
  25. Campbell jr., L. L., and O. B. Williams: A study of chitin-decomposing microorganisms of marine origin. J. gen. Microbiol. 5, 894–905 (1951).PubMedGoogle Scholar
  26. The effect of temperature on the nutritional requirements of facultative and obligate thermophilic bacteria. J. Bact. 65, 141–145 (1953).Google Scholar
  27. Christian, J. H. B., and M. Ingram: The freezing points of bacterial cells in relation to halophilism. J. gen. Microbiol. 20, 27–31 (1959).PubMedGoogle Scholar
  28. Collins, Vera G. : Planktonic bacteria. J. gen. Microbiol. 16, 268–272 (1957).PubMedGoogle Scholar
  29. Copeland, J. J.: Yellowstone thermal myxophyceae. Ann. N. Y. Acad. Sci. 36, 1–232 (1936).Google Scholar
  30. Couch, J. N. : A new genus and family of the Actinomycetales with a revision of the genus Actinoplanes. J. Elisha Mitchell Sci. Soc. 71, 148–155 (1955).Google Scholar
  31. Cviic, V.: On the ecological relations of marine bacteria and plankton. Proc. 6th Intern. Congr. of Microbiol. Rome 7, 366–367 (1953).Google Scholar
  32. Czurda, V.: Über eine neue autotrophe und thermophile Schwefelbakteriengesellschaft. Zbl. Bakt., II. Abt. 92, 407–414 (1935).Google Scholar
  33. Dahl, E.: Ecological salinity boundaries in poikilohaline water. Øikos (Cph.) 7, 1–21 (1956).Google Scholar
  34. Delany, M. J.: The mass culture of a presumably autotrophic dinoflagellate. Amer. Midland Naturalist 56, 126–132 (1956).Google Scholar
  35. Droop, M. R.: Auxotrophy and organic compounds in the nutrition of marine phytoplankton. J. gen. Microbiol. 16, 286–293 (1957).PubMedGoogle Scholar
  36. Eardley, A. J. : Sediments of Great Salt Lake, Utah. Bull. Amer. Ass. Petrol. Geol. 22, 1305–1411 (1938).Google Scholar
  37. Elazari-Volcani, B.: Studies on the microflora of the Dead Sea. Thesis Jerusalem 1940.Google Scholar
  38. Fischer, B.: Die Bakterien des Meeres. Erg. Plankton-Exped. Humboldt-Stiftg 4, 1–83 (1894).Google Scholar
  39. Flannery, W. L.: Current status of knowledge of halophilic bacteria. Bact. Rev. 20, 49–66 (1956).PubMedGoogle Scholar
  40. Gaertner, H. R. v., u. H. Kroepelin : Petrographische und chemische Untersuchungen am Posidonienschiefer Nordwestdeutschlands. II. Untersuchungen über die organische Substanz des Posidonienschiefers. Erdöl u. Kohle 9, 690–682 (1956).Google Scholar
  41. Gale, H. S.: Salines in the Owens, Searles, and Panamint Basins, southeastern California. U.S. Geol. Surv. Bull. 580, 251–323 (1913), (Washington 1915).Google Scholar
  42. Geitler, L.: Zur Kenntnis der Bewohner des Ober-flächenhäutchens einheimischer Gewässer. Biol. generalis (Wien) 16, 450–475 (1942).Google Scholar
  43. Goldacre, R. J. : Surface films on natural bodies of water. J. anim. Ecol. 18, 36–39 (1949).Google Scholar
  44. Harvey, H. W. : Biological chemistry and physics of seawater. Cambridge : Univ. Press 1928.Google Scholar
  45. Hecht, F.: Der Verbleib der organischen Substanz der Tiere bei meerischer Einbettung. Senckenbergiana 15, 165–249 (1933).Google Scholar
  46. Bemerkungen zu Trasks Methode der Bestimmung des organischen Gehaltes meerischer Sedimente. Senckenbergiana 16, 21–24 (1934).Google Scholar
  47. Henrici, A. T.: Studies of freshwater bacteria. III. Quantitative aspects of the direct microscopic method. J. Bact. 32, 265–280 (1936).PubMedGoogle Scholar
  48. Höhnk, W. : Studien zur Brack-und Seewassermykologie. IV. Ascomyceten des Küstensandes. V. Höhere Pilze des sub-mersen Holzes. VI. Über die pilzliche Besiedlung verschieden salziger submerser Standorte. Veröff. Inst. Meeresforsch. Bremerhaven 3, 27–33 (1954); 3, 199–227 (1955); 4, 195–213 (1956).Google Scholar
  49. Fortschritte der marinen Mykologie in jüngster Zeit. Naturw. Rundsch. 11, 39–44 (1958).Google Scholar
  50. Houwink, A. L.: Flagella, gas vacuoles, and cellwall structure in Halobacterium halobium; an electron microscope study. J. gen. Microbiol. 15, 146–150 (1956).PubMedGoogle Scholar
  51. Ingold, C. T. : Actinospora megalospora n. g., n. sp., an aquatic hyphomycete. Trans. Brit. Mycol. Soc. 35, 66–70 (1952).Google Scholar
  52. Ingold, C. T., and B. Chapman: Aquatic Asco-mycetes: Loramyces juncicola Weston and L. macrospora n. sp. Trans. Brit. Mycol. Soc. 35, 268–272 (1952).Google Scholar
  53. Ingold, C. T., and E.A. Ellis: On some hyphomycete spores, including those of Tetracladium maxilliformis from Wheatfen. Trans. Brit. Mycol. Soc. 35, 158–161 (1952).Google Scholar
  54. Issachenko, B. L. : Biogenous formation of calcium carbonate. Mikrobiologija 17, 118–125 (1948).Google Scholar
  55. Jannasch, H. W. : Ökologische Untersuchungen der planktischen Bakterienflora im Golf von Neapel. Naturwissenschaften 41, 42 (1954).Google Scholar
  56. Zur Ökologie der zymogenen plank-tischen Bakterienflora natürlicher Gewässer. Arch. Mikrobiol. 23, 146–180 (1955).Google Scholar
  57. Jørgensen, E. G.: Growth inhibiting substances formed by algae. Physiol. Plantarum (Cph.) 9, 712–726 (1956).Google Scholar
  58. Diatom periodicity and silicon assimilation. Experimental and ecological investigations. Dansk bot. Ark. 18, 1–54 (1957).Google Scholar
  59. Johnson, Fr. H., H. Ey-ring and M. J. Polissar: The kinetic basis of molecular biology. New York: Wiley & Sons; London: Chapman & Hall 1954.Google Scholar
  60. Kadota, H.: A study of the marine aerobic cellulose-decomposing bacteria. Mem. Coll. Agricult. Kyoto Univ. No 74, 1–128 (1956).Google Scholar
  61. Kalle, K.: Das Meerwasser. In Handbuch der Pflanzenphysiologie, Bd. III, S. 37–42. Berlin: Springer 1956.Google Scholar
  62. Katznelson, H., and A. G. Lochhead: Growth factor requirements of halophilic bacteria. J. Bact. 64, 97–103 (1952).PubMedGoogle Scholar
  63. Kitching, J. A. : Effects of high hydrostatic pressure on the activity of flagellates and ciliates. J. exp. Biol. 34, 494–510 (1957).Google Scholar
  64. Klieneberger-Nobel, Emmy: Über Kapsel- und Schleimbildung bei Bakterien. Schweiz. Z. Path. 11. 336–345 (1948).Google Scholar
  65. Koffler, H.: Protoplasmatic differences between Mesophiles and Thermophiles. Bact. Rev. 21, 227–240 (1957).PubMedGoogle Scholar
  66. Kohn, E.: Zur Biologie der Wasserbakterien. Zbl. Bakt., II. Abt. 15, 690–708, 777–786 (1906).Google Scholar
  67. Kolbe, R. W.: Zur Ökologie, Morphologie und Systematik der Brackwasser-Diatomeen. Die Kieselalgen des Sperenberger Salzgebietes. Pflanzenforschung, H. 7. Jena 1927.Google Scholar
  68. Kolkwitz, R., u. M. Marsson: Ökologie der pflanzlichen Saprobien. Ber. dtsch. bot. Ges. 26, 505–519 (1908).Google Scholar
  69. Koppe, F. : Die Schlammflora der ostholsteinischen Seen und des Bodensees. Arch. Hydro-biol. 14, 619–672 (1924).Google Scholar
  70. Kox, Elisabeth: Der durch Pilze und aerobe Bakterien ver-anlaßte Pectin- und Cellulose-Abbau im Hochmoor unter besonderer Berücksichtigung des Sphagnum-Abbaus. Arch. Mikrobiol. 20, 111–140 (1954).PubMedGoogle Scholar
  71. Krassilnikov, N. A. : Die bakterizide Wirkung des Meerwassers. Mikrobiologija 7, 329–333 (1938).Google Scholar
  72. Krassilnikoviac: A new class of microorganisms found in sea and ocean depths. J. gen. Microbiol. 20, 1–12 (1959).Google Scholar
  73. Kriss, A. E. : Mikroorganismen und biologische Produktivität der Wasserläufe. Priroda (Leningrad) 1953, 49–59.Google Scholar
  74. Kriss, A. E., u. M. J. Novezilova: Sind Hefeorganismen Bewohner von Meeren und Ozeanen? Mikrobiologija 23, 669–683 (1954).Google Scholar
  75. Kriss, A. E., u. E. A. Rukina: Die Mikroorganismen in Bodenablagerungen der Ozeangebiete. [Russisch.] Izv. Akad. Nauk SSSR., Ser. Biol. 1952, Nr 6, 67–79. Ref. Ber. wiss. Biol. 86, 103 (1954).Google Scholar
  76. Kriss, A. E., E. A. Rukina u. V. J. Birjuzova: Das Schicksal der toten organischen Substanz im Schwarzen Meer. Mikrobiologija 20, 90–102 (1951).Google Scholar
  77. Kriss, A. E., E. A. Rukina u. A. S. Tichonenko: Die Biomasse der Mikroorganismen in der Tiefe des Schwefelwasserstoffgebietes des Schwarzen Meeres. Dokl. Akad. Nauk SSSR. 75, 453–456 (1950).Google Scholar
  78. Kriss, A. J., W. I. Birjuzowa, A. S. Tichonenko u. W. A. Lambina: Mikroorganismen im nördlichen Eismeer. Dokl. Akad. Nauk SSSR., N. S. 101, 173–176 (1955).Google Scholar
  79. Kriss, A. J., u. I. N. Mizkewitsch: Eine neue Klasse von Mikroorganismen aus der Tiefsee (Krassilnikoviae). Usp. sovr. Biol. Moskva 44, 2, 269–280 (1957).Google Scholar
  80. Krogh, A. : Life at great depths in the ocean. Ecol. Monogr. 4, 430–439 (1934).Google Scholar
  81. Kühn, A. : Vorlesungen über Entwicklungsphysiologie. Berlin-Göttingen-Heidelberg 1955.Google Scholar
  82. Kuznetzow, S. I.: Die quantitative Bestimmung der Mikroflora im Zusammenhang mit mikrozonalen Daten des Seeschlamms. Mikrobiologija 7, 36–49 (1938).Google Scholar
  83. Lassleben, P.: Zur Oberflächenspannung des Wassers in natürlichen stehenden und fließenden Gewässern. Naturwiss. 44, 556 (1957).Google Scholar
  84. Lewin, J. C.: Silicon metabolism in diatoms. IV. Growth and frustule formation in Navicula pelliculosa. Canad. J. Microbiol. 3, 427–434 (1957).Google Scholar
  85. MacLeod, R. A., Eva Onofrey and Margaret E. Norris: Nutrition and metabolism of marine bacteria. I. Survey of nutritional requirements. J. Bact. 68, 680–686 (1954).PubMedGoogle Scholar
  86. Marsh, C. L., and D. K. Larsen: Characterization of some thermophilic bacteria from the hot springs of Yellowstone Park. J. Bact. 65, 193–197 (1953).PubMedGoogle Scholar
  87. Meyers, S. P.: Marine fungi in Biscayne Bai, Florida. II. Further studies of occurrence and distribution. Bull. Marine Sci. Gulf and Caribbean 3, 307–327 (1954).Google Scholar
  88. Miyoshi, M.: Studien über die Schwefelrasenbildung und die Schwefelbacterien der Thermen von Yumoto bei Niko. J. Coll. Sci. Imp. Univ. Tokyo 10, 143–174 (1896/98).Google Scholar
  89. Molisch, H.: Pflanzenbiologie in Japan auf Grund eigener Beobachtungen. Jena 1926.Google Scholar
  90. Morita, R. Y., and Cl. E. Zo Bell: Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific-Expedition. Deep Sea Res. 3, 66–73 (1955).Google Scholar
  91. Mortimer, Cl. H.: The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29, 280–329 (1941); 30, 147–201 (1942).Google Scholar
  92. Nadson, G. A. : Mikroorganismen als geologische Faktoren. [Russisch.] St. Petersburg 1903.Google Scholar
  93. Beitrag zur Kenntnis der bakteriogenen Kalkfällung. Arch. Hydrobiol. 19, 154–164 (1928).Google Scholar
  94. Nadson, G., u. G. Burgwitz: Hefen des Nördlichen Eismeeres. C. R. Acad. Sci. USSR. 1931, 103–110.Google Scholar
  95. Naumann, E. : Beiträge zur Kenntnis des Teichnannoplanktons. Biol. Zbl. 37, 98–106 (1917).Google Scholar
  96. Nipkow, H. F. : Vorläufige Mitteilungen über Untersuchungen des Schlammabsatzes im Zürichsee. Z. Hydrol. (Aarau) 1, 100–122 (1920).Google Scholar
  97. Nowobrantzew, P. W.: Die Entwicklung der Bakterien der Süßwässer (Seen) in Abhängigkeit von dem Gehalt an leicht assimilierbaren organischen Stoffen im Wasser. Mikrobiologija 6, 28–36 (1937).Google Scholar
  98. Pelsh, A. D. : The “biological zone” of Sacki mud. Mikrobiologija 6, 1079–1088 (1937).Google Scholar
  99. Perfiliev, B. W. : Zur Mikrobiologie der Bodenablagerungen. Verh. internat. Ver. Limnologie 4, 107–143 (1929).Google Scholar
  100. Prescott, S. C., Ch.-E. A. Winslow and M. H. McCrady : Water bacteriology. New York: Wiley & Sons; London: Chapman & Hall 1950.Google Scholar
  101. Prévot, A. R. : Les barégines. Congr. Internat. Le Soufre, Cauterets 1948, 145–160, Union Thermale Pyrénéenne, Paris 1948.Google Scholar
  102. Pringsheim, E. G.: The Vitraeoscillaceae: A family of colourless gliding filamentous organisms. J. gen. Microbiol. 5, 124–149 (1951).PubMedGoogle Scholar
  103. Reuther, G.: Wechselbeziehungen zwischen Bakterien und Pilzen des Hochmoores. Arch. Mikrobiol. 26, 93–131 (1957).PubMedGoogle Scholar
  104. Rippel-Baldes, A. : Grundriß der Mikrobiologie. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  105. Rittenberg, S. C.: Bacteriological analysis of some long cores of marine sediments. Sears Found. J. Marine Res. 2, 191–201 (1940).Google Scholar
  106. Rittenberg, S. C., K. O. Emery and Wilson L. Orv: Regeneration of nutrients in sediments of marine basins. Deep Sea Res. 3, 23–45 (1955).Google Scholar
  107. Robinson, J., N. E. Gibbons and F. S. Thatcher: A mechanism of halophilism in Micrococcus halodenitrificans. J. Bact. 64, 69–77 (1952).PubMedGoogle Scholar
  108. Rosanova, E. P., and M. J. Novojilova: Quantitative distribution and species composition of yeasts of the Rybinsk reservoir. Mikrobiologija 27, 371–376 (1958).Google Scholar
  109. Rubentschik, L. J., et S. S. Chait: Étude sur la vitalité des microbes. Ann. Inst. Pasteur 58, 446–458 (1937).Google Scholar
  110. Rubentschik, L. J., and D. G. Goicherman: The influence of a decrease in salt content in limans on the microflora of medicinal muds. Arkh. biol. Nauk, Ser. II–III 43, 217–227 (1936).Google Scholar
  111. Microbiology of mud lakes. II. Investigation of the Golopristansk lake. Mikrobiologija 6, 916–924 (1937).Google Scholar
  112. Rubentschik, L. J., M. Roisin and F. M. Bieljansky: Adsorption von Bakterien in Salzgewässern. Mikrobiologija 3, 16–43 (1934).Google Scholar
  113. Adsorption of bacteria in salt lakes. J. Bact. 32, 11–31 (1936).Google Scholar
  114. Ruttner, F.: Grundriß der Limnologie (Hydrobiologie des Süßwassers), 2. Aufl. Berlin 1952.Google Scholar
  115. Das Süßwasser. In Handbuch der Pflanzenphysiologie, Bd. III, S. 30–36. Berlin: Springer 1956.Google Scholar
  116. Ryther, J. H. : Ecology of autotrophic marine dinoflagellates with reference to red water conditions. In: The luminescence of biological systems, edit, by F. H. Johnston, S. 387–414. Washington D.O. 1955.Google Scholar
  117. Schroeder, Mathilde: Die Assimilation des Luftstickstoffs durch einige Bakterien. Zbl. Bakt., II. Abt. 85, 177–212 (1931/32).Google Scholar
  118. Schwartz, W.: Nachweis und Vorkommen lebender Mikroorganismen in alten marinen Sedimenten. Atti del VI. Congr. Internaz. di Microb., Roma 1953, 7, 358–359.Google Scholar
  119. Die Schwefelspezialisten unter den Mikroorganismen. In: Handbuch der Pflanzenphysiologie, Bd. IX, S. 89–102. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  120. Schwartz, W., u. Adelheid Müller: Methoden der Geomikrobiologie. Freiberger Forschungsheft C 48. Berlin: Akademie-Verlag 1958.Google Scholar
  121. Siebert, G., u. W. Schwartz: Untersuchungen über das Vorkommen von Mikroorganismen in entstehenden Sedimenten. Arch. Hydrobiol. 52, 321–366 (1956).Google Scholar
  122. Snow, M. Laetitia and E. B. Fred: Some characteristics of the bacteria of Lake Mendota. Trans. Wisconsin Acad. Sci., Arts, Letters 22, 143–154 (1926).Google Scholar
  123. Sobotka, H., H. Baker, Anita V. Luisada-Opper et S. H. Hutner: La biochimie des bactéries thermophiles. Rev. Ferment. Industr. Aliment. (Brüssel) 12, 51–56 (1956).Google Scholar
  124. Sobotka, H., and Anita V. Luisada-Opper: The chemical composition of thermophilic bacteria. Arch. Biochem. 69, 548–554 (1957).PubMedGoogle Scholar
  125. Sorokin, Y. J. : The role of chemosynthesis in the production of organic substance in water reservoir. III. Summer productivity of chemosynthesis in water. Mikrobiologija 27, 357–365 (1958).Google Scholar
  126. Sorokina, V. A.: Exchange of substance between slime and water as influenced by the formation of a bacterial film on the surface of the slime. Mikrobiologija 7, 579–591 (1938).Google Scholar
  127. Sparrow, F. K. : Biological observations on the marine fungi of Woods Hole waters. Biol. Bull. 70, 236–263 (1936).Google Scholar
  128. Spruit, C. J. P., and A. Pijper: An obligate halophilic bacterium from solar salt. Antonie v. Leeuwenhoek 18, 190–200 (1952).Google Scholar
  129. Sramek-Husek, R. : Zur biologischen Charakteristik der höheren Saprobitätsstufen. Arch. Hydrobiol. 51, 376–390 (1956).Google Scholar
  130. Stanier, R. Y. : Studies on marine agardigesting bacteria. J. Bact. 42, 527–559 (1941).PubMedGoogle Scholar
  131. Steiner, J. F., and V. W. Meloche: A study of ligneous substances in lacustrine materials. Trans. Wisconsin Acad. Sci., Arts, Letters 29, 389–402 (1935).Google Scholar
  132. Stosch, H.-A. v.: Die zentrischen Grunddiatomeen. Beiträge zur Floristik und Ö kologie einer Pflanzengesellschaft der Nordsee. Helgoländer wiss. Meeresunters. 5, 273–291 (1956).Google Scholar
  133. Sturm, G.: Die Wirkung hoher hydrostatischer Drücke auf Süßwasseralgen. Arch. Mikrobiol. 28, 109–125 (1957).PubMedGoogle Scholar
  134. Taylor, C. : Bacteriology of fresh water. III. The types of bacteria present in lakes and streams and their relationship to the bacterial flora of soil. J. Hyg. (Lond.) 42, 284–296 (1942).Google Scholar
  135. Trask, P. D. : Origin and environment of source sediments of petroleum. Houston, Texas 1932.Google Scholar
  136. Twenhofel, W. H.: Principles of sedimentation. New York-Toronto-London: McGraw Hill Co. 1950.Google Scholar
  137. Umbreit, W. W., and Elisabeth McCoy: The occurrence of Actinomycetes of the genus Micromonospora in inland lakes. Sympos. on Hydrobiol. Univ. of Wisconsin 1941, 106–114.Google Scholar
  138. Utermöhl, H: Limnologische Phytoplanktonstudien. Arch. Hydrobiol. Suppl. 5, 1–527 (1925).Google Scholar
  139. Vägö, S.: Das mikroskopische Bild von mit Mercurochrom-Pyoktanin behandelten Oberflächenfilmen natürlicher Gewässer. Mikroskopie 4, 228–239 (1949).PubMedGoogle Scholar
  140. Vallentyne, J. R., and R. G. S. Bidwell: The relation between free sugars and sedimentary chlorophyll in lake muds. Ecology 37, 495–500 (1956).Google Scholar
  141. Voroschilova, A., and E. Dianova: The role of plancton in the multiplication of bacteria in isolated samples of sea water. Mikrobiologija 6, 741–753 (1937).Google Scholar
  142. Vouk, V.: Grundriß zu einer Balneologie der Thermen. Basel 1950.Google Scholar
  143. Waksman, S. A. : On the distribution of organic matter in the sea bottom and the chemical nature and origin of marine humus. Soil Sci. 36, 125–147 (1933).Google Scholar
  144. Waksman, S. A., and Cornelia L. Carey: Decomposition of organic matter in sea water by bacteria. II. Influence of addition of organic substances upon bacterial activities. J. Bact. 29, 545–561 (1935).PubMedGoogle Scholar
  145. Waksman, S. A., and K. R. Stevens: Contribution to the chemical composition of peat. V. The role of microorganisms in peat formation and decomposition. Soil Sci. 28, 315–340 (1929).Google Scholar
  146. Watson, St. W., and E. J. Ordal: Techniques for the isolation of Labyrinthula and Traustochytrium in pure culture. J. Bact. 73, 589–590 (1957).PubMedGoogle Scholar
  147. Watson, St. W., and K. B. Raper: Labyrinthula minuta sp. nov. J. gen. Microbiol. 17, 368–377 (1957).PubMedGoogle Scholar
  148. Welch, P. S.: Limnology, 1. Aufl. New York: McGraw Hill Book Co. 1935.Google Scholar
  149. Wetzel, A.: Der Faulschlamm und seine ziliaten Leitformen. Z. Morph, u. Ökol. Tiere 13, 179–328 (1929).Google Scholar
  150. Wetzel, W.: Kalkfällende Organismen und ihre Produkte im Loa-Becken der mittleren Atacama-Wüste. Zbl. Mineral., Geol. Paläont., Abt. B 1926, 354–361.Google Scholar
  151. Wolters, N., u. W. Schwartz: Untersuchungen über Vorkommen und Verhalten von Mikroorganismen in reinen Grundwässern. Arch. Hydrobiol. 51, 500–541 (1956).Google Scholar
  152. Wood, E. J. F. : Heterotrophic bacteria in marine environments of eastern Australia. Austral. J. marine and freshwater Res. 4, 160—200 (1953).Google Scholar
  153. Diatoms in the ocean deeps. Pacific Sci. 10, 377–381 (1956).Google Scholar
  154. The significance of marine microbiology. Bact. Rev. 22, 1–19 (1958).Google Scholar
  155. ZoBell, Cl. E.: Bactericidal action of sea water. Proc. Soc. exp. Biol. (N. Y.) 95, 113–116 (1936).Google Scholar
  156. Studies on the bacterial flora of marine bottom sediments. J. sediment. Petrol. 8, 10–18 (1938).Google Scholar
  157. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J. Marine Res. 4, 42–75 (1941).Google Scholar
  158. Marine microbiology, a monograph on hydrobacteriology. Waltham, Mass.: Chronica Botanica Co. 1946.Google Scholar
  159. Microbial transformation of molecular hydrogen in marine sediments with particular reference to petroleum. Bull. Amer. Ass. Petrol. Geol. 31, 1709–1751 (1947).Google Scholar
  160. Assimilation of hydrocarbons by microorganisms. Advanc. Enzymol. 10, 443–486 (1950).Google Scholar
  161. Bacterial life at the bottom of the Philippine trench. Science 115, 507–508 (1952).Google Scholar
  162. The occurrence of bacteria in the deep sea and their significance for animal life. XIV. Intern. Zool. Congr. Copenhagen 1953, IUBS Deep Sea Colloqu.Google Scholar
  163. Zo Bell, Cl. E., D. Q. Anderson and W. W. Smith: The bacteriostatic and bactericidal action of Great Salt Lake water. J. Bact. 33, 253–262 (1937;.Google Scholar
  164. Zo Bell, Cl. E., and C. W. Grant: Bacterial utilization of low concentrations of organic matter. J. Bact. 45, 555–564 (1943).Google Scholar
  165. Zo Bell, Cl. E., and Fr. H. Johnson: The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J. Bact. 57, 179–189 (1949).Google Scholar
  166. Zo Bell, Cl. E., and R. Y. Morita: Basophilic bacteria in some deep sea sediments. J. Bact. 73, 563–568 (1957).Google Scholar
  167. Zo Bell, Cl. E., and C. H. Oppenheimer : Some effects of hydrostatic pressure on the multiplication and morphology of marine bacteria. J. Bact. 60, 771–781 (1950).Google Scholar
  168. Zo Bell, Cl. E., and H. C. Upham: A list of marine bacteria including descriptions of sixty new species. Bull. Scripps Inst. Oceanogr. La Jolla 5, 239–292 (1944).Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1959

Authors and Affiliations

  • H. L. Jensen
  • W. Schwartz

There are no affiliations available

Personalised recommendations