Advertisement

The use of mutants in the study of metabolism

  • Henry J. Vogel
  • David M. Bonner
Chapter
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 11)

Abstract

The metabolic, especially the biosynthetic, mechanisms underlying the dramatic phenomenon of cellular growth have held a persistent fascination for biologists and biochemists alike. So varied and numerous are the synthetic reactions required for growth that their integration in the economy of the cell is remarkable indeed. It has long been realized that the necessary regulation of cellular activities depends, at least to an important degree, on the genetic apparatus of the cell. However, detailed demonstrations of the interrelation between the genetic apparatus and well defined biochemical activities have appeared only in recent years. As a notable consequence of these investigations, potent methods have become available for the analysis of various metabolic processes, particularly of biosynthetic pathways. Simultaneously with this development of the methods of biochemical genetics, substantial strides have been made in the use of enzyme and isotope techniques in studies of biosynthesis. While the present discussion is primarily concerned with methods contributed by the field of biochemical genetics, it will be shown that these methods lead to conclusions that are consistent with, and complementary to, those derived from isotope and enzyme studies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Abelson, P. H.: Amino acid biosynthesis in Escherichia coli: Isotopic competition with C14-glucose. J. of Biol. Chem. 206, 335–343 (1954).Google Scholar
  2. Abelson, P. H., and H. J. Vogel: Amino acid biosynthesis in Torulopsis utilis and Neurospora crassa. J. of Biol. Chem. 213, 355–364 (1955).Google Scholar
  3. Adams, E.: The enzymatic synthesis of histidine from histidinol. J. of Biol. Chem. 209, 829–846 (1954).Google Scholar
  4. l-Histidinal, a biosynthetic precursor of histidine. J. of Biol. Chem. 217, 325–344 (1955).Google Scholar
  5. Adelberg, E. A.: The use of metabolically blocked organisms for the analysis of biosynthetic pathways. Bacter. Rev. 17, 253–267 (1953).Google Scholar
  6. Isoleucine biosynthesis from threonine. J. Amer. Chem. Soc., 76, 4241 (1954).Google Scholar
  7. The biosynthesis of isoleucine, valine, and leucine, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 419–429. Baltimore: Johns Hopkins Press 1955a.Google Scholar
  8. The biosynthesis of isoleucine and valine. III. Tracer experiments with l-threonine. J. of Biol. Chem. 216, 431–437 (1955b).Google Scholar
  9. Adelberg, E. A., D. Bonner and E. L. Tatum: A precursor of isoleucine obtained from a mutant strain of Neurospora crassa. J. of Biol. Chem. 190, 837–841 (1951).Google Scholar
  10. Adelberg, E. A., C. A. Coughlin and R. W. Barratt: The biosynthesis of isoleucine and valine. II. Independence of the biosynthetic pathways in Neurospora. J. of Biol. Chem. 216, 425–430 (1955).Google Scholar
  11. Adelberg, E. A., and J. W.Myers: Modification of the penicillin technique for the selection of auxotrophic bacteria. J. Bacter. 65, 348–353 (1953).Google Scholar
  12. Adelberg, E. A., and E. L. Tatum: Characterization of a valine analog accumulated by a mutant strain of Neurospora crassa. Arch, of Biochem. 29, 235–236 (1950).Google Scholar
  13. Adelberg, E. A., and H. E. Umbarger: Isoleucine and valine metabolism in Escherichia coli. V. α-Ketoisovaleric acid accumulation. J. of Biol. Chem. 205, 475–482 (1953).Google Scholar
  14. Ames, B. N.: The biosynthesis of histidine, in W. D. McElroy and B. Glass eds.: Amino acid metabolism, pp. 357–371. Baltimore: Johns Hopkins Press 1955.Google Scholar
  15. Ames, B. N., and B. L. Horecker: The biosynthesis of histidine: Imidazoleacetol phosphate transaminase. J. of Biol. Chem. 220,113–128 (1956).Google Scholar
  16. Ames, B. N., and H. K. Mitchell: The biosynthesis of histidine, imidazoleglycerol phosphate, imidazoleacetol phosphate and histidinol phosphate. J. of Biol. Chem. 212, 687–696 (1955).Google Scholar
  17. Andersson-Kottö, I., G. Ehrensvärd, G. Högström, L. Reio and E. Saluste: Amino acid formation and utilization in Neurospora. J. of Biol. Chem. 210, 455–463 (1954).Google Scholar
  18. Baddiley, J., G. Ehrensvärd, E, Klein, L. Reio and E. Saltjste: Metabolic connection between acetic acid and tyrosine and a method of degradation of the phenolic ring structure in tyrosine. J. of Biol. Chem. 183, 777–788 (1950).Google Scholar
  19. Beadle, G. W.: An inositolless mutant strain of Neurospora and its use in bioassays. J. of Biol. Chem. 156, 683–689 (1944).Google Scholar
  20. Biochemical genetics. Chem. Rev. 37, 15–96 (1945).Google Scholar
  21. Beadle, G. W., H. K. Mitchell and J. F. Nyc: Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane by Neurospora. Proc. Nat. Acad. Sci. U.S.A. 33, 155–158 (1947).CrossRefGoogle Scholar
  22. Beadle, G. W., and E. L. Tatum: Genetic control of biochemical reactions in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 27, 499–506 (1941).CrossRefGoogle Scholar
  23. Neurospora. II. Methods of producing and detecting mutations with nutritional requirements. Amer. J. Bot. 32, 678–686 (1945).Google Scholar
  24. Billen, D., and H. C. Lichstein: Studies on the aspartic acid decarboxylase of Rhizobium trifolii. J. Bacter. 58, 215–221 (1949).Google Scholar
  25. Black, S., and N. M. Gray: Enzymatic phosphorylation of l-aspartate. J. Amer. Chem. Soc. 75, 2271–2272 (1953).CrossRefGoogle Scholar
  26. Black, S., and N. G. Wright: Intermediate steps in the biosynthesis of threonine, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 591–600. Baltimore: Johns Hopkins Press 1955a.Google Scholar
  27. β-Asparto-kinase and β-aspartyl phosphate. J. of Biol. Chem. 213, 27–38 (1955b).Google Scholar
  28. Aspartic β-semialdehvde dehydrogenase and aspartic β-semialdehyde. J. of Biol. Chem. 213, 39–50 (1955c).Google Scholar
  29. Homoserine dehydrogenase. J. of Biol. Chem. 213, 51–60 (1955d).Google Scholar
  30. Bonner, D.: Production of biochemical mutations in Penicillium. Amer. J. Bot. 33, 788–791 (1946).CrossRefGoogle Scholar
  31. The identification of a natural precursor of nicotinic acid. Proc. Nat. Acad. Sci. U.S.A. 34, 5–9 (1948).Google Scholar
  32. Bonner, D., and G. W. Beadle: Mutant strains of Neurospora requiring nicotinamide or related compounds for growth. Arch, of Biochem. 11, 319–328 (1946).Google Scholar
  33. Bonner, D., E. L. Tatum and G. W. Beadle: The genetic control of biochemical reactions in Neurospora: A mutant strain requiring isoleucine and valine. Arch, of Biochem. 3, 71–91 (1943).Google Scholar
  34. Bonner, D. M., and C. Yanofsky: Quinolinic acid accumulation in the conversion of 3-hydroxyanthranilic acid to niacin in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 35, 576–581 (1949).CrossRefGoogle Scholar
  35. The biosynthesis of tryptophan and niacin and their relationships. J. Nutrit. 44, 603–616 (1951).Google Scholar
  36. Bonner, D. M., C. Yanofsky and C. W. H. Partridge: Incomplete genetic blocks in biochemical mutants of Neurospora. Proc. Nat. Acad. Sci. U.S.A. 38, 25–34 (1952).CrossRefGoogle Scholar
  37. Brenner, S.: Tryptophan biosynthesis in Salmonella typhimurium. Proc. Nat. Acad. Sci. U.S.A. 41, 862–863 (1955).CrossRefGoogle Scholar
  38. Brown, G. B.: Nucleic acids, purines, and pyrimidines. Annual Rev. Biochem. 22, 141–178 (1953).CrossRefGoogle Scholar
  39. Buchanan, J. M., and D. W. Wilson: Biosynthesis of purines and pyrimidines. Federat. Proc. 12, 646–650 (1953).Google Scholar
  40. Butenandt, A.: Biochemie der Gene und Genwirkungen. Naturwiss. 40, 91–100 (1953).CrossRefGoogle Scholar
  41. Campbell, J. J. R.: Metabolism of microorganisms. Annual Rev. Microbiol. 8, 71–104 (1954).CrossRefGoogle Scholar
  42. Cohen, G. N., and M. L. Hirsch: Threonine synthase, a system synthesizing l-threonine from l-homoserine. J. Bacter. 67, 182–190 (1954).Google Scholar
  43. Cohen, G. N., M. L. Hirsch, S. B. Wiesendanger et B. Nisman: Précisions sur la synthèse de l-thréonine à partir d’acide l-aspartique par les extraits de Escherichia coli. C. r. Acad. Sci. Paris 238, 1746–1748 (1954).PubMedGoogle Scholar
  44. Cowie, D. B., and E. T. Bolton: Sulfur metabolism in Escherichia coli. IV. Influence of nonmethionine sulfur compounds upon a methionine requiring mutant. J. Bacter. 64, 87–96 (1952).Google Scholar
  45. Cowie, D. B., E. T. Bolton and M. K. Sands: Sulfur metabolism in Escherichia coli. I. Sulphate metabolism of normal and mutant cells. J. Bacter. 60, 233–248 (1950).Google Scholar
  46. Crandall, D.I.: The ferrous ion activation of homogentisic acid oxidase and other aromatic ring-splitting oxidases, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 867–875. Baltimore: Johns Hopkins Press 1955.Google Scholar
  47. Dalgliesh, C. E.: Biological degradation of tryptophan. Quart. Rev. 5, 227–244 (1951).CrossRefGoogle Scholar
  48. Davis, B. D.: Isolation of biochemically deficient mutants of bacteria by limited enrichment. Arch, of Biochem. 20, 166–167 (1949).Google Scholar
  49. Studies on nutritionally deficient bacterial mutants isolated by means of penicillin. Experientia (Basel) 6, 41–50 (1950).Google Scholar
  50. Aromatic biosynthesis. I. The rôle of shikimic acid. J. of Biol. Chem. 191, 315–325 (1951).Google Scholar
  51. Biosynthetic interrelations of diaminopimelic acid, lysine, and threonine in mutants of Escherichia coli. Nature (Loncl.) 169, 534–536 (1952).Google Scholar
  52. Autocatalytic growth of a mutant due to accumulation of an unstable phenylalanine precursor. Science (Lancaster, Pa.) 118, 251–252 (1953).Google Scholar
  53. Biosynthesis of the aromatic amino acids, in W.D.McElroy and B. Glass, eds.: Amino acid metabolism, pp. 799–811. Baltimore: Johns Hopkins Press 1955.Google Scholar
  54. DeBusk, A. G.: Metabolic aspects of chemical genetics, in F.F.Nord, ed.: Advances in enzymology, Vol. XVII, pp. 393–476. New York and London: Interscience 1956.Google Scholar
  55. DeBusk, A. G., and R.P.Wagner: p-Hydroxyphenylpyruvic acid function in Neurospora crassa. J. Amer. Chem. Soc. 75, 5131 (1953).CrossRefGoogle Scholar
  56. Demerec, M., L. Blomstrand and Z. E. Demerec: Evidence of complex loci in Salmonella. Proc. Nat. Acad. Sci. U.S.A. 41, 359–364 (1955).CrossRefGoogle Scholar
  57. Dewey, D. L., and E. Work: Diaminopimelic acid and lysine. Diaminopimelic acid decarboxylase. Nature (Lond.) 169, 533–534 (1952).CrossRefGoogle Scholar
  58. Ehrensvärd, G.: Metabolism of amino acids and proteins. Annual Rev. Biochem. 24, 275–310 (1955).CrossRefGoogle Scholar
  59. Ehrensvärd, G., L. Reio and E. Saluste: On the origin of the basic amino acids. Acta chem. scand. (Copenh.) 3, 645 (1949).CrossRefGoogle Scholar
  60. Ehrensvärd, G., L. Reio, E. Saluste and R. Stjernholm: Acetic acid metabolism in Torulopsis utilis. III. Metabolic connection between acetic acid and various amino acids. J. of Biol. Chem. 189, 93–108 (1951).Google Scholar
  61. Ehrensvärd, G., E. Sperber, E. Saluste, L. Reio and R. Stjernholm: Metabolic connection between proline and glycine in the amino acid utilization of Torulopsis utilis. J. of Biol. Chem. 169, 759–760 (1947).Google Scholar
  62. Emerson, S.: Competitive reactions and antagonisms in the biosynthesis of amino acids by Neurospora. Cold Spring Harbor Symp. Quant. Biol. 14, 40–47 (1950).PubMedCrossRefGoogle Scholar
  63. Fincham, J. R. S.: Transaminases in Neurospora crassa. Nature (Lond.) 168, 957–958 (1951a).CrossRefGoogle Scholar
  64. The occurrence of glutamic dehydrogenases in Neurospora and its apparent absence in certain mutant strains. J. Gen. Microbiol. 5, 793–806 (1951b).Google Scholar
  65. Ornithine transaminase in Neurospora and its relation to the biosynthesis of proline. Biochemic. J. 53, 313–320 (1953).Google Scholar
  66. Effects of a gene mutation in Neurospora crassa relating to glutamic dehydrogenase formation. J. Gen. Microbiol. 11, 236–246 (1954).Google Scholar
  67. Fincham, J. R. S., and A. B. Boulter: Effects of amino acids on transaminase production in Neurospora crassa: Evidence for four different enzymes. Biochemic. J. 62, 72–77 (1956).Google Scholar
  68. Fincham, J. R. S., and J. B. Boylen: A block in arginine synthesis in Neurospora crassa due to gene mutation. Biochemic. J. 61, xxiii–xxiv (1955).Google Scholar
  69. Fischer, G. A.: Genetic and biochemical studies of the cysteine-methionine series of mutants in Neurospora crassa. Thesis. Pasadena: California Institute of Technology. 1954.Google Scholar
  70. Fling, M., and N.H.Horowitz: Threonine and homoserine in extracts of a methionineless mutant of Neurospora. J. of Biol. Chem. 190, 277–285 (1951).Google Scholar
  71. Fries, N.: Experiments with different methods of isolating physiological mutations of filamentous fungi. Nature (Lond.) 159, 199 (1947).CrossRefGoogle Scholar
  72. Gest, H.: Oxidation and evolution of molecular hydrogen by microorganisms. Bacter. Rev. 18, 43–73 (1954).Google Scholar
  73. Gest, H., and H. D. Peck jr.: A study of the hydrogenlyase reaction with systems derived from normal and anaerogenic coli-aerogenes bacteria. J. Bacter. 70, 326–334 (1955).Google Scholar
  74. Ghosh, J. J.: Tyrosine biosynthesis in Escherichia coli: Conversion of prephenic acid to p-hydroxyphenyllactic acid. Federat. Proc. 15, 261 (1956).Google Scholar
  75. Gibson, F.: Methionine synthesis by Escherichia coli. II. Congr. Internat, de Biochimie, p. 80, 1952.Google Scholar
  76. Gilvarg, C.: Prephenic acid and the aromatization step in the synthesis of phenylalanine, in W.D.McElroy and B. Glass, eds.: Amino acid metabolism, pp. 812–816. Baltimore: Johns Hopkins Press 1955.Google Scholar
  77. Biosynthesis of diaminopimelic acid. Federat. Proc. 15, 261–262 (1956).Google Scholar
  78. Gilvarg, C., and K. Bloch: The utilization of acetic acid for amino acid synthesis in yeast. J. of Biol. Chem. 193, 339–346 (1951).Google Scholar
  79. Utilization of glucose-l-C14 for the synthesis of phenylalanine and tyrosine. J. of Biol. Chem. 199, 689–698 (1952).Google Scholar
  80. Gilvarg, C., and B. D.Davis: Significance of the tricarboxylic acid cycle in Escherichia coli. Federat. Proc. 13, 217 (1954).Google Scholar
  81. Good, N., R. Heilbronner and H.K.Mitchell: ε-Hydroxynorleucine as a substitute for lysine for Neurospora. Arch, of Biochem. 28, 264–265 (1950).Google Scholar
  82. Gordon, M., F. A. Haskins and H. K. Mitchell: The growth-promoting properties of quinic acid. Proc. Nat. Acad. Sci. U.S.A. 36, 427–430 (1950).CrossRefGoogle Scholar
  83. Granick, S.: The structural and functional relationships between heme and chlorophyll. Harvey Lect., Ser. XLIV, 1950, 220–245.Google Scholar
  84. Gray, C. H., and E. L. Tatum: X-ray induced growth factor requirements in bacteria. Proc. Nat. Acad. Sci. U.S.A. 30, 404–410 (1944).CrossRefGoogle Scholar
  85. Green, M., M. Alexander and P. W. Wilson: Mutants of the Azotobacter unable to use N2. J. Bacter. 66,623–624 (1953).Google Scholar
  86. Haba, G. L. de la: Mechanism of nitrate assimilation in Neurospora. Science (Lancaster, Pa.) 112,203–204 (1950).Google Scholar
  87. Haldane, J. B. S.: The biochemistry of genetics. London: George Allen & Unwin, Ltd. 1954.Google Scholar
  88. Haskins, F. A., and H. K. Mitchell: Evidence for a tryptophane cycle in Neurospora. Proc. Nat. Acad. Sci. U.S.A.35, 500–506 (1949).CrossRefGoogle Scholar
  89. Hayaishi, O.: Enzymatic studies on the metabolic interrelationship of hydroxy-substituted derivatives of tryptophan and its intermediate metabolites, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 914–929. Baltimore: Johns Hopkins Press 1955.Google Scholar
  90. Hayaishi, O., and R. Y. Stanier: The bacterial oxidation of tryptophan. III. Enzymatic activities of cell-free extracts from bacteria employing the aromatic pathway. J. Bacter. 62, 691–709 (1951).Google Scholar
  91. Henderson, L. M.: Quinolinic acid excretion by the rat receiving tryptophan. J. of Biol. Chem. 178, 1005–1006 (1949a).Google Scholar
  92. Quinolinic acid metabolism. II. Replacement of nicotinic acid for the growth of the rat and Neurospora. J. of Biol. Chem. 181, 677–685 (1949b).Google Scholar
  93. Hirsch, M. L., et G. N. Cohen: Transformation de l’acide l-aspartique en l-thréonine par l’intermédiaire de la l-homosérine chez Escherichia coli. C. r. Acad. Sci. Paris 236, 2338–2340 (1953).PubMedGoogle Scholar
  94. Horowitz, N. H.: The isolation and identification of a natural precursor of choline. J. of Biol. Chem. 162, 413–419 (1946).Google Scholar
  95. Methionine synthesis in Neurospora. The isolation of cystathionine. J. of Biol. Chem. 171, 255–264 (1947).Google Scholar
  96. Jakoby, W. B.: Kynurenine formamidase from Neurospora. J. of Biol. Chem. 207, 657–663 (1954).Google Scholar
  97. An interrelationship between tryptophan, tyrosine, and phenylalanine in Neurospora, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 909–913. Baltimore: Johns Hopkins Press 1955.Google Scholar
  98. Jakoby, W. B., and D. M. Bonner: Kynureninase from Neurospora: Purification and properties. J. of Biol. Chem. 205, 699–707 (1953a).Google Scholar
  99. Kynureninase from Neurospora: Interaction of enzyme with substrates, coenzyme, and amines. J. of Biol. Chem. 205, 709–715 (1953b).Google Scholar
  100. Jensen, H. L.: The azotobacteriaceae. Bacter. Rev. 18, 195–213 (1954).Google Scholar
  101. Jones, M. E., L. Spector and F. Lipmann: Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. Chem. Soc. 77, 819–820 (1955).CrossRefGoogle Scholar
  102. Kalan, E. B., and P. R. Srinivasan: Synthesis of 5-dehydroshikimic acid from carbohydrates in a cell-free extract, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 826–830. Baltimore: Johns Hopkins Press 1955.Google Scholar
  103. Karlson, P.: Biochemische Wirkungen der Gene. Erg. Enzymforsch. 13, 85–206 (1954).Google Scholar
  104. Katagiri, M.: Bacterial synthesis of aromatic metabolites. I. Synthesis of a labile precursor of phenylalanine by non-proliferating cells of an auxotroph of Escherichia coli. J. of Biochem. 40, 629–639 (1953).Google Scholar
  105. Katagiri, M., and R. Sato: Accumulation of phenylalanine by a phenylalanineless mutant of Escherichia coli. Science (Lancaster, Pa.) 118, 250–251 (1953).Google Scholar
  106. Knox, W. E., and A. H. Mehler: The conversion of tryptophan to kynurenine in liver. I. The coupled tryptophan perixodase-oxidase system forming formylkynurenine. J. of Biol. Chem. 187, 419–430 (1950).Google Scholar
  107. Krehl, W. A., L. J. Teply, P. S. Sarman and C. A. Elvehjem: Growth retarding effect of corn in nicotinic acid low rations and its counteraction by tryptophan. Science (Lancaster, Pa.) 101, 489 (1945).Google Scholar
  108. Kuhn, R., u. T. Wieland: Zur Biogenese der Pantothensäure. Ber. dtsch. chem. Ges. B 75, 121–123 (1942).CrossRefGoogle Scholar
  109. Lampen, J. O., R. R. Roepke and M.J.Jones: Studies on the sulfur metabolism of Escherichia coli. III. Mutant strains of Escherichia coli unable to utilize sulfate for their complete sulfur requirements. Arch, of Biochem. 13, 55–66 (1947).Google Scholar
  110. Lansford jr., E. M., and W. Shive: The microbiological activity of α-keto-β,β-dimethyl-γ-butyrolactone. Arch, of Biochem. a. Biophysics 38, 353–355 (1952).CrossRefGoogle Scholar
  111. Lederberg, J.: Studies in bacterial genetics. J. Bacter. 52, 503 (1946).Google Scholar
  112. Problems in microbiol genetics. Heredity (Lond.) 2, 145–198 (1948).Google Scholar
  113. Isolation and characterization of biochemical mutants of bacteria, in R. W. Gerard, ed.: Methods in medical research, Vol. 3, pp. 5–22. Chicago: The Year Book Publishers, Inc. 1950.Google Scholar
  114. Lederberg, J., and E. M. Lederberg: Replica plating and indirect selection of bacterial mutants. J. Bacter. 63, 399–406 (1952).Google Scholar
  115. Lederberg, J., and E. L. Tatum: Detection of biochemical mutants of microorganisms. J. of Biol. Chem. 165, 381–382 (1946).Google Scholar
  116. Lederberg, J., and N. Zinder: Concentration of biochemical mutants of bacteria with penicillin. J. Amer. Chem. Soc. 70, 4267 (1948).CrossRefGoogle Scholar
  117. Lein, J., H. K. Mitchell and M. B. Houlahan: A method for selection of biochemical mutants of Neurospora. Proc. Nat. Acad. Sci. U.S.A. 34, 435–442 (1948).CrossRefGoogle Scholar
  118. Levy, L., and M. J. Coon: The rôle of formate in the biosynthesis of histidine. J. of Biol. Chem. 192, 807–815 (1951).Google Scholar
  119. Biosynthesis of histidine from radioactive acetate and glucose. J. of Biol. Chem. 208, 691–699 (1954).Google Scholar
  120. Maas, W. K.: Pantothenate studies. III. Description of the extracted pantothenatesynthesizing enzyme of Escherichia coli. J. of Biol. Chem. 198, 23–32 (1952).Google Scholar
  121. Mechanism of the enzymatic synthesis of pantothenate from beta-alanine and pantoate. Federat. Proc. 15, 305–306 (1956).Google Scholar
  122. Maas, W. K., and D. G. Novelli: Synthesis of pantothenic acid by depyrophosphorylation of adenosine tri-phosphate. Arch, of Biochem. a. Biophysics 43, 236–237 (1953).CrossRefGoogle Scholar
  123. Maas, W. K., G. D. Novelli and F. Lipmann: Acetylation of glutamic acid by extracts of Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 39, 1004–1008 (1953).CrossRefGoogle Scholar
  124. Maas, W. K., and H. J. Vogel: α-Ketoisovaleric acid, a precursor of pantothenic acid in Escherichia coli. J. Bacter. 65, 388–393 (1953).Google Scholar
  125. McElroy, W. D., and A.-H. Farghaly: Biochemical mutants affecting the growth and light production in luminous bacteria. Arch, of Biochem. 17, 379–390 (1948).Google Scholar
  126. McElroy, W. D., and S. Friedman: Gene recombination in luminous bacteria. J. Bacter. 62,129–130 (1951).Google Scholar
  127. McElroy, W. D., and D. Spencer: Normal pathways of assimilation of nitrate and nitrite, in W. D. McElroy and B. Glass, eds.: Inorganic nitrogen metabolism, pp. 137–152. Baltimore: Johns Hopkins Press 1956.Google Scholar
  128. McManus, I. R.: The biosynthesis of valine by Saccharomyces cerevisiae. J. of Biol. Chem. 208, 639–644 (1954).Google Scholar
  129. McQuillen, K., and R.B.Roberts: The utilization of acetate for synthesis in Escherichia coli. J. of Biol. Chem. 207, 81–95 (1954).Google Scholar
  130. Mehler, A. H.: Metabolism of tryptophan, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 882–908. Baltimore: Johns Hopkins Press 1955.Google Scholar
  131. Formation of picolinic and quinolinic acids following enzymatic oxidation of 3-hydroxyanthranilic acid. J. of Biol. Chem. 218, 241–254 (1956).Google Scholar
  132. Mehler, A. H., and W.E.Knox: The conversion of tryptophan to kynurenine in liver. II. The enzymatic hydrolysis of formyl-kynurenine. J. of Biol. Chem. 187, 431–438 (1950).Google Scholar
  133. Meinhart, J. O., and S. Simmonds: Serine metabolism in a mutant strain of Escherichia coli strain K-12. J. of Biol. Chem. 213, 329–341 (1955).Google Scholar
  134. Miller, H., A.-H. Farghaly and W.D.McElroy: Factors influencing the recovery of biochemical mutants in luminous bacteria. J. Bacter. 57, 595–602 (1949).Google Scholar
  135. Mitchell, H. K., and M. B. Hotjlahan: A temperature-sensitive riboflavinless mutant. Amer. J. Bot. 33, 31–35 (1946).CrossRefGoogle Scholar
  136. An intermediate in the biosynthesis of lysine in Neurospora. J. of Biol. Chem. 174, 883–887 (1948).Google Scholar
  137. Mitchell, H. K., and J. Lein: A Neurospora mutant deficient in the enzymatic synthesis of tryptophan. J. biol. Chem. 175, 481–482 (1948).PubMedGoogle Scholar
  138. Mitchell, H. K., and J. F. Nyc: Hydroxyanthranilic acid as a precursor of nicotinic acid in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 34, 1–5 (1948).CrossRefGoogle Scholar
  139. Mitsuhashi, S., and B. D. Davis: Aromatic synthesis. XII. Conversion of 5-dehydroquinic acid to 5-dehydroshikimic acid by 5-dehydroquinase. Biochim. et Biophysica Acta 15, 54–61 (1954).CrossRefGoogle Scholar
  140. Myers, J. W., and E. A. Adelberg: The biosynthesis of isoleucine and valine. I. Enzymatic transformation of the dihydroxy acid precursors to the keto acid precursors. Proc. Nat. Acad. Sci. U.S.A. 40, 493–499 (1954).CrossRefGoogle Scholar
  141. Nelson, E. V., M. Purko, W. O. Nelson and W. A. Wood: Synthesis of ketopantoate: A hydroxymethylation by enzymes from Escherichia coli. Bacter. Proc. 1955, 130.Google Scholar
  142. Nisman, B., G. N. Cohen, S. B. Wiesendanger and M. L. Hirsch: Transformation de l’acide aspartique en homosérine et en thréonine par des extraits de Escherichia coli. C. r. Acad. Sci. Paris 238, 1342–1344 (1954).PubMedGoogle Scholar
  143. Nyc, J. F., H. K. Mitchell, E. Leifer and W. H. Langham: Use of isotopic carbon in a study of the metabolism of anthranilic acid in Neurospora. J. of Biol. Chem. 179, 783–787 (1949).Google Scholar
  144. Ochoa, S.: Enzymic mechanisms in the citric acid cycle, in F. F. Nord, ed.: Advances in enzymology, Vol. XV, pp. 183–270. New York-London: Interscience 1954.Google Scholar
  145. Ordal, E. J., and H. O. Halvorson: A comparison of hydrogen production from sugars and formic acid by normal and variant strains of Escherichia coli. J. Bacter. 38, 199–220 (1939).Google Scholar
  146. Paech, K.: Colour development in flowers. Annual Rev. Plant Physiol. 6, 273–298 (1955).CrossRefGoogle Scholar
  147. Pardee, A. B., and L. S. Prestidge: Induced formation of serine and threonine deaminases. J. Bacter. 70, 667–674 (1955).Google Scholar
  148. Partridge, C. W. H., D. M. Bonner and C. Yanofsky: A quantitative study of the relationship between tryptophan and niacin in Neurospora. J. of Biol. Chem. 194, 269–278 (1952).Google Scholar
  149. Pontecorvo, G.: The genetics of Aspergillus nidulans. Adv. Genet. 5, 141–238 (1953).PubMedCrossRefGoogle Scholar
  150. Rafelson jr., M. E.: Conversion ox radioactive glucose and acetate to tryptophan by Aerobacter aerogenes. J. of Biol. Chem. 213, 479–486 (1955).Google Scholar
  151. Ratner, S.: Arginine metabolism and interrelationships between the citric acid and urea cycles, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 231–257. Baltimore: Johns Hopkins Press 1955.Google Scholar
  152. Regnery, D. C.: A leucineless mutant strain of Neurospora crassa. J. of Biol. Chem. 154, 151–160 (1944).Google Scholar
  153. Reio, L., and G. Ehrensvärd: An improved method for degradation of tyrosine and phenols in general in connection with isotope studies. Ark. Kemi (Stockh.) 5, 301–311 (1953).Google Scholar
  154. Roepke, R. R., R. L. Libby and M. H. Small: Mutation or variation of Escherichia coli with respect to growth requirements. J. Bacter. 48, 401–412 (1944).Google Scholar
  155. Rogers, P., and W.D. McElroy: Biochemical characteristics of aldehyde and luciferase mutants of luminous bacteria. Proc. Nat. Acad. Sci. U.S.A. 41, 67–70 (1955).CrossRefGoogle Scholar
  156. Rosen, F., J. W. Huff and W. A. Perlzweig: The effect of tryptophan on the synthesis of nicotinic acid in the rat. J. of Biol. Chem. 163, 343–344 (1946).Google Scholar
  157. Rtjdman, D., and A. Meister: Transamination in Escherichia coli. J. of Biol. Chem. 200, 591–604 (1953).Google Scholar
  158. Ryan, F. J.: Selected methods of Neurospora genetics, in R. W. Gerard, ed.: Methods in medical research, Vol.3, pp. 51–75. Chicago: The Year Book Publishers, Inc. 1950.Google Scholar
  159. Sakami, W.: The biochemical relationship between glycine and serine, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 658–683. Baltimore: Johns Hopkins Press 1955.Google Scholar
  160. Salamon, I.I., and B. D. Davis: Aromatic biosynthesis. IX. The isolation of a precursor of shikimic acid. J. Amer. Chem. Soc. 75, 5567–5571 (1953).CrossRefGoogle Scholar
  161. Santer, U., and H. J. Vogel: Prodigiosin synthesis in Serratia marcescens: Isolation of a pyrrole-containing precursor. Biochim. et Biophysica Acta 19, 578–579 (1956a).CrossRefGoogle Scholar
  162. A pyrrole-containing precursor of prodigiosin. Federat. Proc. 15, 345–346 (1956b).Google Scholar
  163. Sato, R.: The rôle of heptose in the biosynthesis of aromatic rings. Kagaku 23, 474–475 (1953).Google Scholar
  164. Scher jr., W. I., and H.J. Vogel: On the occurrence of ornithine δ-transaminase in various microorganisms. Bacter. Proc. 1955, 123–124.Google Scholar
  165. Schwartz, M., and S.K. Shapiro: The mechanism of utilization of thiomethyl-adenosine in the biosynthesis of methionine. J. Bacter. 67, 98–102 (1954).Google Scholar
  166. Shive, W., and J. Macow: Biochemical transformations as determined by competitive analogue-metabolite growth inhibitions. J. of Biol. Chem. 162, 451–462 (1946).Google Scholar
  167. Silver, W. S., and W.D. McElroy: Enzyme studies on nitrate and nitrite mutants of Neurospora. Arch, of Biochem. a. Biophysics 51, 379–394 (1954).CrossRefGoogle Scholar
  168. Simmonds, S.: Utilization of sulfur-containing amino acids by mutant strains of Escherichia coli. J. of Biol. Chem. 174, 717–722 (1948).Google Scholar
  169. The metabolism of phenylalanine and tyrosine in mutant strains of Escherichia coli. J. of Biol. Chem. 185, 755–762 (1950).Google Scholar
  170. Simmonds, S., M. T. Dowling and D. Stone: Metabolism of phenylalanine and tyrosine by Escherichia coli. J. of Biol. Chem. 208, 701–724 (1954).Google Scholar
  171. Simmonds, S., E. L. Tatum and J. S. Fruton: The utilization of phenylalanine and tyrosine derivatives by mutant strains of Escherichia coli. J. of Biol. Chem. 169, 91–101 (1947).Google Scholar
  172. Singer, T. P., and E. B. Kearney: Chemistry, metabolism, and scope of action of the pyridine nucleotide coenzymes, in F. F. Nord, ed.: Advances in enzymology, Vol. XV, pp. 79–139. New York and London: Interscience 1954.Google Scholar
  173. Smith, R. A., C. W. Shuster, S. Zimmerman and I. C. Gunsalus: Serine synthesis in Escherichia coli. Bacter. Proc. 1956, 107.Google Scholar
  174. Spiegelman, S., and O.E. Landman: Genetics of microorganisms. Annual Rev. Microbiol. 8, 181–236 (1954).CrossRefGoogle Scholar
  175. Sprinson, D. B.: The biosynthesis of shikimic acid from labeled carbohydrates, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 817–825. Baltimore: Johns Hopkins Press 1955.Google Scholar
  176. Srb, A. M., J.R.S. Fincham and D. Bonner: Evidence from gene mutations on Neurospora for close metabolic relationships among ornithine, proline, and α-amino-δ-hydroxy valeric acid. Amer. J. Bot. 37, 533–538 (1950).CrossRefGoogle Scholar
  177. Srb, A. M., and N. H. Horowitz: The ornithine cycle in Neurospora and its genetic control. J. of Biol. Chem. 154,129–139 (1944).Google Scholar
  178. Srinivasan, P. R,, M. Katagiri and D. B. Sprinson: The enzymatic synthesis of shikimic acid from d-erythro-4-phosphate and phosphoenolpyruvate. J. Amer. Chem. Soc. 77, 4943–4944 (1955).CrossRefGoogle Scholar
  179. Srinivasan, P. R., and D. B. Sprinson: Conversion of d-erythrose-4-phosphate plus phosphoenolpyruvate to intermediates in shikimic acid formation. Federat. Proc. 15, 360 (1956).Google Scholar
  180. Stetten, M. R.: Metabolic relationship between glutamic acid, proline, hydroxy proline, and ornithine, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 277–290. Baltimore: Johns Hopkins Press 1955.Google Scholar
  181. Strassman, M., L. A. Locke, A. J. Thomas and S. Weinhouse: A study of leucine biosynthesis in Torulopsis utilis. J. Amer. Chem. Soc. 78, 1599–1602 (1956).CrossRefGoogle Scholar
  182. Strassman, M., A. J. Thomas, L.A. Locke and S. Weinhouse: Intramolecular migration and isoleucine biosynthesis. J. Amer. Chem. Soc. 76, 4241–4242 (1954).CrossRefGoogle Scholar
  183. Strassman, M., A. Thomas and S. Weinhouse: Valine biosynthesis in Torulopsis utilis. J. Amer. Chem. Soc. 75, 5135 (1953).CrossRefGoogle Scholar
  184. Strassman, M., and S. Weinhouse: Biosynthetic pathways. III. The biosynthesis of lysine by Torulopsis utilis. J. Amer. Chem. Soc. 75, 1680–1684 (1953).CrossRefGoogle Scholar
  185. Isotope studies on biosynthesis of valine and isoleucine, in W.D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 452–457. Baltimore: Johns Hopkins Press 1955.Google Scholar
  186. Strauss, B. S.: Studies on the metabolism of acetate by acetate-requiring mutants of Neurospora crassa. Arch, of Biochem. 55, 77–94 (1955).CrossRefGoogle Scholar
  187. Strauss, B. S., and S. Pierog: Gene interactions: The mode of action of the suppressor of acetate re quiring-mutants of Neurospora crassa. J. Gen. Microbiol. 10, 221–235 (1954).PubMedGoogle Scholar
  188. Tabor, H., A. H. Mehler, O. Hayaishi and J. White: Urocanic acid as an intermediate in the enzymatic conversion of histidine to glutamic and formic acids. J. of Biol. Chem. 196, 121–128 (1952).Google Scholar
  189. Tatum, E. L.: Desthiobiotin in the biosynthesis of biotin. J. of Biol. Chem. 160, 455–459 (1945).Google Scholar
  190. Amino acid metabolism in mutant strains of microorganisms. Federat. Proc. 8, 511–517 (1949).Google Scholar
  191. Genetic aspects of growth responses in fungi, in F. Skoog, ed.: Plant growth substances, pp. 447–461. Madison: University of Wisconsin Press 1951.Google Scholar
  192. Tatum, E. L., R. W. Barratt and V.M.Cutter jr.: Chemical induction of colonial paramor phs in Neurospora and Syncephalastrum. Science (Lancaster, Pa.) 109, 509–511 (1949).Google Scholar
  193. Tatum, E. L., R. W. Barratt, N. Fries and D. Bonner: Biochemical mutant strains of Neurospora produced by physical and chemical treatment. Amer. J. Bot. 37, 38–46 (1950).CrossRefGoogle Scholar
  194. Tatum, E. L., and G. W. Beadle: Genetic control of biochemical reactions in Neurospora. An “aminobenzoicless” mutant. Proc. Nat. Acad. Sci. U.S.A. 28, 234–243 (1942).CrossRefGoogle Scholar
  195. Tatum, E. L., and T. T. Bell: Neurospora. III. Biosynthesis of thiamine. Amer. J. Bot. 33, 15–20 (1946).CrossRefGoogle Scholar
  196. Tatum, E. L., and D. M. Bonner: Synthesis of tryptophan from indole and serine by Neurospora. J. of Biol. Chem. 151, 349 (1943).Google Scholar
  197. Indole and serine in the biosynthesis and breakdown of tryptophan. Proc. Nat. Acad. Sci. U.S.A. 30, 30–37 (1944).Google Scholar
  198. Tatum, E. L., D. Bonner and G. W. Beadle: Anthranilic acid and the biosynthesis of indole and tryptophan by Neurospora. Arch, of Biochem. 3, 477–478 (1944).Google Scholar
  199. Tatum, E. L., and S. R. Gross: Incorporation of carbon atoms 1 and 6 of glucose into protocatechuic acid by Neurospora. J. of Biol. Chem. 219, 797–807 (1956).Google Scholar
  200. Tatum, E. L., S. R. Gross, G. Ehrensvärd and L. Garnjobst: Synthesis of aromatic compounds by Neurospora. Proc. Nat. Acad. Sci. U.S.A. 40, 271–276 (1954).CrossRefGoogle Scholar
  201. Tatum, E. L., and D. D. Perkins: Genetics of microorganisms. Annual Rev. Microbiol. 4, 129–150 (1950).CrossRefGoogle Scholar
  202. Tatum, E. L., and D. Shemin: Mechanism of tryptophan synthesis in Neurospora. J. of Biol. Chem. 209, 671–675 (1954).Google Scholar
  203. Teas, H. J., N. H. Horowitz and M. Fling: Homoserine as a precursor of threonine and methionine in Neurospora. J. of Biol. Chem. 172, 651–658 (1948).Google Scholar
  204. Umbarger, H. E.: Some observations on the biosynthetic pathway of isoleucine, in W. D.McElroy and B. Glass, eds.: Amino acid metabolism, pp. 442–451. Baltimore: Johns Hopkins Press 1955.Google Scholar
  205. l-Threonine, an obligatory precursor of l-isoleucine in E. coli. Federat. Proc. 15, 374 (1956).Google Scholar
  206. Umbarger, H. E., and B. Brown: Threonine deamination in Escherichia coli. I. d- and l-thieonine deaminase activities of cell-free extracts. J. Bacter. 71, 443–449 (1956).Google Scholar
  207. Umbarger, H. E., and B. Magasanik: Isoleucine and valine metabolism in Escherichia coli. II. The accumulation of keto acids. J. of Biol. Chem. 189, 287–292 (1951).Google Scholar
  208. Umbreit, W. W., W. A. Wood and I. C. Gunsaltjs: The activity of pyridoxal phosphate in tryptophan formation by cell-free enzyme preparations. J. of Biol. Chem. 165, 731–732 (1946).Google Scholar
  209. Vogel, H. J.: Isolation of an ornithine precursor, Nα-acetyl-l-ornithine and its enzymatic conversion to ornithine. Abstracts of Papers, Atlantic City Meeting, Amer. Chem. Soc. 43C, 1952.Google Scholar
  210. Path of ornithine synthesis in Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 39, 578–583 (1953a).Google Scholar
  211. On growth limiting-utilization of α-N-acetyl-l-ornithine. VI. International Congress of Microbiology, Vol. I, pp. 269–271. 1953 b.Google Scholar
  212. On the glutamate-prolineornithine interrelation in various microorganisms, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 335–346. Baltimore: Johns Hopkins Press 1955.Google Scholar
  213. An ornithineproline interrelation in Escherichia coli. J. Amer. Chem. Soc. 78, 2631–2632 (1956).Google Scholar
  214. Vogel, H. J., P. H. Abelson and E.T. Bolton: On ornithine and proline synthesis in Escherichia coli. Biochim. et Biophysica Acta 11, 584–585 (1953).CrossRefGoogle Scholar
  215. Vogel, H. J., and D. M. Bonner: On the glutamate-proline-ornithine interrelation in Neurospora crassa. Proc. Nat. Acad. Sci. U.S.A. 40, 688–694 (1954).CrossRefGoogle Scholar
  216. Acetylornithinase of Escherichia coli: Partial purification and some properties. J. of Biol. Chem. 218, 97–106 (1956).Google Scholar
  217. Vogel, H. J., and B. D. Davis: Path of biosynthesis of proline. Federat. Proc. 10, 423 (1951).Google Scholar
  218. Glutamic gamma-semiladehyde and Delta1 -pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. J. Amer. Chem. Soc. 74, 109–112 (1952).Google Scholar
  219. Vogel, H. J., B. D. Davis and E. S. Mingioli: l-Histidinol, a precursor of l-histidine in Escherichia coli. J. Amer. Chem. Soc. 73, 1897 (1951).CrossRefGoogle Scholar
  220. Wagner, R. P.: Synthesis of pantothenic acid by pantothenicless and wild type Neurospora. Proc. Nat. Acad. Sci. U.S.A. 35, 185–189 (1949).CrossRefGoogle Scholar
  221. Weiss, U., B. D. Davis and E. S. Mingioli: Aromatic synthesis. X. Identification of an early precursor as 5-dehydroquinic acid. J. Amer. Chem. Soc. 75, 5572–5576 (1953).CrossRefGoogle Scholar
  222. Weiss, U., C. Gilvarg, E. S. Mingioli and B. D. Davis: Aromatic biosynthesis. XI. The aromatization step in the synthesis of phenylalanine. Science (Lancaster, Pa.) 119, 774–775 (1954).Google Scholar
  223. Westley, J., and J. Ceithaml: Synthesis of histidine in Escherichia coli. II. Radioisotopic tracer studies. J. of Biol. Chem. 219, 139–149 (1956).Google Scholar
  224. Wijesijndera, S., and D. D. Woods: Cystathionine in relation to methionine synthesis by Bacterium coli. J. Gen. Microbiol. 9, iii (1953).Google Scholar
  225. Wilson, P. W., and R. H. Bttrris: Biological nitrogen fixation —a reappraisal. Annual Rev. Microbiol. 7, 415–432 (1953).CrossRefGoogle Scholar
  226. Woodward, V. W., J. R. DeZeeuw and A. M. Srb: The separation and isolation of particular biochemical mutants of Neurospora by differential germination of conidia, followed by filtration and selective plating. Proc. Nat. Acad. Sci. U.S.A. 40, 192–200 (1954).CrossRefGoogle Scholar
  227. Work, E.: Some comparative aspects of lysine metabolism, in W.D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 462–492. Baltimore: Johns Hopkins Press 1955.Google Scholar
  228. Wyss, O., and M. B. Wyss: Mutants of Azotobacter that do not fix nitrogen. J. Bacter. 59, 287–291 (1950).Google Scholar
  229. Yaniv, H., and C. Gilvarg: Aromatic synthesis. XIV. 5-Dehydroshikimic reductase. J. of Biol. Chem. 213, 787–795 (1955).Google Scholar
  230. Yanofsky, C.: Tryptophan desmolase of Neurospora. Partial purification and properties. J. of Biol. Chem. 194, 279–286 (1952a).Google Scholar
  231. The effects of gene change on tryptophan desmolase formation. Proc. Nat. Acad. Sci. U.S.A. 38, 215–226 (1952b).Google Scholar
  232. The absence of a tryptophan-niacin relationship in Escherichia coli and Bacillus subtilis. J. Bacter. 68, 577–584 (1954).Google Scholar
  233. Tryptophan and niacin synthesis in various organisms, in W. D. McElroy and B. Glass, eds.: Amino acid metabolism, pp. 930–939. Baltimore: Johns Hopkins Press 1955a.Google Scholar
  234. On the conversion of anthranilic acid to indole. Science (Lancaster, Pa.) 121, 139–139 (1955b).Google Scholar
  235. The participation of ribose derivatives in the conversion of anthranilic acid to indole by extracts of Escherichia coli. Biochim. et Biophysica Acta 16, 594–595 (1955c).Google Scholar
  236. An isotopic study of the conversion of anthranilic acid to indole. J. of Biol. Chem. 217, 345–354 (1955d).Google Scholar
  237. Yanofsky, C., and D. M. Bonner: Evidence for the participation of kynurenine as a normal intermediate in the biosynthesis of niacin in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 36,167–176 (1950).CrossRefGoogle Scholar
  238. Studies on the conversion of 3-hydroxyanthranilic acid to niacin in Neurospora. J. of Biol. Chem. 190, 211–218 (1951).Google Scholar
  239. Yanofsky, D., and J. L.Reissig: l-Serine dehydrase of Neurospora. J. of Biol. Chem. 202, 567–577 (1953).Google Scholar
  240. Yijra, T., and H. J. Vogel: On the biosynthesis of proline in Neurospora crassa: Enzymic reduction of Δ1 -pyrroline-5-carb-oxylate. Biochim. et Biophysica Acta 17, 582 (1955).CrossRefGoogle Scholar
  241. Zelle, M. R.: Genetics of microorganisms. Annual Rev. Microbiol. 9, 45–96 (1955).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag OHG. Berlin · Göttingen · Heidelberg 1959

Authors and Affiliations

  • Henry J. Vogel
  • David M. Bonner

There are no affiliations available

Personalised recommendations