Advertisement

The reduction and accumulation of nitrate

  • Donald Spencer
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Abstract

Nitrate is the principal source of combined nitrogen utilized by higher plants. By the processes of autolysis and nitrification the nitrogen of soil organic matter is converted to ammonia and thence to nitrate. Within the plant nitrate is reduced, and converted into a wide range of organic nitrogen compounds of which the proteins constitute the major group. When a plant is supplied with N15-labelled nitrate, isotopic nitrogen is rapidly distributed throughout the tissues and incorporated into all major nitrogen fractions (Mendel and Visser 1951). Plants can utilize other nitrogen sources such as ammonia, nitrite and amino acids but in general nitrate will support growth equal to, or better than these other sources (Ghosh and Burris 1950). An exception is rice seedlings which are unable to utilize nitrate-N (Bonner 1946). Some organisms, e.g. Chlorella, when supplied both nitrate and ammonia-N preferentially utilize the ammonia-N, and no nitrate reduction occurs in the presence of ammonia-N (Cramer and Myers 1948).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Anderson, A. J., and D. Spencer: Sulphur in nitrogen metabolism of legumes and non-legumes. Austral. J. Sci. Res. B 3, 431–449 (1950).Google Scholar
  2. Arnon, D. I.: Extracellular photosynthetic reactions. Nature (Lond.) 167, 1008–1010 (1951).CrossRefGoogle Scholar
  3. Aubel, E., B. Lubochinsky and A. Prouvost: Au sujet de la reduction des nitrates en nitrites par E. coli. C. r. Acad. Sci. Paris 236, 145–147 (1953).PubMedGoogle Scholar
  4. Back, K. J. C., J. Lascelles and J. L. Still: Hydrogenase. Austral. J. Sci. 9, 25 (1946).Google Scholar
  5. Bernheim, F.: Aldehyde oxidase of potato. Biochemie. J. 22, 334–352 (1928).Google Scholar
  6. Bonner, J.: Role of organic matter, especially manure, in the nutrition of rice. Bot. Gaz. 108, 267–279 (1946).CrossRefGoogle Scholar
  7. Plant Biochemistry. New York: Academic Press Inc. 1950.Google Scholar
  8. Burström, H.: Die Rolle des Mangans bei der Nitratassimilation. Planta (Berl.) 30, 129–150 (1939).CrossRefGoogle Scholar
  9. Photosynthesis and assimilation of nitrate by wheat leaves. Ann. Roy. Agricult. Coll. Sweden 11, 1–50 (1943).Google Scholar
  10. The nitrate nutrition of plants. Ann. Roy. Agricult. Coll. Sweden 13, 1–86 (1946).Google Scholar
  11. Studies on growth and metabolism of roots. II. n-Diamylacetic acid and assimilation of nitrate. Physiol. Plantarum (Copenh.) 2, 332–340 (1949).Google Scholar
  12. Cramer, M., and J. Myers: Nitrate reduction and assimilation in Chlorella. J. Gen. Physiol. 32, 93–102 (1948).PubMedCrossRefGoogle Scholar
  13. Davis, E. A.: Nitrate reduction by Chlorella. Plant Physiol. 28, 539–544 (1953).PubMedCrossRefGoogle Scholar
  14. Delwiche, C. C.: Assimilation of ammonium and nitrate ions by tobacco plants. J. of Biol. Chem. 189, 167–175 (1951).Google Scholar
  15. Reduction of nitrite and nitrate ions by preparations from higher plants. Federat. Proc. 11, 201 (1952).Google Scholar
  16. Eaton, S. V.: Influence of sulphur deficiency on metabolism of the sunflower. Bot. Gaz. 102, 536–556 (1946).CrossRefGoogle Scholar
  17. Evans, H. J., and A. Nason: Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol. 28, 233–254 (1953).PubMedCrossRefGoogle Scholar
  18. Gericke, S.: Die Dungwirkung der Phosphorsäure bei verschiedener Stickstoffnahrung der Pflanze. Bodenk. u. Pflanzenernährg. 33, 196–215 (1943).CrossRefGoogle Scholar
  19. Gest, H.: Oxidation and evolution of molecular hydrogen by microorganisms. Bacter. Rev. 18, 43–73 (1954).Google Scholar
  20. Ghosh, B. P., and R. H. Burris: Utilization of nitrogenous compounds by plants. Soil Sci. 70, 187–203 (1950).CrossRefGoogle Scholar
  21. Gilbert, S. G., and J. W. Shive: The significance of oxygen in the nutrient substrate for plants. I. The oxygen requirement. Soil Sci. 53, 143–152 (1942).CrossRefGoogle Scholar
  22. The importance of oxygen in the nutrient substrate for plants—relation of the nitrate ions to respiration. Soil Sci. 59, 453–460 (1945).Google Scholar
  23. Green, D. E., L. H. Stickland and H. L. Tarr: Carrier-linked reactions between isolated dehydrogenases. Biochemie. J. 28, 1812–1824 (1934).Google Scholar
  24. Hamner, K. C.: Effects of nitrogen supply on rates of photosynthesis and respiration in plants. Bot. Gaz. 97, 744–764 (1935).CrossRefGoogle Scholar
  25. Heppel, L. A., and V. T. Porterfield: Metabolism of inorganic nitrite and nitrate esters. I. Coupled oxidation of nitrite by peroxide-forming systems and catalase. J. of Biol. Chem. 178, 549–556 (1949).Google Scholar
  26. Hewitt, E. J., S. C. Agarwala and E. W. Jones: Effect of molybdenum status on the ascorbic acid content of plants in sand culture. Nature (Lond.) 166, 1219 (1950).CrossRefGoogle Scholar
  27. Hewitt, E. J., E. W. Jones and A. H. Williams: Relation of molybdenum and manganese to the free amino acid content of cauliflower. Nature (Lond.) 163, 681–682 (1949).CrossRefGoogle Scholar
  28. Hoagland, D. R.: Lectures on inorganic nutrition of plants. Waltham, Mass.: Chronica Botanica Co. 1944.CrossRefGoogle Scholar
  29. Hyndman, L. A., R. H. Burris and P. W. Wilson: Properties of hydrogenase from Azotobacter vinelandii. J. Bacter. 65, 523–531 (1953).Google Scholar
  30. Jones, L. H., W. B. Shepardson and C. A. Peters: The function of manganese in the assimilation of nitrates. Plant Physiol. 24, 300–306 (1949).PubMedCrossRefGoogle Scholar
  31. Kessler, E.: The role of photochemical processes in the reduction of nitrate by green algae. Nature (Lond.) 176, 1069–1070 (1955).CrossRefGoogle Scholar
  32. Krasna, A. L, and D. Rittenberg: Reduction of nitrate with molecular hydrogen by Proteus vulgaris. J. Bacter. 68, 53–56 (1954).Google Scholar
  33. Lascelles, J., and J. L. Still: The oxidation of molecular hydrogen by bacteria. Austral. J. Sci. 7, 93–94 (1944).Google Scholar
  34. The reduction of nitrate, nitrite and hydxoxylamine by E. coli. Austral. J. Exper. Biol. a. Med. Sci. 24, 159–167 (1946).Google Scholar
  35. Leeper, G. W.: Manganese deficiency and accumulation of nitrates in plants. J. Austral. Inst. Agricult. Sci. 7, 161–162 (1941).Google Scholar
  36. Mackleb, B., H. R. Mahler and D. E. Green: Studies on metalloflavoproteins I. Xanthine oxidase, a molybdoflavoprotein. J. of Biol. Chem. 210, 149–164 (1954).Google Scholar
  37. Mahler, H. R., B. Mackler, D. E. Green and R. M. Bock: Studies on metalloflavoproteins. III. Aldehyde oxidase: a molybdoflavoprotein. J. of Biol. Chem. 210, 465–480 (1954).Google Scholar
  38. Mc Kee, M. C., and D. E. Lobb: Formation of nitrate in detached green leaves of swiss chard and tomato. Plant Physiol. 13, 407–412 (1938).PubMedCrossRefGoogle Scholar
  39. Mendel, J. L., and D. W. Visser: Studies on nitrate reduction in higher plants. Arch. of Biochem. 32, 158–169 (1951).CrossRefGoogle Scholar
  40. Mulder, E. G.: Importance of molybdenum in the nitrogen metabolism of microorganisms and higher plants. Plant a. Soil 1, 94–119 (1948).CrossRefGoogle Scholar
  41. Nance, J. F.: The role of oxygen in nitrate assimilation by wheat roots. Amer. J. Bot. 35, 602–606 (1948).CrossRefGoogle Scholar
  42. Nason, A., R. G. Abraham and B. C. Averback: The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides. Biochim. et Biophysica Acta 15, 160–161 (1954).CrossRefGoogle Scholar
  43. Nason, A., and H. J. Evans: Triphosphopyridine nucleotidenitrate reductase in Neurospora. J. of Biol. Chem. 202, 655–673 (1954).Google Scholar
  44. Nicholas, D. J. D., and A. Nason: Molybdenum and nitrate reductase II. Molybdenum as a constituent of nitrate reductase. J. of Biol. Chem. 207, 353–360 (1954a).Google Scholar
  45. Mechanism of action of nitrate reductase from Neurospora. J. of Biol. Chem. 211, 183–197 (1954b).Google Scholar
  46. Role of molybdenum as a constituent of nitrate reductase from soybean leaves. Plant Physiol. 1955a.Google Scholar
  47. Diphosphopyridine nucleotide-nitrate reductase from Escherichia coli. J. Bacter. 1955 b.Google Scholar
  48. Nicholas, D. J. D., A. Nason and W. D. Mc Elroy: Molybdenum and nitrate reductase I. Effects of molybdenum deficiency on the Neurospora enzyme. J. of Biol. Chem. 207, 341–351 (1954).Google Scholar
  49. Phelps, A. S., and P. W. Wilson: Occurrence of hydrogenase in nitrogen-fixing organisms. Proc. Soc. Exper. Biol. a. Med. 47, 473–476 (1941).Google Scholar
  50. Pollock, M. R., and S. D. Wainwright: The relationship between nitratase and tetrathionase adaptation and cell growth. Brit. J. Exper. Path. 29, 223–240 (1948).Google Scholar
  51. Proebsting, E. L., and R. Täte: Seasonal changes in the nitrate content of fig leaves. Proc. Amer. Soc. Horticult. Sci. 60, 7–10 (1952).Google Scholar
  52. Sato, R., and F. Egami: Nitrate reductase III. Bull. Chem. Soc. Japan 22, 137–143 (1949).CrossRefGoogle Scholar
  53. Sato, R., and M. Niwa: Studies on nitrate reductase VII. Re-investigation on the identity of the enzyme with cytochrome b. Bull. Chem. Soc. Japan 25, 202–210 (1952).CrossRefGoogle Scholar
  54. Sheve, J. W.: Balance of ions and oxygen tension in nutrient substrate for plants. Soil Sci. 51, 445–459 (1941).CrossRefGoogle Scholar
  55. Silver, W., and W. D. Mc Elroy: Enzyme studies of nitrate and nitrite mutants of Neurospora. Arch. of Biochem. a. Biophysics 51, 379–394 (1954).CrossRefGoogle Scholar
  56. Spencer, D., and J. G. Wood: The role of molybdenum in nitrate reduction in higher plants. Austral. J. Biol. Sci. 7, 425–434 (1954).Google Scholar
  57. Steinberg, R. A.: Role of molybdenum in the utilization of ammonium and nitrate nitrogen by Aspergillus niger. J. Agricult. Res. 55, 891–902 (1937).Google Scholar
  58. Stephenson, M., and L. H. Stickland: Hydrogenase: A bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochemie. J. 25, 205–214 (1931).Google Scholar
  59. Street, H. E.: Nitrogen metabolism of higher plants. Adv. Enzymol. 9, 391–444 (1949).Google Scholar
  60. Tolmach, L. J.: Effects of triphosphopyridine nucleotide upon oxygen evolution and carbon dioxide fixation by illuminated chloroplasts. Nature (Lond.) 167, 946–948 (1951).CrossRefGoogle Scholar
  61. Vickery, H. B., G. W. Pucher, A. J. Wakeman and C. S. Leavenworth: Chemical observations of the tobacco plant. Carnegie Instn. Wash. Publ. 1933, No 445.Google Scholar
  62. Virtanen, A. I., and N. Rautanen: Nitrogen metabolism. In: The enzymes, vol.11, part 2. J. B. Sumner and K. Myrbäck, eds. New York: Academic Press Inc. 1952.Google Scholar
  63. Vishniac, W., and S. Ochoa: Photochemical reduction of pyridine nucleotides by spinach grana and coupled carbon dioxide fixation. Nature (Lond.) 167, 768–769 (1951).CrossRefGoogle Scholar
  64. Warburg, O., and E. Negelein: Über die Reduktion der Salpetersäure in grünen Zellen. Biochem. Z. 110, 66–115 (1920).Google Scholar
  65. Whitehead, E. I., and O. E. Olson: Factors affecting the nitrate content of plants. Proc. South Dakota Acad. Sci. 21, 67–72 (1941).Google Scholar
  66. Woods, D. D.: The reduction of nitrate to ammonia by Clostridium welchii. Biochemie. J. 32, 2000–2012 (1938).Google Scholar
  67. Zucker, M., and A. Nason: Enzymatic reduction of hydroxylamine to ammonia by reduced pyridine nucleotides. Federat. Proc. 13, 328 (1954).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Donald Spencer

There are no affiliations available

Personalised recommendations