Advertisement

Biologie der Heterotrophen

  • E. G. Pringsheim
  • Th. Schmucker
  • G. Linnemann
  • W. Schwartz
  • Virgil Greene Lilly
  • Heinz Kern
  • Lothar Geitler
  • A. Quispel
  • Elias Melin
  • L. Tóth
  • Bernhard Rademacher
Chapter
  • 63 Downloads
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 11)

Zusammenfassung

Unter phagotropher Ernährung versteht man eine Form der Nahrungsaufnahme, bei der feste Teilchen ins Innere von Zellen geraten und durch enzymatischen Abbau ihrer verdaulichen Bestandteile beraubt werden.

Literature

Literatur

  1. Barber, F. W., D. L. Baile, C. B. Troescher and C. N. Huhtanen: Preliminary studies of the response of a Chrysomonad to vitamin B12 and related substances. Ann. New York Acad. Sci. 56, 863–869 (1953).Google Scholar
  2. Belar, K.: Protozoenstudien. I. Arch. Protistenkde 36, 13–51 (1916).Google Scholar
  3. Biecheler, B.: Des Conditions et du mécanisme de la prédation chez un dinoflagellé á enveloppe tabulée, Peridinium gargantua, n. sp. C. r. Soc. Biol. Paris 121, 1054 (1936a).Google Scholar
  4. Observation de la capture et de la digestion des proies chez un Péridinien vert. C. r. Soc. Biol. Paris 122, 1173 (1936b).Google Scholar
  5. Busch, W.: Zur Kenntnis der Gymnodinien. Arch. Protistenkde 58, 456–464 (1927).Google Scholar
  6. Chen, Y. T.: Investigation of the biology of Peranema trichophorum (Euglenineae). Quart. J. Microsc. Sci. 91, 279–308 (1950).Google Scholar
  7. Cienkowski, L.: Über einige chlorophyllhaltige Gloeocapseen. Bot. Ztg 23, 21–27 (1865). Doflein, F.: Untersuchungen über Chrysomonadinen. I–IV. Arch. Protistenkde 44, 149 (1922), 46, 267, 328 (1923).Google Scholar
  8. Doflein, F., u. E. Reichenow: Lehrbuch der Protozoenkunde, 6. Aufl., Bd. I u. II. Jena 1952/53.Google Scholar
  9. Hall, R. P.: The method of ingestion in Peranema trichophorum, etc. Arch. Protistenkde 81, 308–317 (1933).Google Scholar
  10. Protozoology. New York 1953.Google Scholar
  11. Hardin, G.: An investigation of the physiological requirements of a pure culture of the heterotrophic flagellate, Oikomonas termo, Kent. Physiologic. Zool. 15, 466–475 (1942).Google Scholar
  12. Physiological observations and their ecological significance: a study of the protozoan, Oikomonas termo. Ecology 25, 192–201 (1944).Google Scholar
  13. Harris, T. M.: Contributions to the knowledge of the British freshwater Dinoflagellata. Proc. Linnean Soc. London 152, 4–33 (1940).Google Scholar
  14. Heinrich, C. H.: Der Vitaminbedarf der Chrysophyceen Ochromonas danica nom. pro vis. Pringsheim und Ochromonas malhamensis Pringsheim. Naturwiss. 42, 418–420 (1955).Google Scholar
  15. Hofeneder, H.: Über die animalische Ernährung von Ceratium hirudinella. Arch. Protistenkde 71, 1–32 (1930).Google Scholar
  16. Hutner, S. H., and L. Provasoli: Comparative Biochemistry of Flagellates. In: Biochemistry and Physiology of Protozoa, edit. S. H. Hutner and A. Lwoff. New York 1955.Google Scholar
  17. Hutner, S. H., L. Provasoli and J. Filfus: Nutrition of some phagotrophic freshwater Chrysomonads. In: Growth of Protozoa. Ann. New York Acad. Sci. 56, 853–862 (1953).Google Scholar
  18. Klebs, G.: Über die Organisation einiger Flagellatengruppen und ihre Beziehungen zu Algen und Infusorien. Unters. Bot. Inst. Tübingen 1, 233–360 (1883).Google Scholar
  19. Flagellatenstudien. II. Z. wiss. Zool. 55, 265–351, 353–445 (1893)Google Scholar
  20. Küster, E.: Eine kultivierbare Peridinee. Arch. Protistenkde 11, 351–362 (1908).Google Scholar
  21. Lemmermann, E.: Flagellaten. 2. Paschers Süßwasserflora. Jena 1913.Google Scholar
  22. Lwoff, A.: Recherches biochimiques sur la nutrition des Protozoaires. Paris: Masson & Cie 1932.Google Scholar
  23. L’évolution physiologique, étude des pertes de fonctions chez les microorganismes. Paris: H. Hermann & Co. 1943.Google Scholar
  24. Meyer, H.: Untersuchungen über einige Flagellaten. Rev. suisse Zool. 5, 43–88 (1897).Google Scholar
  25. Pascher, A.: Flagellaten und Rhizopoden in ihren gegenseitigen Beziehungen. Arch. Protistenkde 38, 1–87 (1917).Google Scholar
  26. Eine eigenartige rhizopodiale Flagellate. Arch. Protistenkde 63, 227–240 (1928).Google Scholar
  27. Pringsheim, E. G.: On the Nutrition of Ochromonas. Quart. J. Microsc. Sci. 93, 71–96 (1952).Google Scholar
  28. II. Euglena gracilis var. saccharophila n. var., und eine vereinfachte Nährlösung zur Vitamin B12-Bestimmung. Arch. f. Mikrobiol. 21, 414–419 (1955a).Google Scholar
  29. Kleine Mitteüungen über Flagellaten und Algen. III. Über Ochromonas danica n. sp. und andere Arten der Gattung. Arch. f. Mikrobiol. 23, 181–192 (1955b).Google Scholar
  30. The genus Polytomella. J. of Protozool. 2, 137–145 (1955).Google Scholar
  31. Mikrobiologische Untersuchungen. Forschgn u. Fortschr. 30, 33–39 (1956).Google Scholar
  32. Scherffel, A.: Beitrag zur Kenntnis der Chrysomonadinen. Arch. Protistenkde 22, 299–344 (1911).Google Scholar
  33. Schilling, A. J.: Untersuchungen über die tierische Lebensweise einiger Peridineen. Ber. dtsch. bot. Ges. 9, 199–208 (1891).Google Scholar
  34. Skuja, H.: Beitrag zur Algenflora Lettlands. II. Acta Horti bot. Univ. latv. 11/12 (1939).Google Scholar
  35. Storm, J., and S. H. Hutner: Nutrition of Peranema. Ann. New York Acad. Sci. 56, 901–909 (1953).Google Scholar

Literatur

  1. Abderhalden, E., u. Y. Teruuchi: Vergleichende Untersuchungen über einige proteolytische Fermente pflanzlicher Herkunft. Z. physiol. Chem. 49, 21–25 (1906).Google Scholar
  2. Adowa, A.: Zur Frage nach den Fermenten von Utricularia vulgaris L. Biochem. Z. 150, 101–107 (1924); 153, 506–509 (1924).Google Scholar
  3. Åkerman, Å.: Untersuchungen über die Aggregation in den Tentakeln von Drosera rotundifolia. Bot. Not. (Lund) 1917, 145–192.Google Scholar
  4. Arber, A.: On the morphology of the pitcher-leaves in Heliamphora, Sarracenia, Cephalotus and Nepenthes. Ann. of Bot., N. S. 5, 563–578 (1941).Google Scholar
  5. Arisz, W. H.: [1] Absorption and transport by the tentacles of Drosera capensis. I. Active transport of asparagine in the parenchyma cells of the tentacles. Proc. Kon. Ned. Akad. v. Wetensch. 55, 2–8 (1942).Google Scholar
  6. [2] Transport of substances through the tentacles of leaves of Drosera capensis L. Nature (Lond.) 170, 932–933 (1952).Google Scholar
  7. [3] Absorption and transport by the tentacles of Drosera capensis. V. Influence on the transport of substances inhibiting enzymatic processes. Acta bot.neerl. 2, 74–106 (1953).Google Scholar
  8. Arisz, W. H., u. J. Oudman: On the influence of aggregation on the transport of asparagine and caffeine in the tentacles of Drosera capensis. Proc. Kon. Akad. v. Wetensch. 40, 3–11 (1937).Google Scholar
  9. Arnaudow, N.: [1] Ein neuer Rädertiere (Rotatoria) fangender Pilz. Flora (Jena) 116, 109–113 (1923).Google Scholar
  10. [2] Untersuchungen über Sommerstorf fia spinosa nov. gen. nov. spec. Jb. Univ. Sofia, Abt. Ia 19, H. 2 (1923).Google Scholar
  11. [3] Untersuchungen über den Tiere fangenden Pilz Zoophagus insidians. Flora (Jena) 118/119, 1–16 (1925).Google Scholar
  12. Asai, T.: Über das Vorkommen und die Bedeutung der Wurzelpilze in den Landpflanzen. Jap. J. of Bot. 7, 107–150 (1934).Google Scholar
  13. Ashida, J.: [1] Studies on the leaf movement of Aldrovanda vesiculosa L. I. Process and mechanism of the movement. Mem. Coll. Sci., Kyoto Imp. Univ. B 9, 141–244 (1934).Google Scholar
  14. [2] II. Effects of mechanical, electrical, thermal, osmotic and chemical influences. Mem. Coll. Sci., Kyoto Imp. Univ. B 11, 55–113 (1935).Google Scholar
  15. [3] III. Reaction time in relation to temperature. Bot. Mag. (Tokyo) 51, 505–513 (1937).Google Scholar
  16. Balfour, T. A. G.: Account of some experiments on Dionaea muscipula. Trans. Proc. Roy. Soc. Edinburgh 12, 334–369 (1875).Google Scholar
  17. Batalin, A.: [1] Mechanik der Bewegungen der insektenfressenden Pflanzen. Flora (Jena) 60, 33–154 (1877).Google Scholar
  18. [2] Über die Function der Epidermis in den Schläuchen von Sarracenia und Darlingtonia. Acta Hort. Petropol. 7, 345–359 (1880).Google Scholar
  19. Behre, K.: [1] Physiologische und zytologische Untersuchungen über Drosera. Planta (Berl.) 7, 208–306 (1929).Google Scholar
  20. [2] Zur Anatomie der Kannenblätter von Nepenthes ephippiata und Nepenthes tentaculata. Mitt. Inst. allg. Bot., Hamburg 8, 407–419 (1931).Google Scholar
  21. Bell, C. R.: [1] A cytotaxonomic study of Sarraceniaceae of North America. J. Elisha Mitchell Sei. Soc. 65, 137–166 (1949).Google Scholar
  22. [2] Natural hybrids in the genus Sarracenia. J. Elisha Mitchell Sci. Soc. 68, 55–80 (1952).Google Scholar
  23. Benecke, W., u. L. Jost: Pflanzenphysiologie. Jena: Gustav Fischer 1923/24.Google Scholar
  24. Bobisut, O.: Über den Functionswechsel der Spaltöffnungen in der Gleitzone der Nepenthes-Karmen. Sitzgsber. Akad. Wiss. Wien, Math.-naturwiss. K1. 119, 3–10 (1910).Google Scholar
  25. Boldyreff, E. B.: A study of the digestive secretion of Sarracenia purpurea. Mich. Acad. Sci. Arts a. Lett. 9, 55–64 (1929).Google Scholar
  26. BoNstedt, C.: In: Pareys Blumengärtnerei. Berlin: Parey 1931/32.Google Scholar
  27. Brocher, F.: [1] Le problème de l’Utriculaire. Ann. de Biol. lacustre 5, 33–46 (1911).Google Scholar
  28. [2] A propos de la capture d’anophèles par les Utriculaires. Ann. de Parasitol. 5, 46–47 (1927).Google Scholar
  29. Brown, Wm. H.: The mechanism of movement and the duration of the effect of stimulation on the leaves of Dionaea. Amer. J. Bot. 3, 68–90 (1916).Google Scholar
  30. Brown, Wm. H., and L. W. Sharp: The closing response of Dionaea. Bot. Gaz. 49, 290–302 (1910).Google Scholar
  31. Bruce, A.N.: [1] On the activity of the glands of Byblis gigantea. Notes Roy. Bot. Garden Edinburgh 16, 9–14 (1905).Google Scholar
  32. [2] On the distribution, structure and function of the tentacles of Roridula. Notes Roy. Bot. Garden Edinburgh 17, 83–98 (1907).Google Scholar
  33. Bünning, E.: In den Wäldern Nordsumatras. Bonn: Dümmler 1947.Google Scholar
  34. Büsgen, M.: [1] Die Bedeutung des Insektenfanges für Drosera rotundifolia. Bot. Ztg 41, 569–594 (1883).Google Scholar
  35. [2] Über die Art und Bedeutung des Tierfangs bei Utricularia vulgaris L. Ber. dtsch. bot. Ges. 6, 55–63 (1888).Google Scholar
  36. Burdon-Sanderson, J.: [1] Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula. Proc. Roy. Soc. Lond. 21, 495–496 (1873).Google Scholar
  37. [2] On the electromotive properties of the leaf of Dionaea in the excited and unexcited states. Phil. Trans. Roy. Soc. Lond. 178, 1–53 (1882); 179, 417–449 (1888).Google Scholar
  38. Cammerloher, H.: Die Bestäubungseinrichtungen der Blüte von Aristolochia Lindneri. Planta (Berl.) 19, 351–365 (1933).Google Scholar
  39. Camp, W. H.: A note on Sarracenia. Bull. Torrey Bot. Club 76, 10–11 (1949).Google Scholar
  40. Chacko, P. I.: The bladder-wort, Utricularia flexuosa, as competitor for fish food. Sci. a. Culture 18, 239–240 (1952).Google Scholar
  41. China, W. E., and J. C. M. Carvalho: A new ant-like myrid from Western-Australia. Ann. a. Mag. Natur. History, Ser. XII 4, 221–225 (1951).Google Scholar
  42. Christy, M.: The common teasel as a carnivorous plant. J. of Bot. 61, 33–45 (1923).Google Scholar
  43. Clautriau, G.: La digestion dans les urnes de Nepenthes, Mém. Couronnés et autres. Mém. Acad. roy. Belg. Cl. Sci. 59, 1–55 (1900).Google Scholar
  44. Coelingh, W.: [1] Aggregation-substance in the terminal glands of Drosera. Proc. Kon. Akad. v. Wetensch. 32, 973–977 (1929).Google Scholar
  45. [2] Over stoffen, die invloed uitoefenen op de aggregatie bij Drosera. Proefschrift Amsterdam, N. V. Baarn: Hollandiadrukkerij 1929.Google Scholar
  46. Cohn, F.: Über die Funktion der Blasen von Aldrovanda und Utricularia. Cohns Beitr. Biol. Pflanz. 1, 71–92 (1875).Google Scholar
  47. Colla, S.: Sui fermenti secreti da Pinguicula alpina L. Annuar. Chanousia 3, 144 (1937).Google Scholar
  48. Comandon, J., et P. de Fonbrune: Recherches expérimentales sur les champignons prédateurs de nématodes du sol. (Conditions de formation des organes de capture; les pièges garotteurs; les gluaux ou pièges collants.) C. r. Soc. Biol. Paris 3, 619–625 (1938).Google Scholar
  49. Correns, C.: Zur Physiologie von Drosera rotundifolia. Bot. Ztg 54, 21–26 (1896).Google Scholar
  50. Couch, J. N.: The formation and operation of the traps in the nematode-catching fungus, Dactylella bembicoides Drechsler. J. Elisha Mitchell Sci. Soc. 53, 301–309 (1937).Google Scholar
  51. Cramer, C.: Über die insectenfressenden Pflanzen. Lecture, Zürich 1877.Google Scholar
  52. Cyren, O.: Vegetationsbilder aus Portugal. In Karsten u. Schenk, Vegetationsbilder, 21. Reihe. Jena 1930.Google Scholar
  53. Czaja, A. Th.: [1] Die Fangvorrichtung der Utriculariablase. Z. Bot. 14, 705–729 (1922).Google Scholar
  54. [2] Reizphysiologische Untersuchungen an Aldrovanda vesiculosa L. Pflügers Arch. 206, 635–658 (1924).Google Scholar
  55. [3] Physikalisch-chemische Eigenschaften der Membran der Utricularia-blase. Pflügers Arch. 206, 554–613 (1924).Google Scholar
  56. [4] Insektivoren. In Handwörterbuch der Naturwissenschaften, 2. Aufl., Bd. 5. Jena: Gustav Fischer 1934.Google Scholar
  57. Dakin, W. J.: The West Australian pitcher plant (Cephalotus follicularis) and its physiology. J. Roy. Soc. W. Austr. 4, 37–53 (1917/18).Google Scholar
  58. Danser, B. H.: The Nepenthaceae of the Nederlands Indies. Bull. Jard. bot. Buitenzorg, Sér. III 9, 249–438 (1928).Google Scholar
  59. Darwin, Ch.: [1] Irritability of Pinguicula. Gard. Chron. II 2, 15, 19 (1874).Google Scholar
  60. [2] Insectivorous Plants. London 1875.Google Scholar
  61. Darwin, F.: [1] The process of aggregation in the tentacles of Drosera rotundifolia. Quart. J. Microsc. Sci. 16, 309–319 (1876).Google Scholar
  62. [2] Experiments on the nutrition of Drosera rotundifolia. J. Linnean Soc. Bot. 17, 17–32 (1878).Google Scholar
  63. Daumann, E.: Das Blütennektarium von Nepenthes. Beih. bot. Zbl., Abt. I 47, 1–40 (1930).Google Scholar
  64. Degener, O. u. I., u. H. Ziegenspeck (Marienapotheke Augsburg; Privatdruck): Vorkommen von Drosera anglica in Hawaii und die Samenverbreitung mancher Drosera-Arten in Hawaii und Europa. 6 S. 1956.Google Scholar
  65. Demeter, K.: Vergleichende Asclepiadeenstudien. Flora (Jena) 115, 130–176 (1922).Google Scholar
  66. Dernby, K. G.: [1] Die proteolytischen Enzyme der Pinguicula vulgaris. Biochem. Z. 80, 152–158 (1917).Google Scholar
  67. [2] Notiz betreffend die proteolytischen Enzyme der Drosera rotundifolia. Biochem. Z. 78, 197 (1917).Google Scholar
  68. Deschiens, R.: [1] Milieux de culture à rendement élevé pour la récolté des spores d’Hyphomycètes prédateurs de Nématodes. Bull. Soc. Path. exot. Paris 35, 6–8, 237–241 (1942).Google Scholar
  69. [2] Sur l’emploi des Hyphomycètes prédateurs dans la prophylaxie des infestations à nématodes des végétaux. C. r. Acad. Sci. Paris 215, 148–151 (1951).Google Scholar
  70. Diannelidis, Th.: Beitrag zur Elektrophysiologie pflanzlicher Drüsen. Phyton (Horn, N.-Oe.) 1, 7–23 (1948).Google Scholar
  71. Diannelidis, Th., u. K. Umrath: Aktionsströme der Blasen von Utricularia vulgaris. Protoplasma 42, 58–62 (1953).Google Scholar
  72. Dickson, A.: [1] The structure of the pitcher of Cephalotus follicularis. J. of Bot. 16, 1–5 (1878).Google Scholar
  73. [2] On the structure of the pitcher in the seedling of Nepenthes as compared with that of the adult plant. Proc. Roy. Soc. Edinburgh 4, 381–385 (1883).Google Scholar
  74. Diels, L.: [1] Droseraceae. In Engler, Das Pflanzenreich, Bd. IV. 112. Leipzig: Wilhelm Engelmann 1906.Google Scholar
  75. [2] Blattrhizoiden bei Drosera. Ber. dtsch. bot. Ges. 24, 189–191 (1906).Google Scholar
  76. [3] Roridulaceae. In Engler-Harms, Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 18a, S. 346–348. Leipzig: Wilhelm Engelmann 1930.Google Scholar
  77. [4] Byblidaceae. In Engler-Harms, Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 18a, S. 286–288. Leipzig: Wilhelm Engelmann 1930.Google Scholar
  78. [5] Cephalotaceae. In Engler-Harms, Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 18a, S. 71–74. Leipzig: Wilhelm Engelmann 1930.Google Scholar
  79. [6] Droseraceae. In Engler-Harms, Die natürlichen Pflanzenfamilien, Bd. 17b, S. 766–784. Leipzig: Wilhelm Engelmann 1936.Google Scholar
  80. Dollfits, R. P.: Parasites des Helminthes. Paris: Lechevalier 1946Google Scholar
  81. Doulat, E.: Recherches cytologiques sur quelques Pinguicula. C. r. Acad. Sci. Paris 225, 346–354 (1947).Google Scholar
  82. Drechsler, C.: [1] Morphological features of some fungi capturing and killing Amoebae. J. Wash. Acad. Sci. 23, 200–202 (1933).Google Scholar
  83. [2] Morphological diversity among fungi capturing and destroying nematodes. J. Wash. Acad. Sci. 23 (3), 138–141 (1933).Google Scholar
  84. [3] Some non-catenulate conidial Phycomycetes preying on terricolous Amoebae. Mycologia (N. Y.) 27, 176–205 (1935).Google Scholar
  85. [4] A new species of conidial Phycomycete preying on nematodes. Mycologia (N. Y.) 27, 206–215 (1935).Google Scholar
  86. [5] Three new Hyphomycetes preying on free-living terricolous Nematodes. Mycologia (N. Y.) 32, 448–470 (1940).Google Scholar
  87. [6] Some Hyphomycetes parasitic on free-living terricolous Nematodes. Phytopathology 31, 773–802 (1941).Google Scholar
  88. [7] Predaceous fungi. Biol. Rev. Cambridge Philos. Soc. 16, 265–290 (1941).Google Scholar
  89. [8] A new nematodecapturing Dactylella and several related hyphomycetes. Mycologia (N. Y.) 35, 339–362 (1943).Google Scholar
  90. [9] A species of Arthrobotrys that captures springtails. Mycologia (N. Y.) 36, 382–399 (1944).Google Scholar
  91. [10] Three Hyphomycetes that capture nematodes in adhesive networks. Mycologia (N. Y.) 36, 138–171 (1944).Google Scholar
  92. [11] A new Hyphomyceta parasitic on a species of nematode. Phytopathology 36, 212–217 (1946).Google Scholar
  93. [12] Three new Zoopagaceae subsisting on soil amoebae. Mycologia (N. Y.) 38, 120–143 (1946).Google Scholar
  94. [13] A species of Harposporium invading its nematode hosts from the stoma. Bull. Torrey Bot. Club 73, 557–564 (1946).Google Scholar
  95. [14] A nematode-strangling Dactylella with broad quadriseptate conidia. Mycologia (N. Y.) 39, 5–20 (1947).Google Scholar
  96. [15] A nematode-capturing fungus with anastomosing clamp-bearing hyphae. Mycologia (N. Y.) 41, 369–387 (1949).Google Scholar
  97. [16] Several species of Dactylella and Dactyleria that capture free-living nematodes. Mycologia (N. Y.) 42, 1–79 (1950).Google Scholar
  98. [17] Another nematode-strangulating Dactylella and some related Hyphomycetes. Mycologia (N. Y.) 44, 533–556 (1952).Google Scholar
  99. [18] A nematode-capturing fungus with clamp-connections and curved conidia. J. Wash. Acad. Sci. 44, 82–85 (1954).Google Scholar
  100. [19] Production of aerial arthrospores by Harposporium bysmatosporum. Bull. Torrey Bot. Club 81, 411–413 (1954).Google Scholar
  101. Dubois, R.: [1] Sur le prétendu pouvoir digestif du liquide de l’urne des Nepenthes. C. r. Acad. Sci. Paris 3, 315–317 (1890).Google Scholar
  102. [2] Absence de zymase digestive des albuminoïdes chez le Drosera longifolia. Ann. Soc. Linn, de Lyon II 45, 79–80 (1898).Google Scholar
  103. Duddington, C. L.: [1] Predacious fungi in Britain. Trans. Brit. Mycol. Soc. 29, 170 (1946).Google Scholar
  104. [2] A new predacious species of Trichothecium. Trans. Brit. Mycol. Soc. 32, 284–287 (1949).Google Scholar
  105. [3] Fungi that trap eelworms. Bull. Mushrooms Grs. Assoc. 20,191–196 (1950).Google Scholar
  106. [4] Further records of British predacious fungi. I. Trans. Brit. Mycol. Soc. 33, 209–214 (1950).Google Scholar
  107. [5] Further records of British predacious fungi. II. Trans. Brit. Mycol. Soc. 34, 194–209 (1951).Google Scholar
  108. [6] Dactylella lobata, predacious on Nematodes. Trans. Brit.Mycol. Soc. 34, 489–491 (1951).Google Scholar
  109. [7] Two new predacious Hyphomycetes. Trans. Brit. Mycol. Soc. 34, 598–603 (1951).Google Scholar
  110. [8] Nematode-destroying fungi in agricultural soils. Nature (Lond.) 173, 500–501 (1954).Google Scholar
  111. [9] Fungi that attack microscopic animals. Bot. Rev. 21, 377–439 (1955).Google Scholar
  112. [10] The friendly fungi. London: Faber and Faber, 1957, 188 S.Google Scholar
  113. Dufrénoy, J.: [1] Le rôle des vacuoles dans les cellules glandulaires des poils des plantes carnivores. Rev. Path. Végét. 15, 54–61 (1927).Google Scholar
  114. [2] Modifications cytologiques des cellules des poils de Drosera rotundifolia. C. r. Soc. Biol. Paris 97, 86–89 (1927).Google Scholar
  115. Edmondson, W. T.: Ecological studies of sessile Rotavoria. Ecol. Monogr. 14, 31–60 (1944); 15, 141–172 (1945).Google Scholar
  116. Edwards, H.: Darlingtonia californica Torrey. Proc. Calif. Acad. Sci. 6, 161–166 (1876).Google Scholar
  117. Eichler, A. W.: Über die Schlauchblätter von Cephalotus. Jb. Berl. bot. Gart. 1, 193–197 (1881).Google Scholar
  118. Faber, F. C. v.: Pflanzengeographie auf physiologischer Grundlage, 3. Aufl. (frühere: Schimper-Faber). Jena: Gustav Fischer 1935.Google Scholar
  119. Favard, A.: Evolution histologique de l’embryon de Drosera rotundifolia lors de la germination. C. r. Acad. Sci. Paris 239, 78–80 (1954).Google Scholar
  120. Fenner, C. A.: Beitrag zur Kenntnis der Anatomie, Entwicklungsgeschichte und Biologie der Laubblätter und Drüsen einiger Insectivoren. Flora (Jena) 93, 335–434 (1904).Google Scholar
  121. Fermi, C., u. Buscaglione: Die proteolytischen Enzyme im Pflanzenreich. Zbl. Bakter. II 5, 24–158 (1899).Google Scholar
  122. Fernandes, A.: Morphologia e biologia das plantas carnivoras. Anuar. Soc. Brot. 6, 14–46 (1940); 7, 16–52 (1941).Google Scholar
  123. Firbas, F.: Untersuchungen über den Wasserhaushalt der Hochmoorpflanzen. Jb. wiss. Bot. 74, 459–696 (1931).Google Scholar
  124. França, C.: Recherches sur le « Drosophyllum lusitanicum» et remarques sur les plantes carnivores. Arch, portug. Sei. biol. 1, 1–30 (1925).Google Scholar
  125. Gardiner, W.: On the changes in the gland cells of Dionaea muscipula during secretion. Proc. Roy. Soc. Lond. 36, 180–181 (1883).Google Scholar
  126. Gicklhorn, J.: Studien an Zoophagus insidians Som., einem Tiere fangenden Pilz. „Glasnik“ Kroat. Nat. Ges. 34 (2), 199–288 (1922).Google Scholar
  127. Giessler, A.: Einfluß von Salzlösungen auf die Stärkeverarbeitung bei Drosera. Flora (Jena) 23, 133–190 (1928).Google Scholar
  128. Gilburt, W. H.: Notes on the histology of pitcher plants. Quekett Microsc. J. 6, 151–164 (1881).Google Scholar
  129. Gleason, H.A.: [1] Botanical results of the Tyler-Duida-Expedition. Bull. Torrey Bot. Club 58, 257–506 (1931).Google Scholar
  130. [2] Description of Heliamphora minor. Brittonia 3, 164 (1939).Google Scholar
  131. Gleason, H. A., and E. F. Killip: Botanical results of the Tyler-Duida-Expedition. Bull. Torrey Bot. Club 58, 277–586 (1931).Google Scholar
  132. Glück, H.: [1] Biologische und morphologische Untersuchungen über Wasser- und Sumpfgewächse. Jena: Gustav Fischer 1905.Google Scholar
  133. [2] Blatt- und blütenmorphologische Studien. Jena: Gustav Fischer 1919.Google Scholar
  134. Goebel, K.: [1] Der Aufbau von Utricularia. Flora (Jena) 72, 291–297 (1889).Google Scholar
  135. [2] Morphologische und biologische Studien. V. Utricularia. Ann. Jard. bot. Buitenzorg 9, 41–119 (1891).Google Scholar
  136. [3] Pflanzenbiologische Schilderungen, Teil 2. Marburg: Elwert 1891/1893.Google Scholar
  137. [4] Zur Biologie von Genlisea. Flora (Jena) 77, 208–212 (1893).Google Scholar
  138. [5] Organographie der Pflanzen, 3. Aufl. Jena: Gustav Fischer, Teil 1 (Allgemeine Organographie) 1928; Teil 2 (Bryophyten, Pteridophyten) 1930; Teil 3 (Samenpflanzen) 1933; Erg.-Bd. (Entfaltungsbewegungen), 2. Aufl. 1924.Google Scholar
  139. Goodey, T.: Observations on the destruction of the stem eelworm Anguillina dipsaci by the fungus Arihrobotrys oligospora Fres. J. of Helminth. 16, 159–164 (1938).Google Scholar
  140. Goodnight, C. J.: Insects taken by the southern pitcher plant. Trans. Illinois State Acad. Sci. 33, 213 (1940).Google Scholar
  141. Gudgor, E. W.: The only known fish-catching plant: Utricularia. Sci. Monthly 64 (5), 369–384 (1947).Google Scholar
  142. Guenther: Die lebenden Bewohner der Kannen der insektenfressenden Pflanzen, N. destillatoria auf Ceylon. Z. wiss. Insektenbiol. 9, 123 (1913).Google Scholar
  143. Gundersen, A.: Families of Dicotyledons. Waltham, Mass., U.S.A.: Chronica Botanica Comp. 1950.Google Scholar
  144. Guttenberg, H. v.: [1] Die Bewegungsmechanik des Laubblattes von Dionaea muscipula Ell. Flora (Jena) 18/19, 165–183 (1925).Google Scholar
  145. [2] Zur Kenntnis lebender Bewegungsmechanismen. Planta (Berl.) 1, 666–678 (1926).Google Scholar
  146. Haberlandt, G.: [1] Eine botanische Tropenreise. Leipzig: Wilhelm Engelmann 1893.Google Scholar
  147. [2] Physiologische Pflanzenanatomie, 6. Aufl. Leipzig: Wilhelm Engelmann 1924.Google Scholar
  148. Hada, Y.: Ernährungsvorgänge bei Utricularia (with English abstract). Trans. Sapporo Nat. Hist. Soc. 11, 175–183 (1930).Google Scholar
  149. Hamilton, A. G.: Notes on the West Australian pitcher plant (Cephalotus follicularis Labill.). Proc. Linnean Soc. N. S. Wales 29, 36–53 (1904).Google Scholar
  150. Harms, H.: Nepenthaceae. In Engler-Harms, Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, S. 728–765. Leipzig: Wilhelm Engelmann 1936.Google Scholar
  151. Harshberger, J. W.: Notes on the Portuguese insectivorous plant, Drosophyllum lusitanicum. Proc. Amer. Philos. Soc. 64, 51–54 (1925).Google Scholar
  152. Hecht, A.: The somatic chromosomes of Sarracenia. Bull. Torrey Bot. Club 76, 7–9 (1949).Google Scholar
  153. Hegi, G.: Illustrierte Flora von Mitteleuropa. München: J. F. Lehmann 1906f.Google Scholar
  154. Hegner, R. W.: [1] The protozoa of the pitcher plant Sarracenia purpurea. Biol. Bull. Mar. Biol. Labor. Wood’s Hole 50, 271–276 (1926).Google Scholar
  155. [2] The interrelations of protozoa and the utricles of Utricularia. Biol. Bull. Mar. Biol. Labor. Wood’s Hole 50, 239–270 (1926).Google Scholar
  156. Heide, F.: Observations on the corrugated rim of Nepenthes. Bot. Tidsskr. 30, 133–147 (1910).Google Scholar
  157. Heinricher, E.: Zur Biologie von Nepenthes etc. Ann. Jard. bot. Buitenzorg, Sér. II 20, 277–298 (1906).Google Scholar
  158. Hepburn, J. S.: Biochemical studies of the pitcher liquor of Nepenthes. Proc. Amer. Philos. Soc. 57, 112–129 (1918).Google Scholar
  159. Hepburn, J. S., and E.Q. St. John: A bacteriological study of the pitcher liquor of the Sarraceniaceae. Trans. Wagner Free Inst. Sci. 11, 75–83 (1927).Google Scholar
  160. Hepburn, J. S., E.Q. St. John and F. M. Jones: Biochemical studies of insectivorous plants. Contrib. Bot. Labor. Univ. Pennsylv. 4, 419–463 (1919).Google Scholar
  161. Hepburn, J. S., and F. M. Jones: Occurrence of antiprotease in the larvae of Sarcophaga-associates of Sarracenia flava. Contrib. Bot. Labor. Univ. Pennsylv. 4, 460 (1919).Google Scholar
  162. Hepburn, J. S., F. M. Jones and E.Q. St. John: [1] The absorption of nutrients and allied phenomena in the pitchers of the Sarraceniaceae. J. Franklin Inst. 189, 147–184 (1920).Google Scholar
  163. [2] The biochemistry of the American pitcher plants. (Biochemical studies of the North American Sarraceniaceae.) Trans. Wagner Free Inst. Sci. 11, 1–95 (1927).Google Scholar
  164. Holttum, R. E.: Malayan pitcher plants. Malayan Nat. J. 1, 35–44 (1940).Google Scholar
  165. HomÈs, M.: [1] Développement des feuilles et des tentacules chez Drosera intermedia Hayne. Comportement du vacuome. Bull. Acad. roy. Belg., Cl. Sci., Sér. V 14, 70–88 (1928).Google Scholar
  166. [2] Modifications cytologiques au cours du fonctionnement des organes sécréteurs chez Drosera. I. Modifications dans les feuilles non nourries. Mém. Acad. roy. Belg., Cl. Sci., Sér. II 10, fasc. 7. 1–54 (1928).Google Scholar
  167. II. Modifications dans les feuilles nourries. Mém. Acad. roy. Belg., Cl. Sci., Sér. II 12, fasc. 1, 1–44 (1932).Google Scholar
  168. Honsell, E.: Sulle variazioni del sistema vacuolare, durante la digestione, nei peli ghiandolari degli ascidi di„ Utricularia vulgaris“ L. Ann. di Bot. 23, 513–522 (1951).Google Scholar
  169. Hooker jr., H. D.: [1] Physiological observations on Drosera rotundifolia. Bull. Torrey Bot. Club 43, 1–27 (1916).Google Scholar
  170. [2] Mechanics of movement in Drosera rotundifolia. Bull. Torrey Bot. Club 44, 389–403 (1917).Google Scholar
  171. Hovelacque, M.: Sur les propagules de Pinguicula vulgaris. C. r. Acad. Sci. Paris 106, 310 (1888).Google Scholar
  172. Hutchinson: The families of flowering plants. I. Dicotyledons. London: Macmillan 1926.Google Scholar
  173. Im Thurn, E. F., and D. Oliver: The botany of the Roraima Expedition of 1884. Trans. Linnean Soc. Lond. II 2, 249–300 (1887).Google Scholar
  174. Janson, E.: Studien über die Aggregationserscheinungen in den Tentakeln von Drosera. Beih. bot. Zbl., Abt. I 37, 154–184 (1920).Google Scholar
  175. Jensen, H.: Nepenthes-Tiere. II. Biologische Notizen. Ann. Jard. Buitenzorg, Suppl. 3, 941–946 (1910).Google Scholar
  176. Jones, F. M.: [1] Pitcher plants and their moths. Natur. History 21, 296–316 (1921).Google Scholar
  177. [2] The most wonderful plant in the world. Natur. History 23, 589–596 (1923).Google Scholar
  178. [3] Pitcher plants and their insect associates. In: M. V. Walcott, Illustrations of North American pitcher plants. Smith. Inst. Wash. 1935, 25–34.Google Scholar
  179. Kalela, E.: Über Land- und Wasserform bei Drosera. Mem. Soc. Fauna et Flora fenn. 29, 80–98 (1954).Google Scholar
  180. Kandler, K., u. H. Schmideder: Untersuchungen über die Geschwindigkeit der Fibrinverdauung. Z. Bot. 40, 317–326 (1952).Google Scholar
  181. Karling, John S.: Sommerstorffia spinosa Arnaudow. Mycologia (N. Y.) 44, 387–412 (1952).Google Scholar
  182. Kelley, A. P.: Mycotrophy in Plants. Waltham, Mass., U.S.A.: Chronica Botanica Comp. 1950.Google Scholar
  183. Kiesel, A.: Ètudes sur la nutrition de l’Utricularia vulgaris. Ann. Inst. Pasteur 38, 879–891 (1924).Google Scholar
  184. Kirchheimer, F.: Über ein Vorkommen der Gattung Aldrovanda im Alttertiär Thüringens. Braunkohle 40, 308–311 (1941).Google Scholar
  185. Knoll, F.: [1] Über die Ursache des Ausgleitens der Insektenbeine an wachsbedeckten Pflanzentheilen. Jb. wiss. Bot. 54, 448–497 (1914).Google Scholar
  186. [2] Insekten und Blumen, H. 3. Abh. zool. bot. Ges. Wien 12, 377–646 (1926).Google Scholar
  187. [3] Die Gleitfalle als Blumentypus. Verh. zool. bot. Ges. Wien 79, (9)–(12) (1929).Google Scholar
  188. Kny, L., u. A. Zimmermann: Die Bedeutung der Spiralzellen von Nepenthes. Ber. dtsch. bot. Ges. 3, 123–128 (1885).Google Scholar
  189. Konopka, K.: Die Rolle des Kerns bei Verdauung, Sekretion und Reizbewegung der Drosera rotundifolia. Sehr. Königsberg, gelehrte Ges., Naturwiss. Kl. 7 (2), 13–112 (1930).Google Scholar
  190. Konopka, K., u. H. Ziegenspeck: Der Kern des Droseratentakels und die Fermentbildung. Protoplasma 7, 62–71 (1929).Google Scholar
  191. Kostytschew, S.: Die Photosynthese der Insektivoren. Ber. dtsch. bot. Ges. 41, 277–280 (1923).Google Scholar
  192. Krafft, S.: Beiträge zur Kenntnis der Sarraceniaceen-Gattung Heliamphora. Diss. München 1896.Google Scholar
  193. Krück, M.: Physiologische und zytologische Studien über die Utriculariablsbse. Bot. Archiv 33, 257–309 (1931).Google Scholar
  194. Lam, H. J.: Vegetationsbilder aus dem Innern von Neu-Guinea. In Karsten u. Schenck, Vegetationsbilder, 15. Reihe. Jena: Gustav Fischer 1924.Google Scholar
  195. Lang, F. X.: Untersuchungen über Morphologie, Anatomie und Samenentwicklung von Polypompholyx und Byblis. Flora (Jena) 88, 149–206 (1901).Google Scholar
  196. LinderstrøM-Lang, K., u. H. Holter: Enzymatische Histochemie. Erg. Enzymforsch. 3, 309–334 (1934).Google Scholar
  197. Lloyd, F. E.: [1] The range of structural and functional variation in the traps of Utricularia. Flora (Jena) 25, 260–276 (1931).Google Scholar
  198. [2] The carnivorous plants — a review with contributions. (Presidential address.) Trans. Roy. Soc. Canada 3, 27, 1–67 (1933).Google Scholar
  199. [3] Is Roridula a carnivorous plant? Canad. J. Res. 10, 780–786 (1934).Google Scholar
  200. [4] Struktur und Funktion des Eintrittsmechanismus bei Utricularia. Beih. bot. Zbl. A 54, 292–320 (1935).Google Scholar
  201. [5] Utricularia: its development from the seed. J. S. Afric. Bot. 3, 155–164 (1937).Google Scholar
  202. [6] The Carnivorous Plants. Waltham, Mass., USA.: Chronica Botanica Comp. 1942.Google Scholar
  203. Lloyd, F. E., and G. Taylor: Some new species of Utricularia. Contr. Gray. Herb. 165, 82–90 (1947).Google Scholar
  204. Löve, A., u. D. Löve: Some new chromosome numbers of Scandinavian plants. Ark. Bot. (Stockh.) A 31, 1–22 (1944).Google Scholar
  205. Loew, O., and R. Aso: Benzoesäure in Pinguicula vulgaris. Bull. Agrieult. Coll. Tokyo Imp. Univ. 7, 411–412 (1907).Google Scholar
  206. Ludwig, M.: Molinia coerulea als Fliegenfängerin. Bot. Zbl. 8, 87 (1881).Google Scholar
  207. Luetzelburg, P. v.: Beiträge zur Kenntnis der Utricularia. Flora (Jena) 100, 145–212 (1910).Google Scholar
  208. MacDougal, D. T.: Symbiotic saprophytism. Ann. of Bot. 13, 1–47 (1899).Google Scholar
  209. Macfarlane, J. M.: [1] Contributions to the history of Dionaea muscipula. Contrib. Bot. Labor. Pennsylv. 1, 7–44 (1892).Google Scholar
  210. [2] Observations on some pitchered insectivorous plants. I. Ann. of Bot. 3, 253–266 (1889).Google Scholar
  211. II. Ann. of Bot. 7, 403–458 (1893).Google Scholar
  212. [3] Sarraceniaceae. In Engler, Das Pflanzenreich, Bd. IV, 110, S. 1–39. Leipzig: Wilhelm Engelmann 1908.Google Scholar
  213. [4] Nepenthaceae. In Engler, Das Pflanzenreich, Bd. IV, 111, S. 1–92. Leipzig: Wilhelm Engelmann 1908.Google Scholar
  214. Markgraf, F.: Über Laubblatt-Homologien und verwandtschaftliche Zusammenhänge bei Sarraceniales. Planta (Berl.) 46, 414–446 (1955).Google Scholar
  215. Marloth, R.: [1] Some recent observations on the biology of Roridula. Ann. of Bot. 17, 151–159 (1903).Google Scholar
  216. [2] Further observations on the biology of Roridula. Trans. Roy. Soc. S. Afric. II 1, 59–62 (1910).Google Scholar
  217. [3] Flora South Africa, Bd. II/1. 1925.Google Scholar
  218. Matheson, R.: The utilization of aquatic plants as aids in mosquito control. Amer. Naturalist 64, 56–86 (1930).Google Scholar
  219. McIntre, W. G., and M. A. Chrysler: The morphological nature of the photosynthetic organs of Orchyllium Endresii as indicated by their vascular structure. Bull. Torrey Bot. Club 70, 252–260 (1943).Google Scholar
  220. McLean, R. C.: The anaerobic treatment of wounds in life and its maintenance. New York 1919.Google Scholar
  221. Mellichamp, J. H.: Notes on Sarracenia variolaris. Proc. Amer. Assoc. Adv. Sci., 23. Meeting, B, S. 113–133. 1875.Google Scholar
  222. Menzel, R.: Beiträge zur Kenntnis der Mikroflora vom Niederländischen Ost-Indien. II. Über den tierischen Inhalt der Kannen von N. melamphora Reinw. mit besonderer Berücksichtigung der Nematoden. Treubia 3, 116–126 (1923).Google Scholar
  223. Merl, E. M.: [1].Genliseen. Flora (Jena) 108, 127–200 (1915).Google Scholar
  224. [2] Biologische Studien über die Utriculariablase. Flora (Jena) 115, 59–74 (1922).Google Scholar
  225. [3] A new brazilian species of the genus Utricularia. Bull. Torrey Bot. Club 61, 367–371 (1934).Google Scholar
  226. Metcalfe, C. R., and L. Chalk: Anatomy of the Dicotyledons. Oxford: Clarendon Press 1950.Google Scholar
  227. Meyer, A., u. A. Dewèvre: Über Drosophyllum lusitanicum. Bot. Zbl. 60, 33–41 (1894).Google Scholar
  228. Mirande, R.: Zoophagus insidians Sommerstorff, capteur de Rotifères vivants. Bull. Soc. mycol. France 36, 47–53 (1920).Google Scholar
  229. Mirimanoff, A.: [1] Aggrégation protoplasmique et contraction vacuolaire chez Pinguicula vulgaris L. Bull. Soc. bot. Genève Sér. II 29, 1–15 (1938).Google Scholar
  230. [2] Remarques sur la secretion des tentacules de Drosera. Protoplasma (Berl.) 33, 211–214 (1939).Google Scholar
  231. Morrissey, S.: Chloride ions in the secretion of pitcher plants. Nature (Lond.) 176, (4495), 1220–1221 (1955).Google Scholar
  232. Moulaert, B.: La régénération asexuelle chez Drosera. Bull. Soc. roy. bot. Belg. 19, 154 (1937).Google Scholar
  233. Müller-Stoll, W. R.: Der Einfluß der Ernährung auf die Xeromorphie der Hochmoorpflanzen. Planta (Berl.) 35, 225–251 (1947).Google Scholar
  234. Münk, H.: Die electrischen und Bewegungserscheinungen am Blatte der Dionaea muscipula. Arch. f. Anat., Physiol, u. wiss. Med. 1876, 30–203.Google Scholar
  235. Neger, F. W.: Biologie der Pflanzen. Stuttgart: Ferdinand Enke 1913.Google Scholar
  236. Nicolosi-Roncati, F.: Contributo alla conoscenza citofisiologica delle glandule vegetali. Bull. Soc. bot. Ital. 1912, 186–193.Google Scholar
  237. Nold, R. H.: Die Funktion der Blase von Utricularia vulgaris. (Ein Beitrag zur Elektrophysiologie der Drüsenfunktion.) Beih. bot. Zbl. 52, 415–448 (1934).Google Scholar
  238. Okahara, K.: [1] Physiological studies on Drosera. I. On the proteolytic enzyme of Drosera rotundifolia. Sci. Rep. Tohoku Imp. Univ., Ser. IV Biol. 5, 573–590 (1930).Google Scholar
  239. [2] Physiological studies on Drosera. III. The effect of various acids on the digestion of protein by pepsin. Sci. Rep. Tohoku Imp. Univ. 6, 573–595 (1931).Google Scholar
  240. [3] On the rôle of microorganisms in the digestion of insect bodies in insectivorous plants. Bot. Mag. Tokyo 46, 353–357 (1932).Google Scholar
  241. [4] Physiological studies on Drosera. IV. On the function of microorganisms in the digestion of insect bodies by insectivorous plants. Sci. Rep. Tohoku Imp. Univ., Ser. IV Biol. 8, 151–168 (1933).Google Scholar
  242. Olivet, R., et A. Mirimanoff: Pinguicula vulgaris L. est-elle une plante carnivore? Bull. Soc. bot. Genève, Sér. II 30, 230–235 (1940).Google Scholar
  243. Oosterhuis, J.: Over de invloed van insectenvoeding op Drosera. Diss. Groningen 1927.Google Scholar
  244. Oudman, J.: [1] Nährstoffaufnahme und Transport durch die Blätter von Drosera capensis L. Proc. Kon. Akad. v. Wetensch. 38, 650–662 (1935).Google Scholar
  245. [2] Über Aufnahme und Transport N-haltiger Verbindungen durch die Blätter von Drosera capensis L. Ree. Trav. bot. néerl. 33, 351–433 (1936).Google Scholar
  246. Oye, P. van: Zur Biologie der Kanne von Nepenthes melamphora. Biol. Zbl. 41, 529–534 (1921).Google Scholar
  247. Peyronel, B.: Assenza di micorize nelle piante insettivore. Atti d. 4. Congr. Naz. d. Microbiol. Mil. 84–87. 1932.Google Scholar
  248. Pfeffer, W.: [1] Über fleischfressende Pflanzen und über die Ernährung durch Aufnahme organischer Stoffe überhaupt. Landw. Jb. 6, 969–998 (1877).Google Scholar
  249. [2] Pflanzenphysiologie, Bd. 1. Leipzig: Wilhelm Engelmann 1881.Google Scholar
  250. [3] Zur Kenntnis der Contactreize. Unters, bot. Inst. Univ. Tübingen 1, 483–535 (1885)Google Scholar
  251. Philip, C.B.: Notes on tabanid flies and other victims by Sarracenia flava. Florida Ent. 35, 151–155 (1952).Google Scholar
  252. Quintanilha, A.: [1] Estudo citofisiologico da digestäo no Drosophila lusitanica. Bot. Soc. Brot. Coimbra, Ser. II 4, 44–105 (1926).Google Scholar
  253. [2] O problema das plantas carnívoras. Diss. Coimbra 1926. Extr. Bot. Soc. Brot. Coimbra 4, 44–129 (1927).Google Scholar
  254. Richards, P. W.: The Tropical Rain Forest. Cambridge: University Press 1952.Google Scholar
  255. Ridley, H. N.: The dispersal of plants throughout the world. Kent: Reeve & Co. 1930.Google Scholar
  256. Robinson, W. J.: A study of the digestive power of American Sarraceniaceae. Torreya 8, 181–194 (1908).Google Scholar
  257. Rosenberg, O.: Physiologische und zytologische Untersuchungen über Drosera rotundifolia. Upsala 1899.Google Scholar
  258. Roth, I.: [1] Zur Entwicklungsgeschichte und Histogenese der Schlauchblätter von Nepenthes. Planta (Berl.) 42, 177–208 (1953).Google Scholar
  259. [2] Entwicklungsgeschichtliche und histogenetische Studien an Sarracenia-Schlauchblättern. Planta (Berl.) 43, 133–162 (1953).Google Scholar
  260. [3] Entwicklung und histogenetischer Vergleich der Nektar- und Verdauungsdrüsen von Nepenthes. Planta (Berl.) 43, 361–378 (1954).Google Scholar
  261. Rychnovská-SoUdková, M.: Studien über die mineralische Ernährung von Drosera rotundifolia. II. Die Aufnahme von anorganischem Stickstoff durch die Wurzeln. [Tschechisch.] Preslia (Praha) 26, 55–66 (1954).Google Scholar
  262. Schimper, A. F. W.: Notizen über insektenfressende Pflanzen. Bot. Ztg 40, 225–234; 241–248 (1882).Google Scholar
  263. Schmid, G.: Beiträge zur Ökologie der insektivoren Pflanzen. Flora (Jena) 104, 335–383 (1912).Google Scholar
  264. Schmucker, Th.: Physiologische und ökologische Untersuchungen an Blüten tropischer Nymphaea-Arten. Planta (Berl.) 16, 376–412 (1932).Google Scholar
  265. Scutch, A. F.: The capture of prey by the bladderwort. A review of physiology of the bladders. New Phytologist 27, 261–297 (1928).Google Scholar
  266. Segestrale, C.: En Utricularia, som förtär fisklarver. Mem. Soc. Fauna et Flora fenn. 5, 68–70 (1930).Google Scholar
  267. Small, H.: Intimate camera studies of flowers and plants. Gard. Chron. 105, 178 (1939).Google Scholar
  268. Smith, C. M.: Development of Dionaea muscipula. I. Flower and seed. Bot. Gaz. 87, 507–530 (1929).Google Scholar
  269. II. Germination of seed and development of seedling to maturity. Bot. Gaz. 91, 377–394 (1931).Google Scholar
  270. Solereder, H.: Systematische Anatomie der Dikotyledonen. Stuttgart: Ferdinand Enke 1899 und Erg.-Bd. Stuttgart: Ferdinand Enke 1908.Google Scholar
  271. Solms-Laubach, H. Graf zu: (In einem Referat). Bot. Ztg 65 (II), 2–11 (1907).Google Scholar
  272. Sommerstorff, H.: Ein Tiere fangender Pilz (Zoophagus insidians nov. gen., nov. spec.). Österr. bot. Z. 61, 361–373 (1911)Google Scholar
  273. Sparrow jr., F. K.: A note on the occurrence of two rotifer-capturing Phycomycetes. Mycologia (N. Y.) 21 (2), 90–96 (1929).Google Scholar
  274. Sporunow, F. F., and Z. A. Galiulina: Predaceous hyphomycetes from turkmenistan soil. [Orig.-Titel engl, übers.] Microbiology 20, 489–499 (1951).Google Scholar
  275. Spruce, R.: On Anomoclada a new genus of Hepaticae. J. of Bot. 1876, 129–230.Google Scholar
  276. Stahl, E.: Der Sinn der Mycorrhizenbildung. Jb. wiss. Bot. 34, 539–668 (1900)Google Scholar
  277. Stern, K.: Beiträge zur Kenntnis der Nepenthaceen. Flora (Jena) 9, 213–282 (1917).Google Scholar
  278. Stern, K. G., u. E. Stern: Über die Proteinasen insektivorer Pflanzen. Biochem. Z. 252, 81–96 (1932).Google Scholar
  279. Stuhlmann, O.: [1] A physical analysis of the opening and closing movements of the lobes of Venus’s flytrap. Bull. Torrey Bot. Club 75, 22–44 (1948).Google Scholar
  280. [2] An analysis of the bioelectric action potentials produced in the lobes of Venus’s flytrap by mechanical stimulation. Bull. Amer. Phys. Soc. 26, 13 (1951).Google Scholar
  281. Stuhlmann, O., and E. B. Darden: The action potentials obtained from Venus’s flytrap. Science (Lancaster, Pa.) 111, 491–492 (1950).Google Scholar
  282. Stutzer, M. J.: Zur Biologie der Utricularia vulgaris. Arch, f. Hydrobiol. 17, 730–735 (1926).Google Scholar
  283. Tate, L.: Insectivorous Plants. Nature (Lond.) 12, 251–252 (1875).Google Scholar
  284. Thienemann, A.: Die Tierwelt der Nepenthes-Kannen. Arch. f. Hydrobiol., Suppl. 11, Tropische Binnengewässer 3, 1–54 (1932).Google Scholar
  285. Thomas, S. B., and J. Mc Quillin: Ropy milk organism isolated from insectivorous plants. Dairy Indust. 18, 40–42 (1953).Google Scholar
  286. Tischutkin, N.: Die Rolle der Bacterien bei der Veränderung der Eiweißstoffe auf den Blättern von Pinguicula. Ber. dtsch. bot. Ges. 7, 346–355 (1889).Google Scholar
  287. Trapp, A.: Zur Morphologie und Entwicklungsgeschichte der Staubblätter sympetaler Blüten. Botanische Studien, H. 5. Jena: Gustav Fischer 1956.Google Scholar
  288. Treat, M.: [1] Plants that eat animals. Gardener’s Chronicle 1875, 303–304.Google Scholar
  289. [2] Is the valve of Utricularia sensitive ? Harper’s New Monthly Mag. 52, 382–387 (1876).Google Scholar
  290. Troll, W.: [1] Morphologie der schildförmigen Blätter. Planta (Berl.) 17, 153–314 (1932).Google Scholar
  291. [2] Vergleichende Morphologie der Pflanzen, Bd. I. 1. u. 2. Vegetationsorgane. Berlin: Gebrüder Bornträger 1937 u. 1939.Google Scholar
  292. Troll, W., u. H. Dietz: Morphologische und histogenetische Untersuchungen an Utricularia-Arten. Österr. bot. Z. 101, 165–207 (1954).Google Scholar
  293. Tuomikoski, R.: Die Ökologie von Pinguicula villosa. [Finnisch.] Luonnon Tutkija 56 (2), 62–63 (1952).Google Scholar
  294. Umrath, K.: [1] Über das Refraktärstadium bei höheren Pflanzen. Jb. wiss. Bot. 81, 448–463 (1935).Google Scholar
  295. [2] Über Pinguicula vulgaris, insbesondere über ihre durch Beute bedingten Aktionsströme. Planta (Berl.) 34, 88–93 (1944).Google Scholar
  296. Uphof, J. C. Th.: [1] Vegetationsbilder der östlichen Staaten von Nordamerika. In Karsten u. Schenck, Vegetationsbilder, Bd. 21. Jena: Gustav Fischer 1930.Google Scholar
  297. [2] Sarraceniaceae. Die Pflanzenareale, Bd. III, 1, S. 1–3. Jena: Gustav Fischer 1931.Google Scholar
  298. [3] Einiges zur Biologie der terrestrischen Utricularien. Österr. bot. Z. 82, 207–212 (1933).Google Scholar
  299. [4] Sarraceniaceae. In Engler-Harms, Die natürlichen Pflanzenfamilien, 2. Aufl., Bd. 17b, S. 704–727. Leipzig: Wilhelm Engelmann 1936.Google Scholar
  300. Vickery, J. W.: Vegetative reproduction in Drosera peltata and D. auriculata. Proc. Linnean Soc. N. S. Wales 58, 245–269 (1933).Google Scholar
  301. Vines, S. H.: [1] On the digestive ferment of Nepenthes. J. Linnean Soc. 15, 427–431 (1877).Google Scholar
  302. [2] The proteolytic enzyme of Nepenthes. I. Ann. of Bot. 11, 563–584 (1897).Google Scholar
  303. II. Ann. of Bot. 12, 545–555 (1898).Google Scholar
  304. III. Ann. of Bot. 15, 563–573 (1901).Google Scholar
  305. Voelker, A.: On the chemical composition of the fluid in the ascidia of Nepenthes. Ann. Mag. Nat. Hist. II 4, 128–136 (1849).Google Scholar
  306. Vogel, H.: Blütenbiologische Typen als Elemente der Sippengliederung. Botanische Studien, H. 1. Jena: Gustav Fischer 1954.Google Scholar
  307. Vries, H. de: Über die Aggregation im Protoplasma von Drosera rotundifolia. Bot. Ztg 44, 1–57 (1886).Google Scholar
  308. Wagner, A.: Die fleischfressenden Pflanzen. Leipzig: J. B. Teubner 1911.Google Scholar
  309. Warming, E.: [1] Bidrag til Kundskaben om Lentibulariaceae. Vidensk. Medd. nat. Foren. (Copenh.) 1874, Nr 3–7, 33–58.Google Scholar
  310. [2] Contribution à la connaissance des Lentibulariaceae. I. Genliseaornata Mart.Google Scholar
  311. II. Germination des graines de l’Utricularia vulgaris. Vidensk. Medd. nat. Foren. (Copenh.) 1874, 33–58.Google Scholar
  312. Weber, C. A.: Über die Vegetation und Entstehung des Hochmoors von Augstumal. Berlin: Parey 1902.Google Scholar
  313. Weber, Fr.: [1] Notizen über den Drosera-Tentakel-Schleim. Protoplasma 31, 289–292 (1938).Google Scholar
  314. [2] Vitamin C-Gehalt gefütterter Drosera-Blätter. Ber. dtsch. bot. Ges. 58, 370–373 (1940).Google Scholar
  315. [3] Der Vitamingehalt der Pflanzen. Forschungsdienst (Sonderh.) 16, 300–303 (1942).Google Scholar
  316. Wehmer, C.: Die Pflanzenstoffe, 2. Aufl. Jena: Gustav Fischer 1929/1931.Google Scholar
  317. Wettstein, F. v.: Warum hat der diploide Zustand bei den Organismen den größeren Selektionswert? Naturwiss. 31, 574–577 (1943).Google Scholar
  318. Wettstein, R.: Handbuch der Systematischen Botanik, 4. Aufl. Leipzig: Franz Deuticke 1935.Google Scholar
  319. Weyland, H.: Zur Ernährungsphysiologie mykotropher Pflanzen. Jb. wiss. Bot. 51, 1–80 (1912).Google Scholar
  320. Wherry, E. T.: [1] Acidity relations of the Sarracenias. J. Wash. Acad. Sci. 19, 379–390 (1929).Google Scholar
  321. [2] Distribution of the North American pitcher plants. Walcott 1–23. 1935.Google Scholar
  322. Wijewantha, R. T.: Some preliminary observations on the genus Nepenthes in Ceylon. Ceylon J. Sci., Sect. A Bot. 12, 245–247 (1952).Google Scholar
  323. Willkomm, M.: Grundzüge der Pflanzenverbreitung auf der iberischen Halbinsel. In Vegetation der Erde, Bd. 1. Leipzig: Wilhelm Engelmann 1896.Google Scholar
  324. Winkler, H.: Anmerkung zu einem Aufsatz von Danser. Mitt. Inst. allg. Bot., Hamburg 7, 221 (1931).Google Scholar
  325. Wollny, E.: Die Zersetzung der organischen Stoffe und die Humusbildung. Heidelberg 1897.Google Scholar
  326. Zeeuw, J. de: Versuche über die Verdauung in Nepentheskannen. Biochem. Z. 269, 187–195 (1934).Google Scholar
  327. Ziegenspeck, H. (Marienapotheke Augsburg; Privatdruck): [1] Die Farbanlockung der Drosera-Arten und von Drosophyllum. 10 S., 1956.Google Scholar
  328. [2] Die lipoide Oberfläche der Samen der Juncus-Arten und die lipoide Oberfläche der Vogelfedern. 13 S., 1957.Google Scholar
  329. Zopf, W.: Zur Kenntnis der Infectionskrankheiten niederer Thiere und Pflanzen. Nova Acta Leop.-Carol. Akad. Naturforsch. 52, 315–375 (1888).Google Scholar

Literatur

  1. Allison, F. E., and S. R. Hoover: An accessory factor for legume nodule bacteria. J. Bacter. 27, 561–581 (1934).Google Scholar
  2. Bachmann, Barbara J.: Studies on Cytophaga fermentans n. sp., a facultatively anaerobic lower myxobacterium. J. Gen. Microbiol. 13, 541–551 (1955).PubMedGoogle Scholar
  3. Bachrach, V.: The aerobic breakdown of uric acid by certain Pseudomonads. J. Gen. Microbiol. 17, 1–11 (1957).PubMedGoogle Scholar
  4. Baker, H., S. H. Hutner and H. Sobotka: Nutritional factors in thermophily: A comparative study of bacilli and Euglena. Ann. New York Acad. Sci. 62, art. 15, 349–376 (1955).Google Scholar
  5. Baker, H., H. Sobotka and S. H. Hutner: Growth requirements of some thermophilic and mesophilic bacilli. J. Gen. Microbiol. 9, 485–493 (1953).PubMedGoogle Scholar
  6. Barker, H. A., and W. H. Peterson: The nutritional requirements of Clostridium acidi-urici. J. Bacter. 47, 307–308 (1944).Google Scholar
  7. Beerstecher jr., E.: Petroleum Microbiology. Houston und New York: Elsevier Press Inc. 1954.Google Scholar
  8. Bhaskaran, K., and D. Rowley: Nutritional studies on Vibrio cholerae. J. Gen. Microbiol. 15, 417–422 (1956).PubMedGoogle Scholar
  9. Bornstein, B. T., and H. A. Barker: The nutrition of Clostridium kluyveri. J. Bacter. 55, 223–230 (1948).Google Scholar
  10. Bortels, H.: Weitere Untersuchungen über die Bedeutung von Molybdän, Vanadium, Wolfram und anderen Erdaschenstoffen für stickstoffbindende und andere Mikroorganismen. Zbl. Bakter. II 95, 193–218 (1936).Google Scholar
  11. Über die Bedeutung des Molybdäns für stickstoffbindende Nostocaceen. Arch. Mikrobiol. 11, 155–186 (1940).Google Scholar
  12. Braun, H., u. C. E. Cahn-Bronner: Über die synthetischen Fähigkeiten pathogener Bakterien und ihr biologisches Verhalten unter einfachen Ernährungsbedingungen. 3. Mitt. Die Bedeutung des Stoffwechsels für die Entbehrlichkeit oder Unentbehrlichkeit des Sauerstoffs. Zbl. Bakter. I Orig. 86, 380–392 (1921).Google Scholar
  13. Bredemann, G.: Bacillus amylobacter A. M. et Bredem. in morphologischer, physiologischer und systematischer Beziehung. Zbl. Bakter. II 23, 385–568 (1909).Google Scholar
  14. Breed, R. S., E. G. D. Murray and N. R. Smith: Bergeys Manual of determinative Bacteriology. Baltimore: Williams & Wilkins Company 1957.Google Scholar
  15. Brown, G. D., and C. Rainbow: Nutritional pattern in acetic acid bacteria. J. Gen. Microbiol. 15, 61–69 (1956).PubMedGoogle Scholar
  16. Burrows, W.: The nutritive requirements of the Salmonellas. III. The typhoid bacillus: carbon source and amino acid requirements. J. Inf. Dis. 70, 126–130 (1942).Google Scholar
  17. Campbell jr., L. L.: Reductive degradation of pyrimidines. I. The isolation and characterization of a uracil fermenting bacterium (Clostridium uracilicum nov. spec.). J. Bacter. 73, 220–224 (1957).Google Scholar
  18. Campbell jr., L. L., and H. A. Frank: Nutritional requirements of some putrefactive anaerobic bacteria. J. Bacter. 71, 267–269 (1956).Google Scholar
  19. Chaussinand, R.: La Lépre, 2. Aufl. Expansion Scientif. Française (ohne Ortsangabe) 1955.Google Scholar
  20. Cochrane, V. W., and J.-E. Conn: The growth and pigmentation of Actinomyces coelicolor as affected by cultural conditions. J. Bacter. 54, 213–218 (1947).Google Scholar
  21. Corum, J. C., W. M. Stark, G. M. Wild and L. Bird jr.: Biochemical changes in a chemically defined medium by submerged cultures of Streptomyces erythreus. Appl. Microbiol. 2, 326–329 (1954).PubMedGoogle Scholar
  22. Dalby, A., and E. Holdsworth: Growth factors for Corynebacterium diphtheriae strain Dundee. J. Gen. Microbiol. 15, 335–344 (1956).PubMedGoogle Scholar
  23. Dooren de Jong, L. E. den: Bijdrage tot de Kennis van het Mineralisatieproces. Thesis Rotterdam, Nijgh and van Ditmar 1926.Google Scholar
  24. Über protaminophage Bakterien. Zbl. Bakter. II 71, 193–232 (1927).Google Scholar
  25. Doudoroff, M.: Studies on the luminous bacteria I. Nutritional requirements of some species with special reference to methionine. J. Bacter. 44, 451–460 (1942).Google Scholar
  26. Dubos, R., and O. T. Avery: Decomposition of the capsular polysaccharide of Pneumococcus type III by a bacterial enzyme. J. of Exper. Med. 54, 51–71 (1931).Google Scholar
  27. Fildes, P.: The growth of Proteus on ammonium lactate plus nicotinic acid. Brit. J. Exper. Path. 19, 239–244 (1938).Google Scholar
  28. Fischer, A.: Vorlesungen über Bakterien. Jena: Gustav Fischer 1903.Google Scholar
  29. Fischer, G.: Untersuchungen über den biologischen Abbau des Lignins durch Mikroorganismen. Arch. Mikrobiol. 18, 397–424 (1953).PubMedGoogle Scholar
  30. Fuchs, Anna-Riitta, and G. J. Bonde: The nutritional requirements of Clostridium perfringens. J. Gen. Microbiol. 16, 317–329 (1957a).PubMedGoogle Scholar
  31. The availability of sulphur for Clostridium perfringens and an examination of hydrogen sulphide production. J. Gen. Microbiol. 16, 330–340 (1957b).Google Scholar
  32. Ganter, Ilse, u. W. Schwartz: Beiträge zur Biologie der Eisenmikroben. II. Leptothrix crassa Chol. Schweiz. Z. Hydrol. 18, 171–192 (1956).Google Scholar
  33. Glinka-Tschernorutzky, E.: Über den Stickstoffumsatz bei Bac. mycoides. VI. Mitt.: Über Ausnutzung verschiedener Stickstoffquellen durch den Bac. mycoides. Biochem. Z. 263, 144–148 (1933).Google Scholar
  34. Griffin, P. J., and E. Racker: The carbon dioxide requirement of Neisseria gonorrhoeae. J. Bacter. 71, 717–721 (1956).Google Scholar
  35. Haccius, B., u. O. Helfrich: Untersuchungen zur mikrobiellen Benzoloxydation. II. Beschreibung und systematische Stellung benzolabbauernder Mikroorganismen. Arch. Mikrobiol. 28, 394–403 (1958).PubMedGoogle Scholar
  36. Heigener, H.: Verwertung von Aminosäuren als gemeinsame C- und N- Quelle durch bekannte Bodenbakterien nebst botanischer Beschreibung neu isolierter Betaïn- und Valin-Abbauer. Zbl. Bakter. II 93, 81–113 (1935/36).Google Scholar
  37. Hofer, A. W.: A characterization of Bact. radiobacter (Beij. and v. Delden) Löhnis. J. Bacter. 41, 192–224 (1941).Google Scholar
  38. Howell jr., A., and L. Pine: Studies on the growth of species of Actinomyces. I. Cultivation in a synthetic medium with starch. J. Bacter. 71, 47–53 (1956).Google Scholar
  39. Isenberg, H. D., A. Schatz, A. A. Angrist, Vivian Schatz and G. S. Trelawny: Microbial metabolism of carbamates. II. Nitrification of urethan by Streptomyces nitrificans. J. Bacter. 68, 5–9 (1954).Google Scholar
  40. Jebb, W. H. H., and A. H. Tomlinson: The minimal amino acid requirements of Haemophilus pertussis. J. Gen. Microbiol. 17, 59–63 (1957).PubMedGoogle Scholar
  41. Jensen, E. M., and H. W. Seeley: The nutrition and physiology of the genus Pediococcus. J. Bacter. 67, 484–488 (1954).Google Scholar
  42. Jones, L. W., and J. E. Greaves: Azotobacter chroococcum and its relationship to accessory growth factors. Soil Sci. 55, 393–404 (1943).Google Scholar
  43. Kihara, H., Oleta A. Klatt and E. E. Snell: Peptides and bacterial growth. III. Utilization of tyrosine and tyrosine peptides by Streptococcus faecalis. J. of Biol. Chem. 197, 801–807 (1952).Google Scholar
  44. Kistner, A.: Conditions determining the oxidation of carbon monoxide and of hydrogen by Hydrogenomonas Carboxydo vorans. Proc. Kon. Ned. Akad. v. Wetensch., Ser. C 57 186–195 (1954).Google Scholar
  45. Knight, B. C. J. G.: Bacterial nutrition. Material for a comparative physiology of bacteria. Med. Res. Council (Brit.), Spec. Rep., ser. 210, London 1936.Google Scholar
  46. Knight, B. C. J. G., and H. Proom: A comparative survey of the nutrition and physiology of mesophilic species in the genus Bacillus. J. Gen. Microbiol. 4, 508–538 (1950).PubMedGoogle Scholar
  47. Kupletskaia, M. B.: Influence de l’acide carbonique sur le développement de certaines bactéries hétérotrophiques. Trudy Inst. Microbiol. Akad. Nauk SSSR. 4, 3–17 (1955).Google Scholar
  48. Lamanna, C., and M. F. Mallette: Basic Bacteriology. Its biological and chemical background. Baltimore: Williams & Wilkins Company 1953.Google Scholar
  49. Levine, M., and H. W. Schoenlein: A compilation of culture media for the cultivation of microorganisms. Baltimore: Williams & Wilkins Company 1930.Google Scholar
  50. Lévy-Bruhl, M., et M. Legrand: Culture du Pneumobacille de Friedlaender en milieux chimiques définis. C. r. Soc. Biol. Paris 103, 1070–1072 (1930).Google Scholar
  51. Lindstrom, E. S., S. M. Lewis and M. J. Pinsky: Nitrogen fixation and hydrogenase in various bacterial species. J. Bacter. 61, 481–487 (1951).Google Scholar
  52. Loebeck, Maude E., and H. P. Klein: Substrates for Myxococcus virescens with special reference to eubacterial fractions. J. Gen. Microbiol. 14, 281–289 (1956).PubMedGoogle Scholar
  53. LøVTRUP, S., O. Melander and K. Roos: The utilization of peptides by Thermobact. acidophilum. Arch. Mikrobiol. 26, 83–88 (1957).PubMedGoogle Scholar
  54. Lwoff, A.: Recherches biochimiques sur la nutrition des protozoaires. Le pouvoir de synthèse. Paris: Masson & Cie. 1932.Google Scholar
  55. L’évolution physiologique. Étude des pertes de fonctions chez les microorganismes. Paris: Hermann & Cie. 1943.Google Scholar
  56. MacLeod, R. A.: Further mineral requirements of Streptococcus faecalis. J. Bacter. 62, 337–345 (1951).Google Scholar
  57. Malin, R. B., M. N. Camien and M. S. Dunn: Response of lactic acid bacteria to amino acid derivatives. II. Glycine. Arch. of Biochem. a. Biophysics 32, 106–112 (1951).Google Scholar
  58. Markov, K. Iw., u. G. K. Saev: Das Penicillin — ein spezifischer Wachstumsfaktor für Staphylokokken. Zbl. Bakter. I Orig. 168, 303–312 (1957).Google Scholar
  59. Martin, J. K., and R. D. Batt: Studies on the nutrition of Nocardia corallina. J. Bacter. 74, 225–230 (1957).Google Scholar
  60. Meyers, F. P., and J. R. Porter: The nutrition of Proteus morganii. Sulphur requirements. J. Bacter. 50, 323–331 (1945).Google Scholar
  61. MÖller, E. F., u. K. Schwarz: Der Wuchsstoff H′, ein Antagonist der Sulfanilamide bei Streptobact. plantarum (Orla-Jensen); Wachstum von Str. plantarum in Nährlösungen aus chemisch genau definierten Verbindungen. Ber. dtsch. chem. Ges. 74, 1612–1616 (1941).Google Scholar
  62. Moore, F. W.: The utilization of pyridine by micro-organisms. J. Gen. Microbiol. 3, 143–147 (1949).PubMedGoogle Scholar
  63. Müller, Hannelore: Oxalsäure als Kohlenstoffquelle für Mikroorganismen. Arch. Mikrobiol. 15, 137–148 (1950)Google Scholar
  64. Mueller, J. H., and Pauline A. Miller: Essential role of histidine peptides in Tetanus toxin production. J. Biol. Chem. 223, 185–194 (1956).PubMedGoogle Scholar
  65. Niel, C. B. van: The classification and natural relationships of bacteria (Appendix: Nomenclature of nutritional types of microorganisms). Cold Spring Harbor Symp. Quant. Biol. 11, 302–303 (1946).Google Scholar
  66. Nolte, Eva-Margarete: Untersuchungen über Ernährung und Fruchtkörperbildung von Myxobakterien. Arch. Mikrobiol. 28, 191–218 (1957).PubMedGoogle Scholar
  67. Norén, B.: Studies on Myxobacteria. III. Organic factors in nutrition. Bot. Notiser 108, 81–134 (1955a).Google Scholar
  68. Studies on Myxobacteria. With special reference to growth conditions and bacteriolytic activity. Uppsala: Almquist & Wikseil (1955b.)Google Scholar
  69. Nurmikko, V., u. A. J. Virtanen: Effect of glycine-peptides on the growth of Leuconostoc mesenteroides. Acta chem. scand. (Copenh.) 5, 97–101 (1951).Google Scholar
  70. Oetker, H.: Untersuchungen über die Ernährung einiger Myxobakterien. Arch. Mikrobiol. 19, 206–246 (1953).PubMedGoogle Scholar
  71. Oparin, A. I.: Die Entstehung des Lebens auf der Erde. Berlin 1957 (übersetzt nach der dritten Auflage). VEB Verl. d. Wissenschaften.Google Scholar
  72. Orla-Jensen, S.: The main lines of the natural bacterial system. J. Bacter. 6, 263–273 (1921).Google Scholar
  73. Pappenheimer, A. M.: Diphtheria toxin. III. A reinvestigation of the effect of iron on toxin and porphyrin production. J. Biol. Chem. 167, 251–259 (1947).PubMedGoogle Scholar
  74. Petuely, F., u. V. Lynau: Ein einfacher vollsynthetischer Optimalnährboden für den Lactobacillus bifidus. (Über die Bedeutung der Ascorbinsäure für das Wachstum von L. bifidus). Biochem. Z. 326, 62–76 (1954).PubMedGoogle Scholar
  75. Plotho, O. v.: Untersuchungen zur Morphologie und Biologie der Mykobakterien des Bodens. Arch. Mikrobiol. 13, 93–139 (1942).Google Scholar
  76. Pontecorvo, G.: Auxanographic techniques in biochemical genetics. J. Gen. Microbiol. 3, 122–126 (1949).PubMedGoogle Scholar
  77. Porter, J. R.: Bacterial Chemistry and Physiology. New York: J. Wiley and Sons 1946.Google Scholar
  78. Präve, P.: Untersuchungen über die Stoffwechselphysiologie des Eisenbakteriums Leptothrixochracea Kütz. Arch. Mikrobiol. 27, 33–62 (1957).PubMedGoogle Scholar
  79. Präve, P., u. A. Rippel-Baldes: Die Autotrophie von Leptothrix ochracea. Naturwiss. 43, 539 (1956).Google Scholar
  80. Pramer, O., and R. L. Starkey: Decomposition of streptomycin. Science (Lancaster, Pa.) 113, 127 (1951).Google Scholar
  81. Prince, H. N., E. S. Beck, R. C. Cleverdon and W. L. Culp: The Flavobacteria. I. Nutritional requirements. J. Bacter. 68, 326–328 (1954).Google Scholar
  82. Proom, H., and B. C. J. G. Knight: The minimal nutritional requirements of some species in the genus Bacillus. J. Gen. Microbiol. 13, 474–480 (1955).PubMedGoogle Scholar
  83. Raynaud, M., B. Bizzini, G. Fischer et R. Prévot: Études sur les bactéries ligninolytiques. I. Introduction. Généralités. Méthodes. II. Caractéres des bactéries ligninolytiques isolées du sol. Ann. Inst. Pasteur 88, 454–465, 618–624 (1955).Google Scholar
  84. Richardson, G. M.: The nutrition of Staphylococcus aureus. Necessity for uracil in anaerobic growth. Biochemic. J. 30, 2184 (1936).Google Scholar
  85. Rippel, A., u. Brigitte Lehmann: Über Eiweißbildung durch Bakterien. I. Erfahrungen bei der Herstellung einer synthetischen Nährlösung mit Glykokoll als Stickstoffquelle. Arch. Mikrobiol. 8, 41–65 (1937).Google Scholar
  86. Rippel-Baldes, A., A. Starc u. W. Köhler: Über das Verhalten einiger Mikroorganismen gegen Pyridin. Arch. Mikrobiol. 13, 365–372 (1943).Google Scholar
  87. Robinson, G. L.: The growth of B. pyocyaneus in synthetic media. Brit. J. Exper. Path. 13, 310–317 (1932).Google Scholar
  88. Schatz, A., H. D. Isenberg, A. A. Angrist and Vivian Schatz: Microbial metabolism of carbamates. I. Isolation of Streptomyces nitrificans spec, nov., and other organisms which grow on urethan. J. Bacter. 68, 1–4 (1954).Google Scholar
  89. Shankar, K., and R. C. Bard: The effect of metallic ions on the growth and morphology of Clostridium perfringens. J. Bacter. 63, 279–290 (1952).Google Scholar
  90. Simmonds, Sofia, J. I. Harris and J. S. Fruton: Inhibition of bacterial growth by leucine peptides. J. of Biol. Chem. 188, 251–262 (1951).Google Scholar
  91. Skeggs, Helen R., L. D. Wright, E. L. Cresson, Gloria D. E. MacRae, C. H. Hoffman, D. E. Wolf and K. Folkers: Discovery of a new Acetate-replacing factor. J. Bacter. 72, 519–524 (1956).Google Scholar
  92. Snell, E. E.: Nutrition of microorganisms. Annual Rev. Microbiol. 3, 97–120 (1949).Google Scholar
  93. Bacterial nutrition. Chemical factors. In C. H. Werkman u. P. W. Wilson, Bacterial Physiology, S. 215–255. New York: Academic Press Inc. 1951.Google Scholar
  94. Söhngen, N. L.: Benzin, Petroleum, Paraffinöl und Paraffin als Kohlenstoff - und Energiequelle für Mikroben. Zbl. Bakter. II. 37, 595–609 (1913).Google Scholar
  95. Stadtman, Thressa C., and H. A. Barker: Studies on the methane fermentation. X. A new formate-decomposing bacterium, Methanococcus vannielii. J. Bacter. 62, 269–280 (1951).Google Scholar
  96. Stapp, C.: Azotomonas insolita, ein neuer aerober stickstoffbindender Mikroorganismus. Zbl. Bakter. II 102, 1–19 (1940).Google Scholar
  97. Streschnak, B., u. W. Schwartz: Über den Stoffwechsel eines Paraffin verwertenden Bakterienstammes. Abh. braunschweig, wiss. Ges. 7, 66–73 (1955).Google Scholar
  98. Tittsler, R. P., C. S. Pederson, E. E. Snell, D. Hendlin and Ch. F. Niven jr.: Symposium on the lactic acid bacteria. Bacter. Rev. 16, 227–260 (1952).Google Scholar
  99. Virtanen, A. J., and V. Nurmikko: On the mode of action of peptides as growth factors for Leuconostoc mesenteroides. Acta chem. scand. (Copenh.) 5, 681–689 (1951).Google Scholar
  100. Webley, D.M.: The morphology of Nocardia opaca Waksm. n. Henr. (Proactinomycesopacus Jensen) when grown on hydrocarbons, vegetable oils, fatty acids, and related substances. J. Gen. Microbiol. 11, 420–425 (1954).PubMedGoogle Scholar
  101. Werkman, C. H., and P. W. Wilson: Bacterial Physiology. New York: Academic Press Inc. 1951.Google Scholar
  102. Wilson, G. S., and A. A. Miles: Topley and Wilsons principles of bacteriology and immunity, 4. Aufl., Bd. I. London: E. Arnold Publ. Ltd. 1955.Google Scholar
  103. Wilson, P. W.: The biochemistry of symbiotic nitrogen fixation. Madison: Univ. of Wisconsin Press 1940.Google Scholar
  104. Wolf, D. E., C. A. Hoffman, P. E. Aldrich, Helen R. Skeggs, L. D. Wright and K. Folkers: β-Hydroxy-β-Methyl-δ-Valerolactone (Divalonic acid), a new biological factor. J. Amer. Chem. Soc. 78, 4499 (1956).Google Scholar
  105. Wood, H. G., and C. H. Werkman: The utilization of CO2 by the propionic acid bacteria in the dissimilation of glycerol. J. Bacter. 30, 332 (1935).Google Scholar
  106. ZoBell, Cl. E.: Assimilation of hydrocarbons by microorganisms. Adv. in Enzymol. 10, 443–486 (1950).Google Scholar

Literatur

  1. Aach, H. G.: Über Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstärken und Nitratmengen. Arch. f. Mikrobiol. 17, 213–246 (1952).Google Scholar
  2. Artabi, A.: Über die Bildung des Chlorophylls durch grüne Algen. Ber. dtsch. bot. Ges. 20, 201–207 (1902).Google Scholar
  3. Barker, H. A.: The metabolism of the colorless alga, Prototheca zopfii. J. Cellul. a. Comp. Physiol. 7, 73–93 (1935).Google Scholar
  4. The oxidative metabolism of the colorless alga, Prototheca zopfii. J. Cellul. a. Comp. Physiol. 8, 231–250 (1936).Google Scholar
  5. Barker, S. A., and E. J. Bourne: Composition and synthesis of the starch of Polytomella coeca. In: Biochemistry and Physiology of Protozoa, Bd. II, herausgeg. von S. H. Hutner u. A. Lwoff, S. 45–55. New York 1955.Google Scholar
  6. Bebbington, A., E. J. Bourne and I. A. Wilkinson: The Q-enzyme of Polytomella caeca. J. Chem. Soc. Lond. 1952a, 240–245.Google Scholar
  7. The conversion of amylose into amylopectin by Q-enzyme of Polytomella caeca. J. Chem. Soc. Lond. 1952b, 246–263.Google Scholar
  8. Beijerinck, M. W.: Kulturversuche mit Zoochlorellen, Lichenogonidien und anderen Algen. Bot. Ztg 48, 725 (1890).Google Scholar
  9. Notiz über Pleurococcus vulgaris. Zbl. Bakter. II 4, 785 (1898).Google Scholar
  10. Das Assimilationsprodukt der Kohlensäure in den Chromatophoren der Diatomeen. Rec. Trav. bot. néerl. 1, 28–32 (1904).Google Scholar
  11. Benecke, W.: Mechanismus und Biologie des Zerfalls der Conjugatenfäden in die einzelnen Zellen. Jb. wiss. Bot. 32, 453–476 (1898).Google Scholar
  12. Bouilhac, R.: Sur la culture de Nostoc punctiforme en présence de glucose. C. r. Acad. Sci. Paris 125, 880 (1897).Google Scholar
  13. Présence de chlorophylle dans un Nostoc cultivé à l’abri de la lumière. C. r. Acad. Sci. Paris 127, 119 (1898).Google Scholar
  14. Bristol-Roach, M. B.: On the relation of certain soil algae to some soluble carbon compounds. Ann. of Bot. 40, 149–201 (1926).Google Scholar
  15. On the carbon nutrition of some algae isolated from soil. Ann. of Bot. 41, 509–517 (1927).Google Scholar
  16. Cataldi, M. S.: Aislamento de Beggiatoa alba en cultivo puro. Rev. Inst. bact. B. Aires (D. N. H.) 9, 393–423 (1940).Google Scholar
  17. Chen, Y. T.: Investigation of the biology of Peranematrichophorum (Euglenineae). Quart. J. Microsc. Sci. 91, 279–308 (1950).Google Scholar
  18. Chodat, R.: Monographie d’algues en culture pure. Berne 1913.Google Scholar
  19. Claes, H.: Analyse der biochemischen Synthesekette für Carotinoide mit Hilfe von Chlorella-Mutanten. Z. Naturforsch. 9b, 461–469 (1954).Google Scholar
  20. Cramer, M., u. J. Myers: Growth and photosynthetic characteristics of Euglenagracilis. Arch. f. Mikrobiol. 17, 384–402 (1952).Google Scholar
  21. Dusi, H.: Pouvoir de synthèse de quelques Euglènes, etc. C. r. Soc. Biol. Paris 105, 837–840 (1930).Google Scholar
  22. La pyrimidine et le thiazol, facteurs de croissance pour le flagellé à chlorophylle, Euglena pisciformis. C. r. Soc. Biol. Paris 130, 419–422 (1939).Google Scholar
  23. Eny, D. M.: Respiration studies on Chlorella. I. Growth experiments. Plant Physiol. 25, 478–495 (1950).Google Scholar
  24. Respiration studies on Chlorella. II. Influence of various organic acids on gas exchange. Plant Physiol. 26, 268–289 (1951).Google Scholar
  25. Famintzin, A.: Die anorganischen Salze als ausgezeichnetes Hilfsmittel zum Studium der Entwicklung niederer chlorophyllhaltiger Organismen. Bull. Acad. Sci. St. Petersb. 17, 31 (1871).Google Scholar
  26. Finkle, B. J., D. Appleman and F. K. Fleischer: Growth of Chlorella vulgaris in the dark. Science (Lancaster, Pa.) 111, 309 (1950).Google Scholar
  27. Fogg, G. E.: The metabolism of algae. London u. New York 1953.Google Scholar
  28. Granick, S.: Protoporphyrin 9 as a precursor of chlorophyll. J. of Biol. Chem. 172, 717–727 (1948).Google Scholar
  29. Hagens, H.-W.: Physiologisches Vitamin B12-Äquivalent und Metallbindungsvermögen in Erdextrakten als wachstumsbeeinflussende Faktoren für Euglena gracilis. Diss. Naturw. Fakult. Univ. Frankfurt a. M. 1953.Google Scholar
  30. Hawlitschka, E.: Die Heterokonten-Gattung Tribonema. Pflanzenforschung. Jena 1932.Google Scholar
  31. Hutchens, J. O.: The need of Chilomonas paramaecium for iron. J. Cellul. a. Comp. Physiol. 16, 265–267 (1940).Google Scholar
  32. The effect of the age of the culture on the rate of oxygen consumption and the respiratory quotient of Chilomonas paramaecium. J. Cellul. a. Comp. Physiol. 17, 321–332 (1941).Google Scholar
  33. Hutner, S. H., and L. Provasoli: The Phytoflagellates. In: Biochemistry and Physiology of Protozoa, Bd. I, herausgeg. von A. Lwoff. New York 1951.Google Scholar
  34. Comparative Biochemistry of Flagelates. In: Biochemistry and Physiology of Protozoa, herausgeg. von S. H. Hutner u. A. Lwoff. New York 1955.Google Scholar
  35. Hutner, S. H., L. Provasoli, A. Schatz and C. P. Haskins: Some approaches to the study of the role of metals in the metabolism of microorganisms. Amer. Philos. Soc. 94, 152–170 (1950).Google Scholar
  36. Hutner, S. H., L. Provasoli, E. L. R. Stokstad, C. E. Hoffmann, M. Belt, A. L. Franklin and T. H. Jukes: Assay of anti-pernicious anemia factor with Euglena. Proc. Soc. Exper. Biol. a. Med. 70, 118–120 (1949).Google Scholar
  37. Jacobsen, H. C.: Kulturversuche mit einigen niederen Volvocaceen. Z. Bot. 2, 145–188 (1910).Google Scholar
  38. Jirovec, O.: Der Einfluß des Streptomycins und Patulins auf einige Protozoen. Experientia (Basel) 5, 74–77 (1949).Google Scholar
  39. Klebs, G.: Flagellatenstudien. I. und II. Z. wiss. Zool. 55, 265–351, 353–445 (1893).Google Scholar
  40. Die Bedingungen der Fortpflanzung bei einigen Algen und Pilzen. Jena: Gustav Fischer 1896.Google Scholar
  41. Knight, B. C. J.: Bacterial nutrition. Medical Research Council Spec. Rep. Ser., No. 210, 1936.Google Scholar
  42. The nutrition of Staphylococcus aureus. The activities of nicotinamide, aneurin (vitamin B1) and related compounds. Biochemic. J. 81, 966–973 (1937).Google Scholar
  43. Krüger, W.: Beiträge zur Kenntnis der Organismen des Saftflusses (sog. Schleimflusses) der Laubbäume. Zopfs Beitr. Physiol, u. Morph, nied. Organismen 4, 69–116 (1894).Google Scholar
  44. Kufferath, H.: La culture des Algues. Paris: Publication de la Revue Algolog. 1930.Google Scholar
  45. Lewin, J. C.: Silicon metabolism in diatoms. I. Evidence for the role of reduced sulfur compounds in silicon utilization. J. Gen. Physiol. 37, 589–599 (1954).PubMedGoogle Scholar
  46. Lewin, R. A.: Induced vitamin-requiring mutants of Chlamydomonas. Nature (Lond.) 166, 196 (1950).Google Scholar
  47. Ultra-violet induced mutations in Chlamydomonas moewusii Gerloff. J. Gen. Microbiol. 6, 233–248 (1952).Google Scholar
  48. Loefer, J. B.: The trophic nature of Chlorogonium and Chilomonas. Biol. Bull. Woods Hole 66, 1–6 (1934).Google Scholar
  49. Loefer, J. B., and R. P. Hall: Effect of ethyl alcohol on the growth of eight protozoan species in bacteria-free cultures. Arch. Protistenkde 87, 123–130 (1936).Google Scholar
  50. Lwoff, A.: Recherches biochimiques sur la nutrition des Protozoaires. Paris: Masson&Cie. 1932.Google Scholar
  51. L’évolution physiologique, étude des pertes de fonctions chez les microorganismes. Paris: Hermann & Cie. 1943.Google Scholar
  52. Some aspects of the problem of growth factors for Protozoa. Annual Rev. Microbiol. 1947, 101–114.Google Scholar
  53. La synthèse de l’amidon chez les leucophytes et la valeur morphologique du réseau de Volkonsky. New Phytologist 49, 77–80 (1950).Google Scholar
  54. Introduction to Biochemistry of Protozoa. In: Biochemistry and Physiology of Protozoa, Bd. I, herausgeg. von A. Lwoff. New York 1951.Google Scholar
  55. Lwoff, A., et H. Dusi: L’oxytrophie et la nutrition des flagellés leucophytes. Ann. Inst. Pasteur 53, 641 (1934).Google Scholar
  56. Le pyrimidine et le thiazol, facteurs de croissance pour le flagellé Polytomella caeca. C. r. Acad. Sci. Paris 205, 630 (1937).Google Scholar
  57. Culture de divers flagellés Leucophytes en milieu synthétique. C. r. Soc. Biol. Paris 127, 53 (1938a).Google Scholar
  58. L’activité de diverse pyrimidines considérées comme facteurs de croissance pour les flagellés Polytomella coeca et Chilomonas paramoecium. C. r. Soc. Biol. Paris 127, 1408 (1938b).Google Scholar
  59. Influence de diverses substitutions sur l’activité du thiazol considéré comme facteur de croissance pour quelques flagellés Leucophytes. C. r. Soc. Biol. Paris 128, 238 (1938c).Google Scholar
  60. Lwoff, A., H. Ionesco et A. Gutmann: Synthèse et utilisation de l’amidon chez un flagellé sans chlorophylle incapable d’utiliser les sucres. Biochim. et Biophysica Acta 4, 270–275 (1950).Google Scholar
  61. Lwoff, A., et P. Schaeffer: Remarques sur une analogie structurale entre streptomycine et chlorophylle. C. r. Acad. Sci. Paris 228, 511 (1949).PubMedGoogle Scholar
  62. Mast, S. O.: The food-vacuole in Paramecium. Biol. Bull. Woods Hole 92, 31 (1947).Google Scholar
  63. Mast, S.O., u. D. M. Pace: Synthesis from inorganic compounds of starch, fats, proteins and protoplasm in the colourless animal, Chilomonas paramecium. Protoplasma 20, 326–358 (1933).Google Scholar
  64. Matruchot, L., et M. Molliard: Variation de structure d’une algue verte sous l’influence du milieu nutritif. Rev. gén. Bot. 14, 193 (1902).Google Scholar
  65. Meinhold, Th.: Beiträge zur Physiologie der Diatomeen. Beitr. Biol. Pflanz. 10, 353–377 (1911).Google Scholar
  66. Mendrecka, A.: Ètude sur des algues saprophytes. Bull. Soc. bot. Genève 2, 150–180 (1913).Google Scholar
  67. Meyer, H.: Das Chlorose- und Panaschüreproblem bei Chlorellen. I., II. Beih. bot. Zbl. 49, 496–544; 51, 170–203 (1932/33).Google Scholar
  68. Molisch, H.: Die Ernährung der Algen. I. Süßwasseralgen. Sitzgsber. Akad. Wiss. Wien, Math.-naturwiss. K1., Abt. I 104, 783 (1895).Google Scholar
  69. Die Ernährung der Algen. II. Süßwasseralgen. Sitzgsber. Akad. Wiss. Wien, Math.-naturwiss. KL, Abt. I 105, 633 (1896).Google Scholar
  70. Myers, J.: A study of the pigments produced in darkness by certain green algae. Plant Physiol. 15, 575–588 (1940).PubMedGoogle Scholar
  71. Physiology of the algae. Annual Rev. Microbiol. 5, 157–180 (1951).Google Scholar
  72. Neish, A. C.: Carbohydrate nutrition of Chlorella vulgaris. Canad. J. Bot. 29, 68–78 (1951).Google Scholar
  73. Oltmanns, F.: Morphologie und Biologie der Algen, Bd. 1. Jena: G. Fischer 1904; 2. Aufl., Bd. 1. Jena: G. Fischer 1922.Google Scholar
  74. Pascher, A.: Flagellaten und Rhizopoden in ihren gegenseitigen Beziehungen. Arch. Protistenkde 38, 1–87 (1917).Google Scholar
  75. Eine eigenartige rhizopodiale Flagellate. Arch. Protistenkde 63, 227–240 (1928).Google Scholar
  76. Pfeffer, W.: Handbuch der Pflanzenphysiologie. Leipzig 1881.Google Scholar
  77. Pringsheim, E. G.: Kulturversuche mit chlorophyllführenden Mikroorganismen. I. Die Kultur von Algen in Agar. Beitr. Biol. Pflanz. 11, 305–332 (1912). — Kulturversuche mit chlorophyllführenden Mikroorganismen. II. Zur Physiologie der Schizophyceen. Beitr. Biol. Pflanz. 12, 49–108 (1914).Google Scholar
  78. Zur Physiologie saprophytischer Flagellaten. Beitr. allg. Bot. 2, 88–137 (1921).Google Scholar
  79. Enthält Polytoma Stärke? Arch. Protistenkde 58, 281–284 (1927).Google Scholar
  80. Saprophyten. Handwörterbuch der Naturwissenschaften, 2. Aufl., S. 712–719. Jena: G. Fischer 1933.Google Scholar
  81. Über Oxytrophie bei Chlorogonium. Planta (Berl.) 22, 146–148 (1934).Google Scholar
  82. Über Azetatflagellaten. Naturwiss. 28, 110–114 (1935).Google Scholar
  83. Zur Kenntnis saprotropher Algen und Flagellaten. I. Über Anhäufungskulturen polysaprober Flagellaten. Arch. Protistenkde 87, 43–109 (1936).Google Scholar
  84. Assimilation of different organic substances by saprophytic flagellatae. Nature (Lond.) 139, 196 (1937a).Google Scholar
  85. Beiträge zur Physiologie saprophytischer Algen und Flagellaten. I. Chlorogonium und Hyalogonium. Planta (Berl.) 26, 631–664 (1937b).Google Scholar
  86. Beiträge zur Physiologie saprophytischer Algen und Flagellaten. II. Polytoma und Polytomella. Planta (Berl.) 26, 685–691 (1937c).Google Scholar
  87. Beiträge zur Physiologie saprotropher Algen und Flagellaten. III. Die Stellung der Azetatflagellaten in einem physiologischen Ernährungssystem. Planta (Berl.) 27, 61–92 (1937d).Google Scholar
  88. The interrelationships of pigmented and colourless flagellata. Biol. Rev. Cambridge Philos. Soc. 16, 191–204 (1941).Google Scholar
  89. The filamentous bacteria Sphaerotilus, Leptothrix, Cladothrix, and their relation to iron and manganese. Philosophic. Trans. Roy. Soc. Lond. 233, 453–482 (1949).Google Scholar
  90. Über farblose Diatomeen. Arch. f. Mikrobiol. 16, 18–27 (1951).Google Scholar
  91. On the nutrition of Ochromonas. Quart. J. Microsc. Sci. 93, 71–96 (1952).Google Scholar
  92. Kleine Mitteilungen über Flagellaten und Algen. II. Euglena gracilis var. saccharophila n. var., und eine vereinfachte Nährlösung zur Vitamin-B12-Bestimmung. Arch. f. Mikrobiol. 21, 414–419 (1955a). — Kleine Mitteilungen über Flagellaten und Algen. III. Über Ochromonas danica n. sp. und andere Arten der Gattung. Arch. f. Mikrobiol. 23, 181–192 (1955b).Google Scholar
  93. The genus Polytomella. J. Protozoology 2, 137–148 (1955c).Google Scholar
  94. Mikrobiologische Untersuchungen. Forschgn u. Fortschr. 30, 33–39 (1956).Google Scholar
  95. Pringsheim, E. G., and R. Hovasse: The loss of chromatophores in Euglena gracilis. New Phytologist 47, 52–87 (1948).Google Scholar
  96. Pringsheim, E. G., u. F. Mainx: Untersuchungen an Polytoma uvella Ehrbg., insbesondere über Beziehungen zwischen chemotaktischer Reizwirkung und chemischer Konstitution. Planta (Berl.) 1, 583–623 (1926).Google Scholar
  97. Pringsheim, E. G., and O. Pringsheim: Experimental elimination of chromatophores and eyespot in Euglena gracilis. New Phytologist 51, 65–76 (1952).Google Scholar
  98. Provasoli, L.: Studi sulla nutrizione dei Protozoi. Boll. Lab. Zool. agr. Bachic. Milano 8, 3–121 (1937/38).Google Scholar
  99. Provasoli, L., S. H. Hutner and I. J. Pintner: Destruction of chloroplasts by Streptomycin. Cold Spring Harbor Symp. Quant. Biol. 16, 113–120 (1951).PubMedGoogle Scholar
  100. Provasoli, L., S. H. Hutner and A. Schatz: Streptomycin-induced chlorophyll-less races of Euglena. Proc. Soc. Exper. Biol. a. Med. 69, 279–282 (1948).Google Scholar
  101. Reader, V.: The relation of the growth of certain micro-organisms to the composition of the medium. Biochemic. J. 22, 434–439 (1928).Google Scholar
  102. Renner, O.: Die pflanzlichen Plastiden als selbständige Elemente der genetischen Konstitution. Ber. sächs. Akad. Wiss. Leipzig, Math.-phys. K.1 86, 241–266 (1934).Google Scholar
  103. Richter, O.: Reinkultur von Diatomeen. Ber. dtsch. bot. Ges. 21, 493–506 (1903).Google Scholar
  104. Zur Physiologie der Diatomeen. I. Sitzgsber. Akad. Wiss. Wien, Math.-naturwiss. K1. 115, 27–119 (1906).Google Scholar
  105. Zur Physiologie der Diatomeen. II. Die Biologie der Nitzschia putrida Benecke. Denkschr. Akad. Wiss. Wien, Math.-naturwiss. K1. 84, 657–772 (1909).Google Scholar
  106. Die Ernährung der Algen. Leipzig: W. Klinkhardt 1911.Google Scholar
  107. Robbins, W. J., A. Hervey and M. E. Stebbins: Studies on Euglena and vitamin B12. Bull. Torrey Bot. Club 77, 423–441 (1950).Google Scholar
  108. Euglena and vitamin B12. Ann. New York Acad. Sci. 56, 818–830 (1953).Google Scholar
  109. Schoenborn, H. W.: Studies on the nutrition of colorless euglenoid flagellates. II. Growth of Astasia in an inorganic medium. Physiologic. Zool. 19, 430–442 (1946).Google Scholar
  110. Schöpfer, W. H.: Recherches sur le métabolism de l’azote d’un microorganisme acellulaire (Phycomyces blakesleeanus BGF.). Le rôle des facteurs de croissance. Protoplasma 28, 381–434 (1937).Google Scholar
  111. Ternetz, C.: Beiträge zur Morphologie und Physiologie der Euglena gracilis Klebs. Jb. wiss. Bot. 51, 435–514 (1912).Google Scholar
  112. Treboux, O.: Organische Säuren als Kohlenstoffquelle bei Algen. Ber. dtsch. bot. Ges. 23, 432–441 (1905).Google Scholar
  113. Warburg, O., u. E. Negelein: Über die Reduktion der Salpetersäure in grünen Zellen. Biochem. Z. 110, 66 (1920).Google Scholar
  114. Wettstein, F. v.: Zur Bedeutung und Technik der Reinkultur für Systematik und Floristik der Algen. Österr. bot. Z. 70, 23 (1921).Google Scholar
  115. ZumStein, H.: Zur Morphologie und Physiologie der Euglena gracilis Klebs. Jb. wiss. Bot, 34, 149–198 (1900).Google Scholar

Literature

  1. Akai, S., and S. Itoi: Studies on Helminthosporium blight of rice plants. V. Effect of copper sulphate on the germination of the causal fungus, Cochliobolus (Ophiobolus) miyabeanus. Bot. Mag. (Tokyo) 67, 1–5 (1954).Google Scholar
  2. Albritton, E. C. (editor): Standard values in Nutrition and Metabolism. Tables 23 and 24. Wright Air Development Center, Ohio, 1953.Google Scholar
  3. Alexopoulos, C. J.: Introductory Mycology. New York: John Wiley & Sons 1952.Google Scholar
  4. Ames, B. N., H. K. Mitchell and Mary B. Mitchell: Some new naturally occurring imidazoles related to the biosynthesis of histidine. J. Amer. Chem. Soc. 75, 1015–1018 (1953).Google Scholar
  5. Andersson-Kottö, Irma, G. Ehrensvärd, G. Högström, L. Reio and E. Saluste: Amino acid formation and utilization in Neurospora. J. of Biol. Chem. 210, 455–463 (1954).Google Scholar
  6. Andersson-Kottö, Irma, and G. C. Hevesy: Zinc uptake by Neurospora. Biochemic. J. 44, 407–409 (1949).Google Scholar
  7. Andreason, A. A., and J. B. Stier: Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J. Cellul. a. Comp. Physiol. 41, 23–36 (1953).Google Scholar
  8. Arnon, D. I., and Gunilla Wessel: Vanadium as an essential element for green plants. Nature (Lond.) 172, 1039 (1953).Google Scholar
  9. Aso, K., and K. Shibasaki: Studies on the unfermentable sugars. II. Production of unfermentable sugars by fungal enzymes. Tohoku J. Agricult. Res. 3, 344–350 (1953).Google Scholar
  10. Baddiley, J., J.G. Buchanan and E. M. Thain: The polysaccharide of Penicillium islandicum Sopp. J. Chem. Soc. (Lond.) 1953, 1944–1946.Google Scholar
  11. Bahadur, K.: A study of the growth of Dhar yeast utilizing the energy released by the aeration of several metals. Zbl. Bakter. 110, 309–311 (1957).Google Scholar
  12. Bajaj, Violet, S. P. Damle and P. S. Krishnan: Phosphate metabolism of mold spores. I. Phosphate uptake by spores of Aspergillus niger. Arch, of Bioehem. a. Biophysics 50, 451–460 (1954).Google Scholar
  13. Ball, E.: Hydrolysis of sucrose by autoclaving media, a neglected aspect in the technique of culture of plant tissue. Bull. Torrey Bot. Club 80, 409–411 (1953).Google Scholar
  14. Barnett, H. L.: Isolation and identification of the oak wilt fungus. West Virginia Agricult. Exper. Stat. Bull. 1953, 359 T.Google Scholar
  15. Illustrated genera of Imperfect Fungi. Minneapolis: Burgess Publ. Comp. 1955.Google Scholar
  16. A new species of Calcarisporium parasitic on other fungi. Mycologia (N.Y.) 50, 497–500 (1958).Google Scholar
  17. Barnett, H. L., and V. G. Lilly: The relation of thiamin to the production of perithecia by Ceratostomella fimbriata. Mycologia (N. Y.) 39, 699–708 (1947).Google Scholar
  18. The interrelated effects of vitamins, temperature, and pH upon vegetative growth of Sclerotinia camelliae. Amer. J. Bot. 35, 297–302 (1948).Google Scholar
  19. Influence of nutritional and environmental factors upon asexual reproduction of Choanephora cucurbitarum in culture. Phytopathology 40, 80–89 (1950).Google Scholar
  20. The inhibitory effect of sorbose on fungi. Science (Lancaster, Pa.) 114, 439–440 (1951).Google Scholar
  21. The effect of color of light on sporulation of certain fungi. Proc. West Va. Acad. Sci. 24, 60–64 (1952).Google Scholar
  22. The effects of humidity, temperature, and carbon dioxide on the sporulation of Choanephora cucurbitarum. Mycologia (N. Y.) 47, 26–29 (1955).Google Scholar
  23. Factors affecting the production of zygospores by Choanephora cucurbitarum. Mycologia (N. Y.) 48, 617–627 (1956).Google Scholar
  24. Parasitism of Calcarisporium parasiticum on species of Physalospora and related fungi. West Virginia Agricult. Exper. Stat. Bull. 420–T (1958).Google Scholar
  25. Barnett, H. L., V. G. Lilly and R. F. Krause: Increased production of carotene by mixed + and — cultures of Choanephora cucurbitarum. Science (Lancaster, Pa.) 123, 141 (1956).Google Scholar
  26. Barnett, H. L., V. G. Lilly and Betsy M. Waters: The effects of temperature and method of sugar sterilisation on growth of Thielaviopsis basicola. Proc. West. Va. Acad. Sci. 25, 27–28 (1953).Google Scholar
  27. Barnett, H. L., and R. P. True: The oak wilt fungus, Endoconidiophora fagacearum. Trans. New York Acad. Sci., Ser. II 17, 552–559 (1955).Google Scholar
  28. Barron, E. S. G., and F. Ghiretti: The pathways of acetate oxidation. Biochim. et Biophysica Acta 12, 239–249 (1953).Google Scholar
  29. Basu, S. N.: Significance of calcium in the fruiting of Chaetomium species, particularly Chaetomium globosum. J. Gen. Microbiol. 5, 231–238 (1951).PubMedGoogle Scholar
  30. Bealing, F. J., and J. S. D. Bacon: The action of mould enzymes on sucrose. Biochemic. J. 53, 277–285 (1953).Google Scholar
  31. Beckman, C. H., J. E. Kuntz and A. J. Riker: The growth of the oak wilt fungus with various vitamins and carbon and nitrogen sources. Phytopathology 43, 441–447 (1953).Google Scholar
  32. Beesch, S. C., and G. M. Shull: Fermentation. Industr. Engin. Chem. 47, 1857–1875 (1955).Google Scholar
  33. Beevers, H., and M. Gibbs: Participation of the oxidative pathway in yeast respiration. Nature (Lond.) 173, 640 (1954).Google Scholar
  34. Bereston, E. S.: The vitamin, amino acid and growth requirements of the genus Microsporum. J. Invest. Dermat, 20, 461–469 (1953).Google Scholar
  35. Berry, C. R., and H. L. Barnett: Mode of parasitism and host range of Piptocephalis virginiana. Mycologia (N.Y.) 49, 374–386 (1957).Google Scholar
  36. Bersin, T.: Die Phytochemie des Schwefels. Adv. Enzymol. 10, 223–323 (1950).Google Scholar
  37. Bertrand, D.: Le vanadium comme facteur de croissance pour l’Aspergillus niger. Bull. Soc. Chim. biol. Paris 23, 467–471 (1941).Google Scholar
  38. Le gallium peut-il être considéré comme un oligo-élément indispensable pour l’Aspergillus niger ? C. r. Acad. Sci. Paris 239, 1704–1706 (1954).Google Scholar
  39. Bessey, E. A.: Morphology and Taxonomy of Fungi. Philadelphia: P. Blakiston Son & Co. 1950.Google Scholar
  40. Bille-Hansen, E.: Fructification of three coprophilous species of Coprinus using glucose, sucrose, and maltose as carbon sources. Bot. Tidsskr. 50, 81–85 (1953).Google Scholar
  41. Fructification of a coprophilous Coprinus on synthetic medium. Physiol. Plantarum (Copenh.) 6, 523–528 (1953a).Google Scholar
  42. Bird, Marjorie L., F. Challenger, P. T. Charlton and J. O. Smith: Studies on biological methylation. II. The action of moulds on inorganic and organic compounds of arsenic. Biochemic. J. 43, 78–83 (1948).Google Scholar
  43. Birkenshaw, J. H.: Studies in the biochemistry of micro–organisms. 89. Metabolic products of Pénicillium multicolor G.—M. and P. with special reference to sclerotiorin. Biochemic. J. 52, 283–288 (1952).Google Scholar
  44. Björkman, E.: Studies on the biology of the Phacidium-blight (Phacidium infestans Karst.) and its prevention. Medd. Stat. Skogsforskinst. Stockholm 37, No. 2, 136 p. (1948). Swedish, English summary.Google Scholar
  45. Blair, Mary G., and W. Pigman: Fermentability of maltose. Arch, of Biochem. a. Biophysics 48, 17–22 (1954).Google Scholar
  46. Blank, F.: On the cell walls of dimorphic fungi causing systemic infections. Canad. J. Microbiol. 1, 1–5 (1954).Google Scholar
  47. Block, S. S., T. W. Stearns, R. L. Stephens and R. F. J. McCandless: Mushroom mycelium. Experiments with submerged culture. Agricult. Food Chem. 1, 890–893 (1953).Google Scholar
  48. Blumenthal, H. J., Katherine F. Lewis and S. Weinhouse: An estimation of pathways of glucose catabolism in yeast. J. Amer. Chem. Soc. 76, 6093–6097 (1954).Google Scholar
  49. Bonner, J. T.: Evidence for the formation of cell aggregates by Chemotaxis in the development of the slime mold Dictyostelium discoideum. J. of Exper. Zool. 106, 1–26 (1947).Google Scholar
  50. Morphogenesis, an essay on Development. Princeton: Princeton University Press 1952.Google Scholar
  51. Bonner, J. T., W. W. Clarke jr., C. L. Neely jr. and Mirimam K. Slifkin: The orientation to light and the extremely sensitive orientation to temperature gradients in the slime mold Dictyostelium discoideum. J. Cellul. a. Comp. Physiol. 36, 149–158 (1950).Google Scholar
  52. Bradley, S. G., and M. Sussman: Growth of ameboid slime molds in one–membered cultures. Arch, of Biochem. a. Biophysics 39, 462–463 (1952).Google Scholar
  53. Bretzloff jr., C. W.: The growth and fruiting of Sordaria fimicola. Amer. J. Bot. 41, 58–67 (1954).Google Scholar
  54. Bright, I.B., P. A. Dixon and J. W. T. Whymper: Effect of ethyl alcohol and carbon dioxide on the sporulation of bakers yeast. Nature (Lond.) 164, 544 (1949).Google Scholar
  55. Brown, D. H., and E. C. Cantino: The oxidation of malate by Blastocladiella emersonii. Amer. J. Bot. 42, 337–341 (1955).Google Scholar
  56. Brown, F. L.: Effect of l-sorbose on the utilization of other sugars by fungi. Thesis, West Virginia University 1958.Google Scholar
  57. Brown, Margaret E., and G. Metcalfe: Nitrogen fixation by a species of Pullularia. Nature (Lond.) 180, 282 (1957).Google Scholar
  58. Broyer, T. C., A. B. Carlton, C. M. Johnson and P. R. Stout: Chlorine—a micronutrient element for higher plants. Plant Physiol. 29, 526–532 (1954).PubMedGoogle Scholar
  59. Buchanan, R. E.: Some interrelationships of speciation, type preservation, and nomenclature in bacteria. Ann. New York Acad. Sci. 60, 6–15 (1954).Google Scholar
  60. Burges, A., and Enid Fenton: The effect of carbon dioxide on the growth of certain soil fungi. Brit. Mycol. Soc., Trans. 36, 104–108 (1953).Google Scholar
  61. Buston, H. W., and A. Jabbar: Synthesis of β-linked oligosaccharides by extracts of Chaetomium globosum. Biochim. et Biophysica Acta 13, 543–548 (1954).Google Scholar
  62. Synthesis of oligosaccharides by Chaetomium globosum. Chem. a. Ind. 1954a.Google Scholar
  63. Buston, H. W., A. Jabbar and D. E. Etheridge: The influence of hexose phosphates, calcium, and jute extract on the formation of perithecia by Chaetomium globosum. J. Gen. Microbiol. 8, 302–306 (1953).PubMedGoogle Scholar
  64. Cantino, E. C., and E. A. Horenstein: The stimulating effect of light upon growth and CO2 fixation in Blastocladiella. I. The S.K.I, cycle. Mycologia (N. Y.) 48, 777–799 (1956).Google Scholar
  65. Carlile, M. J.: A study of the factors influencing non–genetic variation in a strain of Fusarium oxysporum. J. Gen. Microbiol. 14, 643–654 (1956).PubMedGoogle Scholar
  66. Carlile, M. J., and J. Friend: Carotenoids and reproduction in Pyronema confluens. Nature (Lond.) 178, 369–370 (1956).Google Scholar
  67. Casimir, J., et T. Trzcinski: Contribution à l’étude du métabolisme azoté dans les champignons. I. Répartition des acides aminés dans Agaricus hortensis var. alba. Bull. Inst. agronom. Stat. Rech. Gembloux 20, 178–184 (1952).Google Scholar
  68. Castel, G., et D. Bertrand: Le calcium comme oligo-élément indispensable pour Neurospora crassa. C. r. Acad. Sci. Paris 239, 1546–1548 (1954).Google Scholar
  69. Challenger, F.: The biological importance of organic compounds of sulphur. Endeavour 12, 173–181 (1953).Google Scholar
  70. Challenger, F., D. B. Lisle and P. B. Dransfield: Biological methylation. XIV. The formation of trimethylarsine and dimethylselenide in mould cultures from methyl sources containing carbon14. J. Chem. Soc. (Lond.) 1954, 1760–1771.Google Scholar
  71. Chesters, C. G. C., and G. N. Rolinson: The rôle of zinc in plant metabolism. Biol. Proc. Cambridge Phil. Soc. 26, 235–252 (1951).Google Scholar
  72. Zinc in the metabolism of a strain of Aspergillus niger. J. Gen. Microbiol. 5, 553–558 (1951a).Google Scholar
  73. Cochrane, V. W.: The anaerobic dissimulation of glucose by Fusarium Uni. Mycologia (N. Y.) 48, 1–12 (1956).Google Scholar
  74. Pysiology of Fungi. New York: John Wiley and Sons. 1958.Google Scholar
  75. Cohen, A. L.: Nutrition of the Myxomycetes. I. Pure culture and two membered culture of Myxomycete plasmodia. Bot. Gaz. 101, 243–275 (1939).Google Scholar
  76. The isolation and culture of opsimorphic organisms. I. Occurrence and isolation of opsimorphic organisms from soil and culture of Acrasieae on a standard medium. Ann. New York Acad. Sci. 56, 938–948 (1953).Google Scholar
  77. Cohen, A. L., and Johanna C. Sobels: Mineral requirements of some Myxomycetes with a possible bearing on their ecology. Bull. Georgia Acad. Sci. 10, 14–16 (1952).Google Scholar
  78. Cohn, M., J. Monod, M. R. Pollock, S. Spiegelman and R. Y. Stanier: Terminology of enzyme formation. Nature (Lond.) 172, 1096 (1953).Google Scholar
  79. Cohn, M., and C. E. Yarwood: Temperature responses of fungi as a straight line transformation. Plant Physiol. 27, 634–638 (1952).Google Scholar
  80. Coleman, R. J., and F. F. Nord: Utilization of mixed substrates in fatty acid synthesis by Fusarium lini Bolley. Arch. of Biochem. a. Biophysics 45, 183–189 (1953).Google Scholar
  81. Converse, R. H.: The influence of nitrogenous compounds on the growth of Helminthosporium gramineum in culture. Mycologia (N. Y.) 45, 335–344 (1953).Google Scholar
  82. Conway, E. J., T. G. Brady and E. Carton: Biological production of acid and alkali. II. A redox theory for the process in yeast with applications to the production of gastric acidity. Biochemic. J. 47, 369–374 (1950).Google Scholar
  83. Conway, E. J., and J. Breen: An “ammonia yeast” and some of its properties. Biochemic. J. 39, 368–371 (1945).Google Scholar
  84. Conway, E. J., and Mary Downey: pH Values of the yeast cell. Biochemic. J. 47, 355–360 (1950).Google Scholar
  85. Conway, E. J., and P. T. Moore: A sodium–yeast and some of its properties. Biochemic. J. 57, 523–528 (1954).Google Scholar
  86. Cowie, D. B., and Barbara P. Walton: Kinetics of formation and utilization of metabolic pools in the biosynthesis of protein and nucleic acid. Biochim. et Biophysica Acta 21, 211–226 (1956).Google Scholar
  87. Crasemann, Jean M.: The nutrition of Chytridium and Macrochytrium. Amer. J. Bot. 41, 302–310 (1954).Google Scholar
  88. Cflot, J. P.: De l’influence du sodium comme substituant du potassium dans la croissance de Aspergillus niger. Bull. Inst. agronom. Stat. Rech. Gembloux 20, 141–145 (1952).Google Scholar
  89. Cutter jr., V. M.: The isolation of plant rusts upon artificial media and some speculations on the metabolism of obligate plant parasites. Trans. New York Acad. Sci., Ser. II 14, 103–108 (1951).Google Scholar
  90. Daly, J. M., R. M. Sayre and J. H. Pazttr: The hexose monophosphate shunt as the major respiratory pathway during sporulation of rust of safflower. Plant Physiol. 32, 44–48 (1957).PubMedGoogle Scholar
  91. Daniels, G.: The digestion of human hair by Microsporum canis Bodin. J. Gen. Microbiol. 8, 289–294 (1953).PubMedGoogle Scholar
  92. Dean, F. M., J. C. Roberts and A. Robertson: The chemistry of fungi. Part XXII. Nidulin and nornidulin (“ustin”): Chlorine-containing metabolic products of Aspergillus nidulans. J. Chem. Soc. (Lond.) 1954, 1432–1439.Google Scholar
  93. Démétriades, S. D.: Études sur la biologie du Sclerotinia sclerotiorum (Lib.) Masse. III. L’action du magnésium et du soufre sur le développment du champignon et la formation de ses sclérotes. Ann. Inst. Phytopath. Benaki 7, 15–20 (1953).Google Scholar
  94. Demis, D. J., A. Rothstein and R. Meier: The relationship of the cell surface to metabolism. X. The location and function of invertase in the yeast cell. Arch, of Biochem. a. Biophysics 48, 55–62 (1954).Google Scholar
  95. Dole, Marjorie W.: The Aspergillus niger method for determining copper in soils. Soil Sci. 73, 135–147 (1952).Google Scholar
  96. Donald, Catherine, B. I. Passey and R. J. Swaby: A comparison of methods for removing trace metals from microbiological media. J. Gen. Microbiol. 7, 211–220 (1952).PubMedGoogle Scholar
  97. Drouhet, E.: Recherches sur la nutrition des dermatophytes. II. Action des acides aminés sur la croissance et la morphogénèse. Ann. Inst. Pasteur 82, 348–355 (1952).Google Scholar
  98. Recherches sur la nutrition des dermatophytes. III. L’histidine, facteur de croissance des Trichophyton du groupe rosaceum. Ann. Inst. Pasteur 85, 791–799 (1953).Google Scholar
  99. Duff, R. B.: The constitution of a glucosan from the fungus Polyporus betulinus. J. Chem. Soc. (Lond.) 1952, 2592–2594.Google Scholar
  100. Durbin, R. D.: Straight–line function of microorganisms at toxic levels of carbon dioxide. Science (Lancaster, Pa.) 121, 734–735 (1955).Google Scholar
  101. Edson, N. L.: The metabolism of sugar alcohols. Rep. Australian New Zealand Assoc. Adv. Sci. 29, 281–299 (1952).Google Scholar
  102. Emerson, Mary R.: Chemical activation of ascospore germination in Neurospora crassa. J. Bacter. 55, 327–330 (1948).Google Scholar
  103. Some physiological characteristics of ascospore activation in Neurospora crassa. Plant Physiol. 29, 418–428 (1954).Google Scholar
  104. Engel, H. R.: Effects of the injection of snake venom containing lecithinase A into Physarum polycephalum. J. Cellul. a. Comp. Physiol. 44, 203–210 (1954).Google Scholar
  105. English, Mary P., and N. H. Barnard: The effect of trace metal deficiency on some Trichophyton strains. Brit, Mycol. Soc., Trans. 38, 78–82 (1955).Google Scholar
  106. Enkvist, T., Eva Solin and U. Manntjla: Studies on pine wood decayed by brown rot. Papper och Träv. 36, 65–69 (1954).Google Scholar
  107. Fergus, C. L.: The production of ethylene by Penicillium digitatum. Mycologia (N.Y.) 44, 543–555 (1954).Google Scholar
  108. The effect of temperature and nutrients upon spore germination of the oak wilt fungus. Mycologia (N. Y.) 46, 435–441 (1954a).Google Scholar
  109. Fiebre, C. W. de, and S. G. Knight: The oxidation of glucose by Penicillium chrysogenum. J. Bacter. 66, 170–172 (1953).Google Scholar
  110. Foster, J. W.: The heavy metals nutrition of fungi. Bot. Rev. 5, 207–239 (1939).Google Scholar
  111. Chemical Activities of Fungi. New York: Academic Press 1949.Google Scholar
  112. Freeman, G. G., and Catherine S. MacPherson: Studies on metabolic products of the Penicillium luteum series. Biochemic. J. 45, 179–189 (1949).Google Scholar
  113. Frey, R.: Chitin und Zellulose in Pilz-Zellwänden. Ber. schweiz, bot. Ges. 60, 199–230 (1950).Google Scholar
  114. Friend, J., T. W. Goodwin and L. A. Griffiths: Studies in carcinogenesis. XV. The rôle of carboxylic acids in the biosynthesis of beta-carotene by Phycomyces blakesleeanus. Biochemic. J. 60, 649–655 (1955).Google Scholar
  115. Fries, Lisbeth: Über das Wachstum einiger Coprinus-Arten bei verschiedenen Wasserstoffionenkonzentrationen. Ark. Bot. (Stockh.) 32, 1–8 (1945).Google Scholar
  116. Factors promoting growth of Coprinus fimetarius (L.) under high temperature conditions. Physiol. Plantarum (Copenh.) 6, 551–563 (1953).Google Scholar
  117. Fulkerson, J. F.: The relation of light to the production of pycnidia by Physalospora obtusa. Phytopathology 45, 22–25 (1955).Google Scholar
  118. Gallegly, M. E., and J. Galindo: Mating types and oospores of Phytophthora infestans in nature in Mexico. Phytopathology 48, 274–277 (1958).Google Scholar
  119. Gardner, Elizabeth B.: Conidiophore elongation in Aspergillus giganteus: The influence of temperature, light intensity, and light quality. Trans. New York Acad. Sci., Ser. II 17, 476–490 (1955).Google Scholar
  120. Garzuly-Janke, R.: Über das Vorkommen von Mannan bei Hyphen- und Sproßpilzen. Zbl. Bakter. 102, 361–365 (1940).Google Scholar
  121. Gitterman, C. O., and S. G. Knight: Carbon dioxide fixation into amino acids of Penicillium chrysogenum. J. Bacter. 64, 223–231 (1952).Google Scholar
  122. Glass, B.: In Vol. 2, p. 914 of “A Symposium on Phosphorus Metabolism”, 1952. See McElroy and Glass (1951, 1952) for complete citation.Google Scholar
  123. Godin, P.: Étude du métabolisme ternaire de Pénicillium brevi-compactum. II. Analyse chromatographique de la solution glucosée substituée au milieu culture initial. Biochim. et Biophysica Acta 11, 119–121 (1953).Google Scholar
  124. Étude du métabolisme ternaire de Penicillium brevi-compactum. III. Production d’un polysaccharide par cette moisissure. Biochim. et Biophysica Acta 12, 528–532 (1953a).Google Scholar
  125. Goodwin, T. W.: Fungal carotenoids. Bot. Rev. 18, 291–316 (1952).Google Scholar
  126. Görski, F.: Recherches sur l’utilisation des invers optiques de l’acide racemique par des Asperilles. Bull, internat. Acad. pol. Sci., Ser. B 1, 35–39 (1948).Google Scholar
  127. Gottlieb, D.: The physiologv of spore germination in fungi. Bot. Rev. 16, 229–257 (1950).Google Scholar
  128. Gottlieb, S., W. C. Day and M. J. Pelczar jr.: The biological degradation of lignin. II. The adaptation of white–rot fungi to growth on lignin media. Phytopathology 40, 926–935 (1950).Google Scholar
  129. Gottlieb, S., and M. J. Pelczar jr.: Microbiological aspects of lignin degradation. Bacter. Rev. 15, 55–76 (1951).Google Scholar
  130. Gott-schalk, A.: The mechanism of selective fermentation of d-fructose from invert sugar by Sauternes yeast. Biochemic. J. 40, 621–626 (1946).Google Scholar
  131. Further observations on the nonfermentability of d-fructopyranose by yeast. Biochemic. J. 41, 478–480 (1947).Google Scholar
  132. Govinda-rajan, V. S.: Papyrography in the study of raffinose-melibiose fermentation by yeasts. J. Sci. Ind. Res. (India) B 12, 48–51 (1953).Google Scholar
  133. Goyette, L. E.: Studies on the extracellular starch production by species of Torulopsis. Kansas Acad. Sci. 54, 28–35 (1951).Google Scholar
  134. Gray, W. D.: The effect of light on the fruiting of Myxomycetes. Amer. J. Bot. 25, 511–522 (1938).Google Scholar
  135. Further studies on the fruiting of Physarum polycephalum. Mycologia (N. Y.) 45, 817–824 (1953).Google Scholar
  136. Gray, W. D., and W. R. Bushnell: Biosynthetic potentialities of higher fungi. Mycologia (N. Y.) 47, 646–663 (1955).Google Scholar
  137. Gregg, J. J., Alice L. Hackney and J. O. Krivanek: Nitrogen metabolism of the slime mold Dictyostelium discoideum during growth and morphogenesis. Biol. Bull. 107, 226–235 (1954).Google Scholar
  138. Grimm, Phyllis W., and P. J. Allen: Promotion by zinc of the formation of cytochromes in Ustilago sphaerogena. Plant Physiol. 29, 369–277 (1954).PubMedGoogle Scholar
  139. Gunsalus, I. C., B. L. Horecker and W. W. Wood: Pathways of carbohydrate metabolism in microorganisms. Bacter. Rev. 19, 79–128 (1955)Google Scholar
  140. Guttenberg, H. v., u. Ingrid Strutz: Zur Keimungsphysiologie von Ustilago zeae. Arch. Mikrobiol. 17, 189–198 (1952).Google Scholar
  141. Haas, J. N.: Effects of some enzymes injected into the slime mold Physarum polycephalum. J. Cellul. a. Comp. Physiol. 41, 171–200 (1953).Google Scholar
  142. Hacskaylo, J., V. G. Lilly and H. L. Barnett: Growth of fungi on three sources of nitrogen. Mycologia (N. Y.) 46, 691–701 (1954).Google Scholar
  143. Haenel, H.: „Keimring“ -Bildung bei Neurospora-Mutanten. Naturwiss. 41, 362 (1954).Google Scholar
  144. Haenel, H., u. Walheide Müller-Beuthow: Über den Einfluß exogen benötigter Wirkstoffe auf die Keimfähigkeit von Konidien (Neurospora, Phycomyces). Vitamine u. Hormone 6, 255–269 (1954).Google Scholar
  145. Hagen, C. E., and P. C. Jackson: Competition among ionic species in cation activation of enzymes. Proc. Nat. Acad. Sci. U.S.A. 39, 1188–1196 (1953).Google Scholar
  146. Halliwell, G.: The effect of aeration on the metabolism of acetate by Aspergillus niger. J. of Exper. Bot. 4, 369–376 (1953).Google Scholar
  147. Halvorson, H. O., and S. Spiegelman: The inhibition of enzyme formation by amino acid analogues. J. Bacter. 64, 207–221 (1952).Google Scholar
  148. Harrold, C. E., and Marguerite Fling: Two mutants of Neurospora crassa which utilize formate or formaldehyde for growth. J. of Biol. Chem. 194, 399–406 (1952).Google Scholar
  149. Hash, J. H., and K. W. King: Demonstration of an oligosaccharide intermediate in the enzymatic hydrolysis of cellulose. Science (Lancaster, Pa.) 120, 1133–1134 (1954).Google Scholar
  150. Haskins, R. H., and W. H. Weston jr.: Studies in the lower Chytridiales. I. Factors affecting pigmentation, growth, and metabolism of a strain of Karlingia (Rhizophlyctis) rosea. Amer. J. Bot. 37, 739–750 (1950).Google Scholar
  151. Hawker, Lilian E.: Physiology of Fungi. London: University of London Press 1950.Google Scholar
  152. The physiology of reproduction in fungi. Cambridge University Press 1957. 128 pp.Google Scholar
  153. Heath, E. C., and H. Kofler: Biochemistry of filamentous fungi. II. The quantitative significance of an “oxidation pathway” during the growth of Peniclliium chrysogenum. J. Bacter. 71, 174–180 (1956).Google Scholar
  154. Heath, E. C., Delill Nasses and H. Koffler: Biochemistry of filamentous fungi. III. Alternative routes for the breakdown of glucose by Fusarium lini. Arch, of Biochem. a. Biophysics 64, 80–87 (1956).Google Scholar
  155. Heplar, J. Q., and E. L. Tatum: Some factors affecting carbon dioxide metabolism in Neurospora crassa. J. of Biol. Chem. 208, 489–494 (1954).Google Scholar
  156. Hepting, G. H., E. R. Toole and J. S. Boyce: Sexuality in the oak wilt fungus. Phytopathology 42, 438–442 (1952).Google Scholar
  157. Hesseltine, C. W., and Patricia Anderson: The genus Thamnidium and a study of its zygospores. Amer. J. Bot. 43, 696–703 (1956).Google Scholar
  158. Hesseltine, C. W., A. R. Whitehill, C. Pidacks, Margaret ten Hagen, N. Bohonos, B. L. Hutchings and J. H. Williams: Coprogen, a new growth factor present in dung, required by Pilobolus species. Mycologia (N. Y.) 45, 7–19 (1953).Google Scholar
  159. Hestrin, S.: The fermentation of disaccharides. I. Reducing disaccharides and trehalose. Wallerstein Labor. Commun. 11, 193–218 (1948).Google Scholar
  160. Hirschberg, E., and H. P. Rusch: Effects of compounds of varied biochemical action on the aggregation of a slime mold, Dictyostelium discoideum. J. Cellul. a. Comp. Physiol. 36, 105–114 (1950).Google Scholar
  161. Hockenhull, D. J. D.: The sulphur metabolism of mould fungi: The use of “biochemical mutant” strains of Aspergillus nidulans in elucidating the biosynthesis of cystine. Biochim. et Biophysica Acta 8, 326–335 (1949).Google Scholar
  162. Hockenhull, D. J. D., Mary Herbert, A. D. Walker, G. D. Wilken and F. G. Winder: Organic acid metabolism of Penicillium chrysogenum. I. Lactate and acetate. Biochemic. J. 56, 73–82 (1954).Google Scholar
  163. Hok, K. A.: Studies of the nutrition of Myxomycete plasmodia. Amer. J. Bot. 41, 792–799 (1954).Google Scholar
  164. Holzapfel, Luise, u. W. Engel: Über die Abhängigkeit der Wachstumsgeschwindigkeit von Aspergillus niger in Kieselsäurenährlösungen bei O2-Belüftung. Naturwiss. 41, 191 (1954).Google Scholar
  165. Der Einfluß organischer Kieselsäure-Verbindungen auf das Wachstum von Aspergillus niger und Triticum. Z. Naturforsch. 9, 602–606 (1954a).Google Scholar
  166. Horecker, B. L., and A. H. Mehler: Carbohydrate metabolism. Annual Rev. Biochem. 24, 207–274 (1955).Google Scholar
  167. Hotson, H. H.: The growth of rusts in tissue culture. Phytopathology 43, 360–363 (1953).Google Scholar
  168. Hotson, H. H., and Y. M. Cutter jr.: The isolation and culture of Gymnosporangium juniperi-virginianae Schw. upon artificial media. Proc. Nat. Acad. Sci. U.S.A. 37, 400–403 (1951).Google Scholar
  169. Hough, L., J. K. N. Jones and E. L. Richards: The reactions of amino-compounds with sugars. Part II. The action of ammonia on glucose, maltose, and lactose. J. Chem. Soc. (Lond.) 1953, 2005–2009.Google Scholar
  170. The reactions of amino-compounds with sugars. Part III. The action of ammonia on melibiose. J. Chem. Soc. (Lond.) 1954, 295–297.Google Scholar
  171. Houwink, A. L. D. R. Kreger and P. A. Roelofsen: Composition and structure of yeast cell walls. Nature (Lond.) 168, 693–694 (1951).Google Scholar
  172. Ingold, C. T.: Dispersal in Fungi. Oxford: Clarendon Press 1953.Google Scholar
  173. Jefferson, W. E., and J. W. Foster: Tracer studies on formate metabolism in fungi. J. Bacter. 65, 587–592 (1953).Google Scholar
  174. Jennison, M. W., Melva D. Newcomb and R. Henderson: Physiology of the wood-rotting Basidiomycetes. I. Growth and nutrition in submerged culture in synthetic media. Mycologia (N. Y.) 47, 275–304 (1955).Google Scholar
  175. Jermyn, M. A.: Fungal cellulases. III. Stachybotrys atra: Growth and enzyme production on non-cellulosic substrates. Austral. J. Biol. Sci. 6, 48–69 (1953).Google Scholar
  176. Jermyn, M. A., and R. Thomas: Transferase activity of the beta-glucosidases of Aspergillus oryzae. Austral. J. Biol. Sci. 6, 70–76 (1953).Google Scholar
  177. Johnson, S. P., and H. E. Joham: Some physiological notes on Sclerotium rolfsii. I. Utilization of certain carbon compounds. Plant Disease Rep. 38, 602–606 (1954).Google Scholar
  178. Jump, J. A.: Studies on sclerotization in Physarum polycephalum. Amer. J. Bot. 41, 561–567 (1954).Google Scholar
  179. Keilin, D.: Haemoglobin in fungi. Nature (Lond.) 172, 390–393 (1953).Google Scholar
  180. Keilin, D., and A. TissiÈres: Haemoglobin in moulds: Neurospora crassa and Penicillium notatum. Nature (Lond.) 172, 393–394 (1953).Google Scholar
  181. Kita, D. A., and W. H. Peterson: Forms of phosphorus in the penicillin-producing mold Penicillium chrysogenum Q 176. J. of Biol. Chem. 203, 861–868 (1953).Google Scholar
  182. Klebs, G.: Die Bedingungen der Fortpflanzung bei einigen Algen und Pilzen, S. V. Jena: Gustav Fischer 1896.Google Scholar
  183. Kommedahl, T.: Spore germination in Ustilago zeae as influenced by KH2PO4. Mycologia (N. Y.) 46, 151–156 (1954).Google Scholar
  184. Kooiman, P., P. A. Roelofsen and S. Sweeris: Some properties of cellulase from Myrothecium verrucaria. Enzymologia 16, 237–246 (1953).PubMedGoogle Scholar
  185. Kreger, D. R.: Observations on cell walls of yeasts and some other fungi by x-ray diffraction and solubility tests. Biochim. et Biophysica Acta 13, 1–9 (1954).Google Scholar
  186. Kurasawa, H., S. Saito, N. Honma and Y. Yamamoto: Production of non-reducing oligosaccharides from sucrose by fungi and the action of the extract from fungal mycelium, and the chemical properties of non-reducing oligosaccharides. Bull. Faculty Agricult. Niigata Univ. 1953, No 4.Google Scholar
  187. Lebeau, J. B., and J. B. Dickson: Preliminary report of production of hydrogen cyanide by a snow-mold pathogen. Phytopathology 43, 581–582 (1953).Google Scholar
  188. Leloir, L. F., C. E. Cardini and E. Cabib: Reversibilidad de la transformacion enzimatica de glucosa-1-fosfato en galactosa-1-fosfato. An. Asoc. Quimica Argent. 40, 228–234 (1952).Google Scholar
  189. Ley, J. de, u. M. Bernaerts: The “direct” catabolism of disaccharides. Z. Vitamin-, Hormon- u. Fermentforsch. 5, 179–202 (1953).Google Scholar
  190. Lilly, V. G., and H. L. Barnett: The influence of concentration of nutrients, thiamin and biotin upon growth; and the formation of perithecia and ascospores by Chaetomium convolutum. Mycologia (N. Y.) 41, 186–196 (1949).Google Scholar
  191. Physiology of the Fungi. New York: McGraw-Hill Book Co. 1951.Google Scholar
  192. The utilization of sugars by fungi. West Virginia Agricult. Exper. Stat. Bull. 1953, 362 T.Google Scholar
  193. The utilization of d- and l-arabinose by fungi. Amer. J. Bot. 43, 709–714 (1956).Google Scholar
  194. Lilly, V. G., H. L. Barnett, R. F. Krause and F. J. Lotspeich: A method of obtaining pure radioactive B-carotene using Phycomycesblakesleeanus. Mycologia (N.Y.) 50, in press (1958).Google Scholar
  195. Lindenberg, A. B., et Simone Zuili: Proportion de l’eau liee non solvante dans la cellule de levure. C. r. Acad. Sci. Paris 240, 813–815 (1955).PubMedGoogle Scholar
  196. Lipmann, F.: Development of the acetylation problem, a personal account. Science (Lancaster, Pa.) 120, 855–865 (1954).Google Scholar
  197. Losada, M.: The hydrolysis of raffinose by yeast melibiase and the fermentation of raffinose by complementary gene action. C. r. Trav. Lab. Carlsberg 25, 460–482 (1957).Google Scholar
  198. Luteraan, P. J.: Stimulation de la croissance d’un Hansenula par certains acides organiques. C. r. Acad. Sci. Paris 236, 2531–2533 (1953).Google Scholar
  199. Lyr, H.: Zur Kenntnis der Ernährungsphysiologie der Gattung Pilobolus. Arch. Mikrobiol. 19, 402–434 (1953).PubMedGoogle Scholar
  200. Machlis, L.: Growth and nutrition of water molds in the subgenus Euallomyces. I. Growth factor requirements. Amer. J. Bot. 40, 189–195 (1953).Google Scholar
  201. Growth and nutrition of water molds in the subgenus Euallomyces. II. Optimal composition of the minimal medium. Amer. J. Bot. 40, 450–460 (1953a).Google Scholar
  202. Growth and nutrition of water molds in the subgenus Euallomyces. III. Carbon sources. Amer. J. Bot. 40, 460–464 (1953b).Google Scholar
  203. MacLeod, R. A., and E. E. Snell: Ion antagonism in bacteria as related to antimetabolites. Ann. New York Acad. Sci. 52, 1249–1259 (1950).Google Scholar
  204. Macmillan, Anne: The entry of ammonia into fungal cells. J. of Exper. Bot. 7, 113–126 (1956).Google Scholar
  205. Madelin, M. F.: Studies on the nutrition of Coprinus lagopus Fr., especially as affecting fruiting. Ann. Bot., N. S. 20, 307–330 (1956).Google Scholar
  206. Magrou, J.: Sur un Hypomycète de la famille des Stilbacées, Sphaerocybe concentrica n.g., n.s. C. r. Acad. Sci. Paris 220, 220–222 (1945).Google Scholar
  207. Magrou, J., et F. Mariat: Symbiose morphogène entre deux champignons (Rhodotorula rubra et Sphaerocybe concentrica). C. r. Acad. Sci. Paris 226, 981–983 (1948).PubMedGoogle Scholar
  208. Mandels, G. R.: Metabolism of sucrose and related oligosaccharides by spores of the fungus Myrothecium verrucaria. Plant Physiol. 29, 18–26 (1954). — Mardsen, D. H.: Studies on the creosote fungus, Hormodendrum resinae. Mycologia (N. Y.) 46, 161–183 (1954).PubMedGoogle Scholar
  209. Mariat, F.: Symbiose entre deux champignons (Sphaerocybe concentrica et Sordaria fimicola) et son influence sur leur croissance et leur fructification. C. r. Acad. Sci. Paris 228, 68–69 (1949).Google Scholar
  210. Mathew, K. T.: Studies on the black rot of coffee. I. The diesease in South India and some general considerations. Proc. Indian Acad. Sci. 34, 133–170 (1954).Google Scholar
  211. Matsushima, T., and R. J. Klug: Utilization of l–sorbose by monosporidal lines and mutants of Ustilago maydis. Amer. J. Bot. 45, 165–168 (1958).Google Scholar
  212. Maxon, W. D., and M. J. Johnson: Aeration studies on propagation of bakers’ yeast. Industr. Engin. Chem. 45, 2554–2560 (1953).Google Scholar
  213. McClellan, W. D., H. A. Borthwick, Ida Bjornsson and B. D. Marshall jr.: Some responses of fungi to light. Phytopathology 45, 465 (1955).Google Scholar
  214. McConnell, W. B., E. Y. Spencer and J. A. Trew: The proteolytic enzymes of microorganisms. V. Extracellular peptidases produced by fungi grown in submerged culture. Canad. J. Chem. 31, 697–704 (1953).Google Scholar
  215. McElroy, W. D., and B. Glass (Editors): Phosphorus Metabolism. A Symposium on the rôle of Phosphorus in the Metabolism of Plants and Animals. Baltimore: Johns Hopkins Press, Vol. 1, 1951; Vol. 2, 1952.Google Scholar
  216. Mickelson, M. V., and M. N. Schuler: Oxidation of acetate by Ashbyagossypii. J. Bacter. 65, 297–304 (1953).Google Scholar
  217. Miettinen, J. K.: Different nitrogen fractions in normal- and low–nitrogen cells of microorganisms. II. Changes in the free amino acids in low-nitrogen Torulopsis utilis yeast during enrichment by various nitrogen sources. Acta chem. scand. (Copenh.) 5, 962–964 (1951).Google Scholar
  218. Moore, W. B., A. C. Blackwood and A. C. Neish: The metabolism of seven-carbon sugars, acids and alcohols by bacteria and yeasts. Canad. J. Microbiol. 1, 198–205 (1954).Google Scholar
  219. Morton, A. G.: Formation of extra-cellular nitrogen compounds by fungi. Nature (Lond.) 168, 333 (1951).Google Scholar
  220. Morton, A. G., and Anne Mac-Millan: The assimilation of nitrogen from ammonium salts and nitrates by fungi. J. of Exper. Bot. 5, 232–252 (1954).Google Scholar
  221. Mothes, K.: Ein Beitrag zur Assimilation N-haltiger Verbindungen durch Bäckerhefe. Planta (Berl.) 42, 64–80 (1953).Google Scholar
  222. Müller, K., u. K. Täueel: Veränderung von Traubenzucker- und Invertzuckerlösungen bei der Erhitzung (Sterilisation). Biochem. Z. 824, 221–227 (1953).Google Scholar
  223. Narayanamurti, D., and J. George: Studies of the biochemistry of wood-rotting fungi. Part V. Enzymatically liberated lignin and its applications. Composite Wood 1, 51–55 (1954).Google Scholar
  224. Narayanamurti, D., u. G. M. Verma: Studien zur Biochemie holzzerstörender Pilze. IV. Mitt. Zersetzung von Holz und anderen Stoffen. Holz als Roh- u. Werkstoff 11, 226–227 (1953).Google Scholar
  225. Nason, A., and H. J. Evans: Triphosphopyridine nucleotidenitrate reductase in Neurospora. J. of Biol. Chem. 202, 655–673 (1953).Google Scholar
  226. Nason, A., N. O. Kaplan and S. P. Colowick: Changes in enzymatic constitution in zinc-deficient Neurospora. J. of Biol. Chem. 188, 397–406 (1951).Google Scholar
  227. Neilands, J. B.: A crystalline organo-iron pigment from a rust (sic) fungus, Ustilago sphaerogena. J. Amer. Chem. Soc. 74, 4846–4847 (1952).Google Scholar
  228. Some aspects of microbial iron metabolism. Bacter. Rev. 21, 101–111 (1957).Google Scholar
  229. Nicholas, D. J. D., and A. H. Fielding: The use of Aspergillus niger (M) for the determination of magnesium, zinc, copper and molybdenum available in soils to crop plants. J. Horticult, Sci. 26, 125–147 (1951).Google Scholar
  230. Nicholas, D. J. D., and A. Nason: Mechanism of action of nitrate reductase from Neurospora. J. of Biol. Chem. 211, 183–197 (1954).Google Scholar
  231. Nicholas, D. J. D., A. Nason and W. D. McElroy: Effect of molybdenum deficiency on nitrate reductase in cell-free extracts of Neurospora and Aspergillus. Nature (Lond.) 172, 34 (1953).Google Scholar
  232. Nickerson, W. J. (Editor): Biology of Pathogenic Fungi. Waltham: Chronica Botanica Comp. 1947.Google Scholar
  233. Nilsson, H.: The growth stimulating effect of fructose-1, 6-diphosphate in Boletus variegatus and Collybia velutipes. Physiol. Plantarum 9, 74–81 (1956).Google Scholar
  234. Nord, F. F., and G. de Stevens: Studies on lignin and lignification. Trans. New York Acad. Sci., Ser. II 14, 97–102 (1951).Google Scholar
  235. Nord, F. F., and S. Weiss: Yeast and mold fermentations. In: The Enzymes, Chapt. 64, Vol. 2. Editors J. B. Sumner and K. Myrbäck. New York: Academic Press 1951a.Google Scholar
  236. Norkrans, Birgitta: The effect of glutamic acid, aspartic acid, and related compounds on the growth of certain Tricholoma species. Physiol. Plantarum (Copenh.) 6, 584–593 (1953).Google Scholar
  237. Northcote, D. H., and R. W. Horne: The chemical composition and structure of the yeast cell wall. Biochemic. J. 51, 232–236 (1952).Google Scholar
  238. O’Connell, P. W., K. M. Mann, E. D. Nielson and F. R. Hanson: Studies in the microbiological oxidation of steroids by Cunninghamella blakesleeana H 334. App. Microbiol. 3, 16–20 (1955).Google Scholar
  239. Oddoux, L.: Utilization comparée du sorbose et du fructose naturels par une centaine d’Homobasidiomycètes. C. r. Acad. Sci. Paris 234, 654–657 (1952).PubMedGoogle Scholar
  240. ødegård, K.: On the physiology of Phycomyces blakesleeanus Burgeff. I. Mineral requirements on a glucose–asparagine medium. Physiol. Plantarum (Copenh.) 5, 583–609 (1952).Google Scholar
  241. Ohta, J.: The metabolism of myxomycetous plasmodium. J. of Biochem. (Tokyo) 41, 489–497 (1954). From Chem. Abstr. 48, 13796 (1954).Google Scholar
  242. Omvik, Aasa: Experiments on manganese, zinc and calcium as constituents of nutrient solutions for fungi. Universitetet i Bergen Arbok 1951. Naturvitenakapelige rekke. 1951, Nr 8, 1. (In English.)Google Scholar
  243. Pady, S. M., and L. Kapica: Fungi in air over the Atlantic ocean. Mycologia (N. Y.) 47, 34–50 (1955).Google Scholar
  244. Page, R. M.: The effect of nutrition on growth and sporulation of Pilobolus. Amer. J. Bot. 39, 731–739 (1952).Google Scholar
  245. Studies on the development of asexual reproductive structures in Pilobolus. Mycologia (N. Y.) 48, 206–224 (1956).Google Scholar
  246. Pai, K. V. S.: Carbon, nitrogen, and pH relationships to growth of soil Fusaria in culture. Proc. Indian Acad. Sci. 37, 131–148 (1953).Google Scholar
  247. Parker, Helen: Studies in the nutrition of some aquatic Myxomycetes. J. Elisha Mitchell Sci. Soc. 62, 231–247 (1946).Google Scholar
  248. Patterson, E. L., H. M. v. Saltza, H. P. Broquist and J. Y. Pierce: Effects of certain carbohydrates on the nutritional requirements of Lactobacillus pentosus. Proc. Soc. Exper. Biol. a. Med. 81, 205–207 (1952).Google Scholar
  249. Pehrson, S. O.: Studies of the growth physiology of Phacidium infestans Karst. Physiol. Plantarum (Copenh.) 1, 38–56 (1948).Google Scholar
  250. Pelletier, R. L., and G. W. Keitt: Venturiainaequalis (Cke.) Wint. VI. Amino acids as sources of nitrogen. Amer. J. Bot. 41, 362–371 (1954).Google Scholar
  251. Perlman, D.: Effects of minor elements on the physiology of fungi. Bot. Rev. 15, 195–220 (1949).Google Scholar
  252. Pfeifer, V. F., C. Vojnovich and E. N. Heger: Itaconic acid by fermentation with Aspergillus terreus. Industr. Engin. Chem. 44, 2775–2780 (1952).Google Scholar
  253. Phaff, H. J.: The production of exocellular pectic enzymes by Penicillium chrysogenum. I. On the formation and adaptive nature of polygalacturonase and pectinesterase. Arch. of Biochem. 13, 67–81 (1947).Google Scholar
  254. Pidacks, C., A. R. Whitehill, L. M. Preuss, C. W. Hesseltine, B. L. Hutchings, N. Bohonos and J. H. Williams: Coprogen, the isolation of a new growth factor required by Pilobolus species. J. Amer. Chem. Soc. 75, 6064–6065 (1953).Google Scholar
  255. Pillai, N. C., and K. S. Srinivasan: The amino acid metabolism of Aspergillus flavus. J. Gen. Microbiol. 14, 248–255 (1956).PubMedGoogle Scholar
  256. Pine, L.: Studies on the growth of Histoplasma capsulatum. I. Growth of the yeast phase in liquid media. J. Bacter. 68, 671–679 (1954).Google Scholar
  257. Pine, L., and C. L. Peacock: Reaction of fumaric acid with cysteine. J. Amer. Chem. Soc. 77, 3153–3154 (1955).Google Scholar
  258. Plunkett, B. E.: Nutritional and other aspects of fruit-body production in pure culture of Collybia velutipes (Curt.) Fr. Ann. of Bot., N. S. 17, 193–217 (1953).Google Scholar
  259. The influence of factors of the aeration complex and light upon fruit-body form in pure cultures of an Agaric and a Polypore. Ann. of Bot., N. S. 20, 563–586 (1956).Google Scholar
  260. Pomper, S.: A pH sensitive multiple mutant of Saccharomyces cerevisiae. J. Bacter. 64, 353–361 (1952).Google Scholar
  261. Methionine-requiring mutants of Saccharomyces cerevisiae. J. Bacter. 65, 666–670 (1952a).Google Scholar
  262. Prentice, N., and L. S. Cuendet: Chemical composition of uredospores of wheat stem rust (Puccinia graminis tritici). Nature (Lond.) 174, 1151 (1954).Google Scholar
  263. Prévost, G., and Madeleine Gans: Action du l-sorbose dur la croissance de Coprinus fimentarius (Fr.). C. r. Acad. Sci. Paris 243, 404–407 (1956).Google Scholar
  264. Purdy jr., L. H., and R. C. Grogan: Physiological studies of Sclerotinia sclerotiorum in liquid and agar culture. Phytopathology 44, 36–38 (1954).Google Scholar
  265. Raistrick, H., and J. M. Vincent: Studies in the biochemistry of micro–organisms. 77. A survey of fungal metabolism of inorganic sulphates. Biochemic. J. 43, 90–100 (1948).Google Scholar
  266. Ram, C. S.V.: Studies in the amino acid composition of Fusarium mycelium. Proc. Nat. Inst. Sci. (India) 22 B, 227–235 (1956).Google Scholar
  267. Ramsbottom, J.: The expanding knowledge of mycology since Linnaeus. Proc. Linnean Soc. London 1938/39, 280–367.Google Scholar
  268. Ranganayaki, S., and K. Bahadur: The growth of Pichia membranaefaciens utilizing the energy obtained by the oxidation by aeration of different metallic hydroxides. Bull. Chem. Soc. Japan 27, 313–314 (1954). Through Chem. Abstr. 49, 8374 (1955).Google Scholar
  269. Ranzoni, F. V.: Nutrient requirements for two species of aquatic Hypomycetes. Mycologia (N. Y.) 43, 130–141 (1951).Google Scholar
  270. Raper, J. R.: Tetrapolar sexuality. Quart. Rev. Biol. 28, 233–259 (1953).PubMedGoogle Scholar
  271. Raper, K. B.: Growth and development of Dictyostelium discoideum with different bacterial associates. J. Agricult. Res. 55, 289–316 (1937).Google Scholar
  272. Isolation, cultivation and conservation of simple slime molds. Quart. Rev. Biol. 26, 169–190 (1951).Google Scholar
  273. A decade of antibiotics in America. Mycologia (N. Y.) 44, 1–59 (1952).Google Scholar
  274. Factors affecting growth and differentiation in simple slime molds. Mycologia (N. Y.) 48, 169–205 (1956).Google Scholar
  275. Dictyostelium polycephalum n. sp.: A new cellular slime mold with coremiform fructifications. J. Gen. Microbiol. 14, 716–732 (1956).Google Scholar
  276. Raper, K. B., Dorothy I. Fennell and H. D. Tresner: The ascosporic stage of Aspergillus citrisporus and related forms. Mycologia (N. Y.) 45, 671–697 (1953).Google Scholar
  277. Rauch, J., u. I. Peiker: Eine Methode zur Vitamin B1Bestimmung mittels des Phycomyces-Testes in der Submerskultur. Biochem. Z. 321, 31–38 (1950).PubMedGoogle Scholar
  278. Raulin, J.: Ètudes chimiques sur la végétation. Ann. Sci. natur., Bot. et Biol, végétale, Ser. V 11, 93–229 (1869).Google Scholar
  279. Reischer, Helen S.: Growth of Saprolegniaceae in synthetic media. I. Inorganic nutrition. Mycologia (N. Y.) 43, 142–155 (1951).Google Scholar
  280. Growth of Saprolegniaceae in synthetic media. II. Nitrogen requirements and the rôle of Krebs cycle acids. Mycologia (N. Y.) 43, 319–328 (1951a).Google Scholar
  281. Renard, M., and J. Casimir: Répartition des acides aminés chez les Agaricales. Mushroom Sci. 2, 39–45 (1953).Google Scholar
  282. Richards, G. S.: Factors influencing sporulation by Septoria nodorum. Phytopathology 41, 571–578 (1951).Google Scholar
  283. Robbins, W. J.: The assimilation by plants of various forms of nitrogen. Amer. J. Bot. 24, 243–250 (1937).Google Scholar
  284. Roberts, R. B., D. B. Cowie, P. H. Abelson, E. T. Bolton and R. J. Britton: Studies of biosynthesis in Escherichia coli. Carnegie Inst. Publ. 1955, 521 p.Google Scholar
  285. Roberts, H. R., and E. F. McFarren: The chromatographic observation of oligosaccharides during lactase hydrolysis of lactose. J. Dairy Sci. 36, 620–632 (1953).Google Scholar
  286. Roelofsen, P. A.: Yeast mannan, a cell wall constituent of baker’s yeast. Biochim. et Biophysica Acta 10, 477–488 (1953).Google Scholar
  287. Roelofsen, P. A., and Ilse Hoette: Chitin in the cell wall of yeasts. Antonie van Leeuwenhoek J. Microbiol, a. Serol. 17, 27–43 (1951).Google Scholar
  288. Rolinson, G. N., and M. Lumb: The effect of aeration on the utilization of respiratory substrates by Penicillium chrysogenum in submerged culture. J. Gen. Microbiol. 8, 265–272 (1953).PubMedGoogle Scholar
  289. Rosselet, F.: Aspergillus niger as a test organism for measuring plant available potassium in lowveld soils. S. Afric. J. Sci. 49, 344–347 (1953).Google Scholar
  290. Rothstein, A., and C. Demis: The relationship of the cell surface to metabolism. The stimulation of fermentation by extracellular potassium. Arch. of Biochem. a. Biophysics 44, 18–29 (1953).Google Scholar
  291. Rotman, B., and S. Spiegelman: The conversion of negatives to positives in “slow” adapting populations of yeast. J. Bacter. 66, 492–497 (1953).Google Scholar
  292. Schmidt, E. L.: Nitrate formation by a soil fungus. Science (Lancaster, Pa.) 119, 187–189 (1954).Google Scholar
  293. Schopfer, W. H.: Plants and Vitamins. Waltham: Chronica Botanica Comp. 1943.Google Scholar
  294. Schopfer, W. H., u. E. C. Grob: Sur la biosynthèse du beta-carotene par Phycomyces cultivé sur un milieu contenant de l’acétate de sodium comme unique source de carbone. Experientia (Basel) 8, 140 (1952).Google Scholar
  295. Schütte, K. H.: Translocation in the fungi. New Phytologist 55, 164–182 (1956).Google Scholar
  296. Schultz, A. S., Doris K. McManus and S. Pomper: Amino acids as carbon sources for the growth of yeasts. Arch, of Biochem. 22, 412–419 (1949).Google Scholar
  297. Shaffer, B. M.: Aggregation in cellular slime moulds: in vitro isolation of acrasin. Nature (Lond.) 171, 975 (1953).Google Scholar
  298. Shaffer, R. L., H. L. Crespi and J. H. Katz: Effects of deuteriation on the growth of Penicillium notatum and Aspergillus fonsecaeus. Bot. Gaz. 119, 24–30 (1957).Google Scholar
  299. Shanor, L.: Some observations and comments on the Laboulbeniales. Mycologia (N. Y.) 47, 1–12 (1955).Google Scholar
  300. Shaw, P. D., and L. P. Hager: An enzymatic chlorination reaction. J. Amer. Chem. Soc. 81, 1011–1012 (1959).Google Scholar
  301. Sheffner, A. L., and J. Grabow: Amide synthesis and transamidation during growth of Saccharomyces cerevisiae. J. Bacter. 66, 192–196 (1953).Google Scholar
  302. Shibasaki, K., and K. Aso: Studies on the unfermentable sugars. VI. The oligosaccharides synthesized from maltose by Schizosaccharomyces pombe. Tohoku J. Agricult. Res. 5. 131–138 (1954).Google Scholar
  303. Studies on the unfermentable sugars. VII. The synthesis of isomaltose from glucose by Asp. niger. Tohoku J. Agricult. Res. 5, 138–142 (1954a).Google Scholar
  304. Shirakawa, H. S.: The nutrition of Diplocarpon rosae. Amer. J. Bot. 42, 379–384 (1955).Google Scholar
  305. Shu, P.: Oxygen uptake in shake-flask fermentors. Agricult. Food Chem. 1, 1119–1123 (1953).Google Scholar
  306. Silver, W. S., and W. D. McElroy: Enzyme studies on nitrate and nitrite mutants of Neurospora. Arch, of Biochem. a. Biophysics 51, 379–394 (1953).Google Scholar
  307. Simonart, P., and K. Y. Chow: Ètude du métabolisme d’acides aminés chez Aspergillus oryzae. I. Influence du pH sur la teneur en acides aminés libres d’Aspergillus oryzae cultivé sur »Casamino acids« et sur acide glutamique. Antonie van Leeuwenhoek J. Microbiol. a. Serol. 19, 121–134 (1953).Google Scholar
  308. Ètude du métabolisme d’acides aminés chez Aspergillus oryzae. II. Acides aminés libres du mycélium cultivé sur divers acides aminés. Antonie van Leeuwenhoek J. Microbiol. a. Serol. 19, 245–255 (1953a).Google Scholar
  309. Ètude du métabolisme d’acides aminés chez Aspergillus oryzae. III. Acides aminés libres dans le mycélium cultivé sur diverse sources de carbone en présence d’ammoniaque. Antonia van Leeuwenhoek J. Microbiol, a. Serol. 20, 174–180 (1954).Google Scholar
  310. Ètude du métabolisme d’acides aminés chez Aspergillus oryzae. IV. Influence du chlorure de calcium sur le métabolisme des acides aminés. Antonie van Leeuwenhoek J. Microbiol, a. Serol. 20, 210–216 (1954a).Google Scholar
  311. Simonart, P., et P. Godin: Production de pentoses, d’acid 2-cétogluconique et l’acid glucuronique par Penicillium brevi-compactum. Bull. Soc. chim. Belg. 60, 446–447 (1951).Google Scholar
  312. Singh, B. N.: Studies on soil Acrasieae. Distribution of species of Dictyostelium in soils of Great Britain and the effect of bacteria on their development. J. Gen. Microbiol. 1, 11–21 (1947).PubMedGoogle Scholar
  313. Siu, R. G. H.: Microbial decomposition of cellulose. New York: Reinhold Publ. Corp. 1951.Google Scholar
  314. Siu, R. G. H., and J. W. Sinden: Effects of pH, temperature, and mineral nutrition on cellulolytic fungi. Amer. J. Bot. 38, 284–290 (1951).Google Scholar
  315. Smithies, W. R.: Chemical composition of a sample of mycelium of Penicillium griseofulvum Dierckx. Biochemic. J. 51, 259–264 (1952).Google Scholar
  316. Smoot, J. J., F. J. Gough, H. A. Lamey, J.J. Eichenmuller and M. E. Gallegly: Production and germination of oospores of Phytophthora infestans. Phytopathology 48, 165–171 (1958).Google Scholar
  317. Snyder, W. C., and H. N. Hansen: Variation and speciation in the genus Fusarium. Ann. New York Acad. Sci. 60, 16–20 (1954).Google Scholar
  318. Sobels, Johanna C., and A. L. Cohen: The isolation of opsimorphic organisms. II. Notes on isolation, purification and maintenance of Myxomycete plasmodia. Ann. New York Acad. Sci. 56, 944–953 (1953).Google Scholar
  319. Sørensen, H.: Enzymatic hydrolysis of xylan. Nature (Lond.) 172, 305 (1953).Google Scholar
  320. Sowden, J. C., S. Frankel, B. H. Moore and J. E. McClary: Utilization of l-C14-d-glucose by Torula utilis yeast. J. of Biol. Chem. 206, 547–552 (1954).Google Scholar
  321. Spencer, J. F. T., and H. R. Sallans: Production of polyhydric alcohols by osmophilic yeasts. Canad. J. Microbiol. 2, 72–79 (1956).Google Scholar
  322. Spiegelman, S.: Modern aspects of enzymatic adaptation. In: The Enzymes, Chapt. 6, Vol. I. Editors J. B. Sumner and K. Myrbäck. New York: Academic Press 1950.Google Scholar
  323. Sproston, T., and D. C. Pease: Influence of thermoperiods on production of the sexual stage of the fungus Sclerotinia trifoliorum Erik. Trans. N. Y. Acad. Sci. 20, 199–204 (1957).Google Scholar
  324. Stapp, C., u. C. Wetter: Beiträge zum quantitativen mikrobiologischen Nachweis von Magnesium, Zink, Molybdän und Kupfer im Boden. Landwirtsch. Forsch. 5, 167–180 (1953).Google Scholar
  325. Steinberg, R. A.: Growth of fungi in synthetic nutrient solutions. Bot. Rev. 5, 327–350 (1939).Google Scholar
  326. Relation of carbon nutrition to trace element and accessory requirements of Aspergillusniger. J. Agricult. Res. 59, 749–763 (1939a).Google Scholar
  327. Specificity of potassium and magnesium for the growth of Aspergillus niger. Amer. J. Bot. 33, 210–214 (1946).Google Scholar
  328. Essentiality of calcium in the nutrition of fungi. Science (Lancaster, Pa.) 107, 423 (1948).Google Scholar
  329. Trace element impurities in nutrient solutions for fungi. Arch. of Biochem. 28, 111–116 (1950).Google Scholar
  330. Growth on synthetic nutrient solutions of some fungi pathogenic to tobacco. Amer. J. Bot. 37, 711–714 (1950a).Google Scholar
  331. Stern, A. M., Z. J. Ordal and H. O. Halvorson: Utilization of fatty acids by and lipolytic activities of Mucor mucedo. J. Bacter. 68, 24–27 (1954).Google Scholar
  332. Stevens, C. M., and A. Mylroie: Production and reversion of biochemical mutants of Neurosporacrassa with mustard compounds. Amer. J. Bot. 40, 424–429 (1953).Google Scholar
  333. Stockdale, P. M.: Requirements for growth and sporulation of Trichophyton persicolor. J. Gen. Microbiol. 8, 484–491 (1953).Google Scholar
  334. Strauss, B. S.: Aspects of the carbohydrate metabolism of a mutant of Neurospora crassa requiring acetate for growth. Arch. of Biochem. a. Biophysics 36, 33–47 (1952).Google Scholar
  335. Subramanian, C. V., and K. V. S. Pai: Relation of nitrogen to growth and sporulation by Fusarium vasinfectum Atk. Proc. Indian Acad. Sci. 37, 149–157 (1953).Google Scholar
  336. Suomalainen, H., and T. Toivonen: On the fermentability of fructofuranose. Arch, of Biochem. 18, 109–118 (1948).Google Scholar
  337. Sussman, A. S.: The effect of furfural upon germination and respiration of ascospores of Neurospora tetrasperma. Amer. J. Bot. 40, 401–404 (1953).Google Scholar
  338. The sensitization of ascospores to chemical activators by heat treatment. Mycologia (N. Y.) 46, 143–150 (1954).Google Scholar
  339. Changes in permeability of ascospores of Neurospora tetrasperma during germination. J. Gen. Physiol. 38, 59–77 (1954a).Google Scholar
  340. Sussman, M.: An analysis of the aggregation stage in the development of the slime molds, Dictyosteliaceae. II. Aggregation center formation by mixtures of Dictyostelium discoideum wild type and aggregationless varients. Biol. Bull. 103, 446–457 (1952).Google Scholar
  341. The developmental physiology of the ameboid slime molds. In: Biochemistry and Physiology of Protozoa, Vol. II. New York: Academic Press 1954.Google Scholar
  342. Sussman, M., and S. G. Bradley: A protein growth factor of bacterial origin required by the cellular slime molds. Arch. of Biochem. a. Biophysics 51, 428–435 (1954).Google Scholar
  343. Sussman, M., and Elizabeth Noël: An analysis of the aggregation stage in the development of the slime molds, Dictyosteliaceae. I. The population distribution of the capacity to initiate aggregation. Biol. Bull. 103, 259–268 (1952).Google Scholar
  344. Sussman, R. R., and M. Sussman: Cellular differentiation in Dictyosteliaceae: Heritable modifications of the developmental pattern. Ann. New York Acad. Sci. 56, 949–960 (1953).Google Scholar
  345. Tatum, E. L., R. W. Barratt and V. M. Cutter jr.: Chemical induction of colonial paramorphs. Science (Lancaster, Pa.) 109, 509–511 (1949).Google Scholar
  346. Tenney, W. R.: The physiology of Chaetomium species. Morgantown: Thesis, West Virginia Univ. 1955.Google Scholar
  347. Terui, G., and T. Mochizuki: Studies on the metabolism of mold spores in relation to germination. I. Technol. Rep. Osaka Univ. 5, 219–227 (1955).Google Scholar
  348. Thom, C.: The evolution of species concepts in Aspergillus and Penicillium. Ann. New York Acad. Sci. 60, 24–34 (1954).Google Scholar
  349. Timnick, Margaret B., V. G. Lilly and H. L. Barnett: The effect of nutrition on the sporulation of Melanconium fuligenum in culture. Mycologia (N. Y.) 43, 625–634 (1951).Google Scholar
  350. Factors affecting sporulation of Diaporthe phaseolorum var. batatatis from soybean. Phytopathology 41, 327–336 (1951a).Google Scholar
  351. Todd, G. W., and J. Levitt: Bound water in Aspergillus niger. Plant Physiol. 26, 331–336 (1951).PubMedGoogle Scholar
  352. Tomizawa, C.: Studies on the nutritional physiology of the rice blast fungus (Piricularia oryzae). Ann. Phytopath. Soc. Japan 17, 113–118 (1953). Japanese, English Summary.Google Scholar
  353. Tove, S. R., H. F. Niss and P. W. Wilson: Nitrogen fixation by the fungus, Phoma causarina. Bact. Proc. 1949, 59. — Treggi, G.: Sulla utilizzazione di alcuni aminoacidi da parte di funghi fitopathgeni. Ann. sper. agrar. 8, 1955–1963 (1954).Google Scholar
  354. Tremaine, J. H., and J. J. Miller: Effect of six vitamins on ascospore formation by an isolate of baker’s yeast. Bot. Gaz. 115, 311–322 (1954).Google Scholar
  355. Tuite, J. F., and C. M. Christensen: Grain storage studies. XVI. Influence of storage conditions upon the fungus flora of barley seeds. Cereal Chem. 32, 1–11 (1955).Google Scholar
  356. Turian, G.: L’acide borique, inhibiteur de la différenciation des ascospores chez Sordaria. Experientia (Basel) 10, 183 (1954).Google Scholar
  357. L’acide borique inhibiteur de la copulation gamétique chez Allomyces. Experientia (Basel) 10, 498 (1954a).Google Scholar
  358. Uden, N. van, and L. Assis-Lopes: Fermentation of raffinose in the absence of invertase by Saccharomyces italiens Castelli var. melibiosi nov. var. Portugal. Acta Biol. 4, 323–327 (1957).Google Scholar
  359. Vallee, B. L., and F. L. Hoch: Zinc, a component of yeast alcohol dehydrogenase. Proc. Nat. Acad. Sci. U.S.A. 41, 327–338 (1955).Google Scholar
  360. Vanbreuseghem, R.: Keratin digestion by dermatophytes: a specific diagnostic method. Mycologia (N. Y.) 44, 176–182 (1952).Google Scholar
  361. Vishniac, Helen S.: Marine mycology. Trans. New York Acad. Sci., Ser. II 17, 352–360 (1955).Google Scholar
  362. Vöchting, A.: Über die Zinkaufnahme von Zea mays L. und Aspergillus niger v. Tiegh. in Einzelkultur und in Mischkultur. Ber. Schweiz, bot. Ges. 63, 104–161 (1953).Google Scholar
  363. Vogt, R.: Zur Physiologie der pathogenen Schimmelpilze Absidia lichtheimi und Absidiaramosa mit besonderer Berücksichtigung des Wirkstoffbedürfnisses. Mitt. naturforsch. Ges. Bern, N. F. 3, 53–118 (1945).Google Scholar
  364. Walker, J. B.: Canavanine and homoarginine as antimetabolites of arginine and lysine in yeast and algae. J. of Biol. Chem. 212, 207–215 (1955).Google Scholar
  365. Wallenfels, K., E. Bernt u. Gisela Limberg: Isolierung von Lactotriose, Lactobiose und Galactobiose aus dem enzymatischen Hydrolysat von Lactose. Liebigs Ann. 579, 113–122 (1953).Google Scholar
  366. Waters, Betsy M., V. G. Lilly and H. L. Barnett: The influence of galactose and other sugars on the utilization of sucrose by Sordaria fimicola. Proc. West. Va. Acad. Sci. 25, 23–26 (1953).Google Scholar
  367. Weissman, G. S., and S. F. Trelease: Influence of sulfur on the toxicity of selenium to Aspergillus. Amer. J. Bot. 42, 489–495 (1955).Google Scholar
  368. Wetter, L. R.: The proteolytic enzymes of microorganisms. VI. The separation of proteases from Mortierella renispora Dixon-Stewart by zone electrophoresis. Canad. J. Biochem. a. Physiol. 32, 20–26 (1954).Google Scholar
  369. Whistler, R. L., and C. L. Smart: Isolation of crystalline d-glucose and cellobiose from an enzymatic hydrolysate of cellulose. J. Amer. Chem. Soc. 75, 1916–1918 (1953).Google Scholar
  370. Whitaker, D. R.: Studies in the biochemistry of cellulolytic microorganisms. I. Carbon balances of wood-rotting fungi in surface culture. Canad. J. Bot. 29, 159–175 (1951).Google Scholar
  371. Whitaker, D. R., and Phyllis E. George: Studies in the biochemistry of cellulolytic microorganisms. 11. Metabolic products of Polyporus abietinus, Peniophora gigantea and Hydnum septentrionale. Canad. J. Bot. 29, 176–181 (1951).Google Scholar
  372. Whitehouse, M. W., P. W. Kent, R. A. Peters and E. C. Foulkes: Further observations on factors influencing the utilization of citrate by yeast. Biochemic. J. 58, 437–440 (1954).Google Scholar
  373. Whittingham, W. F., and K. B. Raper: Environmental factors influencing the growth and fructification of Dictyostelium polycephalum. Amer. J. Bot. 44, 619–627 (1957).Google Scholar
  374. Wickerham, L. J., and K. A. Burton: A simple technique for obtaining mating types in heterothallic diploid yeasts, with special reference to their uses in the genus Hansenula. J. Bacter. 67, 303–308 (1954).Google Scholar
  375. Wikberg, E., and N. Fries: Some new and interesting mutations obtained in Ophiostoma by selective enrichment techniques. Physiol. Plantarum (Copenh.) 5, 130–134 (1952).Google Scholar
  376. Williams, R. J. P.: Metal ions in biological systems. Biol. Rev. Cambridge Phil. Soc. 28, 381–415 (1953).Google Scholar
  377. Wilson, C. M.: Sexuality in the Acrasiales. Proc. Nat. Acad. Sci. U.S.A. 38, 659–662 (1952).Google Scholar
  378. Wilson, E. M.: The utilization of lactose, maltose, raffinose and sucrose by fungi. Morgantown: Thesis, West Virginia University 1954.Google Scholar
  379. Winge, Ø., and Catherine Roberts: A genetic analyses of melibiose and raffinose fermentation. C. r. Trav. Lab. Carlsberg 25, 420–459 (1957).Google Scholar
  380. Wolf, F. T.: The utilization of carbon and nitrogen compounds by Ustilago zeae. Mycologia (N. Y.) 45, 516–522 (1953).Google Scholar
  381. The utilization of nucleic acid derivatives by Neurospora. Mycologia (N. Y.) 45, 825–835 (1953a).Google Scholar
  382. Woodward, Gladys E.: 2–Desoxy-d-glucose as an inhibitor in the aerobic glucose metabolism of yeast. J. Franklin Inst. 254, 553–555 (1952).Google Scholar
  383. Woodward, Gladys E., F. B. Cramer and Marie T. Hudson: Carbohydrate analogs as antagonists of glucose in carbohydrate metabolism of yeast. J. Franklin Inst. 256, 577–587 (1953).Google Scholar
  384. Yarwood, C. E.: Water content of fungus spores. Amer. J. Bot. 37, 636–639 (1950).Google Scholar
  385. Yaw, Katherine E.: Production of riboflavin by Eremothecium ashbyi in a synthetic medium. Mycologia (N. Y.) 44, 307–317 (1952).Google Scholar
  386. Yenko, F. M., and Paulina Umali: Starch hydrolysis by Neurospora. Philippine J. Sci. 81, 121–124 (1953).Google Scholar
  387. Yogeswari, L.: Trace element nutrition of fungi. I. The effect of boron, zinc, and manganese on Fusarium species. Proc. Indian Acad. Sci. 28, 177–201 (1948).Google Scholar
  388. Yu, Clare C. C.: The culture and spore germination of Ascobolus with emphasis on A. magnificus. Amer. J. Bot. 41, 21–30 (1954).Google Scholar
  389. Yuill, J. L.: Polysaccharide production by Aspergillus niger. A strain rich in mycodextran. Chem. a. Ind. 1952, 755–756.Google Scholar
  390. Zscheile, F. P.: Nutrient studies with the wheat bunt fungus, Tilletia caries. Phytopathology 41, 1115–1124 (1951).Google Scholar

Literatur

  1. Afzelius, B. M., G. Erdtman and F. S. Sjöstrand: On the fine structure of the outer part of the spore wall of Lycopodium clavatum as revealed by the electron microscope. Svensk. bot. Tidskr. 48, 155–161 (1954).Google Scholar
  2. Bahme, R. B.: Nicotinic acid as a growth factor for certain orchid embryos. Science 109, 522–523 (1949).PubMedGoogle Scholar
  3. Barrows, F. L.: Propagation of Lycopodium. II. Endophytic fungus in gametophyte and sporophyte. Contr. Boyce Thompson Inst. 7, 295–309 (1935).Google Scholar
  4. Bierhorst, D. W.: [1] Structure and development of the gametophyte of Psilotum nudum. Amer. J. Bot. 40, 649–658 (1953).Google Scholar
  5. [2] The subterranean axis of Psilotum nudum. Amer. J. Bot. 41, 732–739 (1954).Google Scholar
  6. Bishop, Ch. J., and R. E. Mac Donald: A survey of higher plants for antibacterial substances. Canad. J. Bot. 29, 260–269.Google Scholar
  7. Björkman, E.: Über die Natur der Mykorrhizabildung. Forstwiss. Cbl. 75, 265–286 (1956).Google Scholar
  8. Boullard, B.: La mycotrophie chez les Ptéridophytes. Botaniste, Sér. 41, fasc. 1–6, 1–185 (1957).Google Scholar
  9. Brade, A. C.: Synopsis der Burmanniaceen Brasiliens [Portug.]. Arqu. Jardim Bot. (Rio de Janeiro) 7, 11–42 (1947).Google Scholar
  10. Bruchmann, H.: [1] Über die Prothallien und die Keimpflanzen mehrerer europäischer Lycopodien. Gotha: Perthes 1898.Google Scholar
  11. [2] Die Keimung der Sporen und die Entwicklung von Lycopodium clavatum, annotinum und Selago. Flora (Jena) 101, 220–267 (1910).Google Scholar
  12. Burgeff, H.: [1] Saprophytismus und Symbiose. Studien an tropischen Orchideen. Jena: Gustav Fischer 1932.Google Scholar
  13. [2] Saprophyten. In: Handwörterbuch der Naturwissenschaften, 2. Aufl., Bd. 8. Jena: Gustav Fischer 1933.Google Scholar
  14. [3] Pflanzliche Avitaminose und ihre Behebung durch Vitaminzufuhr. Ber. dtsch. bot. Ges. 52, 384–390 (1934).Google Scholar
  15. [4] Samenkeimung der Orchideen und Entwicklung ihrer Keimpflanzen. Jena: Gustav Fischer 1936.Google Scholar
  16. [5] Mycorhiza. In: Manual of Pteridology. The Hague: Nijhoff 1938.Google Scholar
  17. [6] Samenkeimung und Kultur europäischer Erdorchideen nebst Versuchen zu ihrer Verbreitung. Stuttgart: Gustav Fischer 1954.Google Scholar
  18. Buxbaum, F.: Vergleichende Anatomie der Melanthoideae. Feddes Beih. z. Repertorium Nr 29, 1925.Google Scholar
  19. Cailleau, M.: Contribution á l’ètude de la croissance des organes souterrains de l’Ophio-glossum vulgatum. Bull. Soc. bot. Françe 98, 31–33 (1951).Google Scholar
  20. Chatjduri, H., und Rajaram: Ein Fall von wahrscheinlicher Symbiose eines Pilzes mit Marchantia polymorpha. Flora (Jena) 120, 176–178 (1925).Google Scholar
  21. Christoph, H.: Untersuchungen über die mykotrophen Verhältnisse der “Ericales” und die Keimung von Pirolaceen. Beih. bot. Zbl. 38 Abt. 1, 115–157 (1921).Google Scholar
  22. Ciferri, R.: L“habitat” e la micorrizia di alcune Burmanniacee della Republica Dominicana (ital.). Atti Ist. Bot. Univ. Pavia, Ser. V 7, 25–34 (1946).Google Scholar
  23. Cutter, E. G.: Anatomical studies on the shoot apices of some parasitic and saprophytic angiosperms. Phytomorphologie 5, 231–247 (1955).Google Scholar
  24. Darnell-Smith: The gametophyte of Psilotum. Trans, roy. Soc. Edinb. 52, 79–92 (1917).Google Scholar
  25. Downie, D. G.: Rhizoctonia associated sometimes with Corallorhiza. Proc. bot. Soc. Edinb. 33, 380–382 (1943).Google Scholar
  26. Eames, A. J.: Illustrations of some Lycopodium gametophytes. Amer. Fern J. 32, 1–12 (1942).Google Scholar
  27. Engler, A.: [1] Burmanniaceae. In Engler-Prantl, Die natürlichen Pflanzenfamilien, Bd. II/6. Leipzig: Engelmann 1889.Google Scholar
  28. [2] Triuridaceae. Ebenda, Bd. II/1, 1889.Google Scholar
  29. Ernst, A., u. Ch. Bernard: [1] Entwicklungsgeschichte des Embryosacks und des Embryos von Burmannia Candida. Ann. Jard. Bot. Buitenzorg. 26, 161–188 (1912).Google Scholar
  30. [2] Entwicklungsgeschichte des Embryosacks, des Embryos und des Endosperms von Burmannia coelestis. Ann. Jard. bot. Buitenzorg. 26, 219–257 (1912).Google Scholar
  31. [3] àußere und innere Morphologie von Burmannia coelestis. Ann. Jard. bot. Buitenzorg. 26, 223–233 (1912).Google Scholar
  32. Figdor, W.: Über Cotylanthera. Ein Beitrag zur Kenntnis tropischer Saprophyten. Ann. Jard. bot Buitenzorg 14, 213 (1896).Google Scholar
  33. Francke, H. L.: Beiträge zur Kenntnis der Mycorrhiza von Monotropa hypopitys. Flora (Jena) 29, 1–52 (1934).Google Scholar
  34. Freeberg, J. A., and R. H. Wetmore: Gametophytes of Lycopodium as grown in vitro. Phytomorphology 7, 204–217 (1957).Google Scholar
  35. Goebel, K.: [1] Organographie der Pflanzen, 3. Aufl., Teil 2: Bryophyten-Pteridophyten. Jena: Gustav Fischer 1930.Google Scholar
  36. [2] Organographie der Pflanzen, 3. Aufl., Teil 3. Jena: Gustav Fischer 1933.Google Scholar
  37. Goebel, K., u. K. Sttessenguth: Beiträge zur Kenntnis der südamerikanischen Burmanniaceen. Flora (Jena) 17, 55–90 (1924).Google Scholar
  38. Grevillius, A. Y., u. O. Kirchner: Monotropaceae. In Kirchner, Loew und Schroeter, Lebensgeschichte der Blütenpflanzen Mitteleuropas, Bd. IV/1. Stuttgart: Ulmer 1923.Google Scholar
  39. Haberlandt, G.: Schutzeinrichtungen in der Entwicklung von Keimpflanzen. Wien: Gerold’ Sohn 1877.Google Scholar
  40. Hamada, M.: Studien über die Mycorrhiza von Galeola septentrionalis. Jap. J. Bot. 10, 151–211 (1939).Google Scholar
  41. Henrici, M., u. G. Senn: Chromatophoren und Kohlensäureassimilation nicht-grüner Gefäßpflanzen. Ber. Schweiz, bot. Ges. 34, 110–141 (1925).Google Scholar
  42. Henrikson, L. E.: Asymbiotic Germination of Orchids. Svensk bot. Tidskr. 45, 447 bis 459 (1951).Google Scholar
  43. Holländer, St.: Ernährungsphysiologische Untersuchungen an Wurzelpilzen saprophytisch lebender Orchideen. Diss. Würzburg 1932.Google Scholar
  44. Janse, J. M.: Les endophytes radicaux de quelques plantes javanaises. Ann. Jard. bot. Buitenzorg 14, 53–212 (1896).Google Scholar
  45. Johow: [1] Die chlorophyllfreien Humusbewohner West- Indiens, biologisch-morphologisch dargestellt. Jb. wiss. Bot. 16, 415–449 (1885).Google Scholar
  46. [2] Die chlorophyllfreien Humuspflanzen nach ihren biologischen und anatomisch-entwicklungsgeschichtlichen Verhältnissen. Jb. wiss. Bot. 20, 475–522 (1899).Google Scholar
  47. Jonker, F. P.: A monograph of the Burmanniaceae. Meded. bot. Mus. en Herbar Utrecht 51, 1–279 (1938).Google Scholar
  48. Kelley, A. P.: Mycotrophy in plants. Waltham, Mass.: Chronica Botanica Comp. 1950.Google Scholar
  49. Knudson, L.: Nonsymbiotic germination of orchid seeds. Bot. Gaz. 73, 1–25 (1922).Google Scholar
  50. Koster, H.: New Lycopodium gametophytes from New Jersey. Amer. Fern J. 31, 51–58 (1941).Google Scholar
  51. Krause, K.: Liliaceae. In Engler-Prantl, Natürliche Pflanzenfamilien, 2. Aufl. Bd. 15a. Leipzig: Engelmann 1930.Google Scholar
  52. Kusano, S.: Gastrodia elata and its Symbiotic Association with Armillaria mellea. J. Agric. Coll. Tokyo 4, 1–65 (1911).Google Scholar
  53. Lihnell, D.: Keimungsversuche mit Pyrolasamen. Symb. bot. Upsalienses 6, 3 (1942).Google Scholar
  54. Linsbauer, K., u. H. Ziegenspeck: Das Vorkommen von Spaltöffnungen bei heterotrophen Blütenpflanzen im Lichte der Physiologie und Stammesgeschichte. Biol. generalis (Wien) 17, 511–565 (1943).Google Scholar
  55. MacDougal, D. T. and G. Dufrenoy: Mycorrhizal symbiosis in Aplectrum, Corallorhiza and Pinus. Plant Physiol. 19, 440–465 (1944).PubMedGoogle Scholar
  56. MacDougal, D. T., u. F. E. Lloyd: The roots and mycorhizas of some of the Monotropaceae. Bull. New York bot. Garden 5, 419–429 (1900).Google Scholar
  57. MacDougal, D. T., and H. S. Reed: Growth of Corallorhiza maculata. Science 100, 525–526 (1944).PubMedGoogle Scholar
  58. Magrou, J.: Symbiose et tubèrisation. Ann. Sci. nat., Sèr. X, Bot. 3, 181–296 (1921).Google Scholar
  59. Malmborg, St. v.: Cryptothallus mirabilis n. g. Ein saprophytisches Lebermoos. Ann. bryol. 6, 122–123 (1933).Google Scholar
  60. Mariat, F.: [1] Recherches sur la Physiologie des Embryos d’Orchidèes. Rev. gèn. Bot. 59. 324–377 (1952).Google Scholar
  61. [2] Remarques sur la Tubèrisation chez les Orchidèes et Poa annua. VIII. Congr. Internat. Bot. Rapports et Comm. Sect. 13, S. 129. Paris 1954.Google Scholar
  62. Melin, E.: Physiology of mycorrhizal relations in plants. Ann. Rev. Plant Physiol. 4 325–346 (1953).Google Scholar
  63. Meyer, D. E.:, Weiteres über unterirdisches Blühen und blasse Individuen bei Orchideen. Ber. dtsch. bot. Ges. 68, 352–364 (1955).Google Scholar
  64. Meyer, K.: Untersuchungen über Thismia clandestina. Bull.Soc. Imp. Nat. Moscou, N.S. 23, 1–18 (1910).Google Scholar
  65. Montfort, C.: Beziehungen zwischen morphologischen und physiologischen Reduktionserscheinungen im Bereich der Lichternährung bei saprophytischen Orchideen. Ber. dtsch. bot. Ges. 58, 41–48 (1940).Google Scholar
  66. Montfort, C., u. G. Küsters: Saprophytismus und Photosynthese. I. Biochemische und physiologische Studien an Humus-Orchideen. Bot. Arch. 40, 571–633 (1940).Google Scholar
  67. Neumann, G.: über die Mykorrhiza in der Gattung Gentiana. Zbl. Bakt., II. Abt. 89, 433–458 (1934).Google Scholar
  68. Nicolas, G.: Association des Bryophytes avec d’autres organismes. Manual of Bryology. The Hague: Nijhoff. 1932.Google Scholar
  69. Oehler, E.: Entwicklungsgeschichtlich-cytologische Untersuchungen an einigen saprophytischen Gentianaceen. Planta (Berl.) 3, 641–733 (1927).Google Scholar
  70. Oliver, F. W.: On Sarcodes sanguinea. Ann. Bot. 4, 303–326 (1890).Google Scholar
  71. Penzig, O.: Beiträge zur Kenntnis der Gattung Epirhizanthes. Ann. Jard. bot. Buitenzorg. 17, 142–170 (1901).Google Scholar
  72. Peyronel, B.: Sulla simbiosi micorrizica in Corallorhiza trifida. Allionia (Torino) 1, 239–246 (1953).Google Scholar
  73. Pfeiffer, N. E.: Morphology of Thismia americana. Bot. Gaz. 57, 122–135 (1914).Google Scholar
  74. Pfitzer, E.: Orchidaceae. In: Engler u. Prantl, Die natürlichen Pflanzenfamilien, Teil II, Abt. 6. Leipzig: Engelmann 1889.Google Scholar
  75. Pijl, L. van der: Die Mycorrhiza von Burmannia und Epirrhizanthes und die Fortpflanzung ihres Endophyten. Rec. Trav. bot. nèerl. 31, 761–779 (1934).Google Scholar
  76. Porsch, O.: Der Spaltöffnungsapparat im Lichte der Phylogenie. Jena: Gustav Fischer 1905.Google Scholar
  77. Poulsen, V. A.: [1] Sciaphila nana. Bidrag til Stövvejens Udvikling hos Triuridaceerne. Vid. Medd. natk. Foren, 1–16. Kjobenhavn 1906.Google Scholar
  78. [2] Bidrag til Triuridaceernes Naturhistorie. Videnskabelige Meddelelser fra den naturhistor. Forening i Kjobenhavn, 1884–86, 161–179.Google Scholar
  79. Rauh, W.: Die Bildung von Hypokotyl- und Wurzelsprossen und ihre Bedeutung für die Wuchsformen der Pflanzen. Nova Acta Leopoldina 4, 395–553 (1937).Google Scholar
  80. Renner, O.: Über blasse, saprophytische Cephalanthera alba und Epipactis latifolia. Flora (Jena) 32, 225–233 (1938).Google Scholar
  81. Reznik, H.: Vergleich einer weißen Mutante von Neottia Nidus-Avis mit der braunen Normalform. Planta (Berl.) 51, 694–704 (1958).Google Scholar
  82. Salisbury, E. J.: The Reproductive Capacity of Plants. London: G. Bell and Sons 1942.Google Scholar
  83. Sampson, K.: Note on a sporeling of Phylloglossum. Ann. Bot. 30, 605–607 (1916).Google Scholar
  84. Schadowsky, A.: Beiträge zur Embryologie von Epirrhizanthes. Biol. Z. (Moskau) 2, 29–55 (1911).Google Scholar
  85. Schaede, R.: Die pflanzlichen Symbiosen, 2. Aufl. Jena: Gustav Fischer 1948.Google Scholar
  86. Schaffstein, G.: Untersuchungen über die Avitaminose der Orchideenkeimlinge. Jb. wiss. Bot. 86, 720–752 (1938).Google Scholar
  87. Schürhoff, P. N.: Die Zytologie der Blütenpflanzen. Stuttgart: Ferdinand Enke 1926.Google Scholar
  88. Senn, G.: Die Chlorophyllarmut saprophytischer Orchideen nebst Versuchen über den Einfluß des Stärkegehalts auf die Chlorophyllbildung. Verh. naturforsch. Ges. Basel 38, 516–526 (1927).Google Scholar
  89. Seshagiriah, K. N.: Morphological studies in Orchidaceae. I. Zeuxine sulcata. J. Indian bot. Soc. 20, 357–365 (1941).Google Scholar
  90. Seybold, A.: Pflanzenpigmente und Lichtfeld. Ber. dtsch. bot. Ges. 60, (64)–(85) (1943).Google Scholar
  91. Slankis, V.: The Role of Auxin and Other Exsudates in Mycorrhizal Symbiosis of Forest Trees. The Physiology of Forest Trees, pp.427–444. New York: Ronald Press 1957.Google Scholar
  92. Sprau, F.: Beiträge zur Mykorrhizenfrage. Jb. wiss. Bot. 85, 151–168 (1937).Google Scholar
  93. Stockey, A. G.: Gametophytes of Marattia sambucina and Macroglossum Smithii. Bot. Gaz. 103, 559–569 (1942).Google Scholar
  94. Thomas, A. P. W.: Preliminary account on the prothallus of Phylloglossum. Proc. roy. Soc. B 69, 285–291 (1901).Google Scholar
  95. Treub, M.: Le prothalle du Lycopodium salakense. Ann. Jard. bot. Buitenzorg 7, 141–146 (1888).Google Scholar
  96. Vermeulen, P.: Studies on Dactylorchis. Diss. Utrecht 1947.Google Scholar
  97. Vogel, N.: Blütenbiologische Typen als Elemente der Sippengliederung. Jena: Gustav Fischer 1954.Google Scholar
  98. Wetmore, R. H., and G. Morel: Sur la culture in vitro de prothalles de Lycopodium cernuum. C. R. Acad. Sci. (Paris) 233, 323–324 (1951).Google Scholar
  99. Wilcke, J.: Verbreitung der Samen von Monotropa hypopitys und Pyrola minor [holländisch]. Levende Natuur 57, 9–11 (1954).Google Scholar
  100. Wirz, H.: Beiträge zur Entwicklungsgeschichte von Sciaphila spec, und von Epirrhizanthes elongata. Flora N. F. 1, 395–446 (1910).Google Scholar
  101. Wolff, H.: [1] Zur Physiologie des Wurzelpilzes von Neottia Nidus avis und einigen grünen Orchideen. Diss. Basel 1926.Google Scholar
  102. [2] Zur Assimilation atmosphärischen Stickstoffs durch die Wurzelpilze von Coralliorrhiza innata usw. Jahrb. wiss. Bot. 77, 657–684 (1933).Google Scholar
  103. Ziegenspeck, H.: Orchidaceae in: Kirchner, Loew und Schroeter (Wangerin) Lebensgeschichte der Blütenpflanzen Mitteleuropas, Bd. I, Abt. 4, Stuttgart: Ulmer 1936.Google Scholar
  104. Zimmerley, B., and H. P. Banks: On gametophytes of Psilotum. Amer. J. Bot. 37, 668 (1950).Google Scholar

Literatur

  1. Ainsworth, G. C., E. Oyler and W. H. Read: Observations on the spotting of tomato fruits by Botrytis cinerea Pers. Ann. Appl. Biol. 25, 308–321 (1938).Google Scholar
  2. Allen, P. J.: Physiological aspects of fungus diseases of plants. Ann. Rev. Plant Physiol. 5, 225–248 (1954).Google Scholar
  3. Bary, A. de: Die Erscheinung der Symbiose. Straßburg 1879.Google Scholar
  4. Bennett, C. W.: Recovery of water pimpernel from curly top etc. Phytopathology 45, 531–536 (1955).Google Scholar
  5. Berducou, J.: Recherches sur la mode d’action de certains champignons parasites. C. r. Acad. Sci. Paris 228, 1052–1054 (1949).Google Scholar
  6. Bernard, N.: L’évolution dans la symbiose. Ann. des Sci. natur. Bot. 9, 1–196 (1909).Google Scholar
  7. Blumer, S.: Beiträge zur Kenntnis der Erysiphaeeen. 2. Mitt. Phytopath. Z. 18, 101–110 (1951).Google Scholar
  8. Boller, A., H. Corrodi, E. Gäijmann, E. Hardegger, H. Kern u. N. Winterhalter-Wild: Über induzierte Abwehrstoffe bei Orchideen. I. Helvet. chim. Acta 40, 1062–1066 (1957).Google Scholar
  9. Braun, A. C.: A study on the mode of action of the wildfire toxin. Phytopathology 45, 659–664 (1955).Google Scholar
  10. Brian, P.W., G. W. Elson, H. G. Hemming and J. M. Wright: The phytotoxic properties of alternaric acid etc. Ann. Appl. Biol. 39, 308–321 (1952).Google Scholar
  11. Brooks, F. T.: Disease resistance in plants. New Phytologist 27, 85–91 (1928).Google Scholar
  12. Brown, W.: On the physiology of parasitism in plants. Ann. Appl. Biol. 43, 325–341 (1955).Google Scholar
  13. Butler, E. J., and S. G. Jones: Plant Pathology. London: Macmillan & Co. 1949.Google Scholar
  14. Christensen, J. J., and T. W. Graham: Physiologic specialization and variation in Helminthosporium gramineum Rab. Univ. Minnesota Agricult. Exper. Stat. Techn. Bull. 95, 1–40 (1934).Google Scholar
  15. Christiansen-Weniger, E.: Versuche zur stoffwechselphysiologischen Beeinflussung der Reaktion der Kartoffelknolle auf Phytophthora infestans de By. Phytopath. Z. 25, 153–180 (1956).Google Scholar
  16. Crosier, W.: Studies in the biology of Phytophthora infestans (Mont.) de Bary. Cornell Univ. Agricult. Exper. Stat. Mem. 155, 1–40 (1934).Google Scholar
  17. Davis, D., and A. E. Dimond: Inducing disease resistance with plant growth regulators. Phytopathology 43, 137–140 (1953).Google Scholar
  18. Deuel, H.: Über StÖrungen des Spurenelementhaushalts der Pflanzen durch Welketoxine. Phytopath. Z. 21, 337–348 (1954).Google Scholar
  19. Dimond, A. E.: Pathogenesis in the wilt diseases. Ann. Rev. Plant Physiology 6, 329–350 (1955).Google Scholar
  20. Donandt, S.: Untersuchungen über die Pathogenität des Wirtelpilzes Verticillium alboatrum R. u. B. Z. Parasitenkde 4, 653–711 (1932).Google Scholar
  21. Ettlinger, L.: Antibiose und antibiotische Stoffe der Pflanzen. Schweiz. Z. Path. u. Bakter. 9, 352–378 (1946).Google Scholar
  22. Farkas, G. L., and Z. Kiräly: Enzymological aspects of plant diseases. I. Phytopath. Z. 31, 251–272 (1958).Google Scholar
  23. Ferraris, T.: Patologia e terapia vegetale. 5. Aufl., Bd. I/1, bearb. von R. Ciferri u. E. Baldacci. Milano: U. Hoepli 1948.Google Scholar
  24. Fischer, E., u. E. Gäumann: Biologie der pflanzenbewohnenden parasitischen Pilze. Jena: Gustav Fischer 1929.Google Scholar
  25. Flück, V.: Untersuchungen über die Pathogenität von Erregergemischen bei Getreidefußkrankheiten. Phytopath. Z. 23, 177–208 (1955).Google Scholar
  26. Fuchs, W. H.: Ein Beitrag zur pathologischen Physiologie. Angew. Bot. 30, 141–146 (1956).Google Scholar
  27. Gäumann, E.: Immunreaktionen und Immunität bei Pflanzen. Schweiz. Z. Path. u. Bakter. 7, 407–441 (1944).Google Scholar
  28. Pflanzliche Infektionslehre, 2. Aufl. Basel: Birkhäuser 1951 a.— Neuere Erfahrungen mit Welketoxinen. Experientia (Basel) 7, 441–447 (1951b).Google Scholar
  29. Über Fusarinsäure als Welketoxin. Phytopath. Z. 29, 1–44 (1957).Google Scholar
  30. Gäumann, E., u. E. BÖhni: Über adaptive Enzyme bei parasitischen Pilzen. Helvet. chim. Acta 30, 24–38, 1591–1595 (1947).PubMedGoogle Scholar
  31. Gäumann, E., R. Braun u. G. Bazzigher: Über induzierte Abwehrreaktionen bei Orchideen. Phytopath. Z. 17, 36–62 (1950).Google Scholar
  32. Gäumann, E., u. St. Naef-Roth: Über die chelierende Wirkung einiger Welketoxine. I. u. II. Phytopath. Z. 21, 349–366 (1954); 23, 147–160 (1955).Google Scholar
  33. Gäumann, E., St. Naef-Roth u. L. Ettlinger: Zur Gewinnung von Enniatinen aus dem Myzel verschiedener Fusarien. Phytopath. Z. 16, 289–299 (1950).Google Scholar
  34. Gäumann, E., St. Naef-Roth u. G. Miescher: Untersuchungen über das Lycomarasmin. Phytopath. Z. 16, 257–288 (1950).Google Scholar
  35. Garber, E. D., S. G. Shaeffer and M. Goldman: The virulence of biochemical mutants of Erwinia aroidea for varieties of radish and turnip. J. Gen. Microbiol. 14, 261–267 (1956).PubMedGoogle Scholar
  36. Gassner, G., u. W. Straib: Über Mutationen in einer biologischen Rasse von Puccinia glumarum tritici (Schmidt) Erikss. und Henn. Z. Abstammgslehre 63, 154–180 (1932).Google Scholar
  37. Gothoskar, S. S., R. P. Scheffer, M. A. Stahmann and J. C. Walker: Further studies on the nature of Fusarium resistance in tomato. Phytopathology 45, 303–307 (1955).Google Scholar
  38. Hammarlund, C.: Beiträge zur Revision einiger imperfekter Mehltau-Arten. Erysiphe polyphaga nov. sp. Bot. Not. (Lund) 1945, 101–108.Google Scholar
  39. Hassebrauk, K., u. R. Kaul: Vergleichende chemische Untersuchungen des Atmungsstoffwechsels von Weizenkeimpflanzen unterschiedlicher Braunstoffanfälligkeit. Phytopath. Z. 29, 305–326 (1957).Google Scholar
  40. Hess, H.: Ein Beitrag zum Problem der induzierten Abwehrreaktionen im Pflanzenreich. Phytopath. Z. 16, 41–70 (1949).Google Scholar
  41. Horsfall, J. G., and A. E. Dimond: Interactions of tissue sugars, growth substances, and disease susceptibility. Z. Pflanzenkrkh. 64, 415–421 (1957).Google Scholar
  42. Hotson, H. H., and V. M. Cutter: The isolation and culture of Gymnosporangium juniperi-virginianae Schw. upon artificial media. Proc. Nat. Acad. Sci. U.S.A. 37, 400–403 (1951).Google Scholar
  43. Jaag, O.: Epiphytismus, Parasitismus und Symbiose bei Pflanzen. Schweiz. Z. Path, u. Bakter. 8, 463–485 (1945).Google Scholar
  44. Kern, H.: Problems of incubation in plant diseases. Ann. Rev. Microbiol. 10, 351–368 (1956).Google Scholar
  45. Untersuchungen über die Umgrenzung der Arten in der Ascomycetengattung Leucostoma. Phytopath. Z. 30, 149–180 (1957).Google Scholar
  46. Kern, H., u. D. Kluepfel: Die Bildung von Fusarinsäure durch Fusarium lycopersici in vivo. Experientia (Basel) 12, 181 (1956).Google Scholar
  47. Kern, H., u. B. D. Sanwal: Untersuchungen über den Stoffwechsel von Fusarium lycopersici mit Hilfe von radioaktivem Kohlenstoff. Phytopath. Z. 22, 449–453 (1954).Google Scholar
  48. Kirkham, D. S.: The significance of polyphenolic metabolites of apple etc. J. Gen. Microbiol. 17, 491–504 (1957).PubMedGoogle Scholar
  49. Kluepfel, D.: Über die Biosynthese und die Umwandlungen der Fusarinsäure in Tomatenpflanzen. Phytopath. Z. 29, 349–379 (1957).Google Scholar
  50. KÖhler, E., u. I. Hauschild: Betrachtungen und Versuche zum Problem der erworbenen „Immunität” gegen Virusinfektionen bei Pflanzen. Züchter 17/18, 97–105 (1947).Google Scholar
  51. KÖhler, E., u. M. Klinkowski: Viruskrankheiten. In Sorauers Handbuch der Pflanzenkrankheiten, 6. Aufl., Bd. 2, S. 1. Berlin u. Hamburg: Paul Parey 1954.Google Scholar
  52. Kuć, J.: A biochemical study of the resistance of potato tuber tissue to attack by various fungi. Phytopathology 47, 676–680 (1957).Google Scholar
  53. Lehmann, E., H. Kummer u. H. Dannemann: Der Schwarzrost. München: J. F. Lehmann 1937.Google Scholar
  54. Limasset, P.: L’infection chez les végétaux. Rev. path. comp, et Hyg. gén. 51, 635–651 (1951).Google Scholar
  55. Limasset, P., et H. Darpoux: Principes de pathologie végétale, 2. Aufl. Paris: Dunod 1951.Google Scholar
  56. Lincoln, R. E.: Bacterial wilt resistance and genetic host-parasite interactions in maize. J. Agricult. Res. 60, 217–239 (1940).Google Scholar
  57. Mayo, J. K.: The enzymes of Stereum purpureum. New Phytologist 24, 162–171 (1925).Google Scholar
  58. Melander, L. W., and J. H. Craigie: Nature of resistance of Berberis spp. to Puccinia graminis. Phytopathology 17, 95–114 (1927).Google Scholar
  59. Miescher, G.: Über die Wirkungsweise von Patulin auf hÖhere Pflanzen. Phytopath. Z. 16, 369–397 (1950).Google Scholar
  60. Morel, G.: Recherches sur la culture associée de parasites obligatoires et de tissus végétaux. Ann. Epiphyses, N. S. 14, 123–234 (1948).Google Scholar
  61. Müller, K., u. H. Sleumer: Biologische Untersuchungen über die Peronosporakrankheit des Weinstocks. Landwirtsch. Jb. 79, 509–576 (1934).Google Scholar
  62. Müller, K. O.: Einige einfache Versuche zum Nachweis von Phytoalexinen. Phytopath. Z. 27, 237–254 (1956).Google Scholar
  63. Relationship between phytoalexin output and the number of infections involved. Nature (Lond.) 182, 167–168 (1958).Google Scholar
  64. Münch, E.: Über einige Grundbegriffe der Phytopathologie. Z. Pflanzenkrkh. 39, 276–286 (1929).Google Scholar
  65. Naef-Roth, St.: Untersuchungen über den Erreger der Schrotschußkrankheit des Steinobstes usw. Phytopath. Z. 15, 1–38 (1948).Google Scholar
  66. Maladies et toxines de flétrissement. Rapp. et Comm. Congr. Int. Botanique Paris 1954, Sect. 24, 91–97.Google Scholar
  67. Naef-Roth, St., u. P. Reusser: Über die Wirkung von Fusarinsäure auf den Gaswechsel von Tomatenblattgewebe. Phytopath. Z. 22, 281–287 (1954).Google Scholar
  68. Pilet, P.-E.: Activité anti-auxines-oxydasique de l’Uromyces pisi (Pers.) de By parasite d’Euphorbia cyparissias L. Phytopath. Z, 31, 162–179 (1958).Google Scholar
  69. Price, W. C.: Acquired immunity to ring-spot in Nicotiana. Contrib. Boyce Thompson Inst. 4, 359–403 (1932).Google Scholar
  70. Roemer, Th., W. H. Fuchs u. K. Isenbeck: Die Züchtung resistenter Rassen der Kulturpflanzen. Berlin: Paul Parey 1938.Google Scholar
  71. Sanwal, B. D.: Investigations on the metabolism of Fusarium lycopersici Sacc. with the aid of radioactive carbon. Phytopath. Z. 25, 333–384 (1956).Google Scholar
  72. Schaede, R.: Die pflanzlichen Symbiosen. Jena: Gustav Fischer 1943.Google Scholar
  73. Schmidt, M.: Venturia inaequalis (Cooke) Aderh. V. u. VI. Gartenbauwiss. 10, 422–27, 478–499 (1937).Google Scholar
  74. Snyder, W. C., and H. N. Hansen: The species concept in Fusarium with the reference to discolor and other sections. Amer. J. Bot., 32, 657–666 (1945).Google Scholar
  75. Spitzer, G., and M. M. Diehm: Preliminary studies of the enzymes of Gibberella Saubinetii. J. Agricult. Res. 43, 223–229 (1931).Google Scholar
  76. Stakman, E. C., J. J. Christensen, D. J. Eide and B. Peturson: Mutation and hybridization in Ustilago zeae. Univ. Minnesota Agricult. Exper. Stat. Techn. Bull. 65, 1–66 (1929).Google Scholar
  77. Stoll, A., u. A. Brack: Über die Entstehung von Sklerotien des Mutter-kornpilzes an den obersten Halmknoten des Roggens. Ber. Schweiz, bot. Ges. 54, 252–254 (1944).Google Scholar
  78. Stoll, Ch.: Über Stoffwechsel und biologisch wirksame Stoffe von Gibberella fujikuroi (Saw.) Woll., dem Erreger der Bakanaekrankheit. Phvtopath. Z. 22, 233–274 (1954).Google Scholar
  79. Tubeuf, K. v.: Monographie der Mistel. München u. Berlin: R. Oldenbourg 1923.Google Scholar
  80. Walker, J. C., and M. A. Stahmann: Chemical nature of disease resistance. Ann. Rev. Plant Physiol. 6, 351–366 (1955).Google Scholar
  81. Wolf, F. T.: The production of indole acetic acid by the cedar apple rust fungus etc. Phytopath. Z. 26, 219–223 (1956).Google Scholar
  82. Wollenweber, H. W.: Fusarium-Monographie. Z. Parasitenkde 3, 269–516 (1931).Google Scholar
  83. Yabuta, T., and T. Hayashi: Biochemical studies of bakanae fungus on rice. J. Agricult. Chem. Soc. Japan 15, 257–266 (1939).Google Scholar
  84. Zähner, H.: Über den Einfluß der Ernährung auf die Toxinempfindlichkeit von Tomatenpflanzen. Phytopath. Z. 23, 49–88 (1955).Google Scholar
  85. Zogg, H.: Studien über die Pathogenität von Erregergemischen bei Getreidefußkrankheiten. Phytopath. Z. 18, 1–54 (1951).Google Scholar

Literatur

  1. Allescher, A.: Fungi imperfecti. In Rabenhorsts Kryptogamenflora, 2. Aufl., Bd. I/6 u. 7. Leipzig: E. Kummer 1901 u. 1903.Google Scholar
  2. Ammann, A.: Über die Bildung von Zellulase bei pathogenen Mikroorganismen. Phytopath. Z. 18, 416–446 (1951).Google Scholar
  3. Anliker, J.: Beiträge zur Kenntnis der Fusariose des Roggens. Beitr. Krypt.flora Schweiz 8, 1–115 (1935).Google Scholar
  4. Arx, J. A. v.: Studies on Venturia and related genera. Tijdschr. Plantenziekten 58, 260–266 (1952).Google Scholar
  5. Arx, J. A. v., u. E. Müller: Die Gattungen der amerosporen Pyrenomyceten. Beitr. Krypt.flora Schweiz 11, 1–434 (1954).Google Scholar
  6. Bawden, F. C.: Plant viruses and virus diseases. Waltham, Mass.: Chronica Botanica Comp. 1950.Google Scholar
  7. Inhibitors and plant viruses. Adv. Virus Res. 2, 32–57 (1954).Google Scholar
  8. Baz-zigher, G.: Beitrag zur Kenntnis der Endothia parasitica (Murr.) And., dem Erreger des Kastaniensterbens. Phytopath. Z. 21, 105–132 (1953).Google Scholar
  9. Bennett, C. W.: Studies on dodder transmission of plant viruses. Phytopathology 34, 905–932 (1944).Google Scholar
  10. Interactions between viruses and virus strains. Adv. Virus Res. 1, 39–67 (1953).Google Scholar
  11. Biological relations of plant viruses. Ann. Rev. Plant Physiol. 7, 143–170 (1956).Google Scholar
  12. Berdan, H.: Revision of the genus Ancylistes. Mycologia (N. Y.) 30, 396–415 (1938).Google Scholar
  13. Bergey’s Manual of determinative bacteriology, 6. Aufl. Baltimore: Williams & Wilkins Company 1948.Google Scholar
  14. Bessey, E. A.: Morphology and taxonomy of fungi. Philadelphia u. Toronto: P. Blakiston Son & Co. 1950.Google Scholar
  15. Biale, J. B., and A. D. Shepherd: Respiration of citrus fruits in relation to metabolism of fungi. I. Amer. J. Bot. 28, 263–270 (1941).Google Scholar
  16. Black, L. M.: Plant virus tumors. Ann. New York Acad. Sci. 54, 155–231 (1952).Google Scholar
  17. Blumer, S.: Die Erysiphaceen Mitteleuropas. Beitr. Krypt.flora Schweiz 7, 1–483 (1933).Google Scholar
  18. Boyce, J. S.: Forest pathology, 2. Aufl. New York-Toronto-London: McGraw-Hill Book 1948.Google Scholar
  19. Brakke, M. K., A. E. Vatter and L. M. Black: Size and shape of wound-tumor virus. Brookhaven Symp. Biol. 6, 137–156 (1954).Google Scholar
  20. Braun, A. C., and T. Stonier: Morphology and physiology of plant tumors. Protoplasmatologia 10, 5a, 1–93 (1958).Google Scholar
  21. Braun, H., u. E. Riehm: Krankheiten und Schädlinge der Kulturpflanzen und ihre Bekämpfung, 8. Aufl. Berlin: Paul Parey 1957.Google Scholar
  22. Büren, G. v.: Die Schweizerischen Protomycetaceen usw. Beitr. Krypt.flora Schweiz 5, 1–95 (1915).Google Scholar
  23. Weitere Untersuchungen über die Entwicklungsgeschichte und Biologie der Protomycetaceen. Beitr. Krypt.flora Schweiz 5, 1–94 (1922).Google Scholar
  24. Clements, F. E., and L. Shear: The genera of fungi. New York: H. W. Wilson Comp. 1931.Google Scholar
  25. Clinch, P. E. M., J. B. Loughnane and P. A. Murphy: A study of the aucuba or yellow mosaic of the potato. Sci. Proc. Roy. Dublin Soc. 21, 431–448 (1936).Google Scholar
  26. Coker, W. C.: The Saprolegniaceae. Chapel Hill: Univ. North Carolina Press 1923.Google Scholar
  27. Colla, S.: Laboulbeniales. Fl. ital. Cryptogama 1, 1–159 (1934).Google Scholar
  28. Couch, J. N.: The genus Septo-basidium. Chapel Hill: Univ. North Carolina Press 1938.Google Scholar
  29. Diedicke, H.: Pilze VII (Sphaeropsidales, Melanconieae). Krypt.flora Mark Brandenburg 9 (1915).Google Scholar
  30. Diener, T.: Über die Bedingungen der WurzelknÖllchenbildung bei Pisum sativum L. Phytopath. Z. 16, 129–170 (1950).Google Scholar
  31. Dodge, C. W.: Medical mycology. St. Louis: C. V. Mosby Comp. 1935.Google Scholar
  32. Dowson, W. J.: Manual of bacterial plant diseases. London: A. & Ch. Black 1949.Google Scholar
  33. Elliott, Ch.: Manual of bacterial plant pathogens, 2. Aufl. Waltham, Mass.: Chronica Botanica Comp. 1951.Google Scholar
  34. Fischer. G. W.: Manual of the North American smut fungi. New York: Ronald Press 1953.Google Scholar
  35. Foster, J. W.: Chemical activities of fungi. New York: Academic Press 1949.Google Scholar
  36. Frank, A. B.: Die pilzparasitären Krankheiten der Pflanzen. Breslau: E. Trewendt 1896.Google Scholar
  37. Fred, E. B., I. L. Baldwin and E. McCoy: Root nodule bacteria and leguminous plants. Univ. Wisconsin Stud. Sci. 5, 1–343 (1932).Google Scholar
  38. Funk, G.: Beiträge zur Kenntnis der Meeresalgen von Neapel. Pubbl. Staz. zool. Napoli 25, Suppl., 178 S.Google Scholar
  39. Gäumann, E.: Beiträge zu einer Monographie der Gattung Peronospora Corda. Beitr. Krypt.flora Schweiz 5, 1–360 (1923).Google Scholar
  40. Vergleichende Morphologie der Pilze. Jena: Gustav Fischer 1926.Google Scholar
  41. Immunreaktionen und Immunität bei Pflanzen. Schweiz. Z. Path. u. Bakter. 7, 407–441 (1944).Google Scholar
  42. Über pathogene Pilze, die Pflanzen und Menschen befallen. Experientia (Basel) 1, 18–20 (1945).Google Scholar
  43. Die Pilze. Basel: Birkhäuser 1949.Google Scholar
  44. Pflanzliche Infektionslehre, 2. Aufl. Basel: Birkhäuser 1951.Google Scholar
  45. Die Rostpilze Mitteleuropas. Beitr. Krypt.flora Schweiz 12 (1959).Google Scholar
  46. Gäumann, E., C. Roth u. J. Anliker: Über die Biologie der Herpotrichia nigra Hart. Z. Pflanzenkrkh. 44, 97–116 (1934).Google Scholar
  47. Geitler, L.: Cyanophyceae. In Rabenhorsts Kryptogamenflora, Bd. 14. Leipzig: Georg Kummer 1932.Google Scholar
  48. Gierer, A.,u. G. Schramm: Die Infektiosität der Nucleinsäure aus Tabakmosaikvirus. Z. Naturforsch. 11b, 138–142 (1956).Google Scholar
  49. Gwynne-Vaughan, H. C. I., and B. Barnes: The structure and development of the fungi. Cambridge: University Press 1951.Google Scholar
  50. Hartig, R.: Lehrbuch der Baumkrankheiten. Berlin: Springer 1889.Google Scholar
  51. Hawker, L. E.: Physiology of fungi. London: Univ. Press 1950.Google Scholar
  52. Heinze, K.: Die Überträger pflanzlicher Viruskrankheiten. Mitt. biol. Zentralanst. Berlin 71, 1–126 (1951).Google Scholar
  53. HÖhnel, F. v.: System der Fungi imperfecti Fuck. Mykol. Unters, u. Ber. 1, 301–369 (1923).Google Scholar
  54. Holmes, F. O.: The filterable viruses. Suppl. Bergey’s Manual of determinative bacteriology, 6. Aufl., S. 1127–1286. 1948.Google Scholar
  55. Inheritance of resistance to viral diseases in plants. Adv. Virus Res. 2, 1–30 (1954).Google Scholar
  56. Houston, B. R., K. Esau and W. B. Hewitt: The mode of vector feeding and the tissue involved in the transmission of Pierce’s disease virus in grape and alfalfa. Phytopathology 37, 247–253 (1947).Google Scholar
  57. Huber, J.: Contributions à la connaissance des Chaetophorées épiphytes et endophytes et de leurs affinités. Ann. Sci. natur. Bot. 16, 265–359 (1893).Google Scholar
  58. Jaag, O.: Epiphytismus, Parasitismus und Symbiose bei Pflanzen. Schweiz. Z. Path. u. Bakter. 8, 463–485 (1945).Google Scholar
  59. Jaag, O., u. F. Nipkow: Neue und wenig bekannte parasitische Pilze auf Planktonorganismen schweizerischer Gewässer. I. Ber. schweiz, bot. Ges. 61, 478–498 (1951).Google Scholar
  60. Karling, J. S.: The Plasmodiophorales. New York: Selbstverlag 1942.Google Scholar
  61. The genus Physoderma. Lloydia 13, 29–71 (1950).Google Scholar
  62. Kern, H.: MÖglichkeiten und Grenzen der Bekämpfung von Pflanzenkrankheiten. Schweiz, landwirtsch. Mh. 1955, 362–368.Google Scholar
  63. Klebs, G.: Beiträge zur Kenntnis niederer Algenformen. Bot. Ztg 39, 249–257ff. (1881).Google Scholar
  64. Klein, R. M.: Mechanism of crown-gall induction. Brookhaven Symp. Biol. 6, 97–114 (1954).Google Scholar
  65. Klein, R. M., and G. K. K. Link: The etiology of crown-gall. Quart. Rev. Biol. 30, 207–277 (1955).Google Scholar
  66. Knaysi, G.: Cytology of bacteria. Annual Rev. Microbiol. 10, 253–274 (1956).Google Scholar
  67. Kobel, F.: Untersuchungen über toxische Stoffwechselprodukte von Nectria cinnabarina (Tode) Fr. Phytopath. Z. 18, 157–195 (1951).