Skip to main content

Methoden der Kultur mit organischen Verbindungen

  • Chapter
  • 73 Accesses

Part of the book series: Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology ((532,volume 11))

Zusammenfassung

Der Begriff der Heterotrophic gilt nicht nur für ganze Individuen, denen die Fähigkeit zur Photosynthese oder Chemosynthese abgeht, sondern auch für einzelne Zellen, Gewebe oder ganze Organe (z. B. Wurzeln) an sich autotropher Pflanzen, wenn sie nicht unmittelbar an der Stoffsynthese beteiligt sind und daher ihren Stoffbedarf von anderen autotrophen Zellen und Geweben oder aus Reservestoffbehältern decken müssen; danach ist auch der Stoffwechsel etiolierter Pflanzen heterotroph. Im einzelnen Fall ist jeweils die Art der Heterotrophic (C-, N-, Wirkstoff-Heterotrophic) zu ermitteln, ferner aber auch, welche Kohlenstoff Verbindungen als Baustoffe oder Energielief eranten in Betracht kommen, welche Stickstoffverbindungen zu Körpereiweiß verarbeitet werden können, über welche Enzymsysteme die betreffenden Zellen oder Organismen verfügen, welche Wirkstoffe selbst synthetisiert werden können und welche zugeführt werden müssen u. dgl. mehr.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

Literature

  • Buchner, P.: Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Basel u. Stuttgart 1953.

    Google Scholar 

  • Burgeff, H.: Die Wurzelpilze der Orchideen. Ihre Kultur und ihr Leben in der Pflanze. Jena 1909.

    Google Scholar 

  • Samenkeimung der Orchideen und Entwicklung ihrer Keimpflanzen. Jena 1936.

    Google Scholar 

  • Damm, H.: Zur Charakteristik unserer gebräuchlichsten Desinfektionsmitteltypen. Jahrb. 1956 der Akad. für Staatsmedizin Düsseldorf; ferner Zbl. Bakter., II. Abt. 1956.

    Google Scholar 

  • Gautheret, R. J.: Catalogue des cultures de tissus végétaux. Rev. gén. Bot. 61, 672–700 (1954).

    Google Scholar 

  • Sur la variabilité des propriétés physiologiques des cultures de tissus végétaux. Rev. gén. Bot. 62, 5–15 (1955a).

    Google Scholar 

  • La physiologie des cultures des tissus végétaux. Union Internat. Sci. Biol., Sér. B Colloques Nr 20. Naples (Italie) 1955b.

    Google Scholar 

  • Hallmann, L.: Bakteriologische Nährböden. Stuttgart 1953.

    Google Scholar 

  • Hewitt, E. J.: Sand and water culture methods used in the study of plant nutrition. Commonwealth Agric. Bureaux, Farnham Royal, Bucks, England 1952.

    Google Scholar 

  • Janke, A.: Arbeitsmethoden der Mikrobiologie. Bd. I: Allgemeine mikrobiologische Methoden, 2. Aufl. Dresden u. Leipzig 1946.

    Google Scholar 

  • Klein, G., u. J. Kisser: Die sterile Kultur der höheren Pflanzen. (Bot. Abhandlungen Heft 2.) Jena 1924.

    Google Scholar 

  • Melin, E.: Untersuchungen über die Bedeutung der Baummykorrhiza. Jena 1925.

    Google Scholar 

  • Otto, L.: Der Mikromanipulator und seine Hilfsgeräte. Berlin 1954.

    Google Scholar 

  • Pommer, E.-H.: Beiträge zur Anatomie und Biologie der Wurzelknöllchen von Alnus glutinosa Gaertn. Flora (Jena) 143, 603–633 (1956).

    Google Scholar 

  • Pringsheim, E. G.: Pure cultures of Algae. There preparation and maintenance. Cambridge 1946.

    Google Scholar 

  • Algenreinkulturen, ihre Herstellung und Erhaltung. Jena 1954. Rappaport, J.: In vitro culture of plant embryos and factors controlling their growth. Bot, Review 20, 201–225 (1954).

    Google Scholar 

  • Richter, K. N., and N. W. Woodward jr.: A versatile type of perfusion chamber for longterm maintenance and direct microscopic observation of tissues in culture. Exper. Cell Res. 9, 585–587 (1955).

    CAS  Google Scholar 

  • Rippel-Baldes, A.: Grundriß der Mikrobiologie, 3. Aufl. Berlin-Göttingen-Heidelberg 1955.

    Google Scholar 

  • Robineaux, R., u. G. Barski: Chambres pur la perfusion des cultures de tissu et l’observation en microscopie à contraste de phase. Mikroskopie (Wien) 11, 65–69 (1956).

    Google Scholar 

  • Salle, A. J.: Fundamental principles of bacteriology, 4. Aufl. New York-Toronto-London 1954.

    Google Scholar 

  • Schaede, R.: Die pflanzlichen Symbiosen, 2. Aufl. Jena 1948.

    Google Scholar 

  • Schopfer, W. H.: Plants and vitamins. Waltham, Mass. 1949.

    Google Scholar 

  • Schweizer, G.: Einführung in die Kaltsterilisationsmethode. Jena 1937.

    Google Scholar 

  • Schwöbel, W.: Eine einfache Durchströmungsapparatur zur Gewebezüchtung aus nichtrostendem Stahl. Exper. Cell Res. 6, 79–86 (1954a).

    Google Scholar 

  • Eine Kammer zur mikroskopischen Untersuchung von Zellsuspensionen. Mikroskopie (Wien) 9, 302–305 (1954b).

    Google Scholar 

  • Eine verbesserte Durchströmungsapparatur zur Gewebezüchtung aus Glas. Exper. Cell Res. 9, 383–385 (1955).

    Google Scholar 

  • Seeliger, I.: Über die Kultur isolierter Wurzeln der Robinie (Robinia pseudoacacia L.). Flora (Jena) 144, 47–83 (1956).

    Google Scholar 

  • Smith, G. M.: Manual of phycology. Waltham, Mass. 1951.

    Google Scholar 

  • Sorauer, P.: Handbuch der Pflanzenkrankheiten, 5. Aufl. Die pflanzlichen Parasiten, Bd. II. 1928; Bd. III, Berlin 1932.

    Google Scholar 

  • Stadelmann, E.: Eine verbesserte Durchströmungskammer. Protoplasma (Wien) 40, 617–623 (1951).

    Google Scholar 

  • Sykes, G.: Constituents of bacteriological culture media. Cambridge 1956.

    Google Scholar 

  • Vogel, H.: Die Antibiotica. Nürnberg 1951.

    Google Scholar 

  • White, Ph. R.: The cultivation of animal and plant cells. New York 1954.

    Google Scholar 

  • Ziegler, H.: Verwendung von Penicillin zum Reinigen infizierter Orchideenkulturen. Arch. Mikrobiol. 16, 363 (1951).

    Google Scholar 

Literatur

  • Agarwal, P. N., and W. H. Peterson: The utilisation of non-sugar carbon of molasses by food yeasts. Arch, of Biochem. 20, 29–74 (1949).

    Google Scholar 

  • Anderson, C. G.: An introduction to bacterial chemistry, 2. Aufl. Edinburgh: Livingstone 1948.

    Google Scholar 

  • Benecke, W.: Stoffwechsel. In W. Benecke u. L.Jost, Pflanzenphysiologie. Jena: Gustav Fischer 1924.

    Google Scholar 

  • Clifton, Ch. E.: Leeuwenhoek J. Microbiol, a. Serol. 13,184 (1947). Zit. nach Schulze.

    Google Scholar 

  • Conn, H. J., and M. A. Darrow: Characteristics of certain bacteria belonging to the autochthonous microflora of soil. Soil Sci. 39, 95–110 (1935).

    CAS  Google Scholar 

  • Enebo, L., L.G. Anderson and H. Lundin: Microbiological fat synthesis by means of Rhodotorula yeasts. Arch, of Biochem. 11, 383–395 (1946).

    CAS  Google Scholar 

  • Falck, R.: Die Bedingungen und die Bedeutung der Zygotenbildung bei Sporodinia grandis. Cohns Beitr. Biol. Pflanz. 8, 213–306 (1901).

    Google Scholar 

  • Fink, H., J. Krebs u. R. Lechner: Beiträge zur biologischen Zellsubstanz-Synthese der Hefe. IV. Biochem. Z. 301, 143–157 (1939).

    CAS  Google Scholar 

  • Flieg, O.: Fette und Fettsäuren als Material für Bau- und Betriebsstoffwechsel von Aspergillus niger. Jb. Bot. 61, 24–64 (1922).

    Google Scholar 

  • Georgi, C. E., and P. W. Wilson: The influence of the tension of oxygen on the respiration of Rhizobia. Arch, of Microbiol. 4, 543–564 (1933).

    CAS  Google Scholar 

  • Greene, R. A.: Studies on protein synthesis by genus Azotobacter. Soil Sci. 39, 326–336 (1935).

    Google Scholar 

  • Heide, S.: Zur Physiologie und Cytologie der Fettbildung bei Endomyces vernalis. Arch. Mikrobiol. 10, 135–188 (1939).

    CAS  Google Scholar 

  • Kaufmann, W.: Untersuchungen über den Energiehaushalt der Hefezelle und die Ökonomie einiger Energiestoffwechseltypen anderer Mikroorganismen. Arch. Mikrobiol. 17, 319–352 (1952).

    Google Scholar 

  • Krzemieniewski, H., u. S. Krzemieniewski: Bull. Acad. Polon. Sci. et Lettr., Cl. Sci. math, et nat., Ser. B Sci. nat. II 33,137 (1937). Zit. nach Pellegrini.

    Google Scholar 

  • Kunstmann, H.: Über das Verhältnis zwischen Pilzernte und verbrauchter Nahrung. Diss. Leipzig 1895. Zit. nach Ref. in Beih. bot. Zbl. 6, 7–9 (1896).

    Google Scholar 

  • Maas-Förster, M.: Der Fett- und Eiweißstoffwechsel von Endomycopsis vernalis unter dem Einfluß von Phosphor- und Kaliummangel. Arch. Mikrobiol. 22, 115–144 (1955).

    PubMed  Google Scholar 

  • Martin, H. H.: Beitrag zur Kenntnis der Morphologie und Physiologie der Nektarhefe Candida Reukaufii (Grüss) Diddens et Lodder. Arch. Mikrobiol. 20, 141–162 (1954).

    PubMed  CAS  Google Scholar 

  • Nikitinsky, J.: Über die Beeinflussung der Entwicklung einiger Schimmelpilze durch ihre Stoff Wechselprodukte. Jb. wiss. Bot. 40, 1–93 (1904).

    Google Scholar 

  • Ono, N.: Über die Wachstumsbeschleunigung einiger Algen und Pilze durch chemische Reize. J. Coli. Sci. Imp. Univ. Tokyo 13, 141–186 (1900).

    Google Scholar 

  • Pan, S. C., A. A. Andreason and P. Kolachow: Factors influencing fat synthesis by Rhodotorula gracilis. Arch, of Biochem. 23, 419–433 (1949).

    CAS  Google Scholar 

  • Pellegrini, G.: Über Eiweißbildung durch Bakterien. III. Der ökonomische Koeffizient bei einem sporenbildenden Erdbakterium, Bacillus silvaticus. Arch. Mikrobiol. 9, 545–550 (1938).

    CAS  Google Scholar 

  • Pfeffer, W.: Über Election organischer Nährstoffe. Jb. wiss. Bot. 28, 205–268 (1895).

    CAS  Google Scholar 

  • Raaf, H.: Beiträge zur Kenntnis der Fett- und Eiweißsynthese bei Endomyces vernalis und einigen anderen Mikroorganismen. Arch. Mikrobiol. 12, 131–182 (1942).

    Google Scholar 

  • Radler, F.: Untersuchungen über den Verlauf der Stoffwechselvorgänge von Azotobacter chroococcum Beij. Arch. Mikrobiol. 22, 335–367 (1955).

    PubMed  CAS  Google Scholar 

  • Rippel, A.: Energetische Betrachtungen zur Ökonomie der Fettbildung bei Mikroorganismen. Arch. Mikrobiol. 11, 271–284 (1940).

    CAS  Google Scholar 

  • Rippel, A., u. K.Nabel: Über Eiweißbildung durch Bakterien. IV. Kohlenstoffökonomie von Bacillus glycinophilus bei Glykokoll als Stickstoff quelle. Arch. Mikrobiol. 10, 359–375 (1939).

    CAS  Google Scholar 

  • Rippel-Baldes, A.: Die Energieausnützung durch Mikroorganismen in quantitativer Hinsicht. Arch. Mikrobiol. 17, 166–188 (1952).

    CAS  Google Scholar 

  • Grundriß der Mikrobiologie, 3. Aufl. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Rubner, M.: Arch. f. Hyg. 57, 161, 193 (1906). Zit. nach Rippel-Baldes.

    CAS  Google Scholar 

  • Salmenlinna, S.: Über die Entwicklung von Aspergillus niger bei verschiedenen Temperaturen. Ref. in Z. Bot. 13, 44 (1921).

    Google Scholar 

  • Schönborn, W.: Energetische Untersuchungen an Pilzen und Bakterien. Arch. Mikrobiol. 22, 408–431 (1955).

    PubMed  Google Scholar 

  • Schulze, K. L.: Beiträge zur Physiologie und Technologie der Fettbildung bei Mikroorganismen. Arch. Mikrobiol. 15, 315–351 (1950).

    Google Scholar 

  • Tamiya, H.: Zur Energetik des Wachstums. Beiträge zur Atmungsphysiologie der Schimmelpilze. II. Acta phytochim. (Tokyo) 6, 265–304 (1932).

    CAS  Google Scholar 

  • Tamiya, H., u. S. Yamagutchi: Über die Aufbau- und Erhaltungsatmung. Beiträge zur Atmungsphysiologie der Schimmelpilze. III. Acta phytochim. (Tokyo) 7, 43–64 (1933).

    CAS  Google Scholar 

  • Terroine, E. F., et R. Wurmser: Influence de la température sur l’utilisation de glucose dans le développement de l’Aspergillus niger. C. r. Acad. Sci. Paris 173, 482–483 (1921).

    CAS  Google Scholar 

  • L’énergie de croissance. I. Le développement de l’Aspergillus niger. Bull. Soc. Chim. biol. Paris 4, 519 (1922). Zit. nach Tamiya.

    Google Scholar 

  • Woodbine, M., M.E. Gregory and T. K. Walker: Microbiological synthesis of fat. Preliminary survey of the fat production of moulds. J. of Exper. Bot. 2, 204–211 (1951).

    CAS  Google Scholar 

Literature

  • Adams, M.: Amylases: Their kinds and properties and factors which influence their activity. Food Technol. 7, 35–38 (1953).

    CAS  Google Scholar 

  • Aitken, R. A., B. P.Eddy, M. Ingram and C. Weurman: The action of culture filtrates of the fungus Myrothecium verrucaria on β-glucosans. Biochemic. J. 64, 63–70 (1956).

    CAS  Google Scholar 

  • Altermatt, H., u. H. Deuel: Über den enzymatischen Abbau von Pektinsäure und die Isolierung von Oligogalakturonsäuren. Helvet. chim. Acta 35, 1422–1426 (1952).

    Google Scholar 

  • Andrews, J., and R. B. Gilliland: Super-attenuation of beer: A study of three organisms capable of causing abnormal attenuations. J. Inst. Brew. 58,189–196 (1952).

    CAS  Google Scholar 

  • Araki, C., and K. Arai: Studies on agar digesting bacteria. The isolation of agar digesting bacteria and their enzymatic activities. Mem. Fac. Indus. Arts., Kyoto Techn. Univ., Science and Technology 3 (B), 7–23 (1954).

    Google Scholar 

  • Studies on the chemical constitution of agar. XVIII. Isolation of a new crystalline disaccharide by enzymatic hydrolysis of agar. Bull. Chem. Soc. Japan 29, 339–345 (1956).

    Google Scholar 

  • Studies on the chemical constitution of agar. XX. Isolation of a tetrasaccharide by enzymatic hydrolysis of agar. Bull. Chem. Soc. Japan 30, 287–293 (1957).

    Google Scholar 

  • Aschan, K., and B. Norkrans: A study in the cellulolytic variation for wild types and mutants of Collybia velutipes. I. Physiol. Plantarum (Copenh.) 6, 564–583 (1953).

    CAS  Google Scholar 

  • Avineri-Shapiro, S., and S. Hestrin: Polysaccharide production from sucrose. Biochemic. J. 39,167–172 (1945).

    CAS  Google Scholar 

  • Ayres, A., J. Dingle, A.Phipps, W. W. Reid and G. L. Solomons: Enzymic degradation of pectic acid and the complex nature of polygalacturonase. Nature (Lond.) 170, 834 (1952).

    CAS  Google Scholar 

  • Barker, S. A., and E. J. Bourne: Enzymic synthesis of polysaccharides. Quart. Rev. 7, 56–83 (1953).

    CAS  Google Scholar 

  • Barker, S. A., E. J. Bourne and M. Stacey: Synthesis of β-linked glucosaccharides by Aspergillus niger. Chem. a. Ind. 1953, 1287.

    Google Scholar 

  • Basu, S. N., and D. R. Whitaker: Inhibition and stimulation of the cellulase of Myrothecium verrucaria. Arch, of Biochem. a. Biophysics 42, 12–24 (1953).

    CAS  Google Scholar 

  • Baudet, P., u. G. Hagemann: Purification de la pénicillinase de Bacillus cereus. Experientia (Basel) 10, 374–376 (1954).

    CAS  Google Scholar 

  • Beavan, G. H., and F. Brown: Pectic enzymes of the mould Byssochlamys fulva. Biochemic. J. 45, 221–224 (1949).

    Google Scholar 

  • Bell, T. A., and J. L. Etchells: Pectin hydrolysis by certain salt-tolerant yeasts. Appl. Microbiol. 4, 196–201 (1956).

    PubMed  CAS  Google Scholar 

  • Bensusan, H. B., M. A. Derow and B. S. Walker: The proteolytic enzymes of Proteus vulgaris. Arch, of Biochem. a. Biophysics 49, 293–302 (1954).

    CAS  Google Scholar 

  • Berger, L. R., and D. M. Reynolds: The chitinase system of a strain of Streptomnces griseus. Biochim. et Biophysica Acta 29, 522–534 (1958).

    CAS  Google Scholar 

  • Bernfeld, P.: Enzymes of starch degradation and synthesis. Adv. Enzymol. 12, 379–428 (1951).

    CAS  Google Scholar 

  • Bernhauer, K.: Fortschritte der mikrobiologischen Chemie in Wissenschaft und Technik. VI. Enzyme der Mikroorganismen. Erg. Enzymforsch. 11, 302–314 (1950).

    Google Scholar 

  • Bird, R., and R. H. Hopkins: The action of some α-amylases on amylose. Biochemic. J. 56, 86–99 (1954).

    CAS  Google Scholar 

  • Blackwood, A.C.: Production of cytases active on barley gum by bacteria of the genus Bacillus. Amer. J. Bot. 31. 28–32 (1953).

    CAS  Google Scholar 

  • Blum, R., and W. H. Stahl: Enzymatic degradation of cellulose fibers. Textile Res. J. 22, 178–192 (1952).

    CAS  Google Scholar 

  • Bondi, A., M. de Saint Phalle, J. Kornblum and A. G. Moat: Factors influencing the synthesis of penicillinase by Micrococcus pyogenes. Arch, of Biochem. a. Biophysics 53, 348–353 (1954).

    CAS  Google Scholar 

  • Bourne, E. J.: The biological synthesis of starch. Biochem. Soc. Symposia 1953, Noll, 3–17.

    Google Scholar 

  • Bovarnick, M., S. Fieber, M. R. Bovarnick and J. Kazlowski: Rate of excretion of glutamylpolypeptide and its polymers in human subjects. Proc. Soc. Exper. Biol. a. Med. 83, 253–254 (1953).

    CAS  Google Scholar 

  • Brooks, J., and W. W. Reid: The complex nature of polygalacturonase from Aspergillus foetidus Thorn et Raper. Chem. a. Ind. 1955, 325–326.

    Google Scholar 

  • Calesnick, E. J., C. H. Hills and J. J. Willaman: Properties of a commercial fungal pectase preparation. Arch, of Biochem. 29, 432–440 (1950).

    CAS  Google Scholar 

  • Campbell jr., L. L.: Purification and properties of an α-amylase from facultative thermophilic bacteria. Arch, of Biochem. a. Biophysics 54, 154–161 (1955).

    CAS  Google Scholar 

  • Clapper, W. E., and D. C. Wood: Comparison of three methods for the determination of coagulase activity in Staphylococci. J. Bacter. 67, 545–546 (1954).

    CAS  Google Scholar 

  • Clarke, P. H., and M. V. Tracey: The occurrence of chitinase in some bacteria. J. Gen. Microbiol. 14, 188–196 (1956).

    PubMed  CAS  Google Scholar 

  • Conchie, J.: β-glucosidase from rumen liquor. Biochemic. J. 58, 552–560 (1954).

    CAS  Google Scholar 

  • Costlow, R. D.: Lecithinase from Bacillus anthracis. J. Bacter. 76, 317–325 (1958).

    CAS  Google Scholar 

  • Crewther, W. G., and F. G. Lennox: Enzymes of Aspergillus oryzae. III. The sequence of appearance and some properties of the enzymes liberated during growth. Austral. J. Biol. Sci. 6,410–427 (1953a).

    CAS  Google Scholar 

  • Enzymes of Aspergillus oryzae. IV. Fractionation and preparation of crystals rich in protease. Austral. J. Biol. Sci. 6, 428–446 (1953b).

    Google Scholar 

  • Crook, E. M., and B. A. Stone: Formation of oligosaccharides during the enzymatic hydrolysis of β-glucosides. Biochemic. J. 55, XXV (1953).

    CAS  Google Scholar 

  • The enzymic hydrolysis of β-glucosides. Biochemic. J. 65, 1–12 (1957).

    Google Scholar 

  • Crowley, N.: The degradation of starch by group A Streptococci having related antigens. J. Gen. Microbiol. 4, 156–170 (1950).

    PubMed  CAS  Google Scholar 

  • On amylolytic strains of Streptococcus pyogenes. J. Gen. Microbiol. 10, 411–426 (1954).

    Google Scholar 

  • The action of Streptococcal amylase in relation to the synthesis of an amylosaccharide by amylolytic strains of Streptococcus pyogenes. J. Gen. Microbiol. 13, 218–225 (1955).

    Google Scholar 

  • Dawson, C. R., and W. B. Tarpley: Copper oxidases. In: The Enzymes, edit, by J. B. Sumner and K. Myrbäck, Vol. II, part 1, pp. 454–498. New York: Academic Press 1951.

    Google Scholar 

  • Demain, A. L., and H. J. Phaff: Hydrolysis of the oligogalacturonides and pectic acid by yeast polygalacturonase. J. of Biol. Chem. 210, 381–393 (1954).

    CAS  Google Scholar 

  • Recent advances in the enzymatic hydrolysis of pectic substances. Wallerstein Labor. Commun. 20, 119–140 (1957).

    Google Scholar 

  • Deuel, H., and E. Stutz: Pectic substances and pectic enzymes. Adv. Enzymol. 20, 341–382 (1958).

    CAS  Google Scholar 

  • Dingle, J., W. W. Reid and G.L.Solomons: The enzymic degradation of pectin and other polysaccharides. II. Application of the cupplate essay to the estimation of enzymes. J. Sci. Food Agricult. 4, 149–155 (1953).

    CAS  Google Scholar 

  • Dingle, J., and G. L. Solomons: Enzymes from microfungi. J. Appl. Chem. 2, 395–399 (1952).

    CAS  Google Scholar 

  • Dion, W. M.: The proteolytic enzymes of microorganisms. Survey of fungi and Actinomycetes for protease production in submerged culture. Canad. J. Res. C. 28, 577–585 (1950).

    Google Scholar 

  • Production and properties of a polyphenol oxidase from the fungus Polyporus versicolor. Canad. J. Bot. 30, 9–21 (1952).

    Google Scholar 

  • Doudoroff, M., and R. O’Neal: On the reversibility of levulan synthesis by Bacillus subtilis. J. of Biol. Chem. 159, 585–592 (1945).

    CAS  Google Scholar 

  • Dudani, A.I.: Proteolytic and coagulating enzymes of enterococci. Diss. Iowa State College, U.S.A. 1950.

    Google Scholar 

  • Duthie, E. S.: The production of free Staphylococcal coagulase. J. Gen. Microbiol. 10, 437–444 (1954a).

    PubMed  CAS  Google Scholar 

  • Evidence for two forms of Staphylococcal coagulase. J. Gen. Microbiol. 10, 427-436 (1954b).

    Google Scholar 

  • Dworschack, R. G., and L. J. Wickerham: Production of extracellular invertase by the yeast, Saccharomyces uvarum NRRL Y-972. Arch, of Biochem. a. Biophysics 76, 449–456 (1958).

    CAS  Google Scholar 

  • Edelman, J.: The formation of oligosaccharides by enzymic transglycosylation. Adv. Enzymol. 17, 189–232 (1956).

    CAS  Google Scholar 

  • Elliott, S. D.: The crystallization and serological differentiation of a streptococcal proteinase and its precursor. J. Exper. Med. 92, 201–218 (1950).

    CAS  Google Scholar 

  • Emmart, E. W., and R. M. Cole: Studies on Streptococcal hyaluronidase and antihyaluronidase. J. Bacter. 70, 596–607 (1955).

    CAS  Google Scholar 

  • Fåhraeus, G.: On the oxidation of phenolic compounds by wood-rotting fungi. Ann. Roy. Agricult. Coll. Sweden 16, 618–629 (1949).

    Google Scholar 

  • Formation of laccase by Polyporus versicolor in different culture media. Physiol. Plantarum (Copenh.) 5, 284–291 (1952).

    Google Scholar 

  • Further studies in the formation of laccase by Polyporus versicolor. Physiol. Plantarum (Copenh.) 7, 704–712 (1954).

    Google Scholar 

  • Fåhraeus, G., and G. Lindeberg: Influence of tyrosine and some other substances on the laccase formation of Polyporus species. Physiol. Plantarum (Copenh.) 6, 150–158 (1953).

    Google Scholar 

  • Forbath, T. P.: Flexible processing keys enzymes’future. Chem. Eng. 64, 226–229 (1957).

    Google Scholar 

  • Forsyth, W. G. C., and D. M. Webley: A method for studying the carbohydrate metabolism of microorganisms. Nature (Lond.) 162, 150–151 (1948).

    CAS  Google Scholar 

  • Reducing sugars liberated during bacterial synthesis of polysaccharides from sucrose. J. Gen. Microbiol. 4, 87–91 (1950).

    Google Scholar 

  • French, D., and D. W. Knapp: The maltase of Clostridium acetobutylicum. Its specificity range and mode of action. J. of Biol. Chem. 167, 463–471 (1950).

    Google Scholar 

  • French, D., M. L. Levine, E. Norberg, P. Nordin, J. H. Pazur and G. M. Wild: The Schardinger dextrins. VII. Cosubstrate specificity in coupling reactions of Bacillus macerans amylase. J. Amer. Chem. Soc. 76, 2387–2390 (1954).

    CAS  Google Scholar 

  • French, D., J. Pazur, M. L. Levine and E. Norberg: Reversible action of macerans amylase. J. Amer. Chem. Soc. 70, 3145 (1948).

    CAS  Google Scholar 

  • Friedman, M. E., W. O. Nelson and W. A. Wood: Proteolytic enzymes from Bacterium linens. J. Dairy Sci. 36, 1124–1134 (1953).

    CAS  Google Scholar 

  • Fukumoto, J., Y. Sakazaka and K. Minamii: Amylase of Rhizopus delemar. Crystalline protein of so called glucamylase and its enzyme action. Symposia on Enzyme Chem. (Japan) 9, 94–97 (1954). Chem. Abstr. 48, 7084 (1954).

    CAS  Google Scholar 

  • Furuichi, M., and T. Okamoto: Studies on the yeast pectic enzymes. J. Agricult. Chem. Soc. Japan 28, 703–707 (1954).

    CAS  Google Scholar 

  • Gäumann, E., u. E. Böhni: Über adaptive Enzyme bei parasitischen Pilzen. I. Helvet. chim. Acta 30, 24–38 (1947a).

    PubMed  Google Scholar 

  • Über adapt ive Enzyme bei parasitischen Pilzen. II. Helvet. chim. Acta 30, 1591–1595 (1947b).

    Google Scholar 

  • Gehring, F.: Beitrag zum Chitinabbau durch Mikro-Organismen. Zbl. Bakter., Abt. II 108, 232–242 (1954).

    CAS  Google Scholar 

  • Gibian, H.: Das Hyaluronsäure-Hyaluronidase-System. Erg. Enzymforsch. 13, 1–84 (1954).

    CAS  Google Scholar 

  • Gillespie, J. M., and E. F Woods: Enzymes of Aspergillus oryzae. V. Ethanol fractionation at low ionic strengths Austral. J. Biol. Sci. 6, 447–462 (1953).

    CAS  Google Scholar 

  • Gilligan, W., and E.T. Reese: Evidence for multiple components in microbial cellulases. Canad. J. Microbiol. 1, 90–107 (1954).

    CAS  Google Scholar 

  • Gilliland, R. B.: A study of a wild yeast — Saccharomyces diastaticus. Wallerstein Labor. Commun. 17, 165–176 (1954).

    Google Scholar 

  • Giri, K. V., P. L. N. Rao, K. Saroja u. R. Venkataraman: Enzyme synthesis of oligosaccharides by Penicillium chrysogenum. Naturwiss. 40, 484–485 (1953).

    Google Scholar 

  • Giri, K. V., K. Saroja, R. Venkataraman and P. L. N. Rao: Isolation of isomaltose 6-(αα-d-glucopyranosyl)-d-glucose from the culture filtrate of Penicillium chrysogenum Q 176. Arch, of Biochem. a. Biophysics 51, 62–67 (1954).

    CAS  Google Scholar 

  • Goering, K. J., and V. C. Bruski: Purified α-amylase from submerged cultures of Aspregillus oryzae. Cereal Chem. 31, 7–14 (1954).

    CAS  Google Scholar 

  • Gorini, L., et G. Lanzavecchia: Recherches sur le mécanisme de production d’une protéinase bactérienne. I. Nouvelle technique de détermination d’une protéinase par la coagulation du lait. Biochim. et Biophysica Acta 14,407–414 (1954a).

    CAS  Google Scholar 

  • Recherches sur le mécanisme de production d’une protéinase bactérienne. II. Mise en évidence d’un zymogène précurseur de la protéinase de Coccus P. Biochim. et Biophysica Acta 15, 399–410 (1954b).

    Google Scholar 

  • Gottlieb, S., and M. G. Pelczar jr.: Microbiological aspects of lignin degradation. Bacter. Rev. 15, 55–76 (1951).

    CAS  Google Scholar 

  • Graae, J.: Esterase activity shown by subtilisin, a proteolytic enzyme from Bacillus subtilis. Acta chem. scand. (Stockh.) 8, 356–357 (1954).

    CAS  Google Scholar 

  • Greathouse, G. A.: Microbiological degradation of cellulose. Textile Res. J. 20, 227–238 (1950).

    CAS  Google Scholar 

  • Grutter, F. H., and L. N. Zimmerman: A proteolytic enzyme of Streptococcus zymogenes. J. Bacter. 69, 728–732 (1955).

    CAS  Google Scholar 

  • Güntelberg, A. V.: A method for the production of the plakalbumin

    Google Scholar 

  • —forming proteinase from Bacillus subtilis. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 27–35 (1954).

    Google Scholar 

  • Güntelberg, A. Y., and M. Ottesen: Purification of the proteolytic enzyme from Bacillus subtilis. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 36–48 (1954).

    Google Scholar 

  • Hackman, R. H.: Studies on chitin. I. Enzymatic degradation of chitin and chitin esters. Austral. J. Biol. Sci. 7, 168–178 (1954).

    CAS  Google Scholar 

  • Hale, W. S., and L. C. Rawlins: Amylase of Bacillus macerans. Cereal Chem. 28, 49–58 (1951).

    CAS  Google Scholar 

  • Halliwell, G.: Cellulolytic preparations from micro-organisms of the rumen and from Myrothecium verrucaria. J. Gen. Microbiol. 17, 166–183 (1957).

    PubMed  CAS  Google Scholar 

  • Hammerstrom, R. A., K.D. Claus, J. W. Coghlan and R. H. McBee: The constitutive nature of bacterial cellulases. Arch, of Biochem. a. Biophysics 56, 123–129 (1955).

    CAS  Google Scholar 

  • Hartman, P.A., and P. A. Tetrault: Bacillus stearothermophilus. II. Certain factors affecting amylase production on some undefined media. Appl. Microbiol. 3, 11–14 (1955).

    PubMed  CAS  Google Scholar 

  • Hartman, P. A., R. Wellerson jr. and P. A. Tetrault: Bacillus stearothermophilus. I. Thermal and phn stability of the amylase. Appl. Microbiol. 3, 7–10 (1955).

    PubMed  CAS  Google Scholar 

  • Hartman, R. E., L.N. Zimmerman and R. Rabin: Protein biosynthesis by Streptococcus liquefaciens. II. Purine, pyrimidine and vitamin requirements. Canad. J. Microbiol. 3, 553–558 (1957).

    CAS  Google Scholar 

  • Hash, J. H., and K.W. King: Demonstration of an oligosaccharide intermediate in the enzymatic hydrolysis of cellulose. Science (Lancaster, Pa.) 120, 1033–1035 (1954).

    CAS  Google Scholar 

  • On the nature of the β-glucosidases of Myrothecium verrucaria. J. of Biol. Chem. 232, 381–393 (1958a).

    Google Scholar 

  • Some properties of an aryl-β-glucosidase from culture filtrates of Myrothecium verrucaria. J. of Biol. Chem. 232, 395–402 (1958b).

    Google Scholar 

  • Haugaard, E. S., and N. Haugaard: Degradation of crystalline insulin by subtilisin (a proteinase from B. subtilis). C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 350–364 (1955).

    CAS  Google Scholar 

  • Hehre, E. J.: Comparison of dextran synthesis by Leuconostoc enzyme with starch synthesis by potato phosphorylase. Proc. Soc. Exper. Biol. a. Med. 254, 240–241 (1943).

    Google Scholar 

  • Enzymic synthesis of polysaccharides: A biological type of polymerization. Adv. Enzymol. 11, 297–332 (1951).

    Google Scholar 

  • Low-molecular weight dextran as a modifier of dextran synthesis. J. Amer. Chem. Soc. 75, 4866 (1953).

    Google Scholar 

  • Hehre, E. J., and J. Y. Sugg: Serologically reactive polysaccharides produced through the action of bacterial enzymes. I. Dextran of Leuconostoc mesenteroides from sucrose. J. of Exper. Med. 75, 339–353 (1942).

    CAS  Google Scholar 

  • Hestrin, S., and J. Goldblum: Levanpolyase. Nature (Lond.) 172, 1046–1047 (1953).

    CAS  Google Scholar 

  • Higa, H. H., R. D. O’Neill and M. W. Jennison: Partial purification of cellulase from a wood rotting Basidiomycete. J. Bacter. 71, 382 (1956).

    CAS  Google Scholar 

  • Hirsch, H. M.: Temperature-dependent cellulase production by Neurospora crassa and its ecological implications. Experientia (Basel) 10, 180–182 (1954).

    CAS  Google Scholar 

  • Hoogerheide, J. C.: Microbial enzymes other than fungal amylases. In: Industrial fermentations, edit, by L. A. Underkofler and R. J. Hickey, Vol. II, pp. 122–154. New York: Chemical Publ. Co. 1954.

    Google Scholar 

  • Hungate, R. E.: The anaerobic mesophilic cellulolytic bacteria. Bacter. Rev. 14, 1–49 (1950).

    CAS  Google Scholar 

  • Hunt, W. G., and R. O. Moore: The proteolytic system of a gram negative rod isolated from the bovine rumen. Aoppl. Micrbiol. 6, 36–39 (1958).

    CAS  Google Scholar 

  • Husain, I., and I. J. McDonald: Characteristics of an extracellular proteinase of Micrococcus freudenreichii. Canad. J. Microbiol. 4, 237–242 (1958).

    CAS  Google Scholar 

  • Ishimatsu, K., Y. Kibesaki and S. Minamii: Studies on the agar liquefying bacteria. XVII. On the mechanism of enzymic degradation of agar. Sci. and Indus. (Japan) 30, 137–142 (1956).

    CAS  Google Scholar 

  • Jermyn, M. A.: Fungal cellulases. I. General properties of unpurified enzyme preparations from Aspergillus oryzae. Austral. J. Sci. Res. B 5,409–432 (1952a).

    Google Scholar 

  • Fungal cellulases. II. The complexity of enzymes from Aspergillus oryzae that split β-glucosidic linkages and their partial separation. Austral. J. Sci. Res., Ser. B 5, 433–443 (1952b).

    Google Scholar 

  • Fungal cellulases. III. Stachybotrys atra: growth and enzyme production on non-cellulosic substrates. Austral. J. Biol. Sci. 6, 48–69 (1953).

    Google Scholar 

  • Fungal cellulases. IV. Production and purification of an extracellular β-glucosidase of Stachybotris atra. Austral. J. Biol. Sci. 8,541–562 (1955a)

    Google Scholar 

  • Fungal cellulases. V. Enzymic properties of Stachybotrys atra β-glucosidase. Austral. J. Biol. Sci. 8, 563–576 (1955b).

    Google Scholar 

  • Fungal cellulases. VI. Substrate and inhibitor specificity of the β-glucosidase of Stachybotrys atra. Austral. J. Biol. Sci. 8, 577–602 (1955c).

    Google Scholar 

  • Fungal cellulases. VIII. Further observations on the β-glucosidase of Stachybotrys atra. Austral. J. Biol. Sci. 11, 114–126 (1958).

    Google Scholar 

  • Jermyn, M. A., and R. Thomas: Transferase activity of the β-glucosidases of Aspergillus oryzae. Austral. J. Biol. Sci. 6, 70–76 (1953).

    CAS  Google Scholar 

  • Jeuniaux, C.: Mise en évidence d’une flore bacterienne chitinolytique dans le tube digestif de l’escargot (Helix pomatia L.). Arch, internat. Physiol. 58, 350–351 (1950a).

    CAS  Google Scholar 

  • Production d’une exochitinase par des bactéries chitinolytiques isolées de contenu intestinal de l’escargot. Arch, internat. Physiol. 58, 352–353 (1950b).

    Google Scholar 

  • Recherche de la chitinase dans les tissus glandulaires digestifs de l’escargot (H. pomatia L.). Arch, internat. Physiol. 58, 354–355 (1950c).

    Google Scholar 

  • Production d’exochitinase par des Streptomyces. C. r. Soc. Biol. (Paris) 149, 1307–1308 (1955).

    Google Scholar 

  • Premières étappes de purification d’une chitinase microbienne. Arch. int. Physiol. Biochim. 64, 522–524 (1956).

    Google Scholar 

  • Purification of a Streptomyces Chitinase. Biochemic. J. 66, 29 P (1957).

    Google Scholar 

  • Kaji, A.: On the polygalacturonase action of bacteria of the genus Clostridium. J. Agricult. Chem. Soc. Japan 28, 695–699 (1954).

    CAS  Google Scholar 

  • Kalckar, H. M.: The mechanism of transglycosidation. In: The mechanism of enzyme action, edit, by W. D. McElroy and B. Glass, pp. 675–739. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Kertesz, Z. I.: Pectic enzymes. In: The enzymes, edit, by J. B. Sumner and K. Myrbäck, Vol.1, part 2, pp. 745–768. New York: Academic Press 1951.

    Google Scholar 

  • Kitts, W. D., and L. A. Underkofler: Digestion by ruman microorganisms. Hydrolytic products of cellulose and the cellulolytic enzymes. Agricult. Food Chem. 2, 639–645 (1954).

    CAS  Google Scholar 

  • Kobayashi, T.: Studies on dextran. Part 4: Dextran destroying enzyme of molds. J. Agricult. Chem. Soc. Japan 28, 352–357 (1954).

    CAS  Google Scholar 

  • Kobayashi, T., and K. Yamanouchi: Limit dextrinase activity of molds. J. Agricult. Chem. Soc. Japan 27, 180–186 (1953).

    CAS  Google Scholar 

  • Koch, O.G., u. G.A. Dedie: Beitrag zur proteolytischen Aktivität von Schimmelpilzen. Biochem. Z. 328, 536–548 (1957).

    PubMed  CAS  Google Scholar 

  • Koepsell, H. J., H. M. Tsuchiya, N. N. Hellman, A. Kazenko, C. A. Hoffman, E. S. Sharpe and R. W. Jackson: Enzymic synthesis of dextran. Acceptor specificity and chain initiation. J. of Biol. Chem. 200, 793–801 (1953).

    CAS  Google Scholar 

  • Kogut, M., M. R. Pollock and E. J. Tridgell: Purification of penicillin-induced penicillinase of Bacillus cereus NRRL 569: A comparison of its properties wdth those of a similarly purified penicillinase produced spontaneously by a constitutive mutant strain. Biochemic. J. 62, 391–403 (1956).

    CAS  Google Scholar 

  • Kooiman, P.: Enzymic hydrolysis of alginic acid. Biochim. et Biophysica Acta 13, 338–340 (1954).

    CAS  Google Scholar 

  • Some properties of cellulase of Myrothecium verrucaria and some other fungi. II. Enzymologia (Den Haag) 17, 371–384 (1957).

    Google Scholar 

  • Kooiman, P., P. A. Roelofsen and S. Sweeris: Some properties of cellulase from Myrothecium verrucaria. Enzymologia (Den Haag) 16, 237–246 (1953).

    CAS  Google Scholar 

  • Koshland jr., D.E.: Group transfer as an enzymic substitution mechanism. In: The mechanism of enzyme action, edit, by W.D. McElroy and B. Glass, pp. 608–641. Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Kraght, A. J., and M.P. Starr: Pectic enzymes of Erwinia carotovora. Arch, of Biochem. a. Biophysics 42, 271–277 (1953).

    CAS  Google Scholar 

  • Langlykke, A. F., C. V. Smythe and D. Perlman: Enzyme technology. In: The enzymes, edit, by J. B. Sumner and K. Myrbäck, Vol. II, part 2, pp. 1180–1338. New York: Academic Press 1952.

    Google Scholar 

  • Lennox, F. G.: The variety, properties and uses of proteolytic enzymes. Rev. Pure Appl. Chem. 2, 33–56 (1952).

    CAS  Google Scholar 

  • Levinson, H. S., G. R. Mandels and E. T. Reese: Products of enzymatic hydrolysis of cellulose and its derivatives. Arch, of Biochem. a. Biophysics 31, 351–365 (1951).

    CAS  Google Scholar 

  • Lindeberg, G., and G. Fåhraeus: Nature and formation of phenol oxidases in Polyporus zonatus and P. versicolor. Physiol. Plantarum (Copenh.) 5, 277–283 (1952).

    CAS  Google Scholar 

  • Lindeberg, G., and G. Holm: Occurrence of tyrosinase and laccase in fruit bodies and mycelia of some hymenomycetes. Physiol. Plantarum (Copenh.) 5, 100–114 (1952).

    Google Scholar 

  • Lineweaver, H., and E. F. Jansen: Pectic enzymes. Adv. Enzymol. 11, 267–295 (1951).

    CAS  Google Scholar 

  • Lüh, B. S., and H. J. Phaff: Studies on polygalacturonase of certain yeasts. Arch, of Biochem. a. Biophysics 33, 212–227 (1951).

    Google Scholar 

  • Properties of yeast polygalacturonase. Arch, of Biochem. a. Biophysics 48, 23–37 (1954a).

    Google Scholar 

  • End products and mechanism of hydrolysis of pectin and pectic acid bv yeast polygalacturonase (YPG). Arch, of Biochem. a. Biophysics 51, 102–113 (1954b).

    Google Scholar 

  • MacDonnell, L. R., R. Jang, E. F. Jansen and H. Lineweaver: The specificity of pectin esterases from several sources with some notes on purification of orange pectin esterase. Arch, of Biochem. 28, 260–273 (1950).

    CAS  Google Scholar 

  • MacLennan, J. D., I. Mandl and E. L. Howes: Bacterial digestion of collagen. J. Clin. Invest. 32, 1317–1322 (1953).

    PubMed  CAS  Google Scholar 

  • New proteolytic enzymes from Clostridium histolyticum filtrates. J. Gen. Microbiol. 18, 1–8 (1957).

    Google Scholar 

  • Mandels, G. R.: Synthesis and secretion of invertase in relation to the growth of Myrothecium verrucaria. J. Bacter. 71, 684–688 (1956).

    CAS  Google Scholar 

  • Mandels, M., and E. T. Reese: Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacter. 73, 269–278 (1957).

    CAS  Google Scholar 

  • Mandl, I., J. D. MacLennan, E.L. Howes, R.H. DeBellis and A. Sohler: Isolation and characterization of proteinase and collagenase from Clostridium histolyticum. J. Clin. Invest. 32, 1323–1329 (1953).

    PubMed  CAS  Google Scholar 

  • Manson, E. E. D., M. R. Pollock and E. J. Tridgell: A comparison of the properties of penicillinase produced by Bacillus subtilis and Bacillus cereus with and without addition of penicillin. J. Gen. Microbiol. 11, 493–505 (1954).

    PubMed  CAS  Google Scholar 

  • Markovitz, A., and H.P. Klein: Some aspects of the induced biosynthesis of alpha-amylase of Pseudomonas saccharophila. J. Bacter. 70, 641–648 (1955a).

    CAS  Google Scholar 

  • On the sources of carbon for the induced biosynthesis of alpha-amylase in Pseudomonas saccharophila. J. Bacter. 70, 649–655 (1955b).

    Google Scholar 

  • Markovitz, A., H. P. Klein and E.H. Fischer: Purification, crystallization, and properties of the α-amylase of Pseudomonas saccharophila. Biochim. et Biophysica Acta 19, 267–273 (1956).

    CAS  Google Scholar 

  • Marsh, P. B., K. Bollen-bacher, M. L. Butler and L. R. Guthrie: “S–factor”, a microbial enzyme which increases the swelling of cotton in alkali. Textile Res. J. 23, 878–888 (1953).

    CAS  Google Scholar 

  • Matsushima, K.: The proteolytic enzymes of molds. III. Proteolytic activities of various species of molds. J. Ferment. Technol. (Japan) 31, 389–392 (1953).

    CAS  Google Scholar 

  • Proteolytic enzymes of molds. V. Proteolytic activities of commercial strains of Aspergillus flavus-oryzae group. J. Ferment. Technol. (Japan) 32, 14–19 (1954).

    Google Scholar 

  • Matsuyama, M.: Aspergillus. VIII. Influence of the amount of nitrogen in the culture medium and Ph upon production of amylase. J. Ferment. Technol. (Japan) 31, 160–162 (1953).

    CAS  Google Scholar 

  • Mattoon, J. R., C.E. Holmlund, S.A. Scheparz, J. J. Vavra and M. J. Johnson: Bacterial levans of intermediate molecular weight. Appl. Microbiol. 3, 321–333 (1955).

    PubMed  CAS  Google Scholar 

  • Matus, J.: Untersuchungen über die Aktivität der Pektinase. Ber. Schweiz, bot. Ges. 58, 319–380 (1948).

    CAS  Google Scholar 

  • Maxwell, Margaret E.: Enzymes of Aspergillus oryzae. I. The development of a culture medium yielding high protease activity. Austral. J. Sci. Res. B 5, 42–55 (1952a).

    CAS  Google Scholar 

  • Enzymes of Aspergillus oryzae. II. The yield of enzymes from mutants produced by ultraviolet irradiation. Austral. J. Sci. Res. B 5, 56–63 (1952b).

    Google Scholar 

  • McBee, R. H.: The anaerobic thermophilic cellulolytic bacteria. Bacter. Rev. 14, 51–63 (1950).

    CAS  Google Scholar 

  • The characteristics of Clostridium thermocellum. J. Bacter. 67, 505–506 (1954).

    Google Scholar 

  • McConnel, W. B., E.Y. Spencer and J. A. Trew: Proteolytic enzymes of microorganisms. V. Extracellular peptidases produced by fungi grown in submerged culture. Canad. J. Chem. 31, 697–704 (1953).

    Google Scholar 

  • McCready, R. M., and E. A. McComb: Course of action of polygalacturonase on polygalacturonic acids. Agricult. Food Chem. 1, 1165–1168 (1953).

    CAS  Google Scholar 

  • McCready, R. M., and C. G. Seegmiller: Action of pectic enzymes on oligogalacturonic acids and some of their derivatives. Arch, of Biochem. a. Biophysics 50, 440–450 (1954).

    CAS  Google Scholar 

  • Mihashi, Y., and M. Tatsumi: Formation of amylase by Aspergillus oryzae. I. Influence of cultural conditions. Ann. Rep. Tokyo Coll. Pharm. 3, 177–185 (1953). Ref. Chem. Abstr. 48, 12892 (1954).

    CAS  Google Scholar 

  • Mills, G. Barbara: A biochemical study of Pseudomonas prunicola Wormald. I. Pectinesterase. Biochemic. J. 44, 302–305 (1949).

    CAS  Google Scholar 

  • Mushin, R., and V. J. Kerr: Clotting of citrated plasma and citrate utilization by intestinal gram-negative bacilli. J. Gen. Microbiol. 10, 445–451 (1954).

    PubMed  CAS  Google Scholar 

  • Myrbäck, K., and G. Neumüller: Amylases and the hydrolysis of starch and glycogen. In: The enzymes, edit, by J. B. Sumner and K. Myrbäck, pp. 653–724. New York, N.Y.: Academic Press 1950.

    Google Scholar 

  • Nadel, H., C. I. Randles and G. L. Stahly: The influence of environmental factors on the molecular size of dextran. Appl. Microbiol. 1, 217–224 (1953).

    PubMed  CAS  Google Scholar 

  • Norberg, E., and D. French: Studies on the Schardinger dextrins. III. Redistribution reactions of macerans amylase. J. Amer. Chem. Soc. 72,1202–1205 (1950).

    CAS  Google Scholar 

  • Norkrans, B.: Influence of cellulolytic enzymes from Hymenomycetes on cellulose preparations of different crystallinity. Physiol. Plantarum (Copenh.) 3, 75–87 (1950).

    Google Scholar 

  • Studies of β-glucoside- and cellulose-splitting enzymes from Polyporus annosus Fr. Physiol. Plantarum (Copenh.) 10, 198–213 (1957a).

    Google Scholar 

  • Studies of β-glucoside- and cellulose-splitting enzymes from different strains of Collybia velutipes. Physiol. Plantarum (Copenh.) 10, 454–466 (1957b).

    Google Scholar 

  • Norkrans, B., and K. Aschan: A study in the cellulolytic variation for wild types and mutants of Collybia velutipes. II. Relations to different nutrient media. Physiol. Plantarum (Copenh.) 6, 829–836 (1953).

    Google Scholar 

  • Norkrans, B., and B. G. Rånby: Studies of the enzymatic degradation of cellulose. Physiol. Plantarum (Copenh.) 9, 198–211 (1956).

    CAS  Google Scholar 

  • Nortje, B. K., and R. H. Vaughn: The pectolytic activity of species of the genus Bacillus: Qualitative studies with B. subtilis and B. pumilus in relation to the softening of olives and pickles. Food Res. 18, 57–69 (1953).

    CAS  Google Scholar 

  • Oda, M., N. Takata, Y. Morita and K. Gino: Variation of Aspergillus oryzae. VI. The natural variation. J. Ferment. Technol. (Japan) 32, 145–147 (1954).

    CAS  Google Scholar 

  • Oda, M., K. Yamagata and T. Sawabe: Variation of Aspergillus oryzae. II. The induced variation. J. Ferment. Technol. (Japan) 31,154–160 (1953).

    CAS  Google Scholar 

  • Ogbtjrn, C. A., T. N. Harris and Susanna Harris: Extracellular antigens in steady-state cultures of the hemolytic Streptococcus: production of proteinase at low ph- J. Bacter. 76, 142–151 (1958).

    Google Scholar 

  • Okazaki, H.: Properties of saccharogenic amylase of Aspergillus oryzae. J. Agricult. Chem. Soc. Japan 27, 296 (1953).

    CAS  Google Scholar 

  • Purification and properties of saccharogenic amylase from Aspergillus oryzae. Symp. Enzyme Chem. (Japan) 9, 43–45 (1954). Ref. Chem. Abstr. 48, 7082 (1954).

    Google Scholar 

  • Ozawa, J.: Fermentation of pectin. I. Conditions under which protopectinase is active. [In Japanese.] Nogaku Kenkyu 37, 14–16 (1947).

    CAS  Google Scholar 

  • Ozawa, J., and K. Okamoto: Saccharifying polygalacturonase of Penicillium expansum. [In Japanese.] Nogaku Kenkyu 41, 79–81 (1953).

    CAS  Google Scholar 

  • Pan, S. C., L. W. Nicholson and P. Kolachov: Enzymic synthesis of oligosaccharides.

    Google Scholar 

  • A transglycosidation. Arch, of Biochem. a. Biophysics 42, 406–420 (1953a).

    Google Scholar 

  • Transglycosidase activity of amylase preparations. Arch, of Biochem. a. Biophysics 42,421–434 (1953b).

    Google Scholar 

  • Pazur, J. H., and D. French: The action of transglucosidase of Aspergillus oryzae on maltose. J. of Biol. Chem. 196, 265–272 (1952).

    CAS  Google Scholar 

  • Phaff, H. J.: The production of exocellular pectic enzymes by Penicillium chrysogenum. I. On the formation and adaptive nature of polygalacturonase and pectinesterase. Arch, of Biochem. 13, 67–81 (1947).

    CAS  Google Scholar 

  • Phaff, H. J., and A. L. Demain: The uni-enzymatic nature of yeast polygalacturonase. J. of Biol. Chem. 218, 875–884 (1956).

    CAS  Google Scholar 

  • Phillips, L. L., and M. L. Caldwell: The purification and properties of a glucoseforming amylase from Rhizopus delemar, glue amylase. J. Amer. Chem. Soc. 73, 3559–3563 (1951a).

    CAS  Google Scholar 

  • The action of glucamylase, a glucose producing amylase, formed by the mold Rhizopus delemar. J. Amer. Chem. Soc. 73, 3563–3568 (1951b).

    Google Scholar 

  • Phillipson, A. T.: Digestion of cellulose by the ruminant. Biochem. Soc. Symp. 11, 63–70 (1953).

    Google Scholar 

  • Pollock, M. R., A. Torriani and E. J. Tridgell: Crystalline bacterial penicillinase. Biochemic. J. 62, 387–391 (1956).

    CAS  Google Scholar 

  • Rabin, R., and L. N. Zimmerman: Proteinase biosynthesis by Streptococcus liquefaciens. I. The effect of carbon and nitrogen sources, pn, and inhibitors. Canad. J. Microbiol. 2, 747–756 (1956).

    CAS  Google Scholar 

  • Rahman, M. B., and M.A. Joslyn: Prpoerties of purified fungal polygalacturonase. Food Res. 18, 301–304 (1953a).

    CAS  Google Scholar 

  • The hydrolysis of pectic acid by purified fungal polygalacturonase. Food Res. 18, 308–318 (1953b).

    Google Scholar 

  • Reese, E. T.: Enzymatic hydrolysis of cellulose. Appl. Microbiol. 4, 39–45 (1956).

    PubMed  CAS  Google Scholar 

  • Reese, E.T., and W. Gilligan: The swelling factor in cellulose hydrolysis. Textile Res. J. 24, 663–669 (1954).

    CAS  Google Scholar 

  • Reese, E. T., W. Gilligan and B. Norkrans: Effect of cellobiose on the enzymatic hydrolysis of cellulose and its derivatives. Physiol. Plantarum (Copenh.) 5, 379–390 (1952).

    CAS  Google Scholar 

  • Reese, E. T., and H. S. Le Vinson: A comparative study of the breakdown of cellulose by microorganisms. Physiol. Plantarum (Copenh.) 5, 345–366 (1952).

    CAS  Google Scholar 

  • Reid, W. W.: Pectic enzymes of the fungus Byssochlamys fulva. Nature (Lond.) 166, 76 (1950a).

    CAS  Google Scholar 

  • Estimation and separation of the pectinesterase and polygalacturonase of micro-fungi. Nature (Lond.) 166,569 (1950b).

    Google Scholar 

  • Pectic enzymes of the fungus Byssochlamys fulva. Biochemic. J. 50, 289–292 (1952).

    Google Scholar 

  • Reynolds, D.M.: Exocellular chitinase from a Streptomyces sp. J. Gen. Microbiol. 11, 150–159 (1954).

    PubMed  CAS  Google Scholar 

  • Richards, F. M.: Titration of amino groups released during the digestion of ribonuclease by subtilisin. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 322–328 (1955a).

    CAS  Google Scholar 

  • On an active intermediate produced during the digestion of ribonuclease by subtilisin. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 329–346 (1955b).

    Google Scholar 

  • Roboz, E., R. W. Barratt and E. L. Tatum: Breakdown of pectic substances by a new enzyme from Neurospora. J. of Biol. Chem. 195, 459–471 (1952).

    CAS  Google Scholar 

  • Roelofsen, P.: Polygalacturonase activity in yeast, Neurospora and tomato extract. Biochim. et Biophysica Acta 10, 410–413 (1953).

    CAS  Google Scholar 

  • Rogers, H. J.: Conditions controlling the production of hyaluronidase by microorganisms growing in simplified media. Biochemic. J. 39, 435–443 (1945).

    CAS  Google Scholar 

  • The rate of formation of hyaluronidase, coagulase and total extracellular protein by strains of Staphylococcus aureus. J. Gen. Microbiol. 10, 209–220 (1954).

    Google Scholar 

  • The preferential suppression of hyaluronidase formation in cultures of Staphylococcus aureus. J. Gen. Microbiol. 16, 22–37 (1957).

    Google Scholar 

  • Rogers, H. J., and P. C. Spensley: Selective inhibition of the liberation of extracellular enzymes and protein in cultures of Staphylococcus aureus. Biochemic. J. 60, 635–643 (1955).

    CAS  Google Scholar 

  • Saito, H.: Pectic glycosidases of Aspergillus niger. J. Gen. Appl. Microbiol. 1, 38–60 (1955).

    CAS  Google Scholar 

  • Sanchez-Marroquin, A., y C. Zapata: Occurrence and principal characteristics of the amylases of Streptomyces. Ciencia (Mexico) 13, 266–270 (1953). Ref. Chem. Abstr. 48, 12874 (1954).

    CAS  Google Scholar 

  • Saroja, K., R. Venkataraman and K. V. Giri: Transglucosidation in Penicillium chrysogenum Q 176. Isolation and identification of the oligosaccharides. Biochemic. J. 60, 399–403 (1955).

    CAS  Google Scholar 

  • Schubert, E.: Die Trennung der Pektinglycosidasen (PG) aus Aspergillus niger durch selektive Inaktivierung und Adsorption. Biochem. Z. 323. 78–88 (1952).

    PubMed  CAS  Google Scholar 

  • Neuere Ergebnisse der Stärke und Pektinenzymologie. Melliand Textilber. 34, 646–648, 757–758, 953–955, 1067–1069, 1145–1148 (1953); 35, 168–169, 381–386 (1954).

    Google Scholar 

  • Einfluß von Wasserstoff und Alkali-Ionen auf den enzymatischen Abbau von Pektin verschiedenen Veresterungsgrades durch Pektinglycosidasen und Pektinglycosidasegemische. Helvet. chim. Acta 37, 691–700 (1954).

    Google Scholar 

  • Schwimmer, S.: Evidence for the purity of Schardinger dextrinogenase. Arch, of Biochem. a. Biophysics 43, 108–117 (1953).

    CAS  Google Scholar 

  • Schwimmer, S., and J. A. Garibaldi: Further studies on the production, purification and properties of the Schardinger dextrinogenese of Bacillus macerans. Cereal Chem. 29, 108–122 (1952).

    Google Scholar 

  • Seegmiller, C. G., and E. F. Jansen: Polymethylgalacturonase, an enzyme causing the glycosidic hydrolysis of esterified pectic substances. J. of Biol. Chem. 195, 327–336 (1952).

    CAS  Google Scholar 

  • Shtj, P.: Further studies on the nitrogen source for the production of amylolytic enzymes by submerged cultures of Aspergillus niger. Canad. J. Bot. 30, 331–337 (1952).

    Google Scholar 

  • Shu, P., and A. C. Blackwood: Studies on carbon and nitrogen sources for the production of amylolytic enzymes by submerged culture of Aspergillus niger. Canad. J. Bot. 29, 113–124 (1951).

    CAS  Google Scholar 

  • Simpson, F. J.: Microbial pentosanases. I. A survey of microorganisms for the production of enzymes that attack the pentosans of wheat flour. Canad. J. Microbiol. 1, 131–139 (1954).

    CAS  Google Scholar 

  • Microbial pentosanases. II. Some factors affecting the production of pentosanases by Bacillus pumilus and Bacillus subtilis. Canad. J. Microbiol. 2, 28–38 (1956).

    Google Scholar 

  • Simpson, F. J., and E. McCoy: The amvlases of five Streptomycetes. Appl. Microbiol. 1, 228–236 (1953).

    PubMed  CAS  Google Scholar 

  • VSiu, R. G. H.: Microbial decomposition of cellulose with special reference to cotton textiles. New York: Reinhold Publ. Corp. 1951.

    Google Scholar 

  • Siu, R. G. H., and E. T. Reese: Decomposition of cellulose by microorganisms. Bot. Review 19, 377–416 (1953).

    CAS  Google Scholar 

  • Smith, W. K.: A survey of the production of pectic enzymes by plant pathogenic and other bacteria. J. Gen. Microbiol. 18, 33–41 (1958a).

    PubMed  CAS  Google Scholar 

  • Chromatographic examination of the products of digestion of pectic materials by culture solutions of plant pathogenic and other bacteria. J. Gen. Microbiol. 18, 42–47 (1958b).

    Google Scholar 

  • Solms, J., H. Deuel u. L.Anyas-Weisz: Über den Mechanismus des enzymatischen Abbaues von Pektinstoffen verschiedenen Veresterungsgrades. Helvet. chim. Acta 35, 2363–2367 (1952).

    Google Scholar 

  • Sørensen, H.: Enzymatic hydrolysisof xylan. Nature (Lond.) 172, 305 (1953).

    Google Scholar 

  • Stacey,M.: Enzymic synthesis of polysaccharides. Adv. Enzymol. 15, 301–315 (1954).

    CAS  Google Scholar 

  • Stark, E., and P. A. Tetrault: Observations on amylolytic bacteria. I. A survey of named mesophilic species on soluble starch. Canad. J. Bot. 29, 91–103 (1951a).

    Google Scholar 

  • Observations on amylolytic bacteria. II. A survey of named mesophilic species on five different starches. Canad. J. Bot. 29, 104–112 (1951b).

    Google Scholar 

  • Observations on amylolytic bacteria. III. Culturing conditions influencing the breakdown of starch by stearothermophilic bacteria belonging to Bacillus stearothermophilus. Canad. J. Bot. 30, 360–370 (1952).

    Google Scholar 

  • Stark, E., R. Wellerson jr., P. A. Tetrault and C. F. Kossack: Bacterial alpha-amylase paper disc tests on starch agar. Appl. Microbiol. 1, 236–243 (1953).

    PubMed  CAS  Google Scholar 

  • Starka, J.: The formation of amylolytic enzymes by Aspergillus oryzae. [In Czech.] Preslia 25, 289–304 (1953).

    CAS  Google Scholar 

  • Steinberg, D.: A new plakalbumin-like protein. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 159–175 (1954a).

    Google Scholar 

  • Some observations on the initial reactions in plakalbumin formation. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 176–192 (1954b).

    Google Scholar 

  • Stone, B. A.: Complexity of β-glucanases from Aspergillus niger. Biochemic. J. 66, 1 P (1957).

    Google Scholar 

  • Szeto, I. L., and P. Halick: Production of Staphylocoagulase in a special medium. J. Bacter. 75, 316–319 (1958).

    CAS  Google Scholar 

  • Thomas, R.: Some chemically modified celluloses and their resistance to fungal degradation. Textile Res. J. 25, 559–562 (1955).

    CAS  Google Scholar 

  • Fungal cellulases. VII. Stachybotrys atra: Production and properties of the cellulolytic enzyme. Austral. J. Biol. Sci. 9, 159–183 (1956).

    Google Scholar 

  • Thorne, C. B., C. G. Gomez, H. E. Noyes and R.D. Housewright: Production of glutamyl polypeptide by Bacillus subtilis. J. Bacter. 68, 307–315 (1954).

    CAS  Google Scholar 

  • Tilden, E. B., and C. S. Hudson: The conversion of starch to crystalline dextrins by the action of a new type of amylase separated from cultures of Aerobacillus macerans. J. Amer. Chem. Soc. 61, 2900–2902 (1939).

    CAS  Google Scholar 

  • Preparation and properties of the amylases produced by Bacillus macerans and Bacillus polymyxa. J. Bacter. 43, 527–544 (1942).

    Google Scholar 

  • Tracey, M. V.: Cellulases. Biochem. Soc. Symposia 1953, No ll, 49–62.

    Google Scholar 

  • Tsuchiya, H. M., N. N. Hellman and H. J. Koepsell: Factors affecting molecular weight of enzymically synthesized dextran. J. Amer. Chem. Soc. 75, 757–758 (1953).

    CAS  Google Scholar 

  • Underkofler, L. A.: Fungal amylolytic enzymes. In: Industrial fermentations, edit, by L. A. Underkofler and R. J. Hickey, Vol. II, pp. 97–121. New York: Chemical Publ. Co. 1954.

    Google Scholar 

  • Underkofler, L. A., R. R. Barton and S. S. Rennert: Production of microbial enzymes and their applications. Appl. Microbiol. 6, 212–221 (1958).

    PubMed  CAS  Google Scholar 

  • Van der Zant, W. C.: Proteolytic enzymes from Pseudomonas putrefaciens. I. Characteristics of an extracellular proteolytic enzyme system. Food. Res. 22, 151–157 (1957).

    Google Scholar 

  • Veldkamp, H.: A study of the aerobic decomposition of chitin by microorganisms. Meded. Landbouwhogeschool Wageningen, Netherl. 55,127–174 (1955).

    CAS  Google Scholar 

  • Vliet, W. F. van: The enzymic oxidation of lignin. Biochim. et Biophysica Acta 15, 211–216 (1954).

    Google Scholar 

  • Waggoner, P. E., and A. E. Dimond: Production and rôle of extracellular pectic enzymes of Fusarium oxysporum f. lycopersici. Phytopathology 45, 79–87 (1955).

    CAS  Google Scholar 

  • Wallenfels, K., u. E. Bernt: The group transference action of disaccharide-splitting enzymes. Angew. Chem. 64, 28–29 (1952).

    CAS  Google Scholar 

  • Wallerstein, L.: Enzyme preparations from microorganisms. Industr. Engin. Chem. 31, 1218–1224 (1939).

    CAS  Google Scholar 

  • Wetter, L. R.: The proteolytic enzymes of microorganisms. IV. Partial purification and some properties of extracellular protease from Mortierella renispora Dixon-Stewart. Canad. J. Bot. 30, 685–692 (1952).

    CAS  Google Scholar 

  • Proteolytic enzymes of microorganisms. VI. The separation of proteases from Mortierella renispora by zone electrophoresis. Canad. J. Biochem. a. Physiol. 32, 20–26 (1954a).

    Google Scholar 

  • Proteolytic enzymes of microorganisms. VII. A study of some of the properties of two proteases isolated from Mortierella renispora. Canad. J. Biochem. a. Physiol. 32, 60–67 (1954b).

    Google Scholar 

  • Whelan, W. J.: The enzymic breakdown of starch. Biochem. Soc. Symposia 1953, No 11, 17–27.

    Google Scholar 

  • Whistler, R. L., J. Bachrach and Chen-Chuan Tu: Crystalline derivatives of xylobiose. J. Amer. Chem. Soc. 74, 3059–3060 (1952).

    CAS  Google Scholar 

  • Whistler, R. L., and C. L. Smart: Isolation of crystalline d-glucose and cellobiose from an enzymatic hydrolysate of cellulose. J. Amer. Chem. Soc. 75,1916–1918 (1953).

    CAS  Google Scholar 

  • Whitaker, D. R.: Purification of Myrothecium verrucaria cellulase. Arch, of Biochem. a. Biophysics 43, 253–267 (1953).

    CAS  Google Scholar 

  • Hydrolysis of a series of β-l-4-oligoglucosides by Myrothecium verrucaria cellulase. Arch, of Biochem. a. Biophysics 53, 439–449 (1954).

    Google Scholar 

  • The mechanism of degradation of a cellodextrin by Myrothecium cellulase. Canad. J. Biochem. a. Physiol. 34, 488–494 (1956a).

    Google Scholar 

  • The steric factor in the hvdrolysis of β-1,4-oligoglucosides by Myrothecium cellulase. Canad. J. Biochem. a. Physiol. 34, 102–115 (1956b).

    Google Scholar 

  • Whitaker, D. R., J. R. Colvin and W.H. Cook: The molecular weight and shape of Myrothecium verrucaria cellulase. Arch, of Biochem. a. Biophysics 49, 257–262 (1954).

    CAS  Google Scholar 

  • Whitaker, D. R., and E. Merler: Cleavage of cellotriose by Myrothecium cellulase. Canad. J. Biochem. a. Physiol. 34, 83–89 (1956).

    CAS  Google Scholar 

  • Wickerham, L. J.: Evidence of the production of extracellular invertase by certain strains of yeasts. Arch, of Biochem. a. Biophysics 76, 439–448 (1958).

    CAS  Google Scholar 

  • Wickerham, L. J., L.B. Lockwood, O.G. Pettijohn and F.E. Ward: Starch hydrolysis and fermentation by the yeast Endomycopsis fibuliger. J. Bacter. 48, 413–427 (1945).

    Google Scholar 

  • Wiles, A. E.: Identification and significans of yeasts encountered in the brewery. J. Inst. Brew. 59, 265–284 (1953).

    Google Scholar 

  • Williams, W. J., J. Litwin and C. B. Thorne: Further studies on the biosynthesis of γ-glutamyl peptides by transfer reactions. J. of Biol. Chem. 212, 427–438 (1955).

    CAS  Google Scholar 

  • Williams, W. J., and C. B. Thorne: Biosynthesis of glutamylpeptides from glutamine by a transfer reaction. J. of Biol. Chem. 210, 203–217 (1954a).

    CAS  Google Scholar 

  • Elongation of γ-d-glutamic acid peptide chains by a transfer reaction. J. of Biol. Chem. 211, 631–641 (1954b).

    Google Scholar 

  • Wood, R. K. S.: Studies in the physiology of parasitism. XVIII. Pectic enzymes secreted by Bacterium aroideae. Ann. of Bot., N. S. 19, 1–27 (1955).

    CAS  Google Scholar 

  • Yaphe, W.: The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Canad. J. Microbiol. 3, 987–993 (1957).

    CAS  Google Scholar 

  • Yaphe, W., and B. Baxter: The enzymic hydrolysis of carageenin. Appl. Microbiol. 3, 380–383 (1955).

    PubMed  CAS  Google Scholar 

  • Youatt, G.: Fungal cellulases. IX. Growth of Stachybotrys atra on cellulose and production of a β-glucosidase hydrolysing cellobiose. Austral. J. Biol. Sci. 11, 209–217 (1958).

    CAS  Google Scholar 

Literature

  • Adelberg, E. A., and H. E. Umbarger: Isoleucine and valine metabolism in Escherichia coli. V. α-Ketoisovaleric acid accumulation. J. biol. Chem. 205, 475–482 (1953).

    PubMed  CAS  Google Scholar 

  • Bach, S. J., M. Dixon and L. C. Zerfas: Yeast lactic acid dehydrogenase and cytochrome b2. Biochem. J. 40, 229–239 (1946).

    CAS  Google Scholar 

  • Barrett, J. T., A. D. Larson and R. E. Kallio: The nature of the adaptive lag of Pseudomonas fluorescens toward citrate. J. Bact. 65, 187–192 (1953).

    PubMed  CAS  Google Scholar 

  • Beljanski, M., and S. Ochoa: Protein biosynthesis by a cell-free bacterial system. Proc. nat. Acad. Sci. (Wash.) 44, 494–501 (1958).

    CAS  Google Scholar 

  • Benzer, S.: Induced synthesis of enzymes in bacteria analyzed at the cellular level. Biochim. biophys. Acta 11, 383–395 (1953).

    PubMed  CAS  Google Scholar 

  • Brachet, J., and H. Chantrenne: The function of the nucleus in the synthesis of cytoplasmic proteins. Cold Spr. Harb. Symp. quant. Biol. 21, 329–336 (1956)

    CAS  Google Scholar 

  • Braun, W.: Bacterial dissociation. A critical review of a phenomenon of bacterial variation. Bact. Rev. 11, 75–114 (1947).

    CAS  Google Scholar 

  • Bacterial genetics. Philadelphia: W. B. Saunders Company 1953.

    Google Scholar 

  • Braun, W., and H. J. Vogel: The morphology, physiology, and genetics of bacteria, in R. Dubos, ed.: Bacterial and mycotic infections of man. Philadelphia: J. B. Lippincott Company 1958.

    Google Scholar 

  • Caputto, R., L. F. Leloir and R. E. Trucio: Lactase and lactose fermentation in Saccharomyces fragilis. Enzymologia 12, 350–356 (1948).

    CAS  Google Scholar 

  • Chantrenne, H.: Incorporation of adenine and uracil into ribonucleic acid during enzyme induction in resting yeast. Nature (Lond.) 177, 579–580 (1956).

    CAS  Google Scholar 

  • Chantrenne, H., et C. Courtois: Formation de catalase induite par l’oxygène chez la levure. Biochim. biophys. Acta 14, 397–400 (1954).

    PubMed  CAS  Google Scholar 

  • Cocito, C., and H. J. Vogel: Heritable lowering of an enzyme level and enzyme repressibility observed upon continuous cultivation of Escherichia coli in the presence of a represser. X. Internat. Congr. of Genetics, Vol. II, p. 55 (1958).

    Google Scholar 

  • Cohen, G. N., and J. Monod: Bacterial permeases. Bact. Rev. 21, 169–194 (1957).

    PubMed  CAS  Google Scholar 

  • Cohen, S. S.: Gluconokinase and the oxidative path of glucose-6-phosphate utilization. J. biol. Chem. 189, 617–628 (1951).

    PubMed  CAS  Google Scholar 

  • Cohen, S. S., and H. D. Barner: Enzymatic adaptation in a thymine requiring strain of Escherichia coli. J. Bact. 69, 59–66 (1954).

    Google Scholar 

  • Cohen-Bazire, G., et M. Jolit: Isolement par sélection de mutants d’ Escherichia coli synthétisant spontanément l’amylo-maltase et la β-galactosidase. Ann. Inst. Pasteur 84, 937–945 (1953).

    CAS  Google Scholar 

  • Cohn, M.: On the inhibition by glucose of the induced synthesis of β-galactosidase in Escherichia coli, in O. H. Gaebler, ed.: Enzymes: units of biological structure and function, pp.41–46. New York: Academic Press, Inc. 1956.

    Google Scholar 

  • Contributions of studies on the β-galactosidase of Escherichia coli to our understanding of enzyme synthesis. Bact. Rev. 21, 140–168 (1957).

    Google Scholar 

  • Cohn, M., G. N. Cohen et J. Monod: L’effet, inhibiteur spécifique de la méthionine dans la formation de la méthionine-synthase chez Escherichia coli. C. R. Acad. Sci. (Paris) 236, 746–748 (1953b).

    CAS  Google Scholar 

  • Cohn, M., et J. Monod: Purification et propriétés de la β-galacto-sidase (lactase) d’ Escherichia coli. Biochim. biophys. Acta 7, 153–174 (1951).

    PubMed  CAS  Google Scholar 

  • Specific inhibition and induction of enzyme biosynthesis, in R. Davies and E. F. Gale, eds.: Adaptation in microorganisms, pp. 132–147. Cambridge: Cambridge University Press 1953.

    Google Scholar 

  • Cohn, M., J. Monod, M. R. Pollock, S. Spiegelman and R. Y. Stanier: Terminology of enzyme formation. Nature (Lond.) 172, 1096 (1953a).

    CAS  Google Scholar 

  • Cohn, M., et A. Torriani: Étude immunochimique de la biosynthèse adaptive d’un enzyme: la β-galactosidase d’Escherichia coli. C. R. Acad. Sci. (Paris) 232, 115–117 (1951).

    CAS  Google Scholar 

  • The relationships in biosynthesis of the β-galactosidase- and PZ-proteins in Escherichia coli. Biochim. biophys. Acta 10, 280–289 (1953).

    Google Scholar 

  • Crick, F. H. C.: On protein synthesis, in F. K. Sanders, ed.: Symposia of the Society for Experimental Biology: XII, The biological replication of macromolecules, pp. 138 to 163. Cambridge: Cambridge University Press 1958.

    Google Scholar 

  • Deere, C. J., A. D. Dulaney and I. D. Michelson: The lactase activity of Escherichia coli-mutabile. J. Bact. 37, 355–363 (1939).

    PubMed  CAS  Google Scholar 

  • DeMars, R.: Inhibition by glutamine of glutamyl transferase formation in cultures of human cells. Biochim. biophys. Acta 27, 435–436 (1958).

    PubMed  CAS  Google Scholar 

  • De Moss, J. A., and G. D. Novelli: An amino acid dependent exchange between 32P labeled inorganic pyrophosphate and ATP in microbial extracts. Biochim. biophys. Acta 22, 49–61 (1956).

    Google Scholar 

  • Dottnce, A. L.: Nucleoproteins. Round-table discussion. J. cell. comp. Physiol. 47, Suppl. 1, 103–106 (1956).

    Google Scholar 

  • Dubos, R. J.: The adaptive production of enzymes by bacteria. Bact. Rev. 4, 1–16 (1940).

    PubMed  CAS  Google Scholar 

  • Ephrussi, B.: Enzymes in cellular differentiation, in O. H. Gaebler, ed.: Enzymes: units of biological structure and function, pp. 29–40. New York: Academic Press, Inc. 1956.

    Google Scholar 

  • Ephrussi, B., et P. P. Slonimski: La synthèse adaptive des cytochromes chez la levure de boulangerie. Biochim. biophys. Acta 6, 256–267 (1950).

    PubMed  CAS  Google Scholar 

  • Gale, E. F.: The bacterial amino acid decarboxylases. Advanc. Enzymol. 6, 1–32 (1946).

    CAS  Google Scholar 

  • From amino acids to proteins, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 171–192. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  • Galston, A. W., and W. S. Hillman: The degradation of auxin, in W. Ruhland, ed.: Handbuch der Pflanzen-physiologie, Vol. XIV (in press. Berlin-Göttingen-Heidelberg: Springer).

    Google Scholar 

  • Gorini, L., and W. K. Maas: The potential for the formation of a biosynthetic enzyme in Escherichia coli. Biochim. biophys. Acta 25, 208–209 (1957).

    PubMed  CAS  Google Scholar 

  • Green, H.: (1956) cit. by B.D. Davis: Relations between enzymes and permeability (membrane transport) in bacteria, in O. H. Gaebler, ed.: Enzymes: units of biological structure and function, pp. 509–522. New York: Academic Press, Inc. 1956.

    Google Scholar 

  • Gros, F., et F. Gros: Rôle des aminoacides dans la synthèse des acides nucléiques chez Escherichia coli. Biochim. biophys. Acta 22, 200–201 (1956).

    PubMed  CAS  Google Scholar 

  • Gross, S. R., and E. L. Tatum: Structural specificity of inducers of protocatechuic acid oxidase synthesis in Neurospora. Science 122, 1141 (1955).

    PubMed  CAS  Google Scholar 

  • Halvorson, H. O., and S. Spiegelman: The inhibition of enzyme formation by amino acid analogues. J. Bact. 64, 207–221 (1952).

    PubMed  CAS  Google Scholar 

  • Net utilization of free amino acids during the induced synthesis of maltozymase in yeast. J. Bact. 65, 601–608 (1953).

    Google Scholar 

  • Hauro-witz, F.: Chemistry and biology of proteins. New York: Academic Press, Inc. 1950.

    Google Scholar 

  • Hoagland, M. B., E. B. Keller and P. Zamecnik: Enzymatic carboxyl activation of amino acids. J. biol. Chem. 218, 345–358 (1956).

    PubMed  CAS  Google Scholar 

  • Hoagland, M. B., M. L. Stephenson, J. F. Scott, L. I. Hecht and P. C. Zamecnik: A soluble ribonucleic acid intermediate in protein synthesis. J. biol. Chem. 231, 241–257 (1958).

    PubMed  CAS  Google Scholar 

  • Hogness, D. S., M. Cohn and J. Monod: Studies on the induced synthesis of β-galactosidase in Escherichia coli: The kinetics and mechanism of sulfur incorporation. Biochim. biophys. Acta 16, 99–116 (1955).

    PubMed  CAS  Google Scholar 

  • Housewright, R. D., and R. J. Henry: Studies on penicillinase. I. The production, partial purification, and practical application of penicillinase. J. biol. Chem. 167, 553–557 (1947).

    PubMed  CAS  Google Scholar 

  • Karström, H.: Enzymatische Adaptation bei Mikroorganismen. Ergebn. Enzymforsch. 7, 350–376 (1938).

    Google Scholar 

  • Knox, W. E.: Adaptive enzymes in the regulation of animal metabolism, in C. L. Prosser, ed.: Physiological adaptation. Washington: American Physiological Society 1958.

    Google Scholar 

  • Kogut, M., and E. P. Podoski: Oxidative pathways in a fluorescent Pseudomonas. Biochem. J. 55, 800–811 (1953).

    PubMed  CAS  Google Scholar 

  • Kuby, S. A., and H. A. Lardy: Purification and kinetics of β-d-galactosidase from Escherichia coli strain K-12. J. Amer. chem. Soc. 75, 890–896 (1953).

    CAS  Google Scholar 

  • Lederberg, E. M.: Allelic relationships and reverse mutation in Escherichia coli. Genetics 37, 469–483 (1952).

    PubMed  CAS  Google Scholar 

  • Lederberg, J.: The β-d-galactosidase of Escherichia coli, strain K-12. J. Bact. 60, 381–392 (1950a).

    PubMed  CAS  Google Scholar 

  • Isolation and characterization of biochemical mutants of bacteria. Meth. med. Res. 3, 5–22 (1950b).

    Google Scholar 

  • (1957) cit. by Cohen and Monod 1957.

    Google Scholar 

  • Lederberg, J., E. M. Lederberg, N. D. Zinder and E. R. Lively: Recombination analysis of bacterial heredity. Cold Spr. Harb. Symp. quant. Biol. 16, 413–433 (1951).

    CAS  Google Scholar 

  • Leibowitz, J., and S. Hestrin: Alcoholic fermentation of the oligosaccharides. Advanc. Enzymol. 5, 87–127 (1945).

    CAS  Google Scholar 

  • LePage, G. A., J. F. Morgan and M. E. Campbell: Production and purification of penicillinase. J. biol. Chem. 166, 465–472 (1946).

    PubMed  CAS  Google Scholar 

  • Lester, G.: The β-galactosidase of lactose mutants of Escherichia coli, K-12. Arch. Biochem. 40, 390–401 (1952).

    PubMed  CAS  Google Scholar 

  • Lipmann, F.: Attempts at the formulation of some basic biochemical questions, in D. E. Green, ed.: Currents in biochemical research 1956, pp. 241–250. New York: Interscience Publishers, Inc. 1956.

    Google Scholar 

  • Lipmann, F., P. C. Zamecnik, M. L. Stephenson, L. I. Hecht, P. Berg, E. J. Ofengand, G. D. Novelli, P. D. Boyer, M. P. Stulberg and D. E. Koshland jr.: Symposium on amino acid activation. Proc. nat. Acad. Sci. (Wash.) 44, 67–104 (1958).

    CAS  Google Scholar 

  • Løvetrup, S.: The induced synthesis of β-galactosidase in E. coli. I. Synthesis of enzyme under various experimental conditions. Biochim. biophys. Acta 19, 247–255 (1956a).— The induced synthesis of β-galactosidase in E. coli. II. Analysis of the accompanying synthetic activity by means of isotopes. Biochim. biophys. Acta 19, 433–439 (1956b).

    Google Scholar 

  • Magasanik, B.: Nutrition of bacteria and fungi. Ann. Rev. Microbiol. 11, 221–252 (1957).

    CAS  Google Scholar 

  • Mandelstam, J.: The “mass action” theory of enzyme adaptation. Biochem. J. 51, 674–681 (1952).

    PubMed  CAS  Google Scholar 

  • Theories of enzyme adaptation in microorganisms. Int. Rev. Cytol. 5, 51–88 (1956).

    Google Scholar 

  • Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem. J. 69, 110–119 (1958).

    Google Scholar 

  • Monod, J.: The phenomenon of enzymatic adaptation and its bearings on problems of genetics and cellular differentiation. Growth 11, 223–289 (1947).

    CAS  Google Scholar 

  • Remarks on the mechanism of enzyme induction, in O. H. Gaebler, ed.: Enzymes: units of biological structure and function, pp. 7–28. New York: Academic Press, Inc. 1956.

    Google Scholar 

  • Monod, J., et G. Cohen-Bazire: L’effet d’inhibition spécifique dans la biosynthèse de la tryptophane-desmase chez Aerobacter aerogenes. C. R. Acad. Sci. (Paris) 236, 530–532 (1953).

    CAS  Google Scholar 

  • Monod, J., G. Cohen-Bazire et M. Cohn: Sur la biosynthèse de la β-galactosidase (lactase) chez Escherichia coli. La spécificité de l’induction. Biochim. biophys. Acta 7, 585–599 (1951).

    PubMed  CAS  Google Scholar 

  • Monod, J., et M. Cohn: La biosynthèse induite des enzymes (adaptation enzymatique). Advanc. Enzymol. 13, 67–119 (1952).

    CAS  Google Scholar 

  • Sur le mécanisme de la synthèse d’une protéine bacterienne. La β-galactosidase d’Escherichia coli, in Symposium on microbial metabolism, pp. 42–62. VI. Internat. Congr. of Microbiology, Rome, Italy 1953.

    Google Scholar 

  • Monod, J., and F. Jacob: (1957) cit. by Cohen and Monod 1957.

    Google Scholar 

  • Monod, J., A. M. Pappenheimer jr. et G. Cohen-Bazire: La cinétique de la biosynthèse de la β-galactosidase chez Escherichia coli considérée comme fonction de la croissance. Biochim. biophys. Acta 9, 648–660 (1952).

    PubMed  CAS  Google Scholar 

  • Monod, J., A. Torriani et J. Gribetz: Sur une lactase extraite d’une souche d’Escherichia coli mutabile. C. R. Acad. Sci. (Paris) 227, 315–316 (1948).

    CAS  Google Scholar 

  • Munier, R., et G. N. Cohen: Incorporation d’analogues structuraux d’aminoacides dans les protéines bactériennes. Biochim. biophys. Acta 21, 592–593 (1956).

    PubMed  CAS  Google Scholar 

  • Neidhardt, F. C., and B. Magasanik: The effect of glucose on the induced biosynthesis of bacterial enzymes in the presence and absence of inducing agents. Biochim. biophys. Acta 21, 324–334 (1956).

    PubMed  CAS  Google Scholar 

  • Noe, F. F., and W. J. Nickerson: Metabolism of 2-pyrrolidone and γ-aminobutyric acid by Pseudomonas aeruginosa. J. Bact. 75, 674–681 (1958).

    PubMed  CAS  Google Scholar 

  • Novick, A., and M. Weiner: Enzyme induction, an all-or-none phenomenon. Proc. nat. Acad. Sci. (Wash.) 43, 553–566 (1957).

    CAS  Google Scholar 

  • Pardee, A. B.: Effect of energy supply on enzyme induction by pyrimidine requiring mutants of Escherichia coli. J. Bact. 69, 233–239 (1955).

    CAS  Google Scholar 

  • An inducible mechanism for accumulation of melibiose in Escherichia coli. J. Bact. 73, 376–385 (1957).

    Google Scholar 

  • Pardee, A. B., F. Jacob et J. Monod: Sur l’expression et le rôle des allèles «inductible» et «constitutif» dans la synthèse de la β-galactosidase chez des zygotes d’Escherichia coli. C. R. Acad. Sci. (Paris) 21, 3125–3128 (1958).

    Google Scholar 

  • Pardee, A. B., and L. S. Prestidge: The dependence of nucleic acid synthesis on the presence of amino acids in Escherichia coli. J. Bact. 71, 677–683 (1956).

    CAS  Google Scholar 

  • Pollock, M. R.: Penicillinase adaptation in B. cereus: adaptive enzyme formation in the absence of free substrate. Brit. J. exp. Path. 31, 739–753 (1950).

    PubMed  CAS  Google Scholar 

  • Penicillinase adaptation in Bacillus cereus: an analysis of three phases in the response of logarithmically growing cultures to induction of penicillinase formation by penicillin. Brit. J. exp. Path. 33, 587–600 (1952).

    Google Scholar 

  • Stages in enzyme adaptation, in R. Davies and E. F. Gale, eds.: Adaptation in microorganisms, pp. 150–177. Cambridge: Cambridge University Press 1953.

    Google Scholar 

  • An immunological study of the constitutive and the penicillin-induced penicillinases of Bacillus cereus, based on specific enzyme neutralization by antibody. J. gen. Microbiol. 14, 90–108 (1956).

    Google Scholar 

  • The activity and specificity of inducers of penicillinase production in Bacillus cereus, strain NRRL 569. Biochem. J. 66, 419–428 (1957).

    Google Scholar 

  • Pollock, M. R., and C.J. Perret: The relation between fixation of penicillin sulphur and penicillinase adaptation in B. cereus. Brit. J. exp. Path. 32, 387–396 (1951).

    PubMed  CAS  Google Scholar 

  • Pollock, M. R., A. Torriani and E. J. Tridgell: Crystalline bacterial penicillinase. Biochem. J. 62, 387–391 (1956).

    PubMed  CAS  Google Scholar 

  • Rickenberg, H. V.: The site of galactoside-permease activity in Escherichia coli. Biochim. biophys. Acta 25, 206–207 (1957).

    PubMed  CAS  Google Scholar 

  • Rickenberg, H. V., G. N. Cohen, G. Buttin et J. Monod: La galactoside-perméase d’Escherichia coli. Ann. Inst. Pasteur 91, 829–857 (1956).

    CAS  Google Scholar 

  • Rickenberg, H. V., and G. Lester: The preferential synthesis of β-galactosidase in Escherichia coli. J. gen. Microbiol. 13, 279–284 (1955).

    PubMed  CAS  Google Scholar 

  • Rickenberg, H. V., C. Ya-nofsky and D. M. Bonner: Enzymatic deadaptation. J. Bact. 66, 683–687 (1953).

    PubMed  CAS  Google Scholar 

  • Rotman, B., and S. Spiegelman: On the origin of the carbon in the induced synthesis of β-galactosidase in Escherichia coli. J. Bact. 68, 419–429 (1954).

    CAS  Google Scholar 

  • Slonimski, P: La formation des enzymes respiratoires chez la levure. Paris: Masson & Cie. 1953.

    Google Scholar 

  • Spiegelman, S.: Nuclear and cytoplasmic factors controlling enzymatic constitution. Cold Spr. Harb. Symp. quant. Biol. 11, 256–277 (1946).

    Google Scholar 

  • Modern aspects of enzymatic adaptation, in J. B. Sumner and K. Myrb⃤ck, eds.: The enzymes, Vol. I, pp. 267–300. New York: Academic Press, Inc. 1950.

    Google Scholar 

  • Nucleic acids and the synthesis of proteins, in W. D. McElroy and B. Glass, eds.: The Chemical Basis of Heredity, pp. 232 to 267. Baltimore: Johns Hopkins Press 1957.

    Google Scholar 

  • Spiegelman, S., and A. M. Campbell: The significance of induced enzyme formation, in D. E. Green, ed.: Currents in biochemical research 1956, pp. 115–161. New York: Interscience Publishers, Inc. 1956.

    Google Scholar 

  • Spiegelman, S., and H. O. Halvorson: On the role of the inducer in the synthesis of maltase in yeast. J. Bact. 68, 265–273 (1954).

    PubMed  CAS  Google Scholar 

  • Stanier, R. Y.: The bacterial oxidation of aromatic compounds. IV. Studies on the mechanism of enzymatic degradation of protocatechuic acid. J. Bact. 59, 527–532 (1950).

    PubMed  CAS  Google Scholar 

  • Enzymatic adaptation in bacteria. Ann. Rev. Microbiol. 5, 35–56 (1951).

    Google Scholar 

  • Steinberg, D., M. Vaughan and C. B. Anfinsen: Kinetic aspects of assembly and degradation of proteins. Science 124, 389–395 (1956).

    PubMed  CAS  Google Scholar 

  • Stephenson, M.: Bacterial metabolism. London: Longmans, Green & Company, Ltd. 1949.

    Google Scholar 

  • Terui, G., and H. Okada: An inquiry into the adaptive fermentability of maltose with Saccharomyces saké. Osaka Univ. Tech. Rep. 1, 293–307 (1951).

    CAS  Google Scholar 

  • Trucco, R. E., R. CaPutto, L. F. Leloir and N. Mittelman: Galactokinase. Arch. Biochem. 18, 137–146 (1948).

    PubMed  CAS  Google Scholar 

  • Vogel, H. J.: On growth-limiting utilization of α-N-acetylornithine. VI. Internat. Congr. of Microbiology, Vol. I, pp. 269–271. 1953 a.

    Google Scholar 

  • Path of ornithine synthesis in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 39, 578–583 (1953b).

    Google Scholar 

  • Repression and induction as control mechanisms of enzyme biogenesis: the “adaptive” formation of acetylornithinase, in W. D. McElroy and B. Glass, eds.: The chemical basis of heredity, pp. 276–289. Baltimore: Johns Hopkins Press 1957a.

    Google Scholar 

  • Repressed and induced enzyme formation: a unified hypothesis. Proc. nat. Acad. Sci. (Wash.) 43, 491–496 (1957b).

    Google Scholar 

  • Comment on the possible roles of repressers and inducers of enzyme formation in development, in W. D. McElroy and B. Glass, eds.: The chemical basis of development. Baltimore: Johns Hopkins Press 1958.

    Google Scholar 

  • Vogel, H. J., and D.M. Bonner: Acetylornithinase of Escherichia coli: partial purification and some properties. J. biol. Chem. 218, 97–106 (1956).

    PubMed  CAS  Google Scholar 

  • The use of mutants in the study of metabolism, in W. Ruhland, ed.: Handbuch der Pflanzenphysiologie, Vol. XI. Heidelberg: Springer 1959.

    Google Scholar 

  • Vogel, H. J., and B. D. Davis: Adaptive phenomena in a biosynthetic pathway. Fed. Proc. 11, 485 (1952).

    Google Scholar 

  • Wainwright, S. D., and A. Nevill: The influence of depletion of nitrogenous reserves upon the phenomenon of induced enzyme biosynthesis in cells of Escherichia coli. J. gen. Microbiol. 14, 47–56 (1956a).

    PubMed  CAS  Google Scholar 

  • The induced formation of nitrate reductase in auxotrophic mutants of Escherichia coli. J. Bact. 71, 254–255 (1956b).

    Google Scholar 

  • Wainwright, S. D., and M. R. Pollock: Enzyme adaptation in bacteria: fate of nitratase in nitrate-adapted cells grown in the absence of substrate. Brit. J. exp. Path. 30, 190–198 (1949).

    PubMed  CAS  Google Scholar 

  • Wallenfels, K., u. E. Bernt: Über den Verlauf der enzymatischen Spaltung von Lactose mit β-Galactosidase von Schimmelpilzen, Helix pomatia, Escherichia coli und Kälberdarm. Justus Liebigs Ann. Chem. 584, 63–85 (1953).

    CAS  Google Scholar 

  • Webster, G. C.: Factors required for amino acid incorporation by disrupted ribonucleoprotein particles. Arch. Biochem. 70, 622–624 (1957).

    PubMed  CAS  Google Scholar 

  • Wijesundera, S., and D. D. Woods: The effect of growth on a medium containing methionine on the synthesis of this amino acid by Bacterium coli. Biochem. J. 55, viii (1953).

    PubMed  CAS  Google Scholar 

  • Wright, B.: Auto-adaptation: a new phenomenon observed in a bacterial population. J. Bact. 66, 407–420 (1953).

    PubMed  CAS  Google Scholar 

  • Yates, R. A., and A. B. Pardee: Control by uracil of formation of enzymes required for orotate synthesis. J. biol. Chem. 227, 677–692 (1957).

    PubMed  CAS  Google Scholar 

  • Yudkin, J.: Enzyme variation in microorganisms. Biol. Rev. 13, 93–106 (1938).

    CAS  Google Scholar 

  • Yura, T., and H. J. Vogel: Pyrroline-5-carboxylate reductase of Neurospora crassa: partial purification and some properties. J. biol. Chem. 234, 335–338 (1959).

    PubMed  CAS  Google Scholar 

Literatur

  • Ågren, G.: On the utilization of peptide bound amino acids by lactic acid producing microorganisms. Acta physiol. scand. (Stockh.) 13, 347–352 (1947).

    Google Scholar 

  • The utilization of peptide bound amino acids by lactic acid bacteria. II. Acta chem. scand. (Copenh.) 2, 611–619 (1948).

    Google Scholar 

  • Atkin, L., W. L. Williams, A. S. Schultz and C. N. Frey: Yeast microbiological methods for determination of vitamins. Pantothenic acid. Industr. Engin. Chem., Anal. Ed. 16, 67–71 (1944).

    CAS  Google Scholar 

  • Barton-Wright, E. C.: The microbiological assay of the vitamin B-complex and amino acids. London: Pitman & Sons 1952a.

    Google Scholar 

  • An analytical approach to some problems in the nitrogen relations of yeast. Wallerstein Lab. Comm. 15, 115–131 (1952b).

    Google Scholar 

  • Block, R. J., and D. Bolling: The amino acid composition of proteins and foods. Springfield, III.: Charles C. Thomas 1951.

    Google Scholar 

  • Borek, E., and H. Waelsch: The effect of temperature on the nutritional requirement of microorganisms. J. of Biol. Chem. 190, 191–196 (1951).

    CAS  Google Scholar 

  • Burrows, W.: The nutritive requirements of the Salmonellas. III. The thypoid Bacillus: Carbon source and amino acid requirements. J. Inf. Dis. 70, 126–130 (1942).

    CAS  Google Scholar 

  • David, B.D., and W.K. Maas: Inhibition of E.coli by d-serine and the production of serine resistant mutants. J. Amer. Chem. Soc. 71, 1865 (1949).

    Google Scholar 

  • Dunn, M. S., S. Shankman, M. N. Camien and H. Block: The amino acid requirements of twenty-three lactic acid bacteria. J. of Biol. Chem. 168, 1–22 (1947).

    CAS  Google Scholar 

  • Ericson, L. E., u. B.Carlson: Studies on the occurrence of amino acids, niacin and pantothenic acid in marine algae. Ark. Kemi (Stockh.) 6, 511–522 (1953).

    CAS  Google Scholar 

  • Fildes, P., G. P. Gladstone and B. C. J. G. Knight: The nitrogen and vitamin requirements of B. typhosus. Brit. J. Exper. Path. 14, 189–196 (1933).

    CAS  Google Scholar 

  • Fildes, P., and G. M. Richardson: The amino-acids necessary for the growth of Cl. sporogenes. Brit. J. Exper. Path. 16, 326–335 (1935).

    CAS  Google Scholar 

  • Fildes, P., G. M. Richardson, B. C. J. G. Knight and G. P. Gladstone: A nutrient mixture suitable for the growth of Staphylococcus aureus. Brit. J. Exper. Path. 17, 481–484 (1936).

    CAS  Google Scholar 

  • Foster, J. W.: Chemical activities of fungi. New York: Academic Press 1949.

    Google Scholar 

  • Fruton, J. S., and S. Simmonds: The metabolism of peptides. Cold Spring Harbor Symp. Quant. Biol. 14, 55–64 (1949).

    CAS  Google Scholar 

  • Gladstone, G. P.: The nutrition of Staphylococcus aureus; nitrogen requirements. Brit. J. Exper. Path. 18, 322–333 (1937).

    CAS  Google Scholar 

  • Inter-relationships between amino-acids in the nutrition of B. anthracis. Brit. J. Exper. Path. 20, 189–200 (1939).

    Google Scholar 

  • Glinka-Tscher-norutzky: Über den Stickstoffumsatz bei Bac. mycoides. VI. Über Ausnützung verschiedener Stickstoffquellen durch den Bac. mycoides. Biochem. Z. 263, 144–148 (1933).

    Google Scholar 

  • Gyllenberg, H., M. Rossander and P. Roine: A strain of Lactobacillus bifidus which requires strepogenin. J. Gen. Microbiol. 9, 190–198 (1953).

    PubMed  CAS  Google Scholar 

  • Hachisuka, Y., N. Asano, N. Kato, M. Okajima, M. Kitaori and T. Kuno: Studies on spore germination. I. Effect of nitrogen sources on spore germination. J. Bacter. 69, 399–406 (1955).

    CAS  Google Scholar 

  • Hartelius, V.: Vergleichende Untersuchungen über den Wert der Aminosäuren als Stickstoffpuelle für Hefe. C. r. Trav. Labor. Carlsberg, Sér. physiol. 22, 303–322 (1939).

    Google Scholar 

  • Hassinen, J. B., G. T. Durbin, R. M. Tomarelli and F.W. Bern-hart: The minimal nutritional requirements of Lactobacillus bifidus. J. Bacter. 62, 771–777 (1951).

    Google Scholar 

  • Herbst, E. J., and E. E. Snell: Putrescin as a growth factor for Hemophilus parainfluenzae. J. of Biol. Chem. 176, 989–990 (1948).

    CAS  Google Scholar 

  • Hills, G. M., and E. D. Spurr: The effect of temperature on the nutritional requirements of Pasteurella pestis. J. Gen. Microbiol. 6, 64–73 (1952).

    PubMed  CAS  Google Scholar 

  • Holden, J. T., R. B. Wildman and E. E. Snell: Growth promotion by keto and hydroxy acids and its relation to vitamin B6. J. of Biol. Chem. 191, 559–576 (1951).

    CAS  Google Scholar 

  • Hutchings, B. L., and W. H. Peterson: Amino acids requirements of Lactobacillus casei. Proc. Soc. Exper. Biol. a. Med. 52, 36–38 (1943).

    CAS  Google Scholar 

  • Jensen, H. L.: A strain of Nitrosomonas europaea from farmyard manure. Tidsskr. Planteavl 54, 62–80 (1951).

    Google Scholar 

  • Jensen, H. L., u. H. Sörensen: The influence of some organic sulphur compounds and enzyme inhibitors on Nitrosomonas europaea. Acta agricult. scand. (Stockh.) 2, 295–304 (1952).

    CAS  Google Scholar 

  • Kihara, H., O. A. Klatt and E. E. Snell: Peptides and bacterial growth. III. Utilization of tyrosine and tyrosine peptides by Streptococcus faecalis. J. of Biol. Chem. 197, 801–807 (1952).

    CAS  Google Scholar 

  • Knight, B. C. J. G.: Bacterial nutrition. Material for a comparative physiology of bacteria. Med. Res. Counc., Special Report Series no. 210. London 1936.

    Google Scholar 

  • Koser, S. A., and M. H. Wright: Experimental variation of nicotinamide requirement of dysentery bacilli. J. Bacter. 46, 239–249 (1943).

    CAS  Google Scholar 

  • Kuiken, K. A., W.H. Norman, C.M. Lyman, F. Hale and L. Blotter: The microbiological determination of amino acids. I. Valine, leucine, and isoleucine. J. of Biol. Chem. 151, 615–626 (1943).

    CAS  Google Scholar 

  • Lascelles, J., M.J. Cross and D.D. Woods: The folic acid and serine nutrition of Leuconostoc mesenteroides P 60 (Streptococcus equinus P 60). J. Gen. Microbiol. 10, 267–284 (1954).

    PubMed  CAS  Google Scholar 

  • Lewis, J. C., and H. S. Olcott: A Lactobacillus assay method for l(+)-glutamic acid. J. of Biol. Chem. 157, 265–285 (1945).

    CAS  Google Scholar 

  • Lyman, C. M., O. Moseley, S. Wood, S. Butler and F. Hale: Some chemical factors which influence the amino acid requirements of the lactic acid bacteria. J. of Biol. Chem. 167, 177–187 (1947).

    CAS  Google Scholar 

  • Mager, J., S. H. Kindler and N. Grossowicz: Nutritional studies with Clostridium parabotulinum. J. Gen. Microbiol. 10, 130–141 (1954).

    PubMed  CAS  Google Scholar 

  • Malin, R. B., M. N. Camien and M. S. Dunn: Response of lactic acid bacteria to amino acid derivatives. II. Glycine. Arch, of Biochem. a. Biophysics 32, 106–112 (1951).

    CAS  Google Scholar 

  • Martin, W. H., M. Y. Pelczar and P. A. Hansen: Putrescine as a growth requirement for Neisseria. Science (Lancaster, Pa.) 116, 483–484 (1952).

    CAS  Google Scholar 

  • Moore, W. B., and C. Rainbow: Nutritional requirements and biochemical activities of brewery Lactobacilli. J. Gen. Microbiol. 13, 190–197 (1955).

    PubMed  CAS  Google Scholar 

  • Mueller, J. H.: Studies on cultural requirements of bacteria. IV. Qualitative estimation of bacterial growth. J. Bacter. 29, 383–387 (1935a).

    CAS  Google Scholar 

  • Studies on cultural requirements of bacteria. V. The diphtheriae bacillus. J. Bacter. 29, 515–530 (1935b).

    Google Scholar 

  • Studies on cultural requirements of bacteria. VI. The diphtheriae bacillus. J. Bacter. 30, 513–524(1935c).

    Google Scholar 

  • A synthetic medium for the cultivation of C. diphtheriae. J. Bacter. 36, 499–515(1938).

    Google Scholar 

  • Nielsen, N.: Untersuchungen über das Vermögen der Hefe, Aminosäuren zu assimilieren. C. r. Trav. Labor. Carlsberg, Sér. physiol. 21, 395–425 (1936).

    Google Scholar 

  • Ergänzende Untersuchungen über die Assimilation von Aminosäuren durch Hefe. C. r. Trav. Labor. Carlsberg, Sér. chim. 22, 384–390 (1938).

    Google Scholar 

  • Die Stickstoffassimilation der Hefe. Erg. Biol. 19, 375–408 (1943).

    Google Scholar 

  • Nurmikko, V., u. A. I. Vertanen: Effect of glycine-peptides on the growth of Leuconostoc mesenteroides. Acta chem. scand. (Copenh.) 5, 97–101 (1951).

    CAS  Google Scholar 

  • Orla-Jensen, S., N. C. Otte u. A. Snog-Kiär: Die Stickstoffnahrung der Milchsäurebakterien. Zbl. Bakter., Abt. 2 94, 460–477 (1936).

    CAS  Google Scholar 

  • Ory, R. L., and C. M. Lyman: Synthesis of tyrosine and phenylalanine by Lactobacillus arabinosus. J. Bacter. 69, 508–515 (1955).

    CAS  Google Scholar 

  • Peters, V.J., J. M. Prescott and E. E. Snell: Peptides and bacterial growth. IV. Histidine peptides as growth factors for Lactobacillus delbrueckii 9649. J. of Biol. Chem. 202, 521–532 (1953).

    CAS  Google Scholar 

  • Porter, J. R., and F. D. Meyers: Amino-acid inter-relationships in the nutrition of Proteus morganii. Arch, of Biochem. 8, 169–176 (1945).

    CAS  Google Scholar 

  • Prescott, J. M., V. J. Peters and E. E. Snell: Peptides and bacterial growth. V. Serine peptides and growth of Lactobacillus delbrueckii 9649. J. of Biol. Chem. 202, 533–540 (1953).

    CAS  Google Scholar 

  • Proom, H.: The minimal nutritional requirements of organisms of the genus Bordetella Lopez. J. Gen. Microbiol. 12, 63–75 (1955).

    PubMed  CAS  Google Scholar 

  • Rake, L., and Y. Subbarow: Choline, pantothenic acid, and nicotinic acid as essential growth factors for Pneumococcus. J. of Biol. Chem. 134, 455–456 (1940).

    Google Scholar 

  • Rao, M. S.: The nutritional requirements of the plague Bacillus Indian J. Med. Res. 27, 75–89 (1939).

    CAS  Google Scholar 

  • Robbins, W. J., and R. Ma: Growth factors for Trichophyton mentagrophytes. Amer. J. Bot. 32, 509–523 (1945).

    CAS  Google Scholar 

  • Rowley, D.: Interrelationships between amino-acids in the growth of coliform organisms. J. Gen. Microbiol. 9, 37–43 (1953).

    PubMed  CAS  Google Scholar 

  • Sbarra, A. J., and M. M. Hardin: Attempts to develop strains of Lactobacillus casei ATCC 7649 independent of certain growth factors. J. Bacter. 61, 99–100 (1951).

    CAS  Google Scholar 

  • Schweigert, B. S., J. M. McIntire, C. A. Elvehjem and F. M. Strong: The direct determination of valine and leucine in fresh animal tissues. J. of Biol. Chem. 155, 183–191 (1944).

    CAS  Google Scholar 

  • Schweigert, B. S., and E. E. Snell: Microbiological methods for the estimation of amino acids. Nutrit. Abstr. a. Rev. 16, 497–510 (1947).

    CAS  Google Scholar 

  • Seeley, H. W.: The physiology and nutrition of Streptococcus uberis. J. Bacter. 62, 107–115 (1951).

    CAS  Google Scholar 

  • Shiota, T., and F. M. Clark: Studies on the sulfur nutrition of Lactobacillus arabinosus. J. Bacter. 70, 339–344 (1955).

    CAS  Google Scholar 

  • Shull, G. M., R. W. Thoma and W. H. Peterson: Amino acid and unsaturated fatty acid requirements of Clostridium sporogenes. Arch, of Biochem. 20, 227–241 (1949).

    CAS  Google Scholar 

  • Simmonds, S., and J. S. Fruton: The utilization of proline derivates by mutant strains of Escherichia coli. J. of Biol. Chem. 174, 705–715 (1948).

    CAS  Google Scholar 

  • Simmonds, S., J. I. Harris and J. S. Fruton: Inhibition of bacterial growth by leucine peptides. J. of Biol. Chem. 188, 251–262 (1951).

    CAS  Google Scholar 

  • Slade, H. D., and G.A. Knox: Nutrition and the rôle of reducing agents in the formation of streptolysin O by a group A hemolytic Streptococcus. J. Bacter. 60, 301–310 (1950).

    CAS  Google Scholar 

  • Slade, H.D., G.A. Knox and W.C. Slamp: The amino acid nutrition of group A hemolytic Streptococci, with reference to the effect of glutathione on the cystine requirement. J. Bacter. 62, 669–675 (1951).

    CAS  Google Scholar 

  • Slade, H. D., and W.C. Slamp: The requirement of ovalbumin for the growth of group A hemolytic Streptococcus in a synthetic medium. J. of Exper. Med. 102, 291–305 (1955).

    CAS  Google Scholar 

  • Steinberg, R. A.: Effect of trace elements on growth of Aspergillus niger with amino acids. J. Agricult. Res. 64, 455–475 (1942).

    CAS  Google Scholar 

  • Stokes, J. L.: Nutrition of microorganisms. Annual Rev. Microbiol. 6, 28–48 (1952).

    Google Scholar 

  • Stokes, J. L., M. Gunness, J. M. Dwyer and M. C. Coswell: Microbiological methods for the determination of amino acids. II. A uniform assay for the essential amino acids. J. of Biol. Chem. 160, 35–49 (1945).

    CAS  Google Scholar 

  • Stokes, J. L., A. Larsen and M. Gunness: Biotin and the synthese of aspartic acid by microorganisms. J. of Biol. Chem. 167, 613–614 (1947).

    CAS  Google Scholar 

  • Stone, D.: Some aspects of the hydrolysis of proline peptides by a prolineless mutant of Escherichia coli. J. of Biol. Chem. 202, 821–827 (1953).

    CAS  Google Scholar 

  • Stone, D., and H. D. Hoberman: Utilization of proline peptides by a prolineless mutant of Escherichia coli. J. of Biol. Chem. 202, 203–212 (1953).

    CAS  Google Scholar 

  • Traub, A., J. Mager and N. Grossowics: Studies on the nutrition of Pasteurella tula-rensis. J. Bacter. 70, 60–69 (1955).

    CAS  Google Scholar 

  • Umbarger, H. E., and B. Brown: Isoleucine and valine metabolism in Escherichia coli. V. Antagonism between isoleucine and valine. J. Bacter. 70, 241–248 (1955).

    CAS  Google Scholar 

  • Virtanen, A. I., S. v. Hausen u. H. Karström: Untersuchungen über die Leguminos-Bakterien und -Pflanzen. XII. Die Ausnützung der aus den Wurzelknöllchen der Leguminosen herausdiffundierten Stickstoffverbindungen durch Nichtleguminosen. Biochem. Z. 258, 106–117 (1933).

    CAS  Google Scholar 

  • Virtanen, A. I., u. V. Nurmikko: On the mode of action of peptides as growth factors for Leuconostoc mesenteroides. Acta chem. scand. (Copenh.) 5, 681–689 (1951).

    CAS  Google Scholar 

  • Vishniac, H. S.: The nutritional requirements of isolates of Labyrinthula spp. J. Gen. Microbiol. 12, 455–463 (1955).

    PubMed  CAS  Google Scholar 

  • Waelsch, H.: Certain aspects of intermediary metabolism of glutamine, asparagine, and glutathione. Adv. Enzymol. 13, 237–319 (1952).

    CAS  Google Scholar 

  • Ware, G. C.: Nutritional requirements of Bacterium coli at 440. J. Gen. Microbiol. 5, 880–884 (1951).

    PubMed  CAS  Google Scholar 

  • The effect of incubation temperature on the growth requirements of Proteus vulgaris and Salmonella typhi. J. Gen. Microbiol. 11, 398–400 (1954).

    Google Scholar 

  • Winogradsky, S., u. V. Omeliansky: Über den Einfluß der organischen Substanzen auf die Arbeit der nitrifizierenden Mikroben. Zbl. Bakter., Abt. 2 5, 329–343, 377–387, 429–440 (1899).

    Google Scholar 

  • Winzler, R. J., D. Burk and V. du Vigneaud: Biotin in fermentation, respiration, growth and nitrogen assimilation by yeast. Arch, of Biochem. 5, 25–47 (1944).

    CAS  Google Scholar 

  • Wiss, O.: Mikrobiologische Vitamin- und Aminosäurebestimmungen. Mitt. Lebensmittelunters, u. Hyg. 41, 225–258 (1950).

    CAS  Google Scholar 

  • Wright, L. D., and H. R. Skeggs: Tryptophane utilization and synthesis by strains of Lactobacillus arabinosus. J. of Biol. Chem. 159, 611–616 (1945).

    CAS  Google Scholar 

Literature

  • Addicott, F. T.: Vitamin B1 in relation to meristematic activity of isolated pea roots. Bot. Gaz. 100, 836–843 (1939).

    CAS  Google Scholar 

  • Effects of root-growth hormones on the meristem of excised pea roots. Bot. Gaz. 102, 578–581 (1941).

    Google Scholar 

  • Addicott, F. T., and J. Bonner: Nicotinic acid and the growth of isolated pea roots. Science (Lancaster, Pa.) 88, 577–578 (1938).

    CAS  Google Scholar 

  • Addicott F. T., and P. S. Devirian: A second growth factor for excised pea roots; nicotinic acid. Amer. J. Bot. 26, 667–671 (1939).

    CAS  Google Scholar 

  • Almestrand, A.: Studies on the growth of isolated roots of barley and oats. Physiol. Plantarum (Copenh.) 2, 372–387 (1949).

    Google Scholar 

  • Further studies on the growth of isolated roots of barley and oats. Physiol. Plantarum (Copenh.) 3, 205–224 (1950).

    Google Scholar 

  • Growth factor requirements of isolated wheat roots (a preliminary report). Physiol. Plantarum (Copenh.) 3, 293–299 (1950).

    Google Scholar 

  • Archibald, J. F.: Culture in vitro of cambial tissue of cacao. Nature (Lond.) 173, 351–352 (1954).

    Google Scholar 

  • Ball, E.: Hydrolysis of sucrose by autoclaving media, a neglected aspect in the technique of culture of plant tissues. Bull. Torrey Bot. Club 80, 409–411 (1953).

    CAS  Google Scholar 

  • Studies of the nutrition of the callus culture of Sequoia sempervirens. Année Biol. 31, 81–105 (1955).

    Google Scholar 

  • Bennet-Clark, T. A., and N. P. Kefford: Chromatography of the growth substances in plant extracts. Nature (Lond.) 171, 645 (1953).

    CAS  Google Scholar 

  • Berthelot, A.: Nouvelles remarques d’ordre chimique sur la choix des milieux de culture naturels et sur la manière de formuler les milieux synthétiques. Bull. Soc. Chim. biol. Paris 16, 1553–1557 (1934).

    CAS  Google Scholar 

  • Bitancourt, A. A.: Mechanismo genetico da tumorisação nos vegetais. Prog. 2a Semana de Genética Piracicoba, Brazil. 1949.

    Google Scholar 

  • Boll, W. G.: Studies on the growth of excised roots. V. Growth of excised roots of two inbred lines of tomato and their reciprocal crosses in media supplemented with various growth factors. New Phytologist 53, 406–422 (1954a).

    Google Scholar 

  • Investigations into the function of pyridoxine as a growth factor for excised tomato roots. Plant Physiol. 29, 325–331 (1954b).

    Google Scholar 

  • The râle of vitamin B6 and the biosynthesis of choline in the excised tomato root. Arch, of Biochen. a. Biophysics 53, 20–28 (1954c).

    Google Scholar 

  • Boll, W. G., and H. E. Street: Studies on the growth of excised roots. I. The stimulatory effect of molybdenum and copper on the growth of excised tomato roots. New Phytologist 50, 52–75 (1951).

    CAS  Google Scholar 

  • Bonner, D. M., A. J. Haagen-Smit and F. W. Went: Leaf growth hormones. I. A bio-assay and source for leaf growth factors. Bot. Gaz. 101, 128–144 (1939).

    CAS  Google Scholar 

  • Bonner, J.: Vitamin B1, a growth factor for higher plants. Science (Lancaster, Pa.) 85, 183–184 (1937).

    CAS  Google Scholar 

  • Thiamin (vitamin B1) and the growth of roots: the relation of chemical structure to physiological activity. Amer. J. Bot. 25, 543–549 (1938).

    Google Scholar 

  • On the growth factor requirements of isolated roots. Amer. J. Bot. 27, 692–701 (1940a).

    Google Scholar 

  • Specificity of nicotinic acid as a growth factor for isolated pea roots. Plant Physiol. 15, 553–557 (1940b).

    Google Scholar 

  • Transport of thiamin in the tomato plant. Amer. J. Bot. 29, 136–142 (1942a).

    Google Scholar 

  • Riboflavin in isolated roots. Bot. Gaz. 103, 581–585 (1942b).

    Google Scholar 

  • A reversible growth inhibition of isolated tomato roots. Proc. Nat. Acad. Sci. U.S.A. 28, 321–324 (1942c).

    Google Scholar 

  • Further experiments on the nutrition of isolated tomato roots. Bull. Torrey Bot. Club 70, 184–189 (1943).

    Google Scholar 

  • Bonner, J., and F. T. Addicott: Cultivation in vitro of excised pea roots. Bot. Gaz. 99, 144–170 (1937).

    CAS  Google Scholar 

  • Bonner, J., and G. Axtman: The growth of plant embryos in vitro. Preliminary experiments on the râle of accessory substances. Proc. Nat. Acad. Sci. U.S.A. 23, 453–457 (1937).

    CAS  Google Scholar 

  • Bonner, J., and H. Bonner: The B vitamins as plant hormones. Vitamins a. Hormones 6, 225–275 (1948).

    CAS  Google Scholar 

  • Bonner, J., and P. S. Devirian: Growth factor requirements of four species of isolated roots. Amer. J. Bot. 26, 661–665 (1939).

    CAS  Google Scholar 

  • Bonner, J., and R. Dor-land: Some observations concerning riboflavin and pantothenic acid in tomato plants. Bot. Gaz. 104, 475–479 (1943).

    CAS  Google Scholar 

  • Bonner, J., and J. B. Koepli: The inhibition of root growth by auxins. Amer. J. Bot. 26, 557–566 (1939).

    CAS  Google Scholar 

  • Bonner, W., and J. Bonner: The râle of carbon dioxide in acid formation by succulent plants. Amer. J. Bot. 35, 113–117 (1948).

    CAS  Google Scholar 

  • Brakke, M. K., and L. G. Nickell: Secretion of α-amylase by Rumex virus tumors in vitro. Properties and assay. Arch, of Biochem. a. Biophysics 32, 28–41 (1951).

    CAS  Google Scholar 

  • Lack of effect of plant growth-regulators on the action of alpha amylase secreted by virus tumor tissue. Bot. Gaz. 113, 482–484 (1952).

    Google Scholar 

  • Secretion of an enzyme from intact cells of a higher plant tumor. Année Biol. 31, 215–226 (1955).

    Google Scholar 

  • Braun, A. C.: Tissue culture as a tool for studying the physiological basis of autonomy in neoplastic plant cells. J. Cancer Res., Special Suppl. 1957 (in press).

    Google Scholar 

  • Braun, A. C., and G. Morel: A comparison of normal, habituated and crown-gall tumor tissue implants in the European grape. Amer. J. Bot. 37, 499–501 (1950).

    Google Scholar 

  • Braun, A.C., and U. Naf: A non-auxinic growth-promoting factor present in crown gall tumor tissue. Proc. Soc. Exper. Biol. a. Med. 86, 212–214 (1954).

    CAS  Google Scholar 

  • Brickson, W. L., L. M. Henderson, I. Solhjell and C. A. Elvehjem: Antagonism of amino acids-in the growth of lactic acid bacteria. J. of Biol. Chem. 176, 517–528 (1948).

    CAS  Google Scholar 

  • Burkholder, P. R., and I. McVeigh: Studies on thiamine in green plant with the Phycomyces assay method. Amer. J. Bot. 27, 853–861 (1940).

    CAS  Google Scholar 

  • The increase in B vitamins in germinating seeds. Proc. Nat. Acad. Sci. U.S.A. 28, 440–446 (1942).

    Google Scholar 

  • Burkholder, P. R., and L. G. Nickell: Atypical growth of plants. I. Cultivation of virus tumors of Rumex on nutrient agar. Bot. Gaz. 110, 426–437 (1949).

    CAS  Google Scholar 

  • Burkholder, P. R., and A. G. Snow jr.: Thiamine in some common American trees. Bull. Torrey Bot. Club 69, 421–428 (1942).

    CAS  Google Scholar 

  • Burström, H.: Studies in the carbohydrate nutrition of roots. Ann. Agricult. Coll. Sweden 9, 264–284 (1941).

    Google Scholar 

  • The influence of heteroauxin on cell growth and root development. Ann. Agricult. Coll. Sweden 10, 209–240 (1942).

    Google Scholar 

  • Observations on the influence of galactose on wheat roots. Physiol. Plantarum (Copenh.) 1, 209–215 (1948).

    Google Scholar 

  • Lotsya 3, 77 (1950).

    Google Scholar 

  • Camus, G., et R. J. Gautheret: Sur le caractère tumural des tissus de Scorsonère ayant subi le phénomène d’accoutumance aux hétéro-auxines. C. r. Acad. Sci. Paris 226, 744–745 (1948).

    Google Scholar 

  • Sur le repiquage des proliférations induites sur les fragments de racines de Scorsonère par des tissus de Crown-gall et des tissus ayant subi le phénomène d’accoutumance aux hétéro-auxines. C. r. Soc. Biol. Paris 142, 771–773 (1948).

    Google Scholar 

  • Caplin, S. M., and F. C. Steward: Effect of coconut milk on the growth of explants from carrot root. Science (Lancaster, Pa.) 108, 655–657 (1948).

    CAS  Google Scholar 

  • Chapman, H. D.: Absorption of iron from finely ground magnetite by citrus seedlings. Soil Sci. 48, 309–314 (1939).

    CAS  Google Scholar 

  • Charles, H. P.: The physiological basis of variation between excised roots of different geographical strains of the groundsel, Senecio vulgaris L. Ph. D. Thesis, Univ. Manchester 1956.

    Google Scholar 

  • Czosnowski, J.: Bull. soc. Anus, sci et lettres Poznán 9, 138–142 (1948).

    Google Scholar 

  • Poznán Towarz Przyjaciot Nauk, Prace Komisji Biol. 13, 189–208 (1952a); 13, 209–246 (1952b). [Via. R. J. Gautheret: The nutrition of plant tissue cultures. Annual Rev. Plant Physiol. 6, 433–484 (1955b).]

    Google Scholar 

  • Danckwardt-Lillieström, C.: Kinetin induced shoot formation from isolated roots of Isatis tinctoria. Physiol. Plantarum (Copenh.) 10, 794–797 (1957).

    Google Scholar 

  • Das, N. K., K. Patau, and F. Skoog: Initiation of mitosis and cell division by kinetin and indoleacetic acid in excised tobacco pith tissue. Physiol. Plantarum (Copenh.) 9, 640–651 (1956).

    CAS  Google Scholar 

  • David, S. B.: Studies on the nutrition of excised roots of Medicago sativa L. Ph. D. Thesis, Univ. Manchester 1954.

    Google Scholar 

  • Dawson, I. R. O.: Studies in the comparative physiology of excised roots derived from strains of red clover, Trifolium pratense L. Ph. D. Thesis, Univ. Wales 1958.

    Google Scholar 

  • Day, D.: Vitamin B6 and growth of excised tomato roots in agar culture. Science (Lancaster, Pa.) 94, 468–469 (1941).

    CAS  Google Scholar 

  • Growth of excised tomato roots in agar with thiamine plus pyridoxine, nicotinamide or glycine. Amer. J. Bot. 30, 150–156 (1943).

    Google Scholar 

  • Dormer, K. J., and H. E. Street: The carbohydrate nutrition of tomato roots. Ann. of Bot. 13, 199–217 (1949).

    CAS  Google Scholar 

  • Duhamet, L.: Action de l’hétéro-auxine sur la croissances de racines isolées de Lupinus albus. C. r. Acad. Sci. Paris 208, 1838–1840 (1939).

    CAS  Google Scholar 

  • Action du lait de Coco sur la croissance des tissus du tubercule de Topinambour cultivés in vitro. C. r. Acad. Sci. Paris 229, 1353–1355 (1949).

    Google Scholar 

  • Action du lait de Coco sur la croissance des tissus de Crown-Gall de Scorsonere cultivés in vitro. C. r. Acad. Sci. Paris 230, 770–771 (1950a).

    Google Scholar 

  • Action du lait de Coco sur la croissance des tussis de Parthenocissus tricuspidata cultivés in vitro. C. r. Soc. Biol. Paris 144, 59–61 (1950b).

    Google Scholar 

  • Action du lait de Coco sur la croissance des cultives de tissus de Crown-Gall de Vigne, de Tabac, de Topinambour et de Scorsonere. C. r. Soc. Biol. Paris 145, 1781–1785 (1951).

    Google Scholar 

  • Duhamet, L., et R. J. Gautheret: Structure anatomique de fragments de tubercules de Topinambour cultivés en presence de lait de Coco. C. r. Soc. Biol. Paris 144, 177–179 (1950).

    PubMed  CAS  Google Scholar 

  • Eberts, F. S., R. H. Burris and A. J. Riker: The metabolism of nitrogenous compounds by sunflower crown gall tissue cultures. Plant Physiol. 29, 1–10 (1954).

    PubMed  CAS  Google Scholar 

  • Eltinge, E. T., and H. S. Reed: The effect of zinc deficiency upon the roots of Lycopersicum escu-lentum. Amer. J. Bot. 27, 331–335 (1940).

    CAS  Google Scholar 

  • Ferguson, J. D.: Studies on the carbohydrate metabolism of excised roots of Lycopersicum exculentum Mill. Ph. D. Thesis, Univ. Wales 1958.

    Google Scholar 

  • Fiedler, H.: Entwicklungs-und reizphysiologische Untersuchungen an Kulturen isolierter Wurzelspitzen. Z. Bot. 30, 385–436 (1936).

    CAS  Google Scholar 

  • Frank, E. M., A. J. Riker and S. L. Dye: Comparisons of growth by tobacco and sunflower tissue on synthetic media containing various sources of organic nitrogen. Plant Physiol. 26, 258–267 (1951).

    PubMed  CAS  Google Scholar 

  • Fries, N.: Chemical factors controlling the growth of the decotylised pea seedling. Symbolae bot. Upsaliensis 13, 1, 1–83 (1954).

    Google Scholar 

  • Galston, A. W.: On the physiology of root initiation in excised asparagus stem tips. Amer. J. Bot. 35, 281–287 (1948).

    CAS  Google Scholar 

  • Gautheret, R. J.: Recherches sur la culture des tissus végétaux: Essais de culture de quelques tissus méristematiques. These, Univ. Paris 1935.

    Google Scholar 

  • Sur la possibilité de realiser la culture indéfinie des tissus de tubercules de carotte. C. r. Acad. Sci. Paris 208, 118–120 (1939).

    Google Scholar 

  • Action du saccharose sur la croissance des tissus de carotte. C. r. Soc. Biol. Paris 135, 875–877 (1941a).

    Google Scholar 

  • Sur le repiquage des cultures de tissus d’endive, de salsifis et de topinambur. C. r. Acad. Sci. Paris 213, 317–318 (1941b).

    Google Scholar 

  • Hétéro-auxines et cultures de tissus vegetaux. Bull. Soc. Chim. biol. Paris 24, 13–47 (1942).

    Google Scholar 

  • Une voie nouvelle en biologie vegetale: la culture des tissus. Paris 1945.

    Google Scholar 

  • Sur la culture indéfinie des tissus de Salix caprea. C. r. Soc. Biol. Paris 142, 807–808 (1948a).

    Google Scholar 

  • Sur l’utilization du glycérol par les cultures de tissus végétaux. C. r. Soc. Biol. Paris 142, 808–810 (1948b).

    Google Scholar 

  • Nouvelles recherches sur les besoins nutritifs de cultures de tissus de carotte. C. r. Soc. Biol. Paris 144, 172–173 (1950a).

    Google Scholar 

  • Remarques sur les besoins nutritifs des cultures de tissus de Salix caprea. C. r. Soc. Biol. Paris 144, 173–174 (1950b).

    Google Scholar 

  • Remarques sur l’emploi du lait de Coco pour la realisation des cultures de tissus vegetaux. C. r. Acad. Sci. Paris 235, 1321–1322 (1953).

    Google Scholar 

  • Rev. gén. Bot. 62, 1–106 (1955a).

    Google Scholar 

  • The nutrition of plant tissue cultures. Annual Rev. Plant Physiol. 6, 433–484 (1955b).

    Google Scholar 

  • Gladstone, G. P.: Inter-relationships between amino acids in the nutrition of B. anthracis. Brit. J. Exper. Path. 20, 189–200 (1939).

    CAS  Google Scholar 

  • Glasstone, V. F. C.: Inorganic micronutrients in tomato root tissue culture. Amer. J. Bot. 34, 218–224 (1947).

    CAS  Google Scholar 

  • Gorham, P. R.: Heterotrophic nutrition of seed plants with particular reference to Lemna minor L. Canad. J. Res., Sect. C 28, 356 (1950).

    Google Scholar 

  • Haberlandt, G.: Kulturversuche mit isolierten Pflanzenzellen. Sitzgsber. Akad. Wiss. Wien, Math.-naturwiss. Kl. 111, 69–92 (1902).

    Google Scholar 

  • Hammett, F. S.: The chemical stimulus essential for growth by increase in cell number. Protoplasma 7, 297–332 (1929).

    Google Scholar 

  • Han-nay, J. W.: A study of the micronutrient nutrition of excised roots of Lycopersicum escu-lentum Mill. Ph. D. Thesis, Univ. Manchester 1956.

    Google Scholar 

  • Hannay, J. W., and H. E. Street: Studies on the growth of excised roots. III. Molybdenum and manganese requirements of excised tomato roots. New Phytologist 53, 68–80 (1954).

    Google Scholar 

  • Harris, G. P.: Amino-acids and the growth of isolated oat embryos. Nature (Lond.) 172, 1003 (1953).

    CAS  Google Scholar 

  • Amino acids as sources of nitrogen for the growth of isolated root embryos. New Phytologist 55, 253–268 (1956).

    Google Scholar 

  • Heller, R.: Sur l’action physique favorable exercée sur la croissance des cultures de tissus végétaux par le contact d’un milieu gélose ou d’un gel de silice. C. r. Soc. Biol. Paris 145, 675–677 (1951).

    PubMed  CAS  Google Scholar 

  • Recherches sur la nutrition minérale des tissus végétaux cultivés in vitro. Ann. des Sci. natur. Bot. et Biol. vegetale 1953, Ser. II 1–223

    Google Scholar 

  • Les besoins minéraux des tissus en culture. Année Biol. 30, 361–380 (1954).

    Google Scholar 

  • Henderson, J. H. M.: The changing nutritional pattern from normal to habituated sunflower callus tissue in vitro. Année Biol. 30, 329–348 (1954).

    Google Scholar 

  • Henderson, J. H. M., and J. Bonner: Auxin metabolism in normal and crown gall tissue of sunflower. Amer. J. Bot. 39, 444–451 (1952).

    CAS  Google Scholar 

  • Henderson, J. H. M., M. E. Durrell and J. Bonner: The culture of normal sunflower callus. Amer. J. Bot. 39, 467–473 (1952).

    CAS  Google Scholar 

  • Henderson, J. H. M., and F. F. Stauffer: The influence of some respiratory inhibitors and intermediates on growth and respiration of excised tomato roots. Amer. J. Bot. 31, 528–535 (1944).

    CAS  Google Scholar 

  • Hildebrandt, A. C., and A. J. Riker: The influence of various carbon compounds on the growth of marigold, Paris-daisy, periwinkle, sunflower and tobacco tissue in vitro. Amer. J. Bot. 36, 75–85 (1949).

    Google Scholar 

  • Influence of concentrations of sugars and polysaccharides on callus tissue growth in vitro. Amer. J. Bot. 40, 66–76 (1953).

    Google Scholar 

  • Hildebrandt, A. C., A. J. Riker and B. M. Duggar: The influence of the composition of the medium on growth in vitro of excised tobacco and sunflower tissue culture. Amer. J. Bot. 33, 591–597 (1946).

    CAS  Google Scholar 

  • Jacquiot, C.: Action du méso-inositol et de l’adénine sur la formation de bourgeons pat le tissu cambial d’Ulmus campestris cultivé in vitro. C. r. Acad. Sci. Paris 233, 815–817 (1951).

    PubMed  CAS  Google Scholar 

  • Kandler, O.: Über eine physiologische Umstimmung von Sonnenblumenstengelgewebe durch Dauereinwirkung von β-Indolylessigsäure. Planta (Berl.) 40, 346–349 (1952).

    CAS  Google Scholar 

  • Kandler, O., u. A. Vieregg: Über den Einfluß von β-Indolylessigsäure auf den Stoffwechsel in vitro kultivierter Maiswurzeln und Spargelsprosse. Planta (Berl.) 41, 613–641 (1953).

    CAS  Google Scholar 

  • Kefford, N. P.: The growth substances separated from plant extracts by chromatography. I. J. of Exper. Bot. 6, 129–151 (1955).

    CAS  Google Scholar 

  • Kögl, F., u. A. J. Haagen-Smit: Biotin und Aneurin als Phytohormone. Hoppe-Seylers Z. 243, 209–226 (1936).

    Google Scholar 

  • Kotte, W.: Wurzelmeristem in Gewebekultur. Ber. dtsch. bot. Ges. 40, 269–272 (1922).

    Google Scholar 

  • Kulturversuche mit isolierten Wurzelspitzen. Beitr. allg. Bot. 2, 413–434 (1922).

    Google Scholar 

  • Kovoor, A.: Action comparée du liquide intra-calicinal de Spathodea campanulata Beauv. sur la croissance des cultures de tissus végétaux. C. r. Acad. Sci. Paris 237, 832–834 (1953).

    PubMed  CAS  Google Scholar 

  • Action de quelques substances stimulantes d’origine naturelle sur le développement des tissus végétaux cultivés in vitro. Année Biol. 30, 417–429 (1954).

    Google Scholar 

  • Kulescha, Z.: Relation entre le pouvoir de prolifération spontanée des tissus de Topinambour et leur teneur en substance de croissance. C. r. Soc. Biol. Paris 143, 354–356 (1949).

    CAS  Google Scholar 

  • Recherches sur l’élaboration des substances de croissance par les tissus vegetaux. Rev. gén. Bot. 59,19–41, 92–111,127–157,195–208, 241–264 (1952).

    Google Scholar 

  • Kulescha, Z., et R. J. Gautheret: Recherches sur l’action de la cynurénine sur les tissus de topinambour cultivés in vitro. C. r. Soc. Biol. Paris 145, 245–246 (1951).

    PubMed  CAS  Google Scholar 

  • Levine, M.: The effect of growth substances and chemical carcinogens in fibrous roots of carrot tissue grown in vitro. Amer. J. Bot. 38, 132–138 (1951).

    CAS  Google Scholar 

  • Lexander, K.: Growth-regulating substances in roots of wheat. Physiol. Plantarum (Copenh.) 6, 406–411 (1953).

    CAS  Google Scholar 

  • Limasset, P., et R. J. Gautheret: Sur le charactère tumural des tissus de Tabac ayant subi le phénomène d’accoutumance aux hétéro-auxines. C. r. Acad. Sci. Paris 230, 2043–2045 (1950).

    Google Scholar 

  • Loo, S. W.: Cultivation of excised stem tips of asparagus in vitro. Amer. J. Bot. 32, 13–17 (1945).

    CAS  Google Scholar 

  • Mauney, J. R., W. S. Hillman, C. O. Miller, F. Skoog, R. A. Clayton and F. M. Strong: The bioassay, purification and properties of a growth factor from coconut milk. Physiol. Plantarum (Copenh.) 5, 485–497 (1952).

    CAS  Google Scholar 

  • McClary, J. E.: Synthesis of thiamin by excised roots of maize. Proc. Nat. Acad. Sci. U.S.A. 26, 581–587 (1940).

    CAS  Google Scholar 

  • Miller, C. O., F. S. Okumura, H. M. v. Saltza and F. M. Strong: Isolation, structure and synthesis of kinetin, a substance promoting cell division. J. Amer. Chem. Soc. 78,1375 (1956).

    CAS  Google Scholar 

  • Miller, C. O., and F. Skoog: Chemical control of bud formation in tobacco stem segments. Amer. J. Bot. 40, 768–773 (1953).

    CAS  Google Scholar 

  • Morel, G.: Action de l’acide panthothénique sur la croissance des tissus d’Aubépine cultivés in vitro. C. r. Acad. Sci. Paris 223,166–168 (1946).

    CAS  Google Scholar 

  • —Recherches sur la culture associée de parasites olbigatoires et de tissus vegetaux. Ann. épiphyt. 14, 1–112 (1948).

    Google Scholar 

  • Sur la culture des tussis de deux Monocotylédones. C. r. Acad. Sci. Paris 230, 1099–1101 (1950).

    Google Scholar 

  • Nagao, M.: Studies on the growth hormones of plants. III. The occurrence of growth substance in isolated roots grown under sterilised conditions. Sci. Rep. Tohoku Univ. (Biol.) 12, 191–193 (1937).

    Google Scholar 

  • Studies on the growth hormones of plants. IV. Further experiments on the production of growth substance in root tips. Sci. Rep. Tohoku Univ. (Biol.) 13, 221–228 (1938).

    Google Scholar 

  • Naylor, A. W., and B. N. Rappaport: Studies on the growth factor requirements of pea roots. Physiol. Plantarum (Copenh.) 3, 315–333 (1950).

    Google Scholar 

  • Naylor, J., G. Sander and F. Skoog: Mitosis and cell enlargement without cell division in excised tobacco pith tissue. Physiol. Plantarum (Copenh.) 7, 25–29 (1954).

    CAS  Google Scholar 

  • Nétien, G.: Action des gibellerines sur la culture des tissus végétaux culturés in vitro. C. r. Acad. Sci. Paris 244, 2732–2733 (1957).

    Google Scholar 

  • Nétien, G., et G. Beauchesne: Essai d’isolement d’un factor de croissance présent dans un extraitleiteux de caryopses de Mais immatures. Année Biol. 30, 437–443 (1954).

    Google Scholar 

  • Nétien, G., G. Beauchesne et C. Mentzer: Influence du lait de Mais sur la croissance des tissus de Carotte in vitro. C. r. Acad. Sci. Paris 233, 92–93 (1951).

    PubMed  Google Scholar 

  • Nickell, L. G.: Effect of aspartic acid on growth of plant-virus tumour tissue. Nature (Lond.) 166,351–352 (1950a).

    CAS  Google Scholar 

  • Effect of coconut milk on the growth in vitro of plant virus tumor tissue. Bot. Gaz. 112, 225–228 (1950b).

    Google Scholar 

  • Vitamin B1 requirement of Rumex virus tumor tissue. Bull. Torrey Bot. Club 79, 427–430 (1952).

    Google Scholar 

  • Gibberellin and the growth of plant tissue cultures. Nature (Lond.) 181, 499–500 (1958).

    Google Scholar 

  • Nickell, L. G., and P. R. Burkholder: Atypical growth of plants. II. Growth in vitro of virus tumors of Rumex in relation to temperature, pH and various sources of nitrogen, carbon and sulfur. Amer. J. Bot. 37, 538–547 (1950).

    CAS  Google Scholar 

  • Nickell, L. G., G. Greenfield and P. R. Burkholder: Atypical growth of plants. III. Growth responses of virus tumors of Rumex to certain nucleic acid components and related compounds. Bot. Gaz. 112, 42–52 (1950).

    CAS  Google Scholar 

  • Nitsch, J. P.: Action du jus de Tomato sur la croissance des tissus de crown-gall cultivés in vitro. C. r. Acad. Sci. Paris 233, 1676–1678 (1951).

    PubMed  CAS  Google Scholar 

  • L’action sur la croissance des cultures de tissu, du liquide Séminal d’Allanblackia parviflora A. Chev. C. r. Acad. Sci. Paris 238, 141–143 (1954).

    Google Scholar 

  • Nobécourt, P.: Sur la perennité et l’augmentation de volume des cultures de tissus végétaux. C. r. Soc. Biol. Paris 130, 1270–1271 (1939).

    Google Scholar 

  • Overbeek, J. van: Is auxin produced in roots ? Proc. Nat. Acad. Sci. U.S.A. 25, 245–248 (1939).

    Google Scholar 

  • Overbeek, J. van, M. E. Conklin and A. F. Blakeslee: Factors in coconut milk essential for growth and development of very young Datura embryos. Science (Lancaster, Pa.) 94, 350–351 (1941).

    Google Scholar 

  • Cultivation in vitro of small Datura embryos. Amer. J. Bot. 29, 472–477 (1942).

    Google Scholar 

  • Paris, D.: Action de quelques vitamines hydrosolubles sur les cultures de tissus végétaux. Année Biol. 31, 15–29 (1955).

    Google Scholar 

  • Paris, D., L. Duhamet et A. Goris: Action des vitamines et des acides aminés contenus dans le lait de coco sur la proliferation d’une souche de tissus de Carotte. C. r. Soc. Biol. Paris 148, 296–299 (1954).

    PubMed  CAS  Google Scholar 

  • Poel, L. W.: Carbon dioxide fixation by barley roots. J. of Exper. Bot. 4, 157–163 (1953).

    CAS  Google Scholar 

  • Riker, A. J., and A. E. Gutsche: The growth of sunflower tissue in vitro on synthetic media with various organic and inorganic sources of nitrogen. Amer. J. Bot. 35, 227–228 (1948).

    CAS  Google Scholar 

  • Robbins, W. J.: Cultivation of excised root tips and stem tips under sterile conditions. Bot. Gaz. 73, 376–390 (1922).

    Google Scholar 

  • Effect of autolyzed yeast and peptone on growth of excised corn root tips in the dark. Bot. Gaz. 74, 59–62 (1922).

    Google Scholar 

  • Growth of excised roots and heterosis in tomatoes. Amer. J. Bot. 28, 216–225 (1941).

    Google Scholar 

  • Robbins, W. J., and M. A. Bartley: Thiazole and the growth of excised tomato roots. Proc. Nat. Acad. Sci. U.S.A. 23, 385–388 (1937).

    CAS  Google Scholar 

  • Robbins, W. J., and W. E. Maneval: Further experiments on growth of excised root tips under sterile conditions. Bot. Gaz. 76, 274–287 (1923).

    Google Scholar 

  • Robbins, W. J., and M. B. Schmidt: Growth of excised roots of tomato. Bot. Gaz. 99, 671–728 (1938).

    CAS  Google Scholar 

  • Further experiments on excised tomato roots. Amer. J. Bot. 26,149–159 (1939).

    Google Scholar 

  • Roberts, E. H.: Factors controlling persistance of meristematic activity in excised roots. Ph.D. Thesis, Univ. Manchester 1954.

    Google Scholar 

  • Roberts, E. H., and H. E. Street: The continuous culture of excised rye roots. Physiol. Plantarum (Copenh.) 8, 238–262 (1955).

    CAS  Google Scholar 

  • Ropp, R. S. de, J. C. Vitucci, B. L. Hutchings and J. H. Williams: Effect of coconut fractions on growth of carrot tissues. Proc. Soc. Exper. Biol. a. Med. 81, 704–705 (1952).

    Google Scholar 

  • Rytz jr., W. v.: Beitrag zum Aneurinstoffwechsel bei höheren Pflanzen. Ber. Schweiz, bot. Ges. 49, 339–399 (1939).

    Google Scholar 

  • Sanders, M. E., and P. R. Burkholder: Influence of amino-acids on growth of Datura embryos in culture. Proc. Nat. Acad. Sci. U.S.A. 34, 516–526 (1948).

    CAS  Google Scholar 

  • Schoen, V., et G. Morel: Elaboration de substances de croissance par les tissus de Topinambour cultivés in vitro. C. r. Acad. Sci. Paris 238, 2549–2550 (1954).

    CAS  Google Scholar 

  • Schroeder, C. A., and C. Spector: Effect of gibberellic acid and incoleacetic acid on growth of excised fruit tissue. Science 126, 101 (1957).

    Google Scholar 

  • Shantz,E.M., and F. C. Steward: Coconut-milk factor: The growth-promoting substances in coconut milk. J. Amer. Chem. Soc. 74, 6133–6135 (1952).

    CAS  Google Scholar 

  • Sheat, D. E. G.: Studies on the nitrogen nutrition of excised roots of Lycopersicum esculentum Mill. Ph.D. Thesis, Univ. Manchester 1958.

    Google Scholar 

  • Skinner, J. C.: Genetical and physiological studies of the behaviour of excised root cultures of the groundsel Senecio vulgaris L. Ph. D. Thesis, Univ. Manchester 1953.

    Google Scholar 

  • Skinner, J. C., and H. E. Street: Studies on the growth of excised roots. II. Observations on the growth of excised groundsel roots. New Phytologist 53, 44–67 (1954).

    CAS  Google Scholar 

  • Skoog, F.: Chemical regulation of growth in plants, chap. 8, in: Dynamics of growth processes, pp. 148–182. Princeton 1954.

    Google Scholar 

  • Skoog, F., and C.O.Miller: Chemical regulation of growth and organ formation in plant tissues cultured in vitro. The Biological Action of Growth Substances. Symposion Soc. f. Exper. Biol. 9,118–131 (1957).

    Google Scholar 

  • Skoog, F., and B. J. Robinson: A direct relationship between indoleacetic acid effects on growth and reducing sugar in tobacco tissue. Proc. Soc. Exper. Biol. a. Med. 74, 565–568 (1950).

    CAS  Google Scholar 

  • Skoog, F., and C. Tsui: Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Amer. J. Bot. 35, 782–787 (1948).

    CAS  Google Scholar 

  • In: Plant growth substances. Madison 1951.

    Google Scholar 

  • Slankis, V.: Über den Einfluß von β-Indolylessigsäure und anderen Wuchsstoffen auf das Wachstum von Kiefernwurzeln. I. Symbolae bot. Upsaliensis 11, 3, 1–63 (1951).

    Google Scholar 

  • Solt, M. L.: Nicotine production and growth of excised tobacco root cultures. Plant Physiol. 32, 480–484 (1954).

    Google Scholar 

  • Steinberg, R. A.: Growth responses to organic compounds by tobacco seedlings in aseptic culture. J. Agricult. Res. 75, 81–92 (1947).

    CAS  Google Scholar 

  • Steward, F. C., and S. M. Caplin: A tissue culture from potato tuber, the synergistic action of 2.4-d and coconut milk. Science (Lancaster, Pa.) 113, 518–520 (1951).

    CAS  Google Scholar 

  • Investigations on the growth and metabolism of plant cells. III. Evidence for growth inhibitors in certain mature tissues. Ann. of Bot. 16, 477–489 (1952).

    Google Scholar 

  • Investigations on the growth and metabolism of plant cells. IV. Evidence on the rôle of the coconut milk factor in development. Ann. of Bot. 16, 491–504 (1952).

    Google Scholar 

  • Steward, F. C., and E. M. Shantz: The growth of carrot tissue explants and its relation to the growth factors in coconut milk. II. The growth-promoting properties of coconut milk for plant tissue cultures. Année Biol. 230, 399–415 (1954).

    Google Scholar 

  • Stone, A.: Ph.D. Thesis, Univ. Wisconsin 1951.

    Google Scholar 

  • Stout, P. R., and D. I. Arnon: Experimental methods for the study of the rôle of copper, manganese and zinc in the nutrition of higher plants. Amer. J. Bot. 26, 144–149 (1939).

    CAS  Google Scholar 

  • Stowe, B. B., and T. Yamaki: The history and physiological action of the gibberellins. Ann. Rev. Plant Physiol. 8, 181–216 (1957).

    CAS  Google Scholar 

  • Straus, J., and C. D. LaRue: Maize endosperm tissue grown in vitro. I. Culture requirements. Amer. J. Bot. 41,687–694 (1954).

    CAS  Google Scholar 

  • Street, H. E.: Factors controlling meristematic activity in excised roots. V. Effects of β-indolyacetic acid, β-indolylacetonitrile and α-(l-naphthylmethyl-sulphide)-propionic acid on the growth and survival of roots of Lycopersicum esculentum Mill. Physiol. Plantarum (Copenh.) 7, 212–230 (1954).

    CAS  Google Scholar 

  • Effects of alpha(l-naphthylmethylsulphide)-propionic acid on the growth of excised tomato roots. Nature (Lond.) 173, 253–254 (1954).

    Google Scholar 

  • Metabolism of nitrogen in plants. Nature (Lond.) 176, 906 (1955).

    Google Scholar 

  • Street, H. E., and J. S. Lowe: The carbohydrate nutrition of tomato roots. II. The mechanism of sucrose absorption by excised roots. Ann. of Bot. 14, 307–329 (1950).

    CAS  Google Scholar 

  • Street, H. E., M. P. McGonagle and J. S. Lowe: Observations on the “staling” of White’s medium by excised tomato roots. Physiol. Plantarum (Copenh.) 4, 592–616 (1951).

    Google Scholar 

  • Street, H. E., M. P. McGonagle and S. M. McGregor: Observations on the “staling” of White’s medium by excised tomato roots. II. Iron availability. Physiol. Plantarum (Copenh.) 5, 248–276 (1952).

    CAS  Google Scholar 

  • Street, H. E., M. P. McGonagle and E. H. Roberts: Factors controlling meristematic activity in excised roots. II. Experiments involving repeated subculture of the main axis meristem of roots of Lycopersicum esculentum Mill, and Lycopersicum pimpinellifolium Dunal. Physiol. Plantarum (Copenh.) 6, 1–16 (1953).

    Google Scholar 

  • Thomas, M.: Physiological studies in acid metabolism in green plants. I. CO2 fixation and CO2 liberation in Crassulacean acid metabolism. New Phytologist 48, 390–420 (1949).

    CAS  Google Scholar 

  • Thomas, M., and H. Beevers: Physiological studies in acid metabolism in green plants. II. Evidence of CO2 fixation in Bryophyllum and the study of diurnal variation of acidity in this genus. New Phytologist 48,421–447 (1949).

    CAS  Google Scholar 

  • Thurlow, J., and J. Bonner: Fixation of atmospheric CO2 in the dark by leaves of Bryophyllum. Arch, of Biochem. 19, 509 (1948).

    CAS  Google Scholar 

  • Walker, J. B.: Arginosuccinic acid from Chlorella. Proc. Nat. Acad. Sci. U.S.A. 38, 561–566 (1952).

    CAS  Google Scholar 

  • Washburn, M. R., and C. F. Niven jr.: Amino-acid interrelationships in the nutrition of Streptococcus bovis. J. Bacter. 55, 769–776 (1948).

    CAS  Google Scholar 

  • Went, F. W.: Specific factors other than auxin affecting growth and root formation. Plant Physiol. 13, 55–80 (1938).

    PubMed  CAS  Google Scholar 

  • White, P. R.: Influence of some environmental conditions on the growth of excised root tips of wheat seedlings in liquid culture. Plant Physiol. 7, 613–628 (1932).

    PubMed  CAS  Google Scholar 

  • Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol. 9, 585–600 (1934).

    Google Scholar 

  • Survival of isolated tomato roots at sub-optimal and supra-optimal temperatures. Plant Physiol. 12, 771–776 (1937a).

    Google Scholar 

  • Amino acids in the nutrition of excised tomato roots. Plant Physiol. 12, 793–802 (1937b).

    Google Scholar 

  • Vitamin Bx in the nutrition of excised tomato roots. Plant Physiol. 12, 803–811 (1937c).

    Google Scholar 

  • Cultivation of excised roots of dicotyledonous plants. Amer. J. Bot. 25, 348–356 (1938).

    Google Scholar 

  • Potentially unlimited growth of excised plant callus in an artificial medium. Amer. J. Bot. 26, 59–64 (1939).

    Google Scholar 

  • Does “C. P. Grade” sucrose contain impurities significant for the nutrition of excised tomato roots ? Plant Physiol. 15, 349–354 (1940a).

    Google Scholar 

  • Sucrose vs. dextrose as carbohydrate source for excised tomato roots. Plant Physiol. 15, 355–358 (1940a).

    Google Scholar 

  • Vitamin B6, nicotinic acid, pyridoxine, glycine and thiamin in the nutrition of excised tomato roots. Amer. J. Bot. 27, 811–821 (1940b).

    Google Scholar 

  • A handbook of plant tissue culture. Lancaster 1943 a.

    Google Scholar 

  • Further evidence on the significance of glycine, pyridoxine and nicotinic acid in the nutrition of excised tomato roots. Amer. J. Bot. 30, 33–36 (1943b).

    Google Scholar 

  • Nutritional requirements of isolated plant tissues and organs. Annual Rev. Plant Physiol. 2, 231–244 (1951).

    Google Scholar 

  • Wiggans, S. C.: Growth and organ formation in callus tissues derived from Daucus carota. Amer. J. Bot. 41, 321–326 (1954).

    CAS  Google Scholar 

  • Wood, H. G., and C. H. Werkman: The utilisation of CO2 in the dissimulation of glycerol by the propionic acid bacteria. Biochemie. J. 30, 48–53 (1936).

    CAS  Google Scholar 

  • The utilisation of CO2 by the propionic acid bacteria. Biochemic. J. 32, 1262–1271 (1938).

    Google Scholar 

  • The relationship of bacterial utilisation of CO2 to succinic acid fornation. Biochemic. J. 34, 129–138 (1940).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1959 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Kisser, J.G., Härtel, O., Phaff, H.J., Vogel, H.J., Nielsen, N., Street, H.E. (1959). Methoden der Kultur mit organischen Verbindungen. In: Mothes, K. (eds) Heterotrophie / Heterotrophy. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94753-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94753-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94754-4

  • Online ISBN: 978-3-642-94753-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics