Advertisement

Methoden der Kultur mit organischen Verbindungen

  • J. G. Kisser
  • Otto Härtel
  • H. J. Phaff
  • Henry J. Vogel
  • N. Nielsen
  • H. E. Street
Chapter
  • 50 Downloads
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 11)

Zusammenfassung

Der Begriff der Heterotrophic gilt nicht nur für ganze Individuen, denen die Fähigkeit zur Photosynthese oder Chemosynthese abgeht, sondern auch für einzelne Zellen, Gewebe oder ganze Organe (z. B. Wurzeln) an sich autotropher Pflanzen, wenn sie nicht unmittelbar an der Stoffsynthese beteiligt sind und daher ihren Stoffbedarf von anderen autotrophen Zellen und Geweben oder aus Reservestoffbehältern decken müssen; danach ist auch der Stoffwechsel etiolierter Pflanzen heterotroph. Im einzelnen Fall ist jeweils die Art der Heterotrophic (C-, N-, Wirkstoff-Heterotrophic) zu ermitteln, ferner aber auch, welche Kohlenstoff Verbindungen als Baustoffe oder Energielief eranten in Betracht kommen, welche Stickstoffverbindungen zu Körpereiweiß verarbeitet werden können, über welche Enzymsysteme die betreffenden Zellen oder Organismen verfügen, welche Wirkstoffe selbst synthetisiert werden können und welche zugeführt werden müssen u. dgl. mehr.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

Literature

  1. Buchner, P.: Endosymbiose der Tiere mit pflanzlichen Mikroorganismen. Basel u. Stuttgart 1953.Google Scholar
  2. Burgeff, H.: Die Wurzelpilze der Orchideen. Ihre Kultur und ihr Leben in der Pflanze. Jena 1909.Google Scholar
  3. Samenkeimung der Orchideen und Entwicklung ihrer Keimpflanzen. Jena 1936.Google Scholar
  4. Damm, H.: Zur Charakteristik unserer gebräuchlichsten Desinfektionsmitteltypen. Jahrb. 1956 der Akad. für Staatsmedizin Düsseldorf; ferner Zbl. Bakter., II. Abt. 1956.Google Scholar
  5. Gautheret, R. J.: Catalogue des cultures de tissus végétaux. Rev. gén. Bot. 61, 672–700 (1954).Google Scholar
  6. Sur la variabilité des propriétés physiologiques des cultures de tissus végétaux. Rev. gén. Bot. 62, 5–15 (1955a).Google Scholar
  7. La physiologie des cultures des tissus végétaux. Union Internat. Sci. Biol., Sér. B Colloques Nr 20. Naples (Italie) 1955b.Google Scholar
  8. Hallmann, L.: Bakteriologische Nährböden. Stuttgart 1953.Google Scholar
  9. Hewitt, E. J.: Sand and water culture methods used in the study of plant nutrition. Commonwealth Agric. Bureaux, Farnham Royal, Bucks, England 1952.Google Scholar
  10. Janke, A.: Arbeitsmethoden der Mikrobiologie. Bd. I: Allgemeine mikrobiologische Methoden, 2. Aufl. Dresden u. Leipzig 1946.Google Scholar
  11. Klein, G., u. J. Kisser: Die sterile Kultur der höheren Pflanzen. (Bot. Abhandlungen Heft 2.) Jena 1924.Google Scholar
  12. Melin, E.: Untersuchungen über die Bedeutung der Baummykorrhiza. Jena 1925.Google Scholar
  13. Otto, L.: Der Mikromanipulator und seine Hilfsgeräte. Berlin 1954.Google Scholar
  14. Pommer, E.-H.: Beiträge zur Anatomie und Biologie der Wurzelknöllchen von Alnus glutinosa Gaertn. Flora (Jena) 143, 603–633 (1956).Google Scholar
  15. Pringsheim, E. G.: Pure cultures of Algae. There preparation and maintenance. Cambridge 1946.Google Scholar
  16. Algenreinkulturen, ihre Herstellung und Erhaltung. Jena 1954. Rappaport, J.: In vitro culture of plant embryos and factors controlling their growth. Bot, Review 20, 201–225 (1954).Google Scholar
  17. Richter, K. N., and N. W. Woodward jr.: A versatile type of perfusion chamber for longterm maintenance and direct microscopic observation of tissues in culture. Exper. Cell Res. 9, 585–587 (1955).Google Scholar
  18. Rippel-Baldes, A.: Grundriß der Mikrobiologie, 3. Aufl. Berlin-Göttingen-Heidelberg 1955.Google Scholar
  19. Robineaux, R., u. G. Barski: Chambres pur la perfusion des cultures de tissu et l’observation en microscopie à contraste de phase. Mikroskopie (Wien) 11, 65–69 (1956).Google Scholar
  20. Salle, A. J.: Fundamental principles of bacteriology, 4. Aufl. New York-Toronto-London 1954.Google Scholar
  21. Schaede, R.: Die pflanzlichen Symbiosen, 2. Aufl. Jena 1948.Google Scholar
  22. Schopfer, W. H.: Plants and vitamins. Waltham, Mass. 1949.Google Scholar
  23. Schweizer, G.: Einführung in die Kaltsterilisationsmethode. Jena 1937.Google Scholar
  24. Schwöbel, W.: Eine einfache Durchströmungsapparatur zur Gewebezüchtung aus nichtrostendem Stahl. Exper. Cell Res. 6, 79–86 (1954a).Google Scholar
  25. Eine Kammer zur mikroskopischen Untersuchung von Zellsuspensionen. Mikroskopie (Wien) 9, 302–305 (1954b).Google Scholar
  26. Eine verbesserte Durchströmungsapparatur zur Gewebezüchtung aus Glas. Exper. Cell Res. 9, 383–385 (1955).Google Scholar
  27. Seeliger, I.: Über die Kultur isolierter Wurzeln der Robinie (Robinia pseudoacacia L.). Flora (Jena) 144, 47–83 (1956).Google Scholar
  28. Smith, G. M.: Manual of phycology. Waltham, Mass. 1951.Google Scholar
  29. Sorauer, P.: Handbuch der Pflanzenkrankheiten, 5. Aufl. Die pflanzlichen Parasiten, Bd. II. 1928; Bd. III, Berlin 1932.Google Scholar
  30. Stadelmann, E.: Eine verbesserte Durchströmungskammer. Protoplasma (Wien) 40, 617–623 (1951).Google Scholar
  31. Sykes, G.: Constituents of bacteriological culture media. Cambridge 1956.Google Scholar
  32. Vogel, H.: Die Antibiotica. Nürnberg 1951.Google Scholar
  33. White, Ph. R.: The cultivation of animal and plant cells. New York 1954.Google Scholar
  34. Ziegler, H.: Verwendung von Penicillin zum Reinigen infizierter Orchideenkulturen. Arch. Mikrobiol. 16, 363 (1951).Google Scholar

Literatur

  1. Agarwal, P. N., and W. H. Peterson: The utilisation of non-sugar carbon of molasses by food yeasts. Arch, of Biochem. 20, 29–74 (1949).Google Scholar
  2. Anderson, C. G.: An introduction to bacterial chemistry, 2. Aufl. Edinburgh: Livingstone 1948.Google Scholar
  3. Benecke, W.: Stoffwechsel. In W. Benecke u. L.Jost, Pflanzenphysiologie. Jena: Gustav Fischer 1924.Google Scholar
  4. Clifton, Ch. E.: Leeuwenhoek J. Microbiol, a. Serol. 13,184 (1947). Zit. nach Schulze.Google Scholar
  5. Conn, H. J., and M. A. Darrow: Characteristics of certain bacteria belonging to the autochthonous microflora of soil. Soil Sci. 39, 95–110 (1935).Google Scholar
  6. Enebo, L., L.G. Anderson and H. Lundin: Microbiological fat synthesis by means of Rhodotorula yeasts. Arch, of Biochem. 11, 383–395 (1946).Google Scholar
  7. Falck, R.: Die Bedingungen und die Bedeutung der Zygotenbildung bei Sporodinia grandis. Cohns Beitr. Biol. Pflanz. 8, 213–306 (1901).Google Scholar
  8. Fink, H., J. Krebs u. R. Lechner: Beiträge zur biologischen Zellsubstanz-Synthese der Hefe. IV. Biochem. Z. 301, 143–157 (1939).Google Scholar
  9. Flieg, O.: Fette und Fettsäuren als Material für Bau- und Betriebsstoffwechsel von Aspergillus niger. Jb. Bot. 61, 24–64 (1922).Google Scholar
  10. Georgi, C. E., and P. W. Wilson: The influence of the tension of oxygen on the respiration of Rhizobia. Arch, of Microbiol. 4, 543–564 (1933).Google Scholar
  11. Greene, R. A.: Studies on protein synthesis by genus Azotobacter. Soil Sci. 39, 326–336 (1935).Google Scholar
  12. Heide, S.: Zur Physiologie und Cytologie der Fettbildung bei Endomyces vernalis. Arch. Mikrobiol. 10, 135–188 (1939).Google Scholar
  13. Kaufmann, W.: Untersuchungen über den Energiehaushalt der Hefezelle und die Ökonomie einiger Energiestoffwechseltypen anderer Mikroorganismen. Arch. Mikrobiol. 17, 319–352 (1952).Google Scholar
  14. Krzemieniewski, H., u. S. Krzemieniewski: Bull. Acad. Polon. Sci. et Lettr., Cl. Sci. math, et nat., Ser. B Sci. nat. II 33,137 (1937). Zit. nach Pellegrini.Google Scholar
  15. Kunstmann, H.: Über das Verhältnis zwischen Pilzernte und verbrauchter Nahrung. Diss. Leipzig 1895. Zit. nach Ref. in Beih. bot. Zbl. 6, 7–9 (1896).Google Scholar
  16. Maas-Förster, M.: Der Fett- und Eiweißstoffwechsel von Endomycopsis vernalis unter dem Einfluß von Phosphor- und Kaliummangel. Arch. Mikrobiol. 22, 115–144 (1955).PubMedGoogle Scholar
  17. Martin, H. H.: Beitrag zur Kenntnis der Morphologie und Physiologie der Nektarhefe Candida Reukaufii (Grüss) Diddens et Lodder. Arch. Mikrobiol. 20, 141–162 (1954).PubMedGoogle Scholar
  18. Nikitinsky, J.: Über die Beeinflussung der Entwicklung einiger Schimmelpilze durch ihre Stoff Wechselprodukte. Jb. wiss. Bot. 40, 1–93 (1904).Google Scholar
  19. Ono, N.: Über die Wachstumsbeschleunigung einiger Algen und Pilze durch chemische Reize. J. Coli. Sci. Imp. Univ. Tokyo 13, 141–186 (1900).Google Scholar
  20. Pan, S. C., A. A. Andreason and P. Kolachow: Factors influencing fat synthesis by Rhodotorula gracilis. Arch, of Biochem. 23, 419–433 (1949).Google Scholar
  21. Pellegrini, G.: Über Eiweißbildung durch Bakterien. III. Der ökonomische Koeffizient bei einem sporenbildenden Erdbakterium, Bacillus silvaticus. Arch. Mikrobiol. 9, 545–550 (1938).Google Scholar
  22. Pfeffer, W.: Über Election organischer Nährstoffe. Jb. wiss. Bot. 28, 205–268 (1895).Google Scholar
  23. Raaf, H.: Beiträge zur Kenntnis der Fett- und Eiweißsynthese bei Endomyces vernalis und einigen anderen Mikroorganismen. Arch. Mikrobiol. 12, 131–182 (1942).Google Scholar
  24. Radler, F.: Untersuchungen über den Verlauf der Stoffwechselvorgänge von Azotobacter chroococcum Beij. Arch. Mikrobiol. 22, 335–367 (1955).PubMedGoogle Scholar
  25. Rippel, A.: Energetische Betrachtungen zur Ökonomie der Fettbildung bei Mikroorganismen. Arch. Mikrobiol. 11, 271–284 (1940).Google Scholar
  26. Rippel, A., u. K.Nabel: Über Eiweißbildung durch Bakterien. IV. Kohlenstoffökonomie von Bacillus glycinophilus bei Glykokoll als Stickstoff quelle. Arch. Mikrobiol. 10, 359–375 (1939).Google Scholar
  27. Rippel-Baldes, A.: Die Energieausnützung durch Mikroorganismen in quantitativer Hinsicht. Arch. Mikrobiol. 17, 166–188 (1952).Google Scholar
  28. Grundriß der Mikrobiologie, 3. Aufl. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  29. Rubner, M.: Arch. f. Hyg. 57, 161, 193 (1906). Zit. nach Rippel-Baldes.Google Scholar
  30. Salmenlinna, S.: Über die Entwicklung von Aspergillus niger bei verschiedenen Temperaturen. Ref. in Z. Bot. 13, 44 (1921).Google Scholar
  31. Schönborn, W.: Energetische Untersuchungen an Pilzen und Bakterien. Arch. Mikrobiol. 22, 408–431 (1955).PubMedGoogle Scholar
  32. Schulze, K. L.: Beiträge zur Physiologie und Technologie der Fettbildung bei Mikroorganismen. Arch. Mikrobiol. 15, 315–351 (1950).Google Scholar
  33. Tamiya, H.: Zur Energetik des Wachstums. Beiträge zur Atmungsphysiologie der Schimmelpilze. II. Acta phytochim. (Tokyo) 6, 265–304 (1932).Google Scholar
  34. Tamiya, H., u. S. Yamagutchi: Über die Aufbau- und Erhaltungsatmung. Beiträge zur Atmungsphysiologie der Schimmelpilze. III. Acta phytochim. (Tokyo) 7, 43–64 (1933).Google Scholar
  35. Terroine, E. F., et R. Wurmser: Influence de la température sur l’utilisation de glucose dans le développement de l’Aspergillus niger. C. r. Acad. Sci. Paris 173, 482–483 (1921).Google Scholar
  36. L’énergie de croissance. I. Le développement de l’Aspergillus niger. Bull. Soc. Chim. biol. Paris 4, 519 (1922). Zit. nach Tamiya.Google Scholar
  37. Woodbine, M., M.E. Gregory and T. K. Walker: Microbiological synthesis of fat. Preliminary survey of the fat production of moulds. J. of Exper. Bot. 2, 204–211 (1951).Google Scholar

Literature

  1. Adams, M.: Amylases: Their kinds and properties and factors which influence their activity. Food Technol. 7, 35–38 (1953).Google Scholar
  2. Aitken, R. A., B. P.Eddy, M. Ingram and C. Weurman: The action of culture filtrates of the fungus Myrothecium verrucaria on β-glucosans. Biochemic. J. 64, 63–70 (1956).Google Scholar
  3. Altermatt, H., u. H. Deuel: Über den enzymatischen Abbau von Pektinsäure und die Isolierung von Oligogalakturonsäuren. Helvet. chim. Acta 35, 1422–1426 (1952).Google Scholar
  4. Andrews, J., and R. B. Gilliland: Super-attenuation of beer: A study of three organisms capable of causing abnormal attenuations. J. Inst. Brew. 58,189–196 (1952).Google Scholar
  5. Araki, C., and K. Arai: Studies on agar digesting bacteria. The isolation of agar digesting bacteria and their enzymatic activities. Mem. Fac. Indus. Arts., Kyoto Techn. Univ., Science and Technology 3 (B), 7–23 (1954).Google Scholar
  6. Studies on the chemical constitution of agar. XVIII. Isolation of a new crystalline disaccharide by enzymatic hydrolysis of agar. Bull. Chem. Soc. Japan 29, 339–345 (1956).Google Scholar
  7. Studies on the chemical constitution of agar. XX. Isolation of a tetrasaccharide by enzymatic hydrolysis of agar. Bull. Chem. Soc. Japan 30, 287–293 (1957).Google Scholar
  8. Aschan, K., and B. Norkrans: A study in the cellulolytic variation for wild types and mutants of Collybia velutipes. I. Physiol. Plantarum (Copenh.) 6, 564–583 (1953).Google Scholar
  9. Avineri-Shapiro, S., and S. Hestrin: Polysaccharide production from sucrose. Biochemic. J. 39,167–172 (1945).Google Scholar
  10. Ayres, A., J. Dingle, A.Phipps, W. W. Reid and G. L. Solomons: Enzymic degradation of pectic acid and the complex nature of polygalacturonase. Nature (Lond.) 170, 834 (1952).Google Scholar
  11. Barker, S. A., and E. J. Bourne: Enzymic synthesis of polysaccharides. Quart. Rev. 7, 56–83 (1953).Google Scholar
  12. Barker, S. A., E. J. Bourne and M. Stacey: Synthesis of β-linked glucosaccharides by Aspergillus niger. Chem. a. Ind. 1953, 1287.Google Scholar
  13. Basu, S. N., and D. R. Whitaker: Inhibition and stimulation of the cellulase of Myrothecium verrucaria. Arch, of Biochem. a. Biophysics 42, 12–24 (1953).Google Scholar
  14. Baudet, P., u. G. Hagemann: Purification de la pénicillinase de Bacillus cereus. Experientia (Basel) 10, 374–376 (1954).Google Scholar
  15. Beavan, G. H., and F. Brown: Pectic enzymes of the mould Byssochlamys fulva. Biochemic. J. 45, 221–224 (1949).Google Scholar
  16. Bell, T. A., and J. L. Etchells: Pectin hydrolysis by certain salt-tolerant yeasts. Appl. Microbiol. 4, 196–201 (1956).PubMedGoogle Scholar
  17. Bensusan, H. B., M. A. Derow and B. S. Walker: The proteolytic enzymes of Proteus vulgaris. Arch, of Biochem. a. Biophysics 49, 293–302 (1954).Google Scholar
  18. Berger, L. R., and D. M. Reynolds: The chitinase system of a strain of Streptomnces griseus. Biochim. et Biophysica Acta 29, 522–534 (1958).Google Scholar
  19. Bernfeld, P.: Enzymes of starch degradation and synthesis. Adv. Enzymol. 12, 379–428 (1951).Google Scholar
  20. Bernhauer, K.: Fortschritte der mikrobiologischen Chemie in Wissenschaft und Technik. VI. Enzyme der Mikroorganismen. Erg. Enzymforsch. 11, 302–314 (1950).Google Scholar
  21. Bird, R., and R. H. Hopkins: The action of some α-amylases on amylose. Biochemic. J. 56, 86–99 (1954).Google Scholar
  22. Blackwood, A.C.: Production of cytases active on barley gum by bacteria of the genus Bacillus. Amer. J. Bot. 31. 28–32 (1953).Google Scholar
  23. Blum, R., and W. H. Stahl: Enzymatic degradation of cellulose fibers. Textile Res. J. 22, 178–192 (1952).Google Scholar
  24. Bondi, A., M. de Saint Phalle, J. Kornblum and A. G. Moat: Factors influencing the synthesis of penicillinase by Micrococcus pyogenes. Arch, of Biochem. a. Biophysics 53, 348–353 (1954).Google Scholar
  25. Bourne, E. J.: The biological synthesis of starch. Biochem. Soc. Symposia 1953, Noll, 3–17.Google Scholar
  26. Bovarnick, M., S. Fieber, M. R. Bovarnick and J. Kazlowski: Rate of excretion of glutamylpolypeptide and its polymers in human subjects. Proc. Soc. Exper. Biol. a. Med. 83, 253–254 (1953).Google Scholar
  27. Brooks, J., and W. W. Reid: The complex nature of polygalacturonase from Aspergillus foetidus Thorn et Raper. Chem. a. Ind. 1955, 325–326.Google Scholar
  28. Calesnick, E. J., C. H. Hills and J. J. Willaman: Properties of a commercial fungal pectase preparation. Arch, of Biochem. 29, 432–440 (1950).Google Scholar
  29. Campbell jr., L. L.: Purification and properties of an α-amylase from facultative thermophilic bacteria. Arch, of Biochem. a. Biophysics 54, 154–161 (1955).Google Scholar
  30. Clapper, W. E., and D. C. Wood: Comparison of three methods for the determination of coagulase activity in Staphylococci. J. Bacter. 67, 545–546 (1954).Google Scholar
  31. Clarke, P. H., and M. V. Tracey: The occurrence of chitinase in some bacteria. J. Gen. Microbiol. 14, 188–196 (1956).PubMedGoogle Scholar
  32. Conchie, J.: β-glucosidase from rumen liquor. Biochemic. J. 58, 552–560 (1954).Google Scholar
  33. Costlow, R. D.: Lecithinase from Bacillus anthracis. J. Bacter. 76, 317–325 (1958).Google Scholar
  34. Crewther, W. G., and F. G. Lennox: Enzymes of Aspergillus oryzae. III. The sequence of appearance and some properties of the enzymes liberated during growth. Austral. J. Biol. Sci. 6,410–427 (1953a).Google Scholar
  35. Enzymes of Aspergillus oryzae. IV. Fractionation and preparation of crystals rich in protease. Austral. J. Biol. Sci. 6, 428–446 (1953b).Google Scholar
  36. Crook, E. M., and B. A. Stone: Formation of oligosaccharides during the enzymatic hydrolysis of β-glucosides. Biochemic. J. 55, XXV (1953).Google Scholar
  37. The enzymic hydrolysis of β-glucosides. Biochemic. J. 65, 1–12 (1957).Google Scholar
  38. Crowley, N.: The degradation of starch by group A Streptococci having related antigens. J. Gen. Microbiol. 4, 156–170 (1950).PubMedGoogle Scholar
  39. On amylolytic strains of Streptococcus pyogenes. J. Gen. Microbiol. 10, 411–426 (1954).Google Scholar
  40. The action of Streptococcal amylase in relation to the synthesis of an amylosaccharide by amylolytic strains of Streptococcus pyogenes. J. Gen. Microbiol. 13, 218–225 (1955).Google Scholar
  41. Dawson, C. R., and W. B. Tarpley: Copper oxidases. In: The Enzymes, edit, by J. B. Sumner and K. Myrbäck, Vol. II, part 1, pp. 454–498. New York: Academic Press 1951.Google Scholar
  42. Demain, A. L., and H. J. Phaff: Hydrolysis of the oligogalacturonides and pectic acid by yeast polygalacturonase. J. of Biol. Chem. 210, 381–393 (1954).Google Scholar
  43. Recent advances in the enzymatic hydrolysis of pectic substances. Wallerstein Labor. Commun. 20, 119–140 (1957).Google Scholar
  44. Deuel, H., and E. Stutz: Pectic substances and pectic enzymes. Adv. Enzymol. 20, 341–382 (1958).Google Scholar
  45. Dingle, J., W. W. Reid and G.L.Solomons: The enzymic degradation of pectin and other polysaccharides. II. Application of the cupplate essay to the estimation of enzymes. J. Sci. Food Agricult. 4, 149–155 (1953).Google Scholar
  46. Dingle, J., and G. L. Solomons: Enzymes from microfungi. J. Appl. Chem. 2, 395–399 (1952).Google Scholar
  47. Dion, W. M.: The proteolytic enzymes of microorganisms. Survey of fungi and Actinomycetes for protease production in submerged culture. Canad. J. Res. C. 28, 577–585 (1950).Google Scholar
  48. Production and properties of a polyphenol oxidase from the fungus Polyporus versicolor. Canad. J. Bot. 30, 9–21 (1952).Google Scholar
  49. Doudoroff, M., and R. O’Neal: On the reversibility of levulan synthesis by Bacillus subtilis. J. of Biol. Chem. 159, 585–592 (1945).Google Scholar
  50. Dudani, A.I.: Proteolytic and coagulating enzymes of enterococci. Diss. Iowa State College, U.S.A. 1950.Google Scholar
  51. Duthie, E. S.: The production of free Staphylococcal coagulase. J. Gen. Microbiol. 10, 437–444 (1954a).PubMedGoogle Scholar
  52. Evidence for two forms of Staphylococcal coagulase. J. Gen. Microbiol. 10, 427-436 (1954b).Google Scholar
  53. Dworschack, R. G., and L. J. Wickerham: Production of extracellular invertase by the yeast, Saccharomyces uvarum NRRL Y-972. Arch, of Biochem. a. Biophysics 76, 449–456 (1958).Google Scholar
  54. Edelman, J.: The formation of oligosaccharides by enzymic transglycosylation. Adv. Enzymol. 17, 189–232 (1956).Google Scholar
  55. Elliott, S. D.: The crystallization and serological differentiation of a streptococcal proteinase and its precursor. J. Exper. Med. 92, 201–218 (1950).Google Scholar
  56. Emmart, E. W., and R. M. Cole: Studies on Streptococcal hyaluronidase and antihyaluronidase. J. Bacter. 70, 596–607 (1955).Google Scholar
  57. Fåhraeus, G.: On the oxidation of phenolic compounds by wood-rotting fungi. Ann. Roy. Agricult. Coll. Sweden 16, 618–629 (1949).Google Scholar
  58. Formation of laccase by Polyporus versicolor in different culture media. Physiol. Plantarum (Copenh.) 5, 284–291 (1952).Google Scholar
  59. Further studies in the formation of laccase by Polyporus versicolor. Physiol. Plantarum (Copenh.) 7, 704–712 (1954).Google Scholar
  60. Fåhraeus, G., and G. Lindeberg: Influence of tyrosine and some other substances on the laccase formation of Polyporus species. Physiol. Plantarum (Copenh.) 6, 150–158 (1953).Google Scholar
  61. Forbath, T. P.: Flexible processing keys enzymes’future. Chem. Eng. 64, 226–229 (1957).Google Scholar
  62. Forsyth, W. G. C., and D. M. Webley: A method for studying the carbohydrate metabolism of microorganisms. Nature (Lond.) 162, 150–151 (1948).Google Scholar
  63. Reducing sugars liberated during bacterial synthesis of polysaccharides from sucrose. J. Gen. Microbiol. 4, 87–91 (1950).Google Scholar
  64. French, D., and D. W. Knapp: The maltase of Clostridium acetobutylicum. Its specificity range and mode of action. J. of Biol. Chem. 167, 463–471 (1950).Google Scholar
  65. French, D., M. L. Levine, E. Norberg, P. Nordin, J. H. Pazur and G. M. Wild: The Schardinger dextrins. VII. Cosubstrate specificity in coupling reactions of Bacillus macerans amylase. J. Amer. Chem. Soc. 76, 2387–2390 (1954).Google Scholar
  66. French, D., J. Pazur, M. L. Levine and E. Norberg: Reversible action of macerans amylase. J. Amer. Chem. Soc. 70, 3145 (1948).Google Scholar
  67. Friedman, M. E., W. O. Nelson and W. A. Wood: Proteolytic enzymes from Bacterium linens. J. Dairy Sci. 36, 1124–1134 (1953).Google Scholar
  68. Fukumoto, J., Y. Sakazaka and K. Minamii: Amylase of Rhizopus delemar. Crystalline protein of so called glucamylase and its enzyme action. Symposia on Enzyme Chem. (Japan) 9, 94–97 (1954). Chem. Abstr. 48, 7084 (1954).Google Scholar
  69. Furuichi, M., and T. Okamoto: Studies on the yeast pectic enzymes. J. Agricult. Chem. Soc. Japan 28, 703–707 (1954).Google Scholar
  70. Gäumann, E., u. E. Böhni: Über adaptive Enzyme bei parasitischen Pilzen. I. Helvet. chim. Acta 30, 24–38 (1947a).PubMedGoogle Scholar
  71. Über adapt ive Enzyme bei parasitischen Pilzen. II. Helvet. chim. Acta 30, 1591–1595 (1947b).Google Scholar
  72. Gehring, F.: Beitrag zum Chitinabbau durch Mikro-Organismen. Zbl. Bakter., Abt. II 108, 232–242 (1954).Google Scholar
  73. Gibian, H.: Das Hyaluronsäure-Hyaluronidase-System. Erg. Enzymforsch. 13, 1–84 (1954).Google Scholar
  74. Gillespie, J. M., and E. F Woods: Enzymes of Aspergillus oryzae. V. Ethanol fractionation at low ionic strengths Austral. J. Biol. Sci. 6, 447–462 (1953).Google Scholar
  75. Gilligan, W., and E.T. Reese: Evidence for multiple components in microbial cellulases. Canad. J. Microbiol. 1, 90–107 (1954).Google Scholar
  76. Gilliland, R. B.: A study of a wild yeast — Saccharomyces diastaticus. Wallerstein Labor. Commun. 17, 165–176 (1954).Google Scholar
  77. Giri, K. V., P. L. N. Rao, K. Saroja u. R. Venkataraman: Enzyme synthesis of oligosaccharides by Penicillium chrysogenum. Naturwiss. 40, 484–485 (1953).Google Scholar
  78. Giri, K. V., K. Saroja, R. Venkataraman and P. L. N. Rao: Isolation of isomaltose 6-(αα-d-glucopyranosyl)-d-glucose from the culture filtrate of Penicillium chrysogenum Q 176. Arch, of Biochem. a. Biophysics 51, 62–67 (1954).Google Scholar
  79. Goering, K. J., and V. C. Bruski: Purified α-amylase from submerged cultures of Aspregillus oryzae. Cereal Chem. 31, 7–14 (1954).Google Scholar
  80. Gorini, L., et G. Lanzavecchia: Recherches sur le mécanisme de production d’une protéinase bactérienne. I. Nouvelle technique de détermination d’une protéinase par la coagulation du lait. Biochim. et Biophysica Acta 14,407–414 (1954a).Google Scholar
  81. Recherches sur le mécanisme de production d’une protéinase bactérienne. II. Mise en évidence d’un zymogène précurseur de la protéinase de Coccus P. Biochim. et Biophysica Acta 15, 399–410 (1954b).Google Scholar
  82. Gottlieb, S., and M. G. Pelczar jr.: Microbiological aspects of lignin degradation. Bacter. Rev. 15, 55–76 (1951).Google Scholar
  83. Graae, J.: Esterase activity shown by subtilisin, a proteolytic enzyme from Bacillus subtilis. Acta chem. scand. (Stockh.) 8, 356–357 (1954).Google Scholar
  84. Greathouse, G. A.: Microbiological degradation of cellulose. Textile Res. J. 20, 227–238 (1950).Google Scholar
  85. Grutter, F. H., and L. N. Zimmerman: A proteolytic enzyme of Streptococcus zymogenes. J. Bacter. 69, 728–732 (1955).Google Scholar
  86. Güntelberg, A. V.: A method for the production of the plakalbuminGoogle Scholar
  87. —forming proteinase from Bacillus subtilis. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 27–35 (1954).Google Scholar
  88. Güntelberg, A. Y., and M. Ottesen: Purification of the proteolytic enzyme from Bacillus subtilis. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 36–48 (1954).Google Scholar
  89. Hackman, R. H.: Studies on chitin. I. Enzymatic degradation of chitin and chitin esters. Austral. J. Biol. Sci. 7, 168–178 (1954).Google Scholar
  90. Hale, W. S., and L. C. Rawlins: Amylase of Bacillus macerans. Cereal Chem. 28, 49–58 (1951).Google Scholar
  91. Halliwell, G.: Cellulolytic preparations from micro-organisms of the rumen and from Myrothecium verrucaria. J. Gen. Microbiol. 17, 166–183 (1957).PubMedGoogle Scholar
  92. Hammerstrom, R. A., K.D. Claus, J. W. Coghlan and R. H. McBee: The constitutive nature of bacterial cellulases. Arch, of Biochem. a. Biophysics 56, 123–129 (1955).Google Scholar
  93. Hartman, P.A., and P. A. Tetrault: Bacillus stearothermophilus. II. Certain factors affecting amylase production on some undefined media. Appl. Microbiol. 3, 11–14 (1955).PubMedGoogle Scholar
  94. Hartman, P. A., R. Wellerson jr. and P. A. Tetrault: Bacillus stearothermophilus. I. Thermal and phn stability of the amylase. Appl. Microbiol. 3, 7–10 (1955).PubMedGoogle Scholar
  95. Hartman, R. E., L.N. Zimmerman and R. Rabin: Protein biosynthesis by Streptococcus liquefaciens. II. Purine, pyrimidine and vitamin requirements. Canad. J. Microbiol. 3, 553–558 (1957).Google Scholar
  96. Hash, J. H., and K.W. King: Demonstration of an oligosaccharide intermediate in the enzymatic hydrolysis of cellulose. Science (Lancaster, Pa.) 120, 1033–1035 (1954).Google Scholar
  97. On the nature of the β-glucosidases of Myrothecium verrucaria. J. of Biol. Chem. 232, 381–393 (1958a).Google Scholar
  98. Some properties of an aryl-β-glucosidase from culture filtrates of Myrothecium verrucaria. J. of Biol. Chem. 232, 395–402 (1958b).Google Scholar
  99. Haugaard, E. S., and N. Haugaard: Degradation of crystalline insulin by subtilisin (a proteinase from B. subtilis). C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 350–364 (1955).Google Scholar
  100. Hehre, E. J.: Comparison of dextran synthesis by Leuconostoc enzyme with starch synthesis by potato phosphorylase. Proc. Soc. Exper. Biol. a. Med. 254, 240–241 (1943).Google Scholar
  101. Enzymic synthesis of polysaccharides: A biological type of polymerization. Adv. Enzymol. 11, 297–332 (1951).Google Scholar
  102. Low-molecular weight dextran as a modifier of dextran synthesis. J. Amer. Chem. Soc. 75, 4866 (1953).Google Scholar
  103. Hehre, E. J., and J. Y. Sugg: Serologically reactive polysaccharides produced through the action of bacterial enzymes. I. Dextran of Leuconostoc mesenteroides from sucrose. J. of Exper. Med. 75, 339–353 (1942).Google Scholar
  104. Hestrin, S., and J. Goldblum: Levanpolyase. Nature (Lond.) 172, 1046–1047 (1953).Google Scholar
  105. Higa, H. H., R. D. O’Neill and M. W. Jennison: Partial purification of cellulase from a wood rotting Basidiomycete. J. Bacter. 71, 382 (1956).Google Scholar
  106. Hirsch, H. M.: Temperature-dependent cellulase production by Neurospora crassa and its ecological implications. Experientia (Basel) 10, 180–182 (1954).Google Scholar
  107. Hoogerheide, J. C.: Microbial enzymes other than fungal amylases. In: Industrial fermentations, edit, by L. A. Underkofler and R. J. Hickey, Vol. II, pp. 122–154. New York: Chemical Publ. Co. 1954.Google Scholar
  108. Hungate, R. E.: The anaerobic mesophilic cellulolytic bacteria. Bacter. Rev. 14, 1–49 (1950).Google Scholar
  109. Hunt, W. G., and R. O. Moore: The proteolytic system of a gram negative rod isolated from the bovine rumen. Aoppl. Micrbiol. 6, 36–39 (1958).Google Scholar
  110. Husain, I., and I. J. McDonald: Characteristics of an extracellular proteinase of Micrococcus freudenreichii. Canad. J. Microbiol. 4, 237–242 (1958).Google Scholar
  111. Ishimatsu, K., Y. Kibesaki and S. Minamii: Studies on the agar liquefying bacteria. XVII. On the mechanism of enzymic degradation of agar. Sci. and Indus. (Japan) 30, 137–142 (1956).Google Scholar
  112. Jermyn, M. A.: Fungal cellulases. I. General properties of unpurified enzyme preparations from Aspergillus oryzae. Austral. J. Sci. Res. B 5,409–432 (1952a).Google Scholar
  113. Fungal cellulases. II. The complexity of enzymes from Aspergillus oryzae that split β-glucosidic linkages and their partial separation. Austral. J. Sci. Res., Ser. B 5, 433–443 (1952b).Google Scholar
  114. Fungal cellulases. III. Stachybotrys atra: growth and enzyme production on non-cellulosic substrates. Austral. J. Biol. Sci. 6, 48–69 (1953).Google Scholar
  115. Fungal cellulases. IV. Production and purification of an extracellular β-glucosidase of Stachybotris atra. Austral. J. Biol. Sci. 8,541–562 (1955a)Google Scholar
  116. Fungal cellulases. V. Enzymic properties of Stachybotrys atra β-glucosidase. Austral. J. Biol. Sci. 8, 563–576 (1955b).Google Scholar
  117. Fungal cellulases. VI. Substrate and inhibitor specificity of the β-glucosidase of Stachybotrys atra. Austral. J. Biol. Sci. 8, 577–602 (1955c).Google Scholar
  118. Fungal cellulases. VIII. Further observations on the β-glucosidase of Stachybotrys atra. Austral. J. Biol. Sci. 11, 114–126 (1958).Google Scholar
  119. Jermyn, M. A., and R. Thomas: Transferase activity of the β-glucosidases of Aspergillus oryzae. Austral. J. Biol. Sci. 6, 70–76 (1953).Google Scholar
  120. Jeuniaux, C.: Mise en évidence d’une flore bacterienne chitinolytique dans le tube digestif de l’escargot (Helix pomatia L.). Arch, internat. Physiol. 58, 350–351 (1950a).Google Scholar
  121. Production d’une exochitinase par des bactéries chitinolytiques isolées de contenu intestinal de l’escargot. Arch, internat. Physiol. 58, 352–353 (1950b).Google Scholar
  122. Recherche de la chitinase dans les tissus glandulaires digestifs de l’escargot (H. pomatia L.). Arch, internat. Physiol. 58, 354–355 (1950c).Google Scholar
  123. Production d’exochitinase par des Streptomyces. C. r. Soc. Biol. (Paris) 149, 1307–1308 (1955).Google Scholar
  124. Premières étappes de purification d’une chitinase microbienne. Arch. int. Physiol. Biochim. 64, 522–524 (1956).Google Scholar
  125. Purification of a Streptomyces Chitinase. Biochemic. J. 66, 29 P (1957).Google Scholar
  126. Kaji, A.: On the polygalacturonase action of bacteria of the genus Clostridium. J. Agricult. Chem. Soc. Japan 28, 695–699 (1954).Google Scholar
  127. Kalckar, H. M.: The mechanism of transglycosidation. In: The mechanism of enzyme action, edit, by W. D. McElroy and B. Glass, pp. 675–739. Baltimore: Johns Hopkins Press 1954.Google Scholar
  128. Kertesz, Z. I.: Pectic enzymes. In: The enzymes, edit, by J. B. Sumner and K. Myrbäck, Vol.1, part 2, pp. 745–768. New York: Academic Press 1951.Google Scholar
  129. Kitts, W. D., and L. A. Underkofler: Digestion by ruman microorganisms. Hydrolytic products of cellulose and the cellulolytic enzymes. Agricult. Food Chem. 2, 639–645 (1954).Google Scholar
  130. Kobayashi, T.: Studies on dextran. Part 4: Dextran destroying enzyme of molds. J. Agricult. Chem. Soc. Japan 28, 352–357 (1954).Google Scholar
  131. Kobayashi, T., and K. Yamanouchi: Limit dextrinase activity of molds. J. Agricult. Chem. Soc. Japan 27, 180–186 (1953).Google Scholar
  132. Koch, O.G., u. G.A. Dedie: Beitrag zur proteolytischen Aktivität von Schimmelpilzen. Biochem. Z. 328, 536–548 (1957).PubMedGoogle Scholar
  133. Koepsell, H. J., H. M. Tsuchiya, N. N. Hellman, A. Kazenko, C. A. Hoffman, E. S. Sharpe and R. W. Jackson: Enzymic synthesis of dextran. Acceptor specificity and chain initiation. J. of Biol. Chem. 200, 793–801 (1953).Google Scholar
  134. Kogut, M., M. R. Pollock and E. J. Tridgell: Purification of penicillin-induced penicillinase of Bacillus cereus NRRL 569: A comparison of its properties wdth those of a similarly purified penicillinase produced spontaneously by a constitutive mutant strain. Biochemic. J. 62, 391–403 (1956).Google Scholar
  135. Kooiman, P.: Enzymic hydrolysis of alginic acid. Biochim. et Biophysica Acta 13, 338–340 (1954).Google Scholar
  136. Some properties of cellulase of Myrothecium verrucaria and some other fungi. II. Enzymologia (Den Haag) 17, 371–384 (1957).Google Scholar
  137. Kooiman, P., P. A. Roelofsen and S. Sweeris: Some properties of cellulase from Myrothecium verrucaria. Enzymologia (Den Haag) 16, 237–246 (1953).Google Scholar
  138. Koshland jr., D.E.: Group transfer as an enzymic substitution mechanism. In: The mechanism of enzyme action, edit, by W.D. McElroy and B. Glass, pp. 608–641. Baltimore: Johns Hopkins Press 1954.Google Scholar
  139. Kraght, A. J., and M.P. Starr: Pectic enzymes of Erwinia carotovora. Arch, of Biochem. a. Biophysics 42, 271–277 (1953).Google Scholar
  140. Langlykke, A. F., C. V. Smythe and D. Perlman: Enzyme technology. In: The enzymes, edit, by J. B. Sumner and K. Myrbäck, Vol. II, part 2, pp. 1180–1338. New York: Academic Press 1952.Google Scholar
  141. Lennox, F. G.: The variety, properties and uses of proteolytic enzymes. Rev. Pure Appl. Chem. 2, 33–56 (1952).Google Scholar
  142. Levinson, H. S., G. R. Mandels and E. T. Reese: Products of enzymatic hydrolysis of cellulose and its derivatives. Arch, of Biochem. a. Biophysics 31, 351–365 (1951).Google Scholar
  143. Lindeberg, G., and G. Fåhraeus: Nature and formation of phenol oxidases in Polyporus zonatus and P. versicolor. Physiol. Plantarum (Copenh.) 5, 277–283 (1952).Google Scholar
  144. Lindeberg, G., and G. Holm: Occurrence of tyrosinase and laccase in fruit bodies and mycelia of some hymenomycetes. Physiol. Plantarum (Copenh.) 5, 100–114 (1952).Google Scholar
  145. Lineweaver, H., and E. F. Jansen: Pectic enzymes. Adv. Enzymol. 11, 267–295 (1951).Google Scholar
  146. Lüh, B. S., and H. J. Phaff: Studies on polygalacturonase of certain yeasts. Arch, of Biochem. a. Biophysics 33, 212–227 (1951).Google Scholar
  147. Properties of yeast polygalacturonase. Arch, of Biochem. a. Biophysics 48, 23–37 (1954a).Google Scholar
  148. End products and mechanism of hydrolysis of pectin and pectic acid bv yeast polygalacturonase (YPG). Arch, of Biochem. a. Biophysics 51, 102–113 (1954b).Google Scholar
  149. MacDonnell, L. R., R. Jang, E. F. Jansen and H. Lineweaver: The specificity of pectin esterases from several sources with some notes on purification of orange pectin esterase. Arch, of Biochem. 28, 260–273 (1950).Google Scholar
  150. MacLennan, J. D., I. Mandl and E. L. Howes: Bacterial digestion of collagen. J. Clin. Invest. 32, 1317–1322 (1953).PubMedGoogle Scholar
  151. New proteolytic enzymes from Clostridium histolyticum filtrates. J. Gen. Microbiol. 18, 1–8 (1957).Google Scholar
  152. Mandels, G. R.: Synthesis and secretion of invertase in relation to the growth of Myrothecium verrucaria. J. Bacter. 71, 684–688 (1956).Google Scholar
  153. Mandels, M., and E. T. Reese: Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacter. 73, 269–278 (1957).Google Scholar
  154. Mandl, I., J. D. MacLennan, E.L. Howes, R.H. DeBellis and A. Sohler: Isolation and characterization of proteinase and collagenase from Clostridium histolyticum. J. Clin. Invest. 32, 1323–1329 (1953).PubMedGoogle Scholar
  155. Manson, E. E. D., M. R. Pollock and E. J. Tridgell: A comparison of the properties of penicillinase produced by Bacillus subtilis and Bacillus cereus with and without addition of penicillin. J. Gen. Microbiol. 11, 493–505 (1954).PubMedGoogle Scholar
  156. Markovitz, A., and H.P. Klein: Some aspects of the induced biosynthesis of alpha-amylase of Pseudomonas saccharophila. J. Bacter. 70, 641–648 (1955a).Google Scholar
  157. On the sources of carbon for the induced biosynthesis of alpha-amylase in Pseudomonas saccharophila. J. Bacter. 70, 649–655 (1955b).Google Scholar
  158. Markovitz, A., H. P. Klein and E.H. Fischer: Purification, crystallization, and properties of the α-amylase of Pseudomonas saccharophila. Biochim. et Biophysica Acta 19, 267–273 (1956).Google Scholar
  159. Marsh, P. B., K. Bollen-bacher, M. L. Butler and L. R. Guthrie: “S–factor”, a microbial enzyme which increases the swelling of cotton in alkali. Textile Res. J. 23, 878–888 (1953).Google Scholar
  160. Matsushima, K.: The proteolytic enzymes of molds. III. Proteolytic activities of various species of molds. J. Ferment. Technol. (Japan) 31, 389–392 (1953).Google Scholar
  161. Proteolytic enzymes of molds. V. Proteolytic activities of commercial strains of Aspergillus flavus-oryzae group. J. Ferment. Technol. (Japan) 32, 14–19 (1954).Google Scholar
  162. Matsuyama, M.: Aspergillus. VIII. Influence of the amount of nitrogen in the culture medium and Ph upon production of amylase. J. Ferment. Technol. (Japan) 31, 160–162 (1953).Google Scholar
  163. Mattoon, J. R., C.E. Holmlund, S.A. Scheparz, J. J. Vavra and M. J. Johnson: Bacterial levans of intermediate molecular weight. Appl. Microbiol. 3, 321–333 (1955).PubMedGoogle Scholar
  164. Matus, J.: Untersuchungen über die Aktivität der Pektinase. Ber. Schweiz, bot. Ges. 58, 319–380 (1948).Google Scholar
  165. Maxwell, Margaret E.: Enzymes of Aspergillus oryzae. I. The development of a culture medium yielding high protease activity. Austral. J. Sci. Res. B 5, 42–55 (1952a).Google Scholar
  166. Enzymes of Aspergillus oryzae. II. The yield of enzymes from mutants produced by ultraviolet irradiation. Austral. J. Sci. Res. B 5, 56–63 (1952b).Google Scholar
  167. McBee, R. H.: The anaerobic thermophilic cellulolytic bacteria. Bacter. Rev. 14, 51–63 (1950).Google Scholar
  168. The characteristics of Clostridium thermocellum. J. Bacter. 67, 505–506 (1954).Google Scholar
  169. McConnel, W. B., E.Y. Spencer and J. A. Trew: Proteolytic enzymes of microorganisms. V. Extracellular peptidases produced by fungi grown in submerged culture. Canad. J. Chem. 31, 697–704 (1953).Google Scholar
  170. McCready, R. M., and E. A. McComb: Course of action of polygalacturonase on polygalacturonic acids. Agricult. Food Chem. 1, 1165–1168 (1953).Google Scholar
  171. McCready, R. M., and C. G. Seegmiller: Action of pectic enzymes on oligogalacturonic acids and some of their derivatives. Arch, of Biochem. a. Biophysics 50, 440–450 (1954).Google Scholar
  172. Mihashi, Y., and M. Tatsumi: Formation of amylase by Aspergillus oryzae. I. Influence of cultural conditions. Ann. Rep. Tokyo Coll. Pharm. 3, 177–185 (1953). Ref. Chem. Abstr. 48, 12892 (1954).Google Scholar
  173. Mills, G. Barbara: A biochemical study of Pseudomonas prunicola Wormald. I. Pectinesterase. Biochemic. J. 44, 302–305 (1949).Google Scholar
  174. Mushin, R., and V. J. Kerr: Clotting of citrated plasma and citrate utilization by intestinal gram-negative bacilli. J. Gen. Microbiol. 10, 445–451 (1954).PubMedGoogle Scholar
  175. Myrbäck, K., and G. Neumüller: Amylases and the hydrolysis of starch and glycogen. In: The enzymes, edit, by J. B. Sumner and K. Myrbäck, pp. 653–724. New York, N.Y.: Academic Press 1950.Google Scholar
  176. Nadel, H., C. I. Randles and G. L. Stahly: The influence of environmental factors on the molecular size of dextran. Appl. Microbiol. 1, 217–224 (1953).PubMedGoogle Scholar
  177. Norberg, E., and D. French: Studies on the Schardinger dextrins. III. Redistribution reactions of macerans amylase. J. Amer. Chem. Soc. 72,1202–1205 (1950).Google Scholar
  178. Norkrans, B.: Influence of cellulolytic enzymes from Hymenomycetes on cellulose preparations of different crystallinity. Physiol. Plantarum (Copenh.) 3, 75–87 (1950).Google Scholar
  179. Studies of β-glucoside- and cellulose-splitting enzymes from Polyporus annosus Fr. Physiol. Plantarum (Copenh.) 10, 198–213 (1957a).Google Scholar
  180. Studies of β-glucoside- and cellulose-splitting enzymes from different strains of Collybia velutipes. Physiol. Plantarum (Copenh.) 10, 454–466 (1957b).Google Scholar
  181. Norkrans, B., and K. Aschan: A study in the cellulolytic variation for wild types and mutants of Collybia velutipes. II. Relations to different nutrient media. Physiol. Plantarum (Copenh.) 6, 829–836 (1953).Google Scholar
  182. Norkrans, B., and B. G. Rånby: Studies of the enzymatic degradation of cellulose. Physiol. Plantarum (Copenh.) 9, 198–211 (1956).Google Scholar
  183. Nortje, B. K., and R. H. Vaughn: The pectolytic activity of species of the genus Bacillus: Qualitative studies with B. subtilis and B. pumilus in relation to the softening of olives and pickles. Food Res. 18, 57–69 (1953).Google Scholar
  184. Oda, M., N. Takata, Y. Morita and K. Gino: Variation of Aspergillus oryzae. VI. The natural variation. J. Ferment. Technol. (Japan) 32, 145–147 (1954).Google Scholar
  185. Oda, M., K. Yamagata and T. Sawabe: Variation of Aspergillus oryzae. II. The induced variation. J. Ferment. Technol. (Japan) 31,154–160 (1953).Google Scholar
  186. Ogbtjrn, C. A., T. N. Harris and Susanna Harris: Extracellular antigens in steady-state cultures of the hemolytic Streptococcus: production of proteinase at low ph- J. Bacter. 76, 142–151 (1958).Google Scholar
  187. Okazaki, H.: Properties of saccharogenic amylase of Aspergillus oryzae. J. Agricult. Chem. Soc. Japan 27, 296 (1953).Google Scholar
  188. Purification and properties of saccharogenic amylase from Aspergillus oryzae. Symp. Enzyme Chem. (Japan) 9, 43–45 (1954). Ref. Chem. Abstr. 48, 7082 (1954).Google Scholar
  189. Ozawa, J.: Fermentation of pectin. I. Conditions under which protopectinase is active. [In Japanese.] Nogaku Kenkyu 37, 14–16 (1947).Google Scholar
  190. Ozawa, J., and K. Okamoto: Saccharifying polygalacturonase of Penicillium expansum. [In Japanese.] Nogaku Kenkyu 41, 79–81 (1953).Google Scholar
  191. Pan, S. C., L. W. Nicholson and P. Kolachov: Enzymic synthesis of oligosaccharides.Google Scholar
  192. A transglycosidation. Arch, of Biochem. a. Biophysics 42, 406–420 (1953a).Google Scholar
  193. Transglycosidase activity of amylase preparations. Arch, of Biochem. a. Biophysics 42,421–434 (1953b).Google Scholar
  194. Pazur, J. H., and D. French: The action of transglucosidase of Aspergillus oryzae on maltose. J. of Biol. Chem. 196, 265–272 (1952).Google Scholar
  195. Phaff, H. J.: The production of exocellular pectic enzymes by Penicillium chrysogenum. I. On the formation and adaptive nature of polygalacturonase and pectinesterase. Arch, of Biochem. 13, 67–81 (1947).Google Scholar
  196. Phaff, H. J., and A. L. Demain: The uni-enzymatic nature of yeast polygalacturonase. J. of Biol. Chem. 218, 875–884 (1956).Google Scholar
  197. Phillips, L. L., and M. L. Caldwell: The purification and properties of a glucoseforming amylase from Rhizopus delemar, glue amylase. J. Amer. Chem. Soc. 73, 3559–3563 (1951a).Google Scholar
  198. The action of glucamylase, a glucose producing amylase, formed by the mold Rhizopus delemar. J. Amer. Chem. Soc. 73, 3563–3568 (1951b).Google Scholar
  199. Phillipson, A. T.: Digestion of cellulose by the ruminant. Biochem. Soc. Symp. 11, 63–70 (1953).Google Scholar
  200. Pollock, M. R., A. Torriani and E. J. Tridgell: Crystalline bacterial penicillinase. Biochemic. J. 62, 387–391 (1956).Google Scholar
  201. Rabin, R., and L. N. Zimmerman: Proteinase biosynthesis by Streptococcus liquefaciens. I. The effect of carbon and nitrogen sources, pn, and inhibitors. Canad. J. Microbiol. 2, 747–756 (1956).Google Scholar
  202. Rahman, M. B., and M.A. Joslyn: Prpoerties of purified fungal polygalacturonase. Food Res. 18, 301–304 (1953a).Google Scholar
  203. The hydrolysis of pectic acid by purified fungal polygalacturonase. Food Res. 18, 308–318 (1953b).Google Scholar
  204. Reese, E. T.: Enzymatic hydrolysis of cellulose. Appl. Microbiol. 4, 39–45 (1956).PubMedGoogle Scholar
  205. Reese, E.T., and W. Gilligan: The swelling factor in cellulose hydrolysis. Textile Res. J. 24, 663–669 (1954).Google Scholar
  206. Reese, E. T., W. Gilligan and B. Norkrans: Effect of cellobiose on the enzymatic hydrolysis of cellulose and its derivatives. Physiol. Plantarum (Copenh.) 5, 379–390 (1952).Google Scholar
  207. Reese, E. T., and H. S. Le Vinson: A comparative study of the breakdown of cellulose by microorganisms. Physiol. Plantarum (Copenh.) 5, 345–366 (1952).Google Scholar
  208. Reid, W. W.: Pectic enzymes of the fungus Byssochlamys fulva. Nature (Lond.) 166, 76 (1950a).Google Scholar
  209. Estimation and separation of the pectinesterase and polygalacturonase of micro-fungi. Nature (Lond.) 166,569 (1950b).Google Scholar
  210. Pectic enzymes of the fungus Byssochlamys fulva. Biochemic. J. 50, 289–292 (1952).Google Scholar
  211. Reynolds, D.M.: Exocellular chitinase from a Streptomyces sp. J. Gen. Microbiol. 11, 150–159 (1954).PubMedGoogle Scholar
  212. Richards, F. M.: Titration of amino groups released during the digestion of ribonuclease by subtilisin. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 322–328 (1955a).Google Scholar
  213. On an active intermediate produced during the digestion of ribonuclease by subtilisin. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 329–346 (1955b).Google Scholar
  214. Roboz, E., R. W. Barratt and E. L. Tatum: Breakdown of pectic substances by a new enzyme from Neurospora. J. of Biol. Chem. 195, 459–471 (1952).Google Scholar
  215. Roelofsen, P.: Polygalacturonase activity in yeast, Neurospora and tomato extract. Biochim. et Biophysica Acta 10, 410–413 (1953).Google Scholar
  216. Rogers, H. J.: Conditions controlling the production of hyaluronidase by microorganisms growing in simplified media. Biochemic. J. 39, 435–443 (1945).Google Scholar
  217. The rate of formation of hyaluronidase, coagulase and total extracellular protein by strains of Staphylococcus aureus. J. Gen. Microbiol. 10, 209–220 (1954).Google Scholar
  218. The preferential suppression of hyaluronidase formation in cultures of Staphylococcus aureus. J. Gen. Microbiol. 16, 22–37 (1957).Google Scholar
  219. Rogers, H. J., and P. C. Spensley: Selective inhibition of the liberation of extracellular enzymes and protein in cultures of Staphylococcus aureus. Biochemic. J. 60, 635–643 (1955).Google Scholar
  220. Saito, H.: Pectic glycosidases of Aspergillus niger. J. Gen. Appl. Microbiol. 1, 38–60 (1955).Google Scholar
  221. Sanchez-Marroquin, A., y C. Zapata: Occurrence and principal characteristics of the amylases of Streptomyces. Ciencia (Mexico) 13, 266–270 (1953). Ref. Chem. Abstr. 48, 12874 (1954).Google Scholar
  222. Saroja, K., R. Venkataraman and K. V. Giri: Transglucosidation in Penicillium chrysogenum Q 176. Isolation and identification of the oligosaccharides. Biochemic. J. 60, 399–403 (1955).Google Scholar
  223. Schubert, E.: Die Trennung der Pektinglycosidasen (PG) aus Aspergillus niger durch selektive Inaktivierung und Adsorption. Biochem. Z. 323. 78–88 (1952).PubMedGoogle Scholar
  224. Neuere Ergebnisse der Stärke und Pektinenzymologie. Melliand Textilber. 34, 646–648, 757–758, 953–955, 1067–1069, 1145–1148 (1953); 35, 168–169, 381–386 (1954).Google Scholar
  225. Einfluß von Wasserstoff und Alkali-Ionen auf den enzymatischen Abbau von Pektin verschiedenen Veresterungsgrades durch Pektinglycosidasen und Pektinglycosidasegemische. Helvet. chim. Acta 37, 691–700 (1954).Google Scholar
  226. Schwimmer, S.: Evidence for the purity of Schardinger dextrinogenase. Arch, of Biochem. a. Biophysics 43, 108–117 (1953).Google Scholar
  227. Schwimmer, S., and J. A. Garibaldi: Further studies on the production, purification and properties of the Schardinger dextrinogenese of Bacillus macerans. Cereal Chem. 29, 108–122 (1952).Google Scholar
  228. Seegmiller, C. G., and E. F. Jansen: Polymethylgalacturonase, an enzyme causing the glycosidic hydrolysis of esterified pectic substances. J. of Biol. Chem. 195, 327–336 (1952).Google Scholar
  229. Shtj, P.: Further studies on the nitrogen source for the production of amylolytic enzymes by submerged cultures of Aspergillus niger. Canad. J. Bot. 30, 331–337 (1952).Google Scholar
  230. Shu, P., and A. C. Blackwood: Studies on carbon and nitrogen sources for the production of amylolytic enzymes by submerged culture of Aspergillus niger. Canad. J. Bot. 29, 113–124 (1951).Google Scholar
  231. Simpson, F. J.: Microbial pentosanases. I. A survey of microorganisms for the production of enzymes that attack the pentosans of wheat flour. Canad. J. Microbiol. 1, 131–139 (1954).Google Scholar
  232. Microbial pentosanases. II. Some factors affecting the production of pentosanases by Bacillus pumilus and Bacillus subtilis. Canad. J. Microbiol. 2, 28–38 (1956).Google Scholar
  233. Simpson, F. J., and E. McCoy: The amvlases of five Streptomycetes. Appl. Microbiol. 1, 228–236 (1953).PubMedGoogle Scholar
  234. VSiu, R. G. H.: Microbial decomposition of cellulose with special reference to cotton textiles. New York: Reinhold Publ. Corp. 1951.Google Scholar
  235. Siu, R. G. H., and E. T. Reese: Decomposition of cellulose by microorganisms. Bot. Review 19, 377–416 (1953).Google Scholar
  236. Smith, W. K.: A survey of the production of pectic enzymes by plant pathogenic and other bacteria. J. Gen. Microbiol. 18, 33–41 (1958a).PubMedGoogle Scholar
  237. Chromatographic examination of the products of digestion of pectic materials by culture solutions of plant pathogenic and other bacteria. J. Gen. Microbiol. 18, 42–47 (1958b).Google Scholar
  238. Solms, J., H. Deuel u. L.Anyas-Weisz: Über den Mechanismus des enzymatischen Abbaues von Pektinstoffen verschiedenen Veresterungsgrades. Helvet. chim. Acta 35, 2363–2367 (1952).Google Scholar
  239. Sørensen, H.: Enzymatic hydrolysisof xylan. Nature (Lond.) 172, 305 (1953).Google Scholar
  240. Stacey,M.: Enzymic synthesis of polysaccharides. Adv. Enzymol. 15, 301–315 (1954).Google Scholar
  241. Stark, E., and P. A. Tetrault: Observations on amylolytic bacteria. I. A survey of named mesophilic species on soluble starch. Canad. J. Bot. 29, 91–103 (1951a).Google Scholar
  242. Observations on amylolytic bacteria. II. A survey of named mesophilic species on five different starches. Canad. J. Bot. 29, 104–112 (1951b).Google Scholar
  243. Observations on amylolytic bacteria. III. Culturing conditions influencing the breakdown of starch by stearothermophilic bacteria belonging to Bacillus stearothermophilus. Canad. J. Bot. 30, 360–370 (1952).Google Scholar
  244. Stark, E., R. Wellerson jr., P. A. Tetrault and C. F. Kossack: Bacterial alpha-amylase paper disc tests on starch agar. Appl. Microbiol. 1, 236–243 (1953).PubMedGoogle Scholar
  245. Starka, J.: The formation of amylolytic enzymes by Aspergillus oryzae. [In Czech.] Preslia 25, 289–304 (1953).Google Scholar
  246. Steinberg, D.: A new plakalbumin-like protein. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 159–175 (1954a).Google Scholar
  247. Some observations on the initial reactions in plakalbumin formation. C. r. Trav. Labor. Carlsberg, Sér. chim. 29, 176–192 (1954b).Google Scholar
  248. Stone, B. A.: Complexity of β-glucanases from Aspergillus niger. Biochemic. J. 66, 1 P (1957).Google Scholar
  249. Szeto, I. L., and P. Halick: Production of Staphylocoagulase in a special medium. J. Bacter. 75, 316–319 (1958).Google Scholar
  250. Thomas, R.: Some chemically modified celluloses and their resistance to fungal degradation. Textile Res. J. 25, 559–562 (1955).Google Scholar
  251. Fungal cellulases. VII. Stachybotrys atra: Production and properties of the cellulolytic enzyme. Austral. J. Biol. Sci. 9, 159–183 (1956).Google Scholar
  252. Thorne, C. B., C. G. Gomez, H. E. Noyes and R.D. Housewright: Production of glutamyl polypeptide by Bacillus subtilis. J. Bacter. 68, 307–315 (1954).Google Scholar
  253. Tilden, E. B., and C. S. Hudson: The conversion of starch to crystalline dextrins by the action of a new type of amylase separated from cultures of Aerobacillus macerans. J. Amer. Chem. Soc. 61, 2900–2902 (1939).Google Scholar
  254. Preparation and properties of the amylases produced by Bacillus macerans and Bacillus polymyxa. J. Bacter. 43, 527–544 (1942).Google Scholar
  255. Tracey, M. V.: Cellulases. Biochem. Soc. Symposia 1953, No ll, 49–62.Google Scholar
  256. Tsuchiya, H. M., N. N. Hellman and H. J. Koepsell: Factors affecting molecular weight of enzymically synthesized dextran. J. Amer. Chem. Soc. 75, 757–758 (1953).Google Scholar
  257. Underkofler, L. A.: Fungal amylolytic enzymes. In: Industrial fermentations, edit, by L. A. Underkofler and R. J. Hickey, Vol. II, pp. 97–121. New York: Chemical Publ. Co. 1954.Google Scholar
  258. Underkofler, L. A., R. R. Barton and S. S. Rennert: Production of microbial enzymes and their applications. Appl. Microbiol. 6, 212–221 (1958).PubMedGoogle Scholar
  259. Van der Zant, W. C.: Proteolytic enzymes from Pseudomonas putrefaciens. I. Characteristics of an extracellular proteolytic enzyme system. Food. Res. 22, 151–157 (1957).Google Scholar
  260. Veldkamp, H.: A study of the aerobic decomposition of chitin by microorganisms. Meded. Landbouwhogeschool Wageningen, Netherl. 55,127–174 (1955).Google Scholar
  261. Vliet, W. F. van: The enzymic oxidation of lignin. Biochim. et Biophysica Acta 15, 211–216 (1954).Google Scholar
  262. Waggoner, P. E., and A. E. Dimond: Production and rôle of extracellular pectic enzymes of Fusarium oxysporum f. lycopersici. Phytopathology 45, 79–87 (1955).Google Scholar
  263. Wallenfels, K., u. E. Bernt: The group transference action of disaccharide-splitting enzymes. Angew. Chem. 64, 28–29 (1952).Google Scholar
  264. Wallerstein, L.: Enzyme preparations from microorganisms. Industr. Engin. Chem. 31, 1218–1224 (1939).Google Scholar
  265. Wetter, L. R.: The proteolytic enzymes of microorganisms. IV. Partial purification and some properties of extracellular protease from Mortierella renispora Dixon-Stewart. Canad. J. Bot. 30, 685–692 (1952).Google Scholar
  266. Proteolytic enzymes of microorganisms. VI. The separation of proteases from Mortierella renispora by zone electrophoresis. Canad. J. Biochem. a. Physiol. 32, 20–26 (1954a).Google Scholar
  267. Proteolytic enzymes of microorganisms. VII. A study of some of the properties of two proteases isolated from Mortierella renispora. Canad. J. Biochem. a. Physiol. 32, 60–67 (1954b).Google Scholar
  268. Whelan, W. J.: The enzymic breakdown of starch. Biochem. Soc. Symposia 1953, No 11, 17–27.Google Scholar
  269. Whistler, R. L., J. Bachrach and Chen-Chuan Tu: Crystalline derivatives of xylobiose. J. Amer. Chem. Soc. 74, 3059–3060 (1952).Google Scholar
  270. Whistler, R. L., and C. L. Smart: Isolation of crystalline d-glucose and cellobiose from an enzymatic hydrolysate of cellulose. J. Amer. Chem. Soc. 75,1916–1918 (1953).Google Scholar
  271. Whitaker, D. R.: Purification of Myrothecium verrucaria cellulase. Arch, of Biochem. a. Biophysics 43, 253–267 (1953).Google Scholar
  272. Hydrolysis of a series of β-l-4-oligoglucosides by Myrothecium verrucaria cellulase. Arch, of Biochem. a. Biophysics 53, 439–449 (1954).Google Scholar
  273. The mechanism of degradation of a cellodextrin by Myrothecium cellulase. Canad. J. Biochem. a. Physiol. 34, 488–494 (1956a).Google Scholar
  274. The steric factor in the hvdrolysis of β-1,4-oligoglucosides by Myrothecium cellulase. Canad. J. Biochem. a. Physiol. 34, 102–115 (1956b).Google Scholar
  275. Whitaker, D. R., J. R. Colvin and W.H. Cook: The molecular weight and shape of Myrothecium verrucaria cellulase. Arch, of Biochem. a. Biophysics 49, 257–262 (1954).Google Scholar
  276. Whitaker, D. R., and E. Merler: Cleavage of cellotriose by Myrothecium cellulase. Canad. J. Biochem. a. Physiol. 34, 83–89 (1956).Google Scholar
  277. Wickerham, L. J.: Evidence of the production of extracellular invertase by certain strains of yeasts. Arch, of Biochem. a. Biophysics 76, 439–448 (1958).Google Scholar
  278. Wickerham, L. J., L.B. Lockwood, O.G. Pettijohn and F.E. Ward: Starch hydrolysis and fermentation by the yeast Endomycopsis fibuliger. J. Bacter. 48, 413–427 (1945).Google Scholar
  279. Wiles, A. E.: Identification and significans of yeasts encountered in the brewery. J. Inst. Brew. 59, 265–284 (1953).Google Scholar
  280. Williams, W. J., J. Litwin and C. B. Thorne: Further studies on the biosynthesis of γ-glutamyl peptides by transfer reactions. J. of Biol. Chem. 212, 427–438 (1955).Google Scholar
  281. Williams, W. J., and C. B. Thorne: Biosynthesis of glutamylpeptides from glutamine by a transfer reaction. J. of Biol. Chem. 210, 203–217 (1954a).Google Scholar
  282. Elongation of γ-d-glutamic acid peptide chains by a transfer reaction. J. of Biol. Chem. 211, 631–641 (1954b).Google Scholar
  283. Wood, R. K. S.: Studies in the physiology of parasitism. XVIII. Pectic enzymes secreted by Bacterium aroideae. Ann. of Bot., N. S. 19, 1–27 (1955).Google Scholar
  284. Yaphe, W.: The use of agarase from Pseudomonas atlantica in the identification of agar in marine algae (Rhodophyceae). Canad. J. Microbiol. 3, 987–993 (1957).Google Scholar
  285. Yaphe, W., and B. Baxter: The enzymic hydrolysis of carageenin. Appl. Microbiol. 3, 380–383 (1955).PubMedGoogle Scholar
  286. Youatt, G.: Fungal cellulases. IX. Growth of Stachybotrys atra on cellulose and production of a β-glucosidase hydrolysing cellobiose. Austral. J. Biol. Sci. 11, 209–217 (1958).Google Scholar

Literature

  1. Adelberg, E. A., and H. E. Umbarger: Isoleucine and valine metabolism in Escherichia coli. V. α-Ketoisovaleric acid accumulation. J. biol. Chem. 205, 475–482 (1953).PubMedGoogle Scholar
  2. Bach, S. J., M. Dixon and L. C. Zerfas: Yeast lactic acid dehydrogenase and cytochrome b2. Biochem. J. 40, 229–239 (1946).Google Scholar
  3. Barrett, J. T., A. D. Larson and R. E. Kallio: The nature of the adaptive lag of Pseudomonas fluorescens toward citrate. J. Bact. 65, 187–192 (1953).PubMedGoogle Scholar
  4. Beljanski, M., and S. Ochoa: Protein biosynthesis by a cell-free bacterial system. Proc. nat. Acad. Sci. (Wash.) 44, 494–501 (1958).Google Scholar
  5. Benzer, S.: Induced synthesis of enzymes in bacteria analyzed at the cellular level. Biochim. biophys. Acta 11, 383–395 (1953).PubMedGoogle Scholar
  6. Brachet, J., and H. Chantrenne: The function of the nucleus in the synthesis of cytoplasmic proteins. Cold Spr. Harb. Symp. quant. Biol. 21, 329–336 (1956)Google Scholar
  7. Braun, W.: Bacterial dissociation. A critical review of a phenomenon of bacterial variation. Bact. Rev. 11, 75–114 (1947).Google Scholar
  8. Bacterial genetics. Philadelphia: W. B. Saunders Company 1953.Google Scholar
  9. Braun, W., and H. J. Vogel: The morphology, physiology, and genetics of bacteria, in R. Dubos, ed.: Bacterial and mycotic infections of man. Philadelphia: J. B. Lippincott Company 1958.Google Scholar
  10. Caputto, R., L. F. Leloir and R. E. Trucio: Lactase and lactose fermentation in Saccharomyces fragilis. Enzymologia 12, 350–356 (1948).Google Scholar
  11. Chantrenne, H.: Incorporation of adenine and uracil into ribonucleic acid during enzyme induction in resting yeast. Nature (Lond.) 177, 579–580 (1956).Google Scholar
  12. Chantrenne, H., et C. Courtois: Formation de catalase induite par l’oxygène chez la levure. Biochim. biophys. Acta 14, 397–400 (1954).PubMedGoogle Scholar
  13. Cocito, C., and H. J. Vogel: Heritable lowering of an enzyme level and enzyme repressibility observed upon continuous cultivation of Escherichia coli in the presence of a represser. X. Internat. Congr. of Genetics, Vol. II, p. 55 (1958).Google Scholar
  14. Cohen, G. N., and J. Monod: Bacterial permeases. Bact. Rev. 21, 169–194 (1957).PubMedGoogle Scholar
  15. Cohen, S. S.: Gluconokinase and the oxidative path of glucose-6-phosphate utilization. J. biol. Chem. 189, 617–628 (1951).PubMedGoogle Scholar
  16. Cohen, S. S., and H. D. Barner: Enzymatic adaptation in a thymine requiring strain of Escherichia coli. J. Bact. 69, 59–66 (1954).Google Scholar
  17. Cohen-Bazire, G., et M. Jolit: Isolement par sélection de mutants d’ Escherichia coli synthétisant spontanément l’amylo-maltase et la β-galactosidase. Ann. Inst. Pasteur 84, 937–945 (1953).Google Scholar
  18. Cohn, M.: On the inhibition by glucose of the induced synthesis of β-galactosidase in Escherichia coli, in O. H. Gaebler, ed.: Enzymes: units of biological structure and function, pp.41–46. New York: Academic Press, Inc. 1956.Google Scholar
  19. Contributions of studies on the β-galactosidase of Escherichia coli to our understanding of enzyme synthesis. Bact. Rev. 21, 140–168 (1957).Google Scholar
  20. Cohn, M., G. N. Cohen et J. Monod: L’effet, inhibiteur spécifique de la méthionine dans la formation de la méthionine-synthase chez Escherichia coli. C. R. Acad. Sci. (Paris) 236, 746–748 (1953b).Google Scholar
  21. Cohn, M., et J. Monod: Purification et propriétés de la β-galacto-sidase (lactase) d’ Escherichia coli. Biochim. biophys. Acta 7, 153–174 (1951).PubMedGoogle Scholar
  22. Specific inhibition and induction of enzyme biosynthesis, in R. Davies and E. F. Gale, eds.: Adaptation in microorganisms, pp. 132–147. Cambridge: Cambridge University Press 1953.Google Scholar
  23. Cohn, M., J. Monod, M. R. Pollock, S. Spiegelman and R. Y. Stanier: Terminology of enzyme formation. Nature (Lond.) 172, 1096 (1953a).Google Scholar
  24. Cohn, M., et A. Torriani: Étude immunochimique de la biosynthèse adaptive d’un enzyme: la β-galactosidase d’Escherichia coli. C. R. Acad. Sci. (Paris) 232, 115–117 (1951).Google Scholar
  25. The relationships in biosynthesis of the β-galactosidase- and PZ-proteins in Escherichia coli. Biochim. biophys. Acta 10, 280–289 (1953).Google Scholar
  26. Crick, F. H. C.: On protein synthesis, in F. K. Sanders, ed.: Symposia of the Society for Experimental Biology: XII, The biological replication of macromolecules, pp. 138 to 163. Cambridge: Cambridge University Press 1958.Google Scholar
  27. Deere, C. J., A. D. Dulaney and I. D. Michelson: The lactase activity of Escherichia coli-mutabile. J. Bact. 37, 355–363 (1939).PubMedGoogle Scholar
  28. DeMars, R.: Inhibition by glutamine of glutamyl transferase formation in cultures of human cells. Biochim. biophys. Acta 27, 435–436 (1958).PubMedGoogle Scholar
  29. De Moss, J. A., and G. D. Novelli: An amino acid dependent exchange between 32P labeled inorganic pyrophosphate and ATP in microbial extracts. Biochim. biophys. Acta 22, 49–61 (1956).Google Scholar
  30. Dottnce, A. L.: Nucleoproteins. Round-table discussion. J. cell. comp. Physiol. 47, Suppl. 1, 103–106 (1956).Google Scholar
  31. Dubos, R. J.: The adaptive production of enzymes by bacteria. Bact. Rev. 4, 1–16 (1940).PubMedGoogle Scholar
  32. Ephrussi, B.: Enzymes in cellular differentiation, in O. H. Gaebler, ed.: Enzymes: units of biological structure and function, pp. 29–40. New York: Academic Press, Inc. 1956.Google Scholar
  33. Ephrussi, B., et P. P. Slonimski: La synthèse adaptive des cytochromes chez la levure de boulangerie. Biochim. biophys. Acta 6, 256–267 (1950).PubMedGoogle Scholar
  34. Gale, E. F.: The bacterial amino acid decarboxylases. Advanc. Enzymol. 6, 1–32 (1946).Google Scholar
  35. From amino acids to proteins, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 171–192. Baltimore: Johns Hopkins Press 1955.Google Scholar
  36. Galston, A. W., and W. S. Hillman: The degradation of auxin, in W. Ruhland, ed.: Handbuch der Pflanzen-physiologie, Vol. XIV (in press. Berlin-Göttingen-Heidelberg: Springer).Google Scholar
  37. Gorini, L., and W. K. Maas: The potential for the formation of a biosynthetic enzyme in Escherichia coli. Biochim. biophys. Acta 25, 208–209 (1957).PubMedGoogle Scholar
  38. Green, H.: (1956) cit. by B.D. Davis: Relations between enzymes and permeability (membrane transport) in bacteria, in O. H. Gaebler, ed.: Enzymes: units of biological structure and function, pp. 509–522. New York: Academic Press, Inc. 1956.Google Scholar
  39. Gros, F., et F. Gros: Rôle des aminoacides dans la synthèse des acides nucléiques chez Escherichia coli. Biochim. biophys. Acta 22, 200–201 (1956).PubMedGoogle Scholar
  40. Gross, S. R., and E. L. Tatum: Structural specificity of inducers of protocatechuic acid oxidase synthesis in Neurospora. Science 122, 1141 (1955).PubMedGoogle Scholar
  41. Halvorson, H. O., and S. Spiegelman: The inhibition of enzyme formation by amino acid analogues. J. Bact. 64, 207–221 (1952).PubMedGoogle Scholar
  42. Net utilization of free amino acids during the induced synthesis of maltozymase in yeast. J. Bact. 65, 601–608 (1953).Google Scholar
  43. Hauro-witz, F.: Chemistry and biology of proteins. New York: Academic Press, Inc. 1950.Google Scholar
  44. Hoagland, M. B., E. B. Keller and P. Zamecnik: Enzymatic carboxyl activation of amino acids. J. biol. Chem. 218, 345–358 (1956).PubMedGoogle Scholar
  45. Hoagland, M. B., M. L. Stephenson, J. F. Scott, L. I. Hecht and P. C. Zamecnik: A soluble ribonucleic acid intermediate in protein synthesis. J. biol. Chem. 231, 241–257 (1958).PubMedGoogle Scholar
  46. Hogness, D. S., M. Cohn and J. Monod: Studies on the induced synthesis of β-galactosidase in Escherichia coli: The kinetics and mechanism of sulfur incorporation. Biochim. biophys. Acta 16, 99–116 (1955).PubMedGoogle Scholar
  47. Housewright, R. D., and R. J. Henry: Studies on penicillinase. I. The production, partial purification, and practical application of penicillinase. J. biol. Chem. 167, 553–557 (1947).PubMedGoogle Scholar
  48. Karström, H.: Enzymatische Adaptation bei Mikroorganismen. Ergebn. Enzymforsch. 7, 350–376 (1938).Google Scholar
  49. Knox, W. E.: Adaptive enzymes in the regulation of animal metabolism, in C. L. Prosser, ed.: Physiological adaptation. Washington: American Physiological Society 1958.Google Scholar
  50. Kogut, M., and E. P. Podoski: Oxidative pathways in a fluorescent Pseudomonas. Biochem. J. 55, 800–811 (1953).PubMedGoogle Scholar
  51. Kuby, S. A., and H. A. Lardy: Purification and kinetics of β-d-galactosidase from Escherichia coli strain K-12. J. Amer. chem. Soc. 75, 890–896 (1953).Google Scholar
  52. Lederberg, E. M.: Allelic relationships and reverse mutation in Escherichia coli. Genetics 37, 469–483 (1952).PubMedGoogle Scholar
  53. Lederberg, J.: The β-d-galactosidase of Escherichia coli, strain K-12. J. Bact. 60, 381–392 (1950a).PubMedGoogle Scholar
  54. Isolation and characterization of biochemical mutants of bacteria. Meth. med. Res. 3, 5–22 (1950b).Google Scholar
  55. (1957) cit. by Cohen and Monod 1957.Google Scholar
  56. Lederberg, J., E. M. Lederberg, N. D. Zinder and E. R. Lively: Recombination analysis of bacterial heredity. Cold Spr. Harb. Symp. quant. Biol. 16, 413–433 (1951).Google Scholar
  57. Leibowitz, J., and S. Hestrin: Alcoholic fermentation of the oligosaccharides. Advanc. Enzymol. 5, 87–127 (1945).Google Scholar
  58. LePage, G. A., J. F. Morgan and M. E. Campbell: Production and purification of penicillinase. J. biol. Chem. 166, 465–472 (1946).PubMedGoogle Scholar
  59. Lester, G.: The β-galactosidase of lactose mutants of Escherichia coli, K-12. Arch. Biochem. 40, 390–401 (1952).PubMedGoogle Scholar
  60. Lipmann, F.: Attempts at the formulation of some basic biochemical questions, in D. E. Green, ed.: Currents in biochemical research 1956, pp. 241–250. New York: Interscience Publishers, Inc. 1956.Google Scholar
  61. Lipmann, F., P. C. Zamecnik, M. L. Stephenson, L. I. Hecht, P. Berg, E. J. Ofengand, G. D. Novelli, P. D. Boyer, M. P. Stulberg and D. E. Koshland jr.: Symposium on amino acid activation. Proc. nat. Acad. Sci. (Wash.) 44, 67–104 (1958).Google Scholar
  62. Løvetrup, S.: The induced synthesis of β-galactosidase in E. coli. I. Synthesis of enzyme under various experimental conditions. Biochim. biophys. Acta 19, 247–255 (1956a).— The induced synthesis of β-galactosidase in E. coli. II. Analysis of the accompanying synthetic activity by means of isotopes. Biochim. biophys. Acta 19, 433–439 (1956b).Google Scholar
  63. Magasanik, B.: Nutrition of bacteria and fungi. Ann. Rev. Microbiol. 11, 221–252 (1957).Google Scholar
  64. Mandelstam, J.: The “mass action” theory of enzyme adaptation. Biochem. J. 51, 674–681 (1952).PubMedGoogle Scholar
  65. Theories of enzyme adaptation in microorganisms. Int. Rev. Cytol. 5, 51–88 (1956).Google Scholar
  66. Turnover of protein in growing and non-growing populations of Escherichia coli. Biochem. J. 69, 110–119 (1958).Google Scholar
  67. Monod, J.: The phenomenon of enzymatic adaptation and its bearings on problems of genetics and cellular differentiation. Growth 11, 223–289 (1947).Google Scholar
  68. Remarks on the mechanism of enzyme induction, in O. H. Gaebler, ed.: Enzymes: units of biological structure and function, pp. 7–28. New York: Academic Press, Inc. 1956.Google Scholar
  69. Monod, J., et G. Cohen-Bazire: L’effet d’inhibition spécifique dans la biosynthèse de la tryptophane-desmase chez Aerobacter aerogenes. C. R. Acad. Sci. (Paris) 236, 530–532 (1953).Google Scholar
  70. Monod, J., G. Cohen-Bazire et M. Cohn: Sur la biosynthèse de la β-galactosidase (lactase) chez Escherichia coli. La spécificité de l’induction. Biochim. biophys. Acta 7, 585–599 (1951).PubMedGoogle Scholar
  71. Monod, J., et M. Cohn: La biosynthèse induite des enzymes (adaptation enzymatique). Advanc. Enzymol. 13, 67–119 (1952).Google Scholar
  72. Sur le mécanisme de la synthèse d’une protéine bacterienne. La β-galactosidase d’Escherichia coli, in Symposium on microbial metabolism, pp. 42–62. VI. Internat. Congr. of Microbiology, Rome, Italy 1953.Google Scholar
  73. Monod, J., and F. Jacob: (1957) cit. by Cohen and Monod 1957.Google Scholar
  74. Monod, J., A. M. Pappenheimer jr. et G. Cohen-Bazire: La cinétique de la biosynthèse de la β-galactosidase chez Escherichia coli considérée comme fonction de la croissance. Biochim. biophys. Acta 9, 648–660 (1952).PubMedGoogle Scholar
  75. Monod, J., A. Torriani et J. Gribetz: Sur une lactase extraite d’une souche d’Escherichia coli mutabile. C. R. Acad. Sci. (Paris) 227, 315–316 (1948).Google Scholar
  76. Munier, R., et G. N. Cohen: Incorporation d’analogues structuraux d’aminoacides dans les protéines bactériennes. Biochim. biophys. Acta 21, 592–593 (1956).PubMedGoogle Scholar
  77. Neidhardt, F. C., and B. Magasanik: The effect of glucose on the induced biosynthesis of bacterial enzymes in the presence and absence of inducing agents. Biochim. biophys. Acta 21, 324–334 (1956).PubMedGoogle Scholar
  78. Noe, F. F., and W. J. Nickerson: Metabolism of 2-pyrrolidone and γ-aminobutyric acid by Pseudomonas aeruginosa. J. Bact. 75, 674–681 (1958).PubMedGoogle Scholar
  79. Novick, A., and M. Weiner: Enzyme induction, an all-or-none phenomenon. Proc. nat. Acad. Sci. (Wash.) 43, 553–566 (1957).Google Scholar
  80. Pardee, A. B.: Effect of energy supply on enzyme induction by pyrimidine requiring mutants of Escherichia coli. J. Bact. 69, 233–239 (1955).Google Scholar
  81. An inducible mechanism for accumulation of melibiose in Escherichia coli. J. Bact. 73, 376–385 (1957).Google Scholar
  82. Pardee, A. B., F. Jacob et J. Monod: Sur l’expression et le rôle des allèles «inductible» et «constitutif» dans la synthèse de la β-galactosidase chez des zygotes d’Escherichia coli. C. R. Acad. Sci. (Paris) 21, 3125–3128 (1958).Google Scholar
  83. Pardee, A. B., and L. S. Prestidge: The dependence of nucleic acid synthesis on the presence of amino acids in Escherichia coli. J. Bact. 71, 677–683 (1956).Google Scholar
  84. Pollock, M. R.: Penicillinase adaptation in B. cereus: adaptive enzyme formation in the absence of free substrate. Brit. J. exp. Path. 31, 739–753 (1950).PubMedGoogle Scholar
  85. Penicillinase adaptation in Bacillus cereus: an analysis of three phases in the response of logarithmically growing cultures to induction of penicillinase formation by penicillin. Brit. J. exp. Path. 33, 587–600 (1952).Google Scholar
  86. Stages in enzyme adaptation, in R. Davies and E. F. Gale, eds.: Adaptation in microorganisms, pp. 150–177. Cambridge: Cambridge University Press 1953.Google Scholar
  87. An immunological study of the constitutive and the penicillin-induced penicillinases of Bacillus cereus, based on specific enzyme neutralization by antibody. J. gen. Microbiol. 14, 90–108 (1956).Google Scholar
  88. The activity and specificity of inducers of penicillinase production in Bacillus cereus, strain NRRL 569. Biochem. J. 66, 419–428 (1957).Google Scholar
  89. Pollock, M. R., and C.J. Perret: The relation between fixation of penicillin sulphur and penicillinase adaptation in B. cereus. Brit. J. exp. Path. 32, 387–396 (1951).PubMedGoogle Scholar
  90. Pollock, M. R., A. Torriani and E. J. Tridgell: Crystalline bacterial penicillinase. Biochem. J. 62, 387–391 (1956).PubMedGoogle Scholar
  91. Rickenberg, H. V.: The site of galactoside-permease activity in Escherichia coli. Biochim. biophys. Acta 25, 206–207 (1957).PubMedGoogle Scholar
  92. Rickenberg, H. V., G. N. Cohen, G. Buttin et J. Monod: La galactoside-perméase d’Escherichia coli. Ann. Inst. Pasteur 91, 829–857 (1956).Google Scholar
  93. Rickenberg, H. V., and G. Lester: The preferential synthesis of β-galactosidase in Escherichia coli. J. gen. Microbiol. 13, 279–284 (1955).PubMedGoogle Scholar
  94. Rickenberg, H. V., C. Ya-nofsky and D. M. Bonner: Enzymatic deadaptation. J. Bact. 66, 683–687 (1953).PubMedGoogle Scholar
  95. Rotman, B., and S. Spiegelman: On the origin of the carbon in the induced synthesis of β-galactosidase in Escherichia coli. J. Bact. 68, 419–429 (1954).Google Scholar
  96. Slonimski, P: La formation des enzymes respiratoires chez la levure. Paris: Masson & Cie. 1953.Google Scholar
  97. Spiegelman, S.: Nuclear and cytoplasmic factors controlling enzymatic constitution. Cold Spr. Harb. Symp. quant. Biol. 11, 256–277 (1946).Google Scholar
  98. Modern aspects of enzymatic adaptation, in J. B. Sumner and K. Myrb⃤ck, eds.: The enzymes, Vol. I, pp. 267–300. New York: Academic Press, Inc. 1950.Google Scholar
  99. Nucleic acids and the synthesis of proteins, in W. D. McElroy and B. Glass, eds.: The Chemical Basis of Heredity, pp. 232 to 267. Baltimore: Johns Hopkins Press 1957.Google Scholar
  100. Spiegelman, S., and A. M. Campbell: The significance of induced enzyme formation, in D. E. Green, ed.: Currents in biochemical research 1956, pp. 115–161. New York: Interscience Publishers, Inc. 1956.Google Scholar
  101. Spiegelman, S., and H. O. Halvorson: On the role of the inducer in the synthesis of maltase in yeast. J. Bact. 68, 265–273 (1954).PubMedGoogle Scholar
  102. Stanier, R. Y.: The bacterial oxidation of aromatic compounds. IV. Studies on the mechanism of enzymatic degradation of protocatechuic acid. J. Bact. 59, 527–532 (1950).PubMedGoogle Scholar
  103. Enzymatic adaptation in bacteria. Ann. Rev. Microbiol. 5, 35–56 (1951).Google Scholar
  104. Steinberg, D., M. Vaughan and C. B. Anfinsen: Kinetic aspects of assembly and degradation of proteins. Science 124, 389–395 (1956).PubMedGoogle Scholar
  105. Stephenson, M.: Bacterial metabolism. London: Longmans, Green & Company, Ltd. 1949.Google Scholar
  106. Terui, G., and H. Okada: An inquiry into the adaptive fermentability of maltose with Saccharomyces saké. Osaka Univ. Tech. Rep. 1, 293–307 (1951).Google Scholar
  107. Trucco, R. E., R. CaPutto, L. F. Leloir and N. Mittelman: Galactokinase. Arch. Biochem. 18, 137–146 (1948).PubMedGoogle Scholar
  108. Vogel, H. J.: On growth-limiting utilization of α-N-acetylornithine. VI. Internat. Congr. of Microbiology, Vol. I, pp. 269–271. 1953 a.Google Scholar
  109. Path of ornithine synthesis in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 39, 578–583 (1953b).Google Scholar
  110. Repression and induction as control mechanisms of enzyme biogenesis: the “adaptive” formation of acetylornithinase, in W. D. McElroy and B. Glass, eds.: The chemical basis of heredity, pp. 276–289. Baltimore: Johns Hopkins Press 1957a.Google Scholar
  111. Repressed and induced enzyme formation: a unified hypothesis. Proc. nat. Acad. Sci. (Wash.) 43, 491–496 (1957b).Google Scholar
  112. Comment on the possible roles of repressers and inducers of enzyme formation in development, in W. D. McElroy and B. Glass, eds.: The chemical basis of development. Baltimore: Johns Hopkins Press 1958.Google Scholar
  113. Vogel, H. J., and D.M. Bonner: Acetylornithinase of Escherichia coli: partial purification and some properties. J. biol. Chem. 218, 97–106 (1956).PubMedGoogle Scholar
  114. The use of mutants in the study of metabolism, in W. Ruhland, ed.: Handbuch der Pflanzenphysiologie, Vol. XI. Heidelberg: Springer 1959.Google Scholar
  115. Vogel, H. J., and B. D. Davis: Adaptive phenomena in a biosynthetic pathway. Fed. Proc. 11, 485 (1952).Google Scholar
  116. Wainwright, S. D., and A. Nevill: The influence of depletion of nitrogenous reserves upon the phenomenon of induced enzyme biosynthesis in cells of Escherichia coli. J. gen. Microbiol. 14, 47–56 (1956a).PubMedGoogle Scholar
  117. The induced formation of nitrate reductase in auxotrophic mutants of Escherichia coli. J. Bact. 71, 254–255 (1956b).Google Scholar
  118. Wainwright, S. D., and M. R. Pollock: Enzyme adaptation in bacteria: fate of nitratase in nitrate-adapted cells grown in the absence of substrate. Brit. J. exp. Path. 30, 190–198 (1949).PubMedGoogle Scholar
  119. Wallenfels, K., u. E. Bernt: Über den Verlauf der enzymatischen Spaltung von Lactose mit β-Galactosidase von Schimmelpilzen, Helix pomatia, Escherichia coli und Kälberdarm. Justus Liebigs Ann. Chem. 584, 63–85 (1953).Google Scholar
  120. Webster, G. C.: Factors required for amino acid incorporation by disrupted ribonucleoprotein particles. Arch. Biochem. 70, 622–624 (1957).PubMedGoogle Scholar
  121. Wijesundera, S., and D. D. Woods: The effect of growth on a medium containing methionine on the synthesis of this amino acid by Bacterium coli. Biochem. J. 55, viii (1953).PubMedGoogle Scholar
  122. Wright, B.: Auto-adaptation: a new phenomenon observed in a bacterial population. J. Bact. 66, 407–420 (1953).PubMedGoogle Scholar
  123. Yates, R. A., and A. B. Pardee: Control by uracil of formation of enzymes required for orotate synthesis. J. biol. Chem. 227, 677–692 (1957).PubMedGoogle Scholar
  124. Yudkin, J.: Enzyme variation in microorganisms. Biol. Rev. 13, 93–106 (1938).Google Scholar
  125. Yura, T., and H. J. Vogel: Pyrroline-5-carboxylate reductase of Neurospora crassa: partial purification and some properties. J. biol. Chem. 234, 335–338 (1959).PubMedGoogle Scholar

Literatur

  1. Ågren, G.: On the utilization of peptide bound amino acids by lactic acid producing microorganisms. Acta physiol. scand. (Stockh.) 13, 347–352 (1947).Google Scholar
  2. The utilization of peptide bound amino acids by lactic acid bacteria. II. Acta chem. scand. (Copenh.) 2, 611–619 (1948).Google Scholar
  3. Atkin, L., W. L. Williams, A. S. Schultz and C. N. Frey: Yeast microbiological methods for determination of vitamins. Pantothenic acid. Industr. Engin. Chem., Anal. Ed. 16, 67–71 (1944).Google Scholar
  4. Barton-Wright, E. C.: The microbiological assay of the vitamin B-complex and amino acids. London: Pitman & Sons 1952a.Google Scholar
  5. An analytical approach to some problems in the nitrogen relations of yeast. Wallerstein Lab. Comm. 15, 115–131 (1952b).Google Scholar
  6. Block, R. J., and D. Bolling: The amino acid composition of proteins and foods. Springfield, III.: Charles C. Thomas 1951.Google Scholar
  7. Borek, E., and H. Waelsch: The effect of temperature on the nutritional requirement of microorganisms. J. of Biol. Chem. 190, 191–196 (1951).Google Scholar
  8. Burrows, W.: The nutritive requirements of the Salmonellas. III. The thypoid Bacillus: Carbon source and amino acid requirements. J. Inf. Dis. 70, 126–130 (1942).Google Scholar
  9. David, B.D., and W.K. Maas: Inhibition of E.coli by d-serine and the production of serine resistant mutants. J. Amer. Chem. Soc. 71, 1865 (1949).Google Scholar
  10. Dunn, M. S., S. Shankman, M. N. Camien and H. Block: The amino acid requirements of twenty-three lactic acid bacteria. J. of Biol. Chem. 168, 1–22 (1947).Google Scholar
  11. Ericson, L. E., u. B.Carlson: Studies on the occurrence of amino acids, niacin and pantothenic acid in marine algae. Ark. Kemi (Stockh.) 6, 511–522 (1953).Google Scholar
  12. Fildes, P., G. P. Gladstone and B. C. J. G. Knight: The nitrogen and vitamin requirements of B. typhosus. Brit. J. Exper. Path. 14, 189–196 (1933).Google Scholar
  13. Fildes, P., and G. M. Richardson: The amino-acids necessary for the growth of Cl. sporogenes. Brit. J. Exper. Path. 16, 326–335 (1935).Google Scholar
  14. Fildes, P., G. M. Richardson, B. C. J. G. Knight and G. P. Gladstone: A nutrient mixture suitable for the growth of Staphylococcus aureus. Brit. J. Exper. Path. 17, 481–484 (1936).Google Scholar
  15. Foster, J. W.: Chemical activities of fungi. New York: Academic Press 1949.Google Scholar
  16. Fruton, J. S., and S. Simmonds: The metabolism of peptides. Cold Spring Harbor Symp. Quant. Biol. 14, 55–64 (1949).Google Scholar
  17. Gladstone, G. P.: The nutrition of Staphylococcus aureus; nitrogen requirements. Brit. J. Exper. Path. 18, 322–333 (1937).Google Scholar
  18. Inter-relationships between amino-acids in the nutrition of B. anthracis. Brit. J. Exper. Path. 20, 189–200 (1939).Google Scholar
  19. Glinka-Tscher-norutzky: Über den Stickstoffumsatz bei Bac. mycoides. VI. Über Ausnützung verschiedener Stickstoffquellen durch den Bac. mycoides. Biochem. Z. 263, 144–148 (1933).Google Scholar
  20. Gyllenberg, H., M. Rossander and P. Roine: A strain of Lactobacillus bifidus which requires strepogenin. J. Gen. Microbiol. 9, 190–198 (1953).PubMedGoogle Scholar
  21. Hachisuka, Y., N. Asano, N. Kato, M. Okajima, M. Kitaori and T. Kuno: Studies on spore germination. I. Effect of nitrogen sources on spore germination. J. Bacter. 69, 399–406 (1955).Google Scholar
  22. Hartelius, V.: Vergleichende Untersuchungen über den Wert der Aminosäuren als Stickstoffpuelle für Hefe. C. r. Trav. Labor. Carlsberg, Sér. physiol. 22, 303–322 (1939).Google Scholar
  23. Hassinen, J. B., G. T. Durbin, R. M. Tomarelli and F.W. Bern-hart: The minimal nutritional requirements of Lactobacillus bifidus. J. Bacter. 62, 771–777 (1951).Google Scholar
  24. Herbst, E. J., and E. E. Snell: Putrescin as a growth factor for Hemophilus parainfluenzae. J. of Biol. Chem. 176, 989–990 (1948).Google Scholar
  25. Hills, G. M., and E. D. Spurr: The effect of temperature on the nutritional requirements of Pasteurella pestis. J. Gen. Microbiol. 6, 64–73 (1952).PubMedGoogle Scholar
  26. Holden, J. T., R. B. Wildman and E. E. Snell: Growth promotion by keto and hydroxy acids and its relation to vitamin B6. J. of Biol. Chem. 191, 559–576 (1951).Google Scholar
  27. Hutchings, B. L., and W. H. Peterson: Amino acids requirements of Lactobacillus casei. Proc. Soc. Exper. Biol. a. Med. 52, 36–38 (1943).Google Scholar
  28. Jensen, H. L.: A strain of Nitrosomonas europaea from farmyard manure. Tidsskr. Planteavl 54, 62–80 (1951).Google Scholar
  29. Jensen, H. L., u. H. Sörensen: The influence of some organic sulphur compounds and enzyme inhibitors on Nitrosomonas europaea. Acta agricult. scand. (Stockh.) 2, 295–304 (1952).Google Scholar
  30. Kihara, H., O. A. Klatt and E. E. Snell: Peptides and bacterial growth. III. Utilization of tyrosine and tyrosine peptides by Streptococcus faecalis. J. of Biol. Chem. 197, 801–807 (1952).Google Scholar
  31. Knight, B. C. J. G.: Bacterial nutrition. Material for a comparative physiology of bacteria. Med. Res. Counc., Special Report Series no. 210. London 1936.Google Scholar
  32. Koser, S. A., and M. H. Wright: Experimental variation of nicotinamide requirement of dysentery bacilli. J. Bacter. 46, 239–249 (1943).Google Scholar
  33. Kuiken, K. A., W.H. Norman, C.M. Lyman, F. Hale and L. Blotter: The microbiological determination of amino acids. I. Valine, leucine, and isoleucine. J. of Biol. Chem. 151, 615–626 (1943).Google Scholar
  34. Lascelles, J., M.J. Cross and D.D. Woods: The folic acid and serine nutrition of Leuconostoc mesenteroides P 60 (Streptococcus equinus P 60). J. Gen. Microbiol. 10, 267–284 (1954).PubMedGoogle Scholar
  35. Lewis, J. C., and H. S. Olcott: A Lactobacillus assay method for l(+)-glutamic acid. J. of Biol. Chem. 157, 265–285 (1945).Google Scholar
  36. Lyman, C. M., O. Moseley, S. Wood, S. Butler and F. Hale: Some chemical factors which influence the amino acid requirements of the lactic acid bacteria. J. of Biol. Chem. 167, 177–187 (1947).Google Scholar
  37. Mager, J., S. H. Kindler and N. Grossowicz: Nutritional studies with Clostridium parabotulinum. J. Gen. Microbiol. 10, 130–141 (1954).PubMedGoogle Scholar
  38. Malin, R. B., M. N. Camien and M. S. Dunn: Response of lactic acid bacteria to amino acid derivatives. II. Glycine. Arch, of Biochem. a. Biophysics 32, 106–112 (1951).Google Scholar
  39. Martin, W. H., M. Y. Pelczar and P. A. Hansen: Putrescine as a growth requirement for Neisseria. Science (Lancaster, Pa.) 116, 483–484 (1952).Google Scholar
  40. Moore, W. B., and C. Rainbow: Nutritional requirements and biochemical activities of brewery Lactobacilli. J. Gen. Microbiol. 13, 190–197 (1955).PubMedGoogle Scholar
  41. Mueller, J. H.: Studies on cultural requirements of bacteria. IV. Qualitative estimation of bacterial growth. J. Bacter. 29, 383–387 (1935a).Google Scholar
  42. Studies on cultural requirements of bacteria. V. The diphtheriae bacillus. J. Bacter. 29, 515–530 (1935b).Google Scholar
  43. Studies on cultural requirements of bacteria. VI. The diphtheriae bacillus. J. Bacter. 30, 513–524(1935c).Google Scholar
  44. A synthetic medium for the cultivation of C. diphtheriae. J. Bacter. 36, 499–515(1938).Google Scholar
  45. Nielsen, N.: Untersuchungen über das Vermögen der Hefe, Aminosäuren zu assimilieren. C. r. Trav. Labor. Carlsberg, Sér. physiol. 21, 395–425 (1936).Google Scholar
  46. Ergänzende Untersuchungen über die Assimilation von Aminosäuren durch Hefe. C. r. Trav. Labor. Carlsberg, Sér. chim. 22, 384–390 (1938).Google Scholar
  47. Die Stickstoffassimilation der Hefe. Erg. Biol. 19, 375–408 (1943).Google Scholar
  48. Nurmikko, V., u. A. I. Vertanen: Effect of glycine-peptides on the growth of Leuconostoc mesenteroides. Acta chem. scand. (Copenh.) 5, 97–101 (1951).Google Scholar
  49. Orla-Jensen, S., N. C. Otte u. A. Snog-Kiär: Die Stickstoffnahrung der Milchsäurebakterien. Zbl. Bakter., Abt. 2 94, 460–477 (1936).Google Scholar
  50. Ory, R. L., and C. M. Lyman: Synthesis of tyrosine and phenylalanine by Lactobacillus arabinosus. J. Bacter. 69, 508–515 (1955).Google Scholar
  51. Peters, V.J., J. M. Prescott and E. E. Snell: Peptides and bacterial growth. IV. Histidine peptides as growth factors for Lactobacillus delbrueckii 9649. J. of Biol. Chem. 202, 521–532 (1953).Google Scholar
  52. Porter, J. R., and F. D. Meyers: Amino-acid inter-relationships in the nutrition of Proteus morganii. Arch, of Biochem. 8, 169–176 (1945).Google Scholar
  53. Prescott, J. M., V. J. Peters and E. E. Snell: Peptides and bacterial growth. V. Serine peptides and growth of Lactobacillus delbrueckii 9649. J. of Biol. Chem. 202, 533–540 (1953).Google Scholar
  54. Proom, H.: The minimal nutritional requirements of organisms of the genus Bordetella Lopez. J. Gen. Microbiol. 12, 63–75 (1955).PubMedGoogle Scholar
  55. Rake, L., and Y. Subbarow: Choline, pantothenic acid, and nicotinic acid as essential growth factors for Pneumococcus. J. of Biol. Chem. 134, 455–456 (1940).Google Scholar
  56. Rao, M. S.: The nutritional requirements of the plague Bacillus Indian J. Med. Res. 27, 75–89 (1939).Google Scholar
  57. Robbins, W. J., and R. Ma: Growth factors for Trichophyton mentagrophytes. Amer. J. Bot. 32, 509–523 (1945).Google Scholar
  58. Rowley, D.: Interrelationships between amino-acids in the growth of coliform organisms. J. Gen. Microbiol. 9, 37–43 (1953).PubMedGoogle Scholar
  59. Sbarra, A. J., and M. M. Hardin: Attempts to develop strains of Lactobacillus casei ATCC 7649 independent of certain growth factors. J. Bacter. 61, 99–100 (1951).Google Scholar
  60. Schweigert, B. S., J. M. McIntire, C. A. Elvehjem and F. M. Strong: The direct determination of valine and leucine in fresh animal tissues. J. of Biol. Chem. 155, 183–191 (1944).Google Scholar
  61. Schweigert, B. S., and E. E. Snell: Microbiological methods for the estimation of amino acids. Nutrit. Abstr. a. Rev. 16, 497–510 (1947).Google Scholar
  62. Seeley, H. W.: The physiology and nutrition of Streptococcus uberis. J. Bacter. 62, 107–115 (1951).Google Scholar
  63. Shiota, T., and F. M. Clark: Studies on the sulfur nutrition of Lactobacillus arabinosus. J. Bacter. 70, 339–344 (1955).Google Scholar
  64. Shull, G. M., R. W. Thoma and W. H. Peterson: Amino acid and unsaturated fatty acid requirements of Clostridium sporogenes. Arch, of Biochem. 20, 227–241 (1949).Google Scholar
  65. Simmonds, S., and J. S. Fruton: The utilization of proline derivates by mutant strains of Escherichia coli. J. of Biol. Chem. 174, 705–715 (1948).Google Scholar
  66. Simmonds, S., J. I. Harris and J. S. Fruton: Inhibition of bacterial growth by leucine peptides. J. of Biol. Chem. 188, 251–262 (1951).Google Scholar
  67. Slade, H. D., and G.A. Knox: Nutrition and the rôle of reducing agents in the formation of streptolysin O by a group A hemolytic Streptococcus. J. Bacter. 60, 301–310 (1950).Google Scholar
  68. Slade, H.D., G.A. Knox and W.C. Slamp: The amino acid nutrition of group A hemolytic Streptococci, with reference to the effect of glutathione on the cystine requirement. J. Bacter. 62, 669–675 (1951).Google Scholar
  69. Slade, H. D., and W.C. Slamp: The requirement of ovalbumin for the growth of group A hemolytic Streptococcus in a synthetic medium. J. of Exper. Med. 102, 291–305 (1955).Google Scholar
  70. Steinberg, R. A.: Effect of trace elements on growth of Aspergillus niger with amino acids. J. Agricult. Res. 64, 455–475 (1942).Google Scholar
  71. Stokes, J. L.: Nutrition of microorganisms. Annual Rev. Microbiol. 6, 28–48 (1952).Google Scholar
  72. Stokes, J. L., M. Gunness, J. M. Dwyer and M. C. Coswell: Microbiological methods for the determination of amino acids. II. A uniform assay for the essential amino acids. J. of Biol. Chem. 160, 35–49 (1945).Google Scholar
  73. Stokes, J. L., A. Larsen and M. Gunness: Biotin and the synthese of aspartic acid by microorganisms. J. of Biol. Chem. 167, 613–614 (1947).Google Scholar
  74. Stone, D.: Some aspects of the hydrolysis of proline peptides by a prolineless mutant of Escherichia coli. J. of Biol. Chem. 202, 821–827 (1953).Google Scholar
  75. Stone, D., and H. D. Hoberman: Utilization of proline peptides by a prolineless mutant of Escherichia coli. J. of Biol. Chem. 202, 203–212 (1953).Google Scholar
  76. Traub, A., J. Mager and N. Grossowics: Studies on the nutrition of Pasteurella tula-rensis. J. Bacter. 70, 60–69 (1955).Google Scholar
  77. Umbarger, H. E., and B. Brown: Isoleucine and valine metabolism in Escherichia coli. V. Antagonism between isoleucine and valine. J. Bacter. 70, 241–248 (1955).Google Scholar
  78. Virtanen, A. I., S. v. Hausen u. H. Karström: Untersuchungen über die Leguminos-Bakterien und -Pflanzen. XII. Die Ausnützung der aus den Wurzelknöllchen der Leguminosen herausdiffundierten Stickstoffverbindungen durch Nichtleguminosen. Biochem. Z. 258, 106–117 (1933).Google Scholar
  79. Virtanen, A. I., u. V. Nurmikko: On the mode of action of peptides as growth factors for Leuconostoc mesenteroides. Acta chem. scand. (Copenh.) 5, 681–689 (1951).Google Scholar
  80. Vishniac, H. S.: The nutritional requirements of isolates of Labyrinthula spp. J. Gen. Microbiol. 12, 455–463 (1955).PubMedGoogle Scholar
  81. Waelsch, H.: Certain aspects of intermediary metabolism of glutamine, asparagine, and glutathione. Adv. Enzymol. 13, 237–319 (1952).Google Scholar
  82. Ware, G. C.: Nutritional requirements of Bacterium coli at 440. J. Gen. Microbiol. 5, 880–884 (1951).PubMedGoogle Scholar
  83. The effect of incubation temperature on the growth requirements of Proteus vulgaris and Salmonella typhi. J. Gen. Microbiol. 11, 398–400 (1954).Google Scholar
  84. Winogradsky, S., u. V. Omeliansky: Über den Einfluß der organischen Substanzen auf die Arbeit der nitrifizierenden Mikroben. Zbl. Bakter., Abt. 2 5, 329–343, 377–387, 429–440 (1899).Google Scholar
  85. Winzler, R. J., D. Burk and V. du Vigneaud: Biotin in fermentation, respiration, growth and nitrogen assimilation by yeast. Arch, of Biochem. 5, 25–47 (1944).Google Scholar
  86. Wiss, O.: Mikrobiologische Vitamin- und Aminosäurebestimmungen. Mitt. Lebensmittelunters, u. Hyg. 41, 225–258 (1950).Google Scholar
  87. Wright, L. D., and H. R. Skeggs: Tryptophane utilization and synthesis by strains of Lactobacillus arabinosus. J. of Biol. Chem. 159, 611–616 (1945).Google Scholar

Literature

  1. Addicott, F. T.: Vitamin B1 in relation to meristematic activity of isolated pea roots. Bot. Gaz. 100, 836–843 (1939).Google Scholar
  2. Effects of root-growth hormones on the meristem of excised pea roots. Bot. Gaz. 102, 578–581 (1941).Google Scholar
  3. Addicott, F. T., and J. Bonner: Nicotinic acid and the growth of isolated pea roots. Science (Lancaster, Pa.) 88, 577–578 (1938).Google Scholar
  4. Addicott F. T., and P. S. Devirian: A second growth factor for excised pea roots; nicotinic acid. Amer. J. Bot. 26, 667–671 (1939).Google Scholar
  5. Almestrand, A.: Studies on the growth of isolated roots of barley and oats. Physiol. Plantarum (Copenh.) 2, 372–387 (1949).Google Scholar
  6. Further studies on the growth of isolated roots of barley and oats. Physiol. Plantarum (Copenh.) 3, 205–224 (1950).Google Scholar
  7. Growth factor requirements of isolated wheat roots (a preliminary report). Physiol. Plantarum (Copenh.) 3, 293–299 (1950).Google Scholar
  8. Archibald, J. F.: Culture in vitro of cambial tissue of cacao. Nature (Lond.) 173, 351–352 (1954).Google Scholar
  9. Ball, E.: Hydrolysis of sucrose by autoclaving media, a neglected aspect in the technique of culture of plant tissues. Bull. Torrey Bot. Club 80, 409–411 (1953).Google Scholar
  10. Studies of the nutrition of the callus culture of Sequoia sempervirens. Année Biol. 31, 81–105 (1955).Google Scholar
  11. Bennet-Clark, T. A., and N. P. Kefford: Chromatography of the growth substances in plant extracts. Nature (Lond.) 171, 645 (1953).Google Scholar
  12. Berthelot, A.: Nouvelles remarques d’ordre chimique sur la choix des milieux de culture naturels et sur la manière de formuler les milieux synthétiques. Bull. Soc. Chim. biol. Paris 16, 1553–1557 (1934).Google Scholar
  13. Bitancourt, A. A.: Mechanismo genetico da tumorisação nos vegetais. Prog. 2a Semana de Genética Piracicoba, Brazil. 1949.Google Scholar
  14. Boll, W. G.: Studies on the growth of excised roots. V. Growth of excised roots of two inbred lines of tomato and their reciprocal crosses in media supplemented with various growth factors. New Phytologist 53, 406–422 (1954a).Google Scholar
  15. Investigations into the function of pyridoxine as a growth factor for excised tomato roots. Plant Physiol. 29, 325–331 (1954b).Google Scholar
  16. The râle of vitamin B6 and the biosynthesis of choline in the excised tomato root. Arch, of Biochen. a. Biophysics 53, 20–28 (1954c).Google Scholar
  17. Boll, W. G., and H. E. Street: Studies on the growth of excised roots. I. The stimulatory effect of molybdenum and copper on the growth of excised tomato roots. New Phytologist 50, 52–75 (1951).Google Scholar
  18. Bonner, D. M., A. J. Haagen-Smit and F. W. Went: Leaf growth hormones. I. A bio-assay and source for leaf growth factors. Bot. Gaz. 101, 128–144 (1939).Google Scholar
  19. Bonner, J.: Vitamin B1, a growth factor for higher plants. Science (Lancaster, Pa.) 85, 183–184 (1937).Google Scholar
  20. Thiamin (vitamin B1) and the growth of roots: the relation of chemical structure to physiological activity. Amer. J. Bot. 25, 543–549 (1938).Google Scholar
  21. On the growth factor requirements of isolated roots. Amer. J. Bot. 27, 692–701 (1940a).Google Scholar
  22. Specificity of nicotinic acid as a growth factor for isolated pea roots. Plant Physiol. 15, 553–557 (1940b).Google Scholar
  23. Transport of thiamin in the tomato plant. Amer. J. Bot. 29, 136–142 (1942a).Google Scholar
  24. Riboflavin in isolated roots. Bot. Gaz. 103, 581–585 (1942b).Google Scholar
  25. A reversible growth inhibition of isolated tomato roots. Proc. Nat. Acad. Sci. U.S.A. 28, 321–324 (1942c).Google Scholar
  26. Further experiments on the nutrition of isolated tomato roots. Bull. Torrey Bot. Club 70, 184–189 (1943).Google Scholar
  27. Bonner, J., and F. T. Addicott: Cultivation in vitro of excised pea roots. Bot. Gaz. 99, 144–170 (1937).Google Scholar
  28. Bonner, J., and G. Axtman: The growth of plant embryos in vitro. Preliminary experiments on the râle of accessory substances. Proc. Nat. Acad. Sci. U.S.A. 23, 453–457 (1937).Google Scholar
  29. Bonner, J., and H. Bonner: The B vitamins as plant hormones. Vitamins a. Hormones 6, 225–275 (1948).Google Scholar
  30. Bonner, J., and P. S. Devirian: Growth factor requirements of four species of isolated roots. Amer. J. Bot. 26, 661–665 (1939).Google Scholar
  31. Bonner, J., and R. Dor-land: Some observations concerning riboflavin and pantothenic acid in tomato plants. Bot. Gaz. 104, 475–479 (1943).Google Scholar
  32. Bonner, J., and J. B. Koepli: The inhibition of root growth by auxins. Amer. J. Bot. 26, 557–566 (1939).Google Scholar
  33. Bonner, W., and J. Bonner: The râle of carbon dioxide in acid formation by succulent plants. Amer. J. Bot. 35, 113–117 (1948).Google Scholar
  34. Brakke, M. K., and L. G. Nickell: Secretion of α-amylase by Rumex virus tumors in vitro. Properties and assay. Arch, of Biochem. a. Biophysics 32, 28–41 (1951).Google Scholar
  35. Lack of effect of plant growth-regulators on the action of alpha amylase secreted by virus tumor tissue. Bot. Gaz. 113, 482–484 (1952).Google Scholar
  36. Secretion of an enzyme from intact cells of a higher plant tumor. Année Biol. 31, 215–226 (1955).Google Scholar
  37. Braun, A. C.: Tissue culture as a tool for studying the physiological basis of autonomy in neoplastic plant cells. J. Cancer Res., Special Suppl. 1957 (in press).Google Scholar
  38. Braun, A. C., and G. Morel: A comparison of normal, habituated and crown-gall tumor tissue implants in the European grape. Amer. J. Bot. 37, 499–501 (1950).Google Scholar
  39. Braun, A.C., and U. Naf: A non-auxinic growth-promoting factor present in crown gall tumor tissue. Proc. Soc. Exper. Biol. a. Med. 86, 212–214 (1954).Google Scholar
  40. Brickson, W. L., L. M. Henderson, I. Solhjell and C. A. Elvehjem: Antagonism of amino acids-in the growth of lactic acid bacteria. J. of Biol. Chem. 176, 517–528 (1948).Google Scholar
  41. Burkholder, P. R., and I. McVeigh: Studies on thiamine in green plant with the Phycomyces assay method. Amer. J. Bot. 27, 853–861 (1940).Google Scholar
  42. The increase in B vitamins in germinating seeds. Proc. Nat. Acad. Sci. U.S.A. 28, 440–446 (1942).Google Scholar
  43. Burkholder, P. R., and L. G. Nickell: Atypical growth of plants. I. Cultivation of virus tumors of Rumex on nutrient agar. Bot. Gaz. 110, 426–437 (1949).Google Scholar
  44. Burkholder, P. R., and A. G. Snow jr.: Thiamine in some common American trees. Bull. Torrey Bot. Club 69, 421–428 (1942).Google Scholar
  45. Burström, H.: Studies in the carbohydrate nutrition of roots. Ann. Agricult. Coll. Sweden 9, 264–284 (1941).Google Scholar
  46. The influence of heteroauxin on cell growth and root development. Ann. Agricult. Coll. Sweden 10, 209–240 (1942).Google Scholar
  47. Observations on the influence of galactose on wheat roots. Physiol. Plantarum (Copenh.) 1, 209–215 (1948).Google Scholar
  48. Lotsya 3, 77 (1950).Google Scholar
  49. Camus, G., et R. J. Gautheret: Sur le caractère tumural des tissus de Scorsonère ayant subi le phénomène d’accoutumance aux hétéro-auxines. C. r. Acad. Sci. Paris 226, 744–745 (1948).Google Scholar
  50. Sur le repiquage des proliférations induites sur les fragments de racines de Scorsonère par des tissus de Crown-gall et des tissus ayant subi le phénomène d’accoutumance aux hétéro-auxines. C. r. Soc. Biol. Paris 142, 771–773 (1948).Google Scholar
  51. Caplin, S. M., and F. C. Steward: Effect of coconut milk on the growth of explants from carrot root. Science (Lancaster, Pa.) 108, 655–657 (1948).Google Scholar
  52. Chapman, H. D.: Absorption of iron from finely ground magnetite by citrus seedlings. Soil Sci. 48, 309–314 (1939).Google Scholar
  53. Charles, H. P.: The physiological basis of variation between excised roots of different geographical strains of the groundsel, Senecio vulgaris L. Ph. D. Thesis, Univ. Manchester 1956.Google Scholar
  54. Czosnowski, J.: Bull. soc. Anus, sci et lettres Poznán 9, 138–142 (1948).Google Scholar
  55. Poznán Towarz Przyjaciot Nauk, Prace Komisji Biol. 13, 189–208 (1952a); 13, 209–246 (1952b). [Via. R. J. Gautheret: The nutrition of plant tissue cultures. Annual Rev. Plant Physiol. 6, 433–484 (1955b).]Google Scholar
  56. Danckwardt-Lillieström, C.: Kinetin induced shoot formation from isolated roots of Isatis tinctoria. Physiol. Plantarum (Copenh.) 10, 794–797 (1957).Google Scholar
  57. Das, N. K., K. Patau, and F. Skoog: Initiation of mitosis and cell division by kinetin and indoleacetic acid in excised tobacco pith tissue. Physiol. Plantarum (Copenh.) 9, 640–651 (1956).Google Scholar
  58. David, S. B.: Studies on the nutrition of excised roots of Medicago sativa L. Ph. D. Thesis, Univ. Manchester 1954.Google Scholar
  59. Dawson, I. R. O.: Studies in the comparative physiology of excised roots derived from strains of red clover, Trifolium pratense L. Ph. D. Thesis, Univ. Wales 1958.Google Scholar
  60. Day, D.: Vitamin B6 and growth of excised tomato roots in agar culture. Science (Lancaster, Pa.) 94, 468–469 (1941).Google Scholar
  61. Growth of excised tomato roots in agar with thiamine plus pyridoxine, nicotinamide or glycine. Amer. J. Bot. 30, 150–156 (1943).Google Scholar
  62. Dormer, K. J., and H. E. Street: The carbohydrate nutrition of tomato roots. Ann. of Bot. 13, 199–217 (1949).Google Scholar
  63. Duhamet, L.: Action de l’hétéro-auxine sur la croissances de racines isolées de Lupinus albus. C. r. Acad. Sci. Paris 208, 1838–1840 (1939).Google Scholar
  64. Action du lait de Coco sur la croissance des tissus du tubercule de Topinambour cultivés in vitro. C. r. Acad. Sci. Paris 229, 1353–1355 (1949).Google Scholar
  65. Action du lait de Coco sur la croissance des tissus de Crown-Gall de Scorsonere cultivés in vitro. C. r. Acad. Sci. Paris 230, 770–771 (1950a).Google Scholar
  66. Action du lait de Coco sur la croissance des tussis de Parthenocissus tricuspidata cultivés in vitro. C. r. Soc. Biol. Paris 144, 59–61 (1950b).Google Scholar
  67. Action du lait de Coco sur la croissance des cultives de tissus de Crown-Gall de Vigne, de Tabac, de Topinambour et de Scorsonere. C. r. Soc. Biol. Paris 145, 1781–1785 (1951).Google Scholar
  68. Duhamet, L., et R. J. Gautheret: Structure anatomique de fragments de tubercules de Topinambour cultivés en presence de lait de Coco. C. r. Soc. Biol. Paris 144, 177–179 (1950).PubMedGoogle Scholar
  69. Eberts, F. S., R. H. Burris and A. J. Riker: The metabolism of nitrogenous compounds by sunflower crown gall tissue cultures. Plant Physiol. 29, 1–10 (1954).PubMedGoogle Scholar
  70. Eltinge, E. T., and H. S. Reed: The effect of zinc deficiency upon the roots of Lycopersicum escu-lentum. Amer. J. Bot. 27, 331–335 (1940).Google Scholar
  71. Ferguson, J. D.: Studies on the carbohydrate metabolism of excised roots of Lycopersicum exculentum Mill. Ph. D. Thesis, Univ. Wales 1958.Google Scholar
  72. Fiedler, H.: Entwicklungs-und reizphysiologische Untersuchungen an Kulturen isolierter Wurzelspitzen. Z. Bot. 30, 385–436 (1936).Google Scholar
  73. Frank, E. M., A. J. Riker and S. L. Dye: Comparisons of growth by tobacco and sunflower tissue on synthetic media containing various sources of organic nitrogen. Plant Physiol. 26, 258–267 (1951).PubMedGoogle Scholar
  74. Fries, N.: Chemical factors controlling the growth of the decotylised pea seedling. Symbolae bot. Upsaliensis 13, 1, 1–83 (1954).Google Scholar
  75. Galston, A. W.: On the physiology of root initiation in excised asparagus stem tips. Amer. J. Bot. 35, 281–287 (1948).Google Scholar
  76. Gautheret, R. J.: Recherches sur la culture des tissus végétaux: Essais de culture de quelques tissus méristematiques. These, Univ. Paris 1935.Google Scholar
  77. Sur la possibilité de realiser la culture indéfinie des tissus de tubercules de carotte. C. r. Acad. Sci. Paris 208, 118–120 (1939).Google Scholar
  78. Action du saccharose sur la croissance des tissus de carotte. C. r. Soc. Biol. Paris 135, 875–877 (1941a).Google Scholar
  79. Sur le repiquage des cultures de tissus d’endive, de salsifis et de topinambur. C. r. Acad. Sci. Paris 213, 317–318 (1941b).Google Scholar
  80. Hétéro-auxines et cultures de tissus vegetaux. Bull. Soc. Chim. biol. Paris 24, 13–47 (1942).Google Scholar
  81. Une voie nouvelle en biologie vegetale: la culture des tissus. Paris 1945.Google Scholar
  82. Sur la culture indéfinie des tissus de Salix caprea. C. r. Soc. Biol. Paris 142, 807–808 (1948a).Google Scholar
  83. Sur l’utilization du glycérol par les cultures de tissus végétaux. C. r. Soc. Biol. Paris 142, 808–810 (1948b).Google Scholar
  84. Nouvelles recherches sur les besoins nutritifs de cultures de tissus de carotte. C. r. Soc. Biol. Paris 144, 172–173 (1950a).Google Scholar
  85. Remarques sur les besoins nutritifs des cultures de tissus de Salix caprea. C. r. Soc. Biol. Paris 144, 173–174 (1950b).Google Scholar
  86. Remarques sur l’emploi du lait de Coco pour la realisation des cultures de tissus vegetaux. C. r. Acad. Sci. Paris 235, 1321–1322 (1953).Google Scholar
  87. Rev. gén. Bot. 62, 1–106 (1955a).Google Scholar
  88. The nutrition of plant tissue cultures. Annual Rev. Plant Physiol. 6, 433–484 (1955b).Google Scholar
  89. Gladstone, G. P.: Inter-relationships between amino acids in the nutrition of B. anthracis. Brit. J. Exper. Path. 20, 189–200 (1939).Google Scholar
  90. Glasstone, V. F. C.: Inorganic micronutrients in tomato root tissue culture. Amer. J. Bot. 34, 218–224 (1947).Google Scholar
  91. Gorham, P. R.: Heterotrophic nutrition of seed plants with particular reference to Lemna minor L. Canad. J. Res., Sect. C 28, 356 (1950).Google Scholar
  92. Haberlandt, G.: Kulturversuche mit isolierten Pflanzenzellen. Sitzgsber. Akad. Wiss. Wien, Math.-naturwiss. Kl. 111, 69–92 (1902).Google Scholar
  93. Hammett, F. S.: The chemical stimulus essential for growth by increase in cell number. Protoplasma 7, 297–332 (1929).Google Scholar
  94. Han-nay, J. W.: A study of the micronutrient nutrition of excised roots of Lycopersicum escu-lentum Mill. Ph. D. Thesis, Univ. Manchester 1956.Google Scholar
  95. Hannay, J. W., and H. E. Street: Studies on the growth of excised roots. III. Molybdenum and manganese requirements of excised tomato roots. New Phytologist 53, 68–80 (1954).Google Scholar
  96. Harris, G. P.: Amino-acids and the growth of isolated oat embryos. Nature (Lond.) 172, 1003 (1953).Google Scholar
  97. Amino acids as sources of nitrogen for the growth of isolated root embryos. New Phytologist 55, 253–268 (1956).Google Scholar
  98. Heller, R.: Sur l’action physique favorable exercée sur la croissance des cultures de tissus végétaux par le contact d’un milieu gélose ou d’un gel de silice. C. r. Soc. Biol. Paris 145, 675–677 (1951).PubMedGoogle Scholar
  99. Recherches sur la nutrition minérale des tissus végétaux cultivés in vitro. Ann. des Sci. natur. Bot. et Biol. vegetale 1953, Ser. II 1–223Google Scholar
  100. Les besoins minéraux des tissus en culture. Année Biol. 30, 361–380 (1954).Google Scholar
  101. Henderson, J. H. M.: The changing nutritional pattern from normal to habituated sunflower callus tissue in vitro. Année Biol. 30, 329–348 (1954).Google Scholar
  102. Henderson, J. H. M., and J. Bonner: Auxin metabolism in normal and crown gall tissue of sunflower. Amer. J. Bot. 39, 444–451 (1952).Google Scholar
  103. Henderson, J. H. M., M. E. Durrell and J. Bonner: The culture of normal sunflower callus. Amer. J. Bot. 39, 467–473 (1952).Google Scholar
  104. Henderson, J. H. M., and F. F. Stauffer: The influence of some respiratory inhibitors and intermediates on growth and respiration of excised tomato roots. Amer. J. Bot. 31, 528–535 (1944).Google Scholar
  105. Hildebrandt, A. C., and A. J. Riker: The influence of various carbon compounds on the growth of marigold, Paris-daisy, periwinkle, sunflower and tobacco tissue in vitro. Amer. J. Bot. 36, 75–85 (1949).Google Scholar
  106. Influence of concentrations of sugars and polysaccharides on callus tissue growth in vitro. Amer. J. Bot. 40, 66–76 (1953).Google Scholar
  107. Hildebrandt, A. C., A. J. Riker and B. M. Duggar: The influence of the composition of the medium on growth in vitro of excised tobacco and sunflower tissue culture. Amer. J. Bot. 33, 591–597 (1946).Google Scholar
  108. Jacquiot, C.: Action du méso-inositol et de l’adénine sur la formation de bourgeons pat le tissu cambial d’Ulmus campestris cultivé in vitro. C. r. Acad. Sci. Paris 233, 815–817 (1951).PubMedGoogle Scholar
  109. Kandler, O.: Über eine physiologische Umstimmung von Sonnenblumenstengelgewebe durch Dauereinwirkung von β-Indolylessigsäure. Planta (Berl.) 40, 346–349 (1952).Google Scholar
  110. Kandler, O., u. A. Vieregg: Über den Einfluß von β-Indolylessigsäure auf den Stoffwechsel in vitro kultivierter Maiswurzeln und Spargelsprosse. Planta (Berl.) 41, 613–641 (1953).Google Scholar
  111. Kefford, N. P.: The growth substances separated from plant extracts by chromatography. I. J. of Exper. Bot. 6, 129–151 (1955).Google Scholar
  112. Kögl, F., u. A. J. Haagen-Smit: Biotin und Aneurin als Phytohormone. Hoppe-Seylers Z. 243, 209–226 (1936).Google Scholar
  113. Kotte, W.: Wurzelmeristem in Gewebekultur. Ber. dtsch. bot. Ges. 40, 269–272 (1922).Google Scholar
  114. Kulturversuche mit isolierten Wurzelspitzen. Beitr. allg. Bot. 2, 413–434 (1922).Google Scholar
  115. Kovoor, A.: Action comparée du liquide intra-calicinal de Spathodea campanulata Beauv. sur la croissance des cultures de tissus végétaux. C. r. Acad. Sci. Paris 237, 832–834 (1953).PubMedGoogle Scholar
  116. Action de quelques substances stimulantes d’origine naturelle sur le développement des tissus végétaux cultivés in vitro. Année Biol. 30, 417–429 (1954).Google Scholar
  117. Kulescha, Z.: Relation entre le pouvoir de prolifération spontanée des tissus de Topinambour et leur teneur en substance de croissance. C. r. Soc. Biol. Paris 143, 354–356 (1949).Google Scholar
  118. Recherches sur l’élaboration des substances de croissance par les tissus vegetaux. Rev. gén. Bot. 59,19–41, 92–111,127–157,195–208, 241–264 (1952).Google Scholar
  119. Kulescha, Z., et R. J. Gautheret: Recherches sur l’action de la cynurénine sur les tissus de topinambour cultivés in vitro. C. r. Soc. Biol. Paris 145, 245–246 (1951).PubMedGoogle Scholar
  120. Levine, M.: The effect of growth substances and chemical carcinogens in fibrous roots of carrot tissue grown in vitro. Amer. J. Bot. 38, 132–138 (1951).Google Scholar
  121. Lexander, K.: Growth-regulating substances in roots of wheat. Physiol. Plantarum (Copenh.) 6, 406–411 (1953).Google Scholar
  122. Limasset, P., et R. J. Gautheret: Sur le charactère tumural des tissus de Tabac ayant subi le phénomène d’accoutumance aux hétéro-auxines. C. r. Acad. Sci. Paris 230, 2043–2045 (1950).Google Scholar
  123. Loo, S. W.: Cultivation of excised stem tips of asparagus in vitro. Amer. J. Bot. 32, 13–17 (1945).Google Scholar
  124. Mauney, J. R., W. S. Hillman, C. O. Miller, F. Skoog, R. A. Clayton and F. M. Strong: The bioassay, purification and properties of a growth factor from coconut milk. Physiol. Plantarum (Copenh.) 5, 485–497 (1952).Google Scholar
  125. McClary, J. E.: Synthesis of thiamin by excised roots of maize. Proc. Nat. Acad. Sci. U.S.A. 26, 581–587 (1940).Google Scholar
  126. Miller, C. O., F. S. Okumura, H. M. v. Saltza and F. M. Strong: Isolation, structure and synthesis of kinetin, a substance promoting cell division. J. Amer. Chem. Soc. 78,1375 (1956).Google Scholar
  127. Miller, C. O., and F. Skoog: Chemical control of bud formation in tobacco stem segments. Amer. J. Bot. 40, 768–773 (1953).Google Scholar
  128. Morel, G.: Action de l’acide panthothénique sur la croissance des tissus d’Aubépine cultivés in vitro. C. r. Acad. Sci. Paris 223,166–168 (1946).Google Scholar
  129. —Recherches sur la culture associée de parasites olbigatoires et de tissus vegetaux. Ann. épiphyt. 14, 1–112 (1948).Google Scholar
  130. Sur la culture des tussis de deux Monocotylédones. C. r. Acad. Sci. Paris 230, 1099–1101 (1950).Google Scholar
  131. Nagao, M.: Studies on the growth hormones of plants. III. The occurrence of growth substance in isolated roots grown under sterilised conditions. Sci. Rep. Tohoku Univ. (Biol.) 12, 191–193 (1937).Google Scholar
  132. Studies on the growth hormones of plants. IV. Further experiments on the production of growth substance in root tips. Sci. Rep. Tohoku Univ. (Biol.) 13, 221–228 (1938).Google Scholar
  133. Naylor, A. W., and B. N. Rappaport: Studies on the growth factor requirements of pea roots. Physiol. Plantarum (Copenh.) 3, 315–333 (1950).Google Scholar
  134. Naylor, J., G. Sander and F. Skoog: Mitosis and cell enlargement without cell division in excised tobacco pith tissue. Physiol. Plantarum (Copenh.) 7, 25–29 (1954).Google Scholar
  135. Nétien, G.: Action des gibellerines sur la culture des tissus végétaux culturés in vitro. C. r. Acad. Sci. Paris 244, 2732–2733 (1957).Google Scholar
  136. Nétien, G., et G. Beauchesne: Essai d’isolement d’un factor de croissance présent dans un extraitleiteux de caryopses de Mais immatures. Année Biol. 30, 437–443 (1954).Google Scholar
  137. Nétien, G., G. Beauchesne et C. Mentzer: Influence du lait de Mais sur la croissance des tissus de Carotte in vitro. C. r. Acad. Sci. Paris 233, 92–93 (1951).PubMedGoogle Scholar
  138. Nickell, L. G.: Effect of aspartic acid on growth of plant-virus tumour tissue. Nature (Lond.) 166,351–352 (1950a).Google Scholar
  139. Effect of coconut milk on the growth in vitro of plant virus tumor tissue. Bot. Gaz. 112, 225–228 (1950b).Google Scholar
  140. Vitamin B1 requirement of Rumex virus tumor tissue. Bull. Torrey Bot. Club 79, 427–430 (1952).Google Scholar
  141. Gibberellin and the growth of plant tissue cultures. Nature (Lond.) 181, 499–500 (1958).Google Scholar
  142. Nickell, L. G., and P. R. Burkholder: Atypical growth of plants. II. Growth in vitro of virus tumors of Rumex in relation to temperature, pH and various sources of nitrogen, carbon and sulfur. Amer. J. Bot. 37, 538–547 (1950).Google Scholar
  143. Nickell, L. G., G. Greenfield and P. R. Burkholder: Atypical growth of plants. III. Growth responses of virus tumors of Rumex to certain nucleic acid components and related compounds. Bot. Gaz. 112, 42–52 (1950).Google Scholar
  144. Nitsch, J. P.: Action du jus de Tomato sur la croissance des tissus de crown-gall cultivés in vitro. C. r. Acad. Sci. Paris 233, 1676–1678 (1951).PubMedGoogle Scholar
  145. L’action sur la croissance des cultures de tissu, du liquide Séminal d’Allanblackia parviflora A. Chev. C. r. Acad. Sci. Paris 238, 141–143 (1954).Google Scholar
  146. Nobécourt, P.: Sur la perennité et l’augmentation de volume des cultures de tissus végétaux. C. r. Soc. Biol. Paris 130, 1270–1271 (1939).Google Scholar
  147. Overbeek, J. van: Is auxin produced in roots ? Proc. Nat. Acad. Sci. U.S.A. 25, 245–248 (1939).Google Scholar
  148. Overbeek, J. van, M. E. Conklin and A. F. Blakeslee: Factors in coconut milk essential for growth and development of very young Datura embryos. Science (Lancaster, Pa.) 94, 350–351 (1941).Google Scholar
  149. Cultivation in vitro of small Datura embryos. Amer. J. Bot. 29, 472–477 (1942).Google Scholar
  150. Paris, D.: Action de quelques vitamines hydrosolubles sur les cultures de tissus végétaux. Année Biol. 31, 15–29 (1955).Google Scholar
  151. Paris, D., L. Duhamet et A. Goris: Action des vitamines et des acides aminés contenus dans le lait de coco sur la proliferation d’une souche de tissus de Carotte. C. r. Soc. Biol. Paris 148, 296–299 (1954).PubMedGoogle Scholar
  152. Poel, L. W.: Carbon dioxide fixation by barley roots. J. of Exper. Bot. 4, 157–163 (1953).Google Scholar
  153. Riker, A. J., and A. E. Gutsche: The growth of sunflower tissue in vitro on synthetic media with various organic and inorganic sources of nitrogen. Amer. J. Bot. 35, 227–228 (1948).Google Scholar
  154. Robbins, W. J.: Cultivation of excised root tips and stem tips under sterile conditions. Bot. Gaz. 73, 376–390 (1922).Google Scholar
  155. Effect of autolyzed yeast and peptone on growth of excised corn root tips in the dark. Bot. Gaz. 74, 59–62 (1922).Google Scholar
  156. Growth of excised roots and heterosis in tomatoes. Amer. J. Bot. 28, 216–225 (1941).Google Scholar
  157. Robbins, W. J., and M. A. Bartley: Thiazole and the growth of excised tomato roots. Proc. Nat. Acad. Sci. U.S.A. 23, 385–388 (1937).Google Scholar
  158. Robbins, W. J., and W. E. Maneval: Further experiments on growth of excised root tips under sterile conditions. Bot. Gaz. 76, 274–287 (1923).Google Scholar
  159. Robbins, W. J., and M. B. Schmidt: Growth of excised roots of tomato. Bot. Gaz. 99, 671–728 (1938).Google Scholar
  160. Further experiments on excised tomato roots. Amer. J. Bot. 26,149–159 (1939).Google Scholar
  161. Roberts, E. H.: Factors controlling persistance of meristematic activity in excised roots. Ph.D. Thesis, Univ. Manchester 1954.Google Scholar
  162. Roberts, E. H., and H. E. Street: The continuous culture of excised rye roots. Physiol. Plantarum (Copenh.) 8, 238–262 (1955).Google Scholar
  163. Ropp, R. S. de, J. C. Vitucci, B. L. Hutchings and J. H. Williams: Effect of coconut fractions on growth of carrot tissues. Proc. Soc. Exper. Biol. a. Med. 81, 704–705 (1952).Google Scholar
  164. Rytz jr., W. v.: Beitrag zum Aneurinstoffwechsel bei höheren Pflanzen. Ber. Schweiz, bot. Ges. 49, 339–399 (1939).Google Scholar
  165. Sanders, M. E., and P. R. Burkholder: Influence of amino-acids on growth of Datura embryos in culture. Proc. Nat. Acad. Sci. U.S.A. 34, 516–526 (1948).Google Scholar
  166. Schoen, V., et G. Morel: Elaboration de substances de croissance par les tissus de Topinambour cultivés in vitro. C. r. Acad. Sci. Paris 238, 2549–2550 (1954).Google Scholar
  167. Schroeder, C. A., and C. Spector: Effect of gibberellic acid and incoleacetic acid on growth of excised fruit tissue. Science 126, 101 (1957).Google Scholar
  168. Shantz,E.M., and F. C. Steward: Coconut-milk factor: The growth-promoting substances in coconut milk. J. Amer. Chem. Soc. 74, 6133–6135 (1952).Google Scholar
  169. Sheat, D. E. G.: Studies on the nitrogen nutrition of excised roots of Lycopersicum esculentum Mill. Ph.D. Thesis, Univ. Manchester 1958.Google Scholar
  170. Skinner, J. C.: Genetical and physiological studies of the behaviour of excised root cultures of the groundsel Senecio vulgaris L. Ph. D. Thesis, Univ. Manchester 1953.Google Scholar
  171. Skinner, J. C., and H. E. Street: Studies on the growth of excised roots. II. Observations on the growth of excised groundsel roots. New Phytologist 53, 44–67 (1954).Google Scholar
  172. Skoog, F.: Chemical regulation of growth in plants, chap. 8, in: Dynamics of growth processes, pp. 148–182. Princeton 1954.Google Scholar
  173. Skoog, F., and C.O.Miller: Chemical regulation of growth and organ formation in plant tissues cultured in vitro. The Biological Action of Growth Substances. Symposion Soc. f. Exper. Biol. 9,118–131 (1957).Google Scholar
  174. Skoog, F., and B. J. Robinson: A direct relationship between indoleacetic acid effects on growth and reducing sugar in tobacco tissue. Proc. Soc. Exper. Biol. a. Med. 74, 565–568 (1950).Google Scholar
  175. Skoog, F., and C. Tsui: Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Amer. J. Bot. 35, 782–787 (1948).Google Scholar
  176. In: Plant growth substances. Madison 1951.Google Scholar
  177. Slankis, V.: Über den Einfluß von β-Indolylessigsäure und anderen Wuchsstoffen auf das Wachstum von Kiefernwurzeln. I. Symbolae bot. Upsaliensis 11, 3, 1–63 (1951).Google Scholar
  178. Solt, M. L.: Nicotine production and growth of excised tobacco root cultures. Plant Physiol. 32, 480–484 (1954).Google Scholar
  179. Steinberg, R. A.: Growth responses to organic compounds by tobacco seedlings in aseptic culture. J. Agricult. Res. 75, 81–92 (1947).Google Scholar
  180. Steward, F. C., and S. M. Caplin: A tissue culture from potato tuber, the synergistic action of 2.4-d and coconut milk. Science (Lancaster, Pa.) 113, 518–520 (1951).Google Scholar
  181. Investigations on the growth and metabolism of plant cells. III. Evidence for growth inhibitors in certain mature tissues. Ann. of Bot. 16, 477–489 (1952).Google Scholar
  182. Investigations on the growth and metabolism of plant cells. IV. Evidence on the rôle of the coconut milk factor in development. Ann. of Bot. 16, 491–504 (1952).Google Scholar
  183. Steward, F. C., and E. M. Shantz: The growth of carrot tissue explants and its relation to the growth factors in coconut milk. II. The growth-promoting properties of coconut milk for plant tissue cultures. Année Biol. 230, 399–415 (1954).Google Scholar
  184. Stone, A.: Ph.D. Thesis, Univ. Wisconsin 1951.Google Scholar
  185. Stout, P. R., and D. I. Arnon: Experimental methods for the study of the rôle of copper, manganese and zinc in the nutrition of higher plants. Amer. J. Bot. 26, 144–149 (1939).Google Scholar
  186. Stowe, B. B., and T. Yamaki: The history and physiological action of the gibberellins. Ann. Rev. Plant Physiol. 8, 181–216 (1957).Google Scholar
  187. Straus, J., and C. D. LaRue: Maize endosperm tissue grown in vitro. I. Culture requirements. Amer. J. Bot. 41,687–694 (1954).Google Scholar
  188. Street, H. E.: Factors controlling meristematic activity in excised roots. V. Effects of β-indolyacetic acid, β-indolylacetonitrile and α-(l-naphthylmethyl-sulphide)-propionic acid on the growth and survival of roots of Lycopersicum esculentum Mill. Physiol. Plantarum (Copenh.) 7, 212–230 (1954).Google Scholar
  189. Effects of alpha(l-naphthylmethylsulphide)-propionic acid on the growth of excised tomato roots. Nature (Lond.) 173, 253–254 (1954).Google Scholar
  190. Metabolism of nitrogen in plants. Nature (Lond.) 176, 906 (1955).Google Scholar
  191. Street, H. E., and J. S. Lowe: The carbohydrate nutrition of tomato roots. II. The mechanism of sucrose absorption by excised roots. Ann. of Bot. 14, 307–329 (1950).Google Scholar
  192. Street, H. E., M. P. McGonagle and J. S. Lowe: Observations on the “staling” of White’s medium by excised tomato roots. Physiol. Plantarum (Copenh.) 4, 592–616 (1951).Google Scholar
  193. Street, H. E., M. P. McGonagle and S. M. McGregor: Observations on the “staling” of White’s medium by excised tomato roots. II. Iron availability. Physiol. Plantarum (Copenh.) 5, 248–276 (1952).Google Scholar
  194. Street, H. E., M. P. McGonagle and E. H. Roberts: Factors controlling meristematic activity in excised roots. II. Experiments involving repeated subculture of the main axis meristem of roots of Lycopersicum esculentum Mill, and Lycopersicum pimpinellifolium Dunal. Physiol. Plantarum (Copenh.) 6, 1–16 (1953).Google Scholar
  195. Thomas, M.: Physiological studies in acid metabolism in green plants. I. CO2 fixation and CO2 liberation in Crassulacean acid metabolism. New Phytologist 48, 390–420 (1949).Google Scholar
  196. Thomas, M., and H. Beevers: Physiological studies in acid metabolism in green plants. II. Evidence of CO2 fixation in Bryophyllum and the study of diurnal variation of acidity in this genus. New Phytologist 48,421–447 (1949).Google Scholar
  197. Thurlow, J., and J. Bonner: Fixation of atmospheric CO2 in the dark by leaves of Bryophyllum. Arch, of Biochem. 19, 509 (1948).Google Scholar
  198. Walker, J. B.: Arginosuccinic acid from Chlorella. Proc. Nat. Acad. Sci. U.S.A. 38, 561–566 (1952).Google Scholar
  199. Washburn, M. R., and C. F. Niven jr.: Amino-acid interrelationships in the nutrition of Streptococcus bovis. J. Bacter. 55, 769–776 (1948).Google Scholar
  200. Went, F. W.: Specific factors other than auxin affecting growth and root formation. Plant Physiol. 13, 55–80 (1938).PubMedGoogle Scholar
  201. White, P. R.: Influence of some environmental conditions on the growth of excised root tips of wheat seedlings in liquid culture. Plant Physiol. 7, 613–628 (1932).PubMedGoogle Scholar
  202. Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol. 9, 585–600 (1934).Google Scholar
  203. Survival of isolated tomato roots at sub-optimal and supra-optimal temperatures. Plant Physiol. 12, 771–776 (1937a).Google Scholar
  204. Amino acids in the nutrition of excised tomato roots. Plant Physiol. 12, 793–802 (1937b).Google Scholar
  205. Vitamin Bx in the nutrition of excised tomato roots. Plant Physiol. 12, 803–811 (1937c).Google Scholar
  206. Cultivation of excised roots of dicotyledonous plants. Amer. J. Bot. 25, 348–356 (1938).Google Scholar
  207. Potentially unlimited growth of excised plant callus in an artificial medium. Amer. J. Bot. 26, 59–64 (1939).Google Scholar
  208. Does “C. P. Grade” sucrose contain impurities significant for the nutrition of excised tomato roots ? Plant Physiol. 15, 349–354 (1940a).Google Scholar
  209. Sucrose vs. dextrose as carbohydrate source for excised tomato roots. Plant Physiol. 15, 355–358 (1940a).Google Scholar
  210. Vitamin B6, nicotinic acid, pyridoxine, glycine and thiamin in the nutrition of excised tomato roots. Amer. J. Bot. 27, 811–821 (1940b).Google Scholar
  211. A handbook of plant tissue culture. Lancaster 1943 a.Google Scholar
  212. Further evidence on the significance of glycine, pyridoxine and nicotinic acid in the nutrition of excised tomato roots. Amer. J. Bot. 30, 33–36 (1943b).Google Scholar
  213. Nutritional requirements of isolated plant tissues and organs. Annual Rev. Plant Physiol. 2, 231–244 (1951).Google Scholar
  214. Wiggans, S. C.: Growth and organ formation in callus tissues derived from Daucus carota. Amer. J. Bot. 41, 321–326 (1954).Google Scholar
  215. Wood, H. G., and C. H. Werkman: The utilisation of CO2 in the dissimulation of glycerol by the propionic acid bacteria. Biochemie. J. 30, 48–53 (1936).Google Scholar
  216. The utilisation of CO2 by the propionic acid bacteria. Biochemic. J. 32, 1262–1271 (1938).Google Scholar
  217. The relationship of bacterial utilisation of CO2 to succinic acid fornation. Biochemic. J. 34, 129–138 (1940).Google Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1959

Authors and Affiliations

  • J. G. Kisser
  • Otto Härtel
  • H. J. Phaff
  • Henry J. Vogel
  • N. Nielsen
  • H. E. Street

There are no affiliations available

Personalised recommendations