The absorption and availability of nitrate and ammonia

  • H. E. Street
  • D. E. G. Sheat
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)


This section is concerned with those environmental and plant variables which control the uptake of ammonium salts and nitrates and their utilisation as nitrogen sources. The origin of these salts and their distribution in soils are considered in the preceding section (p. 119) and elsewhere in this Handbook. The enzymic reduction of nitrate within the plant will be dealt with in Section II D, a (p. 201). Assessment of the relevance of data on nitrate and ammonium uptake to the general question of the mechanisms of salt absorption is not considered to be within the scope of the present section. Since the early history of our knowledge of the forms of nitrogen utilised by green plants has been reviewed by various authors (Hutchinson and Miller 1909, 1912, Nightingale 1937, Wilson 1940, Prianischnikov 1951), this aspect will also not be given detailed treatment.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwala, S. C.: Relation of nitrogen supply to molybdenum requirement of cauliflower in sand culture. Nature (Lond.) 169, 1099 (1952).CrossRefGoogle Scholar
  2. Agarwala, S. C., E. J. Hewitt and E. W. Jones: Effect of molybdenum status on the ascorbic acid content of plants in sand culture. Nature (Lond.) 166, 1119–1120 (1950).CrossRefGoogle Scholar
  3. Arenz, B.: Beitrag zur Frage der Wirkung von Salpeter- und Ammoniak-Stickstoff auf das Pflanzenwachstum bei verschiedenen Nährstoffverhältnissen. Z. Bodenkde u. Pflanzenernährg 8, 182–216 (1938).CrossRefGoogle Scholar
  4. Beitrag zur physiologischen Auswirkung von Ammoniak und Nitratstickstoff. Biochem. Z. 308, 196 (1941).Google Scholar
  5. Arnon, D. I.: Ammonium and nitrate nitrogen nutrition of barley at different seasons in relation to hydrogen-ion concentration, manganese, copper and oxygen supply. Soil Sci. 44, 91–113 (1937).CrossRefGoogle Scholar
  6. Effect of ammonium and nitrate nitrogen on the mineral composition and sap characteristics of barley. Soil Sci. 48, 295–307 (1939).Google Scholar
  7. Arnon, D. I., W. E. Fratzke and C. M. Johnson: Hydrogen ion concentration in relation to absorption of inorganic nutrients by higher plants. Plant Physiol. 17, 515–524 (1942).PubMedCrossRefGoogle Scholar
  8. Arnon, D. I., and C. M. Johnson: Influence of hydrogen ion concentration on the growth of higher plants under controlled conditions. Plant Physiol. 17, 525–539 (1942).PubMedCrossRefGoogle Scholar
  9. Arrington, L. B., and J. W. Shive: Oxygen and carbon dioxide content of culture solutions in relation to cation and anion nitrogen absorption by tomato plants. Soil Sci. 42, 341–356 (1936).CrossRefGoogle Scholar
  10. Audits, L. J.: Studies on the pH-relationships of root growth and its inhibition by 2:4 dichlorophenoxyacetic acid and coumarin. New Phytologist 48, 97–114 (1949).CrossRefGoogle Scholar
  11. Barton-Wright, E., and A. Mc Bain: Studies on the physiology of the virus diseases of the potato. III. A comparison of the nitrogen metabolism of normal with that of leaf-roll potatoes. Ann. Appl. Biol. 20, 549–589 (1933).CrossRefGoogle Scholar
  12. Beaumont, A. B., W. S. Eisbnmenger and W. J. Moore jr.: Assimilation of fixed nitrogen by grasses and clovers. J. Agricult. Res. 47, 495–503 (1933).Google Scholar
  13. Beckenbach, J. R., W. R. Robbins and J. W. Shive: Nutritional studies with corn. III. A statistical interpretation of the relation between nutrient ion concentration and the carbohydrate and nitrogenous content of the tissue. Soil Sci. 49, 219–238 (1940).CrossRefGoogle Scholar
  14. Bonner, J.: The role of organic matter, especially manure, in the nutrition of rice. Bot. Gaz. 108, 267–279 (1946).CrossRefGoogle Scholar
  15. Breon, W. S., and W. S. Gillam: Influence of phosphorus supply and the form of available nitrogen on the nitrogen metabolism of the tomato plant. Plant Physiol. 19, 649–659 (1944).PubMedCrossRefGoogle Scholar
  16. Breon, W. S., W. S. Gillam and D. J. Tendam: Influence of phosphorus supply and the form of available nitrogen on the absorption and distribution of phosphorus by the tomato plant. Plant Physiol. 19, 495–506 (1944).CrossRefGoogle Scholar
  17. Bünning, E.: Über die Farbstoff- und Nitrataufnahme bei Asyergillus niger. Flora (Jena) 31, 87–112 (1936).Google Scholar
  18. Burkhart, L., and H. M. Biekart: Gardenia nutrition in relation to flower bud development. Proc. Amer. Soc. Horticult. Sci. 35, 768–769 (1937).Google Scholar
  19. Burström, H.: The relation between hydrogen-ion concentration and nitrate utilization by wheat plants. Lantbruks-Högskolans Ann. 8, 131–182 (1940).Google Scholar
  20. Photo-synthesis and assimilation of nitrate by wheat leaves. Ann. Agricult. Coll. Sweden 11, 1–50 (1943).Google Scholar
  21. Chandler, W. F.: Sources of nitrogen for corn. N. Carolina Agricult. Exper. Stat. Techn. Bull. 96, 1–22 (1952).Google Scholar
  22. Chapman, G. W.: Leaf analysis and plant nutrition. Soil Sci. 52, 63–81 (1941).CrossRefGoogle Scholar
  23. Chapman, H. D., and G. F. Liebig jr.: Nitrate concentration and ion balance in relation to citrus nutrition. Hilgardia 13, 141–173 (1940).Google Scholar
  24. Chibnall, A. C.: Protein metabolism in the plant. New Haven: Yale University Press 1939.Google Scholar
  25. Clark, H. E.: Effect of ammonium and of nitrate nitrogen on the composition of the tomato plant. Plant Physiol. 11, 5–24 (1936).PubMedCrossRefGoogle Scholar
  26. Clark, H. E., and J. W. Shive: The influence of the pH of a culture solution on the rates of absorption of ammonium and nitrate nitrogen by the tomato plant. Soil Sci. 37, 203–225 (1934a).CrossRefGoogle Scholar
  27. The influence of the pH of a culture solution on the assimilation of ammonium and nitrate nitrogen by the tomato plant. Soil Sci. 37, 459–476 (1934 b).Google Scholar
  28. Cullinan, F. P., and L. P. Batjer: Nitrogen, phosphorus and potassium interrelationships in young peach and apple trees. Soil Sci. 55, 49–60 (1943).CrossRefGoogle Scholar
  29. Davidson, O. W.: Large-scale soilless culture for plant research. Soil Sci. 62, 71–86 (1946).CrossRefGoogle Scholar
  30. Davidson, O. W., and J. W. Shive: The influence of the hydrogen-ion concentration of the culture-solution upon the absorption and assimilation of nitrate and ammonium nitrogen by peach trees grown in sand cultures. Soil Sci. 37, 357–385 (1934).CrossRefGoogle Scholar
  31. Davies, W. L.: The proteins of green forage crops. II. The proteins of the mangold root. Comparison with the proteins of the mangold seed. J. Agricult. Sci. 16, 293–301 (1926).CrossRefGoogle Scholar
  32. Demidenko, T. T., and R. A. Barinova: Yield of spring wheat as affected by the dose and form of nitrogen and the pH of the nutrient solution. C. r. Acad. Sci. URSS. 27, 259–263 (1940).Google Scholar
  33. Dikttssar, I. G.: Relative Wirkung von Nitraten und Ammoniumsalzen auf das Pflanzenwachstum und die Abhängigkeit dieser Wirkung von der Wasserstoff- und Calziumionkonzentration der Nährlösung. J. landwirtsch. Wiss. (Moskau) 6, 74 (1929).Google Scholar
  34. Die Wirkung des Ammoniumsulfats und des Salpeters auf die Entwicklung von Zuckerrübe und Mais in Abhängigkeit von der chemischen Zusammensetzung der Nährlösung. Landwirtsch. Jb. 72, 79–104 (1930).Google Scholar
  35. Dittrich, W.: Zur Physiologie des Nitratumsatzes in höheren Pflanzen (unter besonderer Berücksichtigung der Nitratspeicherung). Planta (Berl.) 12, 69–119 (1931).CrossRefGoogle Scholar
  36. Eckerson, S. H.: Protein synthesis by plants. I. Nitrate reduction. Bot. Gaz. 77, 377–390 (1924).CrossRefGoogle Scholar
  37. Conditions affecting nitrate reduction by plants. Contrib. Boyce Thompson Inst. 4, 119–130 (1932).Google Scholar
  38. El-Shishiny, E. D. H.: Absorption and assimilation of inorganic nitrogen from different sources by storage root tissue. J. of Exper. Bot. 6, 6–16 (1955).CrossRefGoogle Scholar
  39. Engel, H.: Die Wirkung der Ammoniumsalze in Abhängigkeit von der Wasserstoffionenkonzentration. Z. Pflanzenernährg, Düng. u. Bodenkde A 16, 226–233 (1930).CrossRefGoogle Scholar
  40. Evans, H. J., and A. Nason: The effect of reduced triphosphopyridine-nucleotide on nitrate reduction by purified nitrate reductase. Arch. of Biochem. a. Biophysics 39, 234–235 (1952).CrossRefGoogle Scholar
  41. Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol. 28, 233–254 (1953).Google Scholar
  42. Gelin, O. E. V., and H. Burström: A study of artificial illumination of greenhouse cultures. Physiol. Plantarum (Copenh.) 1, 70–77 (1949).CrossRefGoogle Scholar
  43. Gilbert, S. G., and J. W. Shive: The significance of oxygen in nutrient substrates for plants. I. The oxygen requirement. Soil Sci. 53, 143–152 (1942).CrossRefGoogle Scholar
  44. The importance of oxygen in the nutrient substrate for plants relation of the nitrate ion to respiration. Soil Sci. 59, 453–460 (1945).Google Scholar
  45. Glasstone, V. F. C.: Inorganic micronutrients in tomato root tissue culture. Amer. J. Bot. 34, 218–224 (1947).CrossRefGoogle Scholar
  46. Glover, J.: The nutrition of maize in sand culture. II. The uptake of nitrogen and phosphorous and its relevance to plant analysis. J. Agricult. Sci. 43, 160 (1953).CrossRefGoogle Scholar
  47. Green, M., and P. W. Wilson: Utilisation of nitrate nitrogen by Azotobacter. J. Gen. Microbiol. 9, 89–96 (1953).PubMedGoogle Scholar
  48. Haas, A. R. C.: Nitrogen fertilization and root aeration (of citrus trees). Calif. Citrograph 22, 286, 332–333 (1937).Google Scholar
  49. Hamner, C. L.: Growth responses of Biloxi soyboans to variations in relative concentrations of phosphate and nitrate in the nutrient solution. Bot. Gaz. 101, 637–649 (1940).CrossRefGoogle Scholar
  50. Hoagland, D. R.: Relation of the concentration and reaction of the nutrient medium to the growth and absorption of the plant. J. Agricult. Res. 18, 73–117 (1919).Google Scholar
  51. Hoagland, D. R., and D. I. Arnon: Physiological aspects of nutrients for plant growth. Soü Sci. 51, 431–444 (1941).CrossRefGoogle Scholar
  52. Holley, K. T., and T. G. Dulin: A study of ammonia and nitrate nitrogen for cotton. Georgia Agricult. Exper. Stat. Bull. 229, 1–54 (1943).Google Scholar
  53. Holley, K. T., T. G. Dulin and T. A. Pickett: A study of ammonia and nitrate for cotton. Georgia Agricult. Exper. Stat. Bull. 172 (1932).Google Scholar
  54. A study of ammonia and nitrate nitrogen for cotton. II. Influence on fruiting and on some organic constituents. Georgia Agricult. Exper. Stat. Bull. 182 (1934).Google Scholar
  55. Holley, K. T., T. A. Pickett and T. G. Dulin: A study of ammonia and nitrate nitrogen for cotton. I. Influence on absorption of other elements. Georgia Agricult. Exper. Stat. Bull. 169, 3–14 (1931).Google Scholar
  56. Hutchinson, H. B., and N. H. J. Miller: Direct assimilation of ammonium salts by plants. J. Agricult. Sci. 3, 179–194 (1909).CrossRefGoogle Scholar
  57. The direct assimilation of inorganic and organic forms of nitrogen by higher plants. J. Agricult. Sci. 4, 282–302 (1912).Google Scholar
  58. Itzerott, D.: Über die Bedingungen der Stickstoffaufnahme, vor allem der Nitrataufnahme, bei Aspergillus niger. Flora (Jena) 31, 60 (1936).Google Scholar
  59. Iwanova, V. S.: Utilisation of ammonia nitrogen by cotton. Lenin. Acad. Agr. Sci. Gedroiz Inst. Fertilisers Agron. Soü Sci. 3, 77–103 (1934).Google Scholar
  60. Jones, C. D., and C. H. Skinner: Absorption of nitrogen from culture solutions by plants. N. J. Agricult. Exper. Stat. Ann. Rep. 1926, No 360.Google Scholar
  61. Jones, L. H., and J. W. Shive: Effect of ammonium sulphate upon plants in nutrient solutions supplied with ferric phosphate and ferrous sulphate as sources of iron. J. Agricult. Res. 21, 701–728 (1921).Google Scholar
  62. Influence of ammonium sulphate on plant growth in nutrient solutions and its effect on the H-ion concentration and iron availability. Ann. of Bot. 37, 355–377 (1923).Google Scholar
  63. Kappen, H., u. W. Wienhues: Über die Aufnahme des Stickstoffs der Ammoniumsalze und der Nitrate durch Keimpflanzen. I. Mitt. Bodenkde u. Pflanzenernährg 27, 311 (1942).CrossRefGoogle Scholar
  64. Ketchum, B. H.: The absorption of phosphate and nitrate by illuminated cultures of Nitzschia closterium. Amer. J. Bot. 26, 399–407 (1939).CrossRefGoogle Scholar
  65. Kraus, E. J., and H. R. Kraybill: Vegetation and reproduction with special reference to the tomato. Oregon Agricult. Exper. Stat. Bull. 149 (1918).Google Scholar
  66. Kretschmer, A. E., S. J. Toth and F. E. Bear: Effect of chloride and sulphate ions on nutrient ion absorption by plants. Soil Sci. 76, 193–199 (1953).CrossRefGoogle Scholar
  67. Krüger, W.: Über die Bedeutung der Nitrifikation für die Kulturpflanzen. Landwirtsch. Jb. 34, 761–782 (1905).Google Scholar
  68. Kultzscher, M.: Die biologische NH3-Entgiftung in höheren Pflanzen in ihrer Abhängigkeit von der Wasserstoffionenkonzentration des Zellsaftes. Planta (Berl.) 17, 699–757 (1932).CrossRefGoogle Scholar
  69. Kylin, A.: A new method for large-scale aseptic cultivation of higher plants. Physiol. Plantarum (Copenh.) 3, 165–174 (1950).CrossRefGoogle Scholar
  70. Kyzlink, V.: Variations in the potassium content of flax plant ash in the light of the newer biochemical knowledge. Bodenkde u. Pflanzenernährg 14, 196–204 (1939).CrossRefGoogle Scholar
  71. Lewis, P. R., and C. N. Hinshelwood: Adjustments in bacterial reaction systems. I. Reducing power of Bacterium lactis aerogenes under various conditions. Proc. Roy. Soc. Lond., Ser. B 135, 301–316 (1948).CrossRefGoogle Scholar
  72. Lovell, J.: The production of “extra oxygen” from nitrate solution by leaves in light. Proc. Leeds Philos. Lit. Soc, Sci. Sect. 3, 488–491 (1938).Google Scholar
  73. Lundegårdh, H.: Investigations as to the absorption and accumulation of inorganic ions. Ann. Agricult. Coll. Sweden 8, 233 (1940).Google Scholar
  74. Leaf Analysis. Translated by R. L. Mitchell. London: Hilger & Watts 1951.Google Scholar
  75. Marthaler, H.: Die Stickstoffernährung der Ruderalpflanzen. Jb. wiss. Bot. 85, 76 (1937).Google Scholar
  76. Maze, P.: L’assimilation de l’azote nitrique et de l’azote ammoniacal par les vegetaux superieurs. C. r. Acad. Sci. Paris 127, 1031–1033 (1898).Google Scholar
  77. Recherches sur l’influencees de l’azote nitrique et de l’azote ammoniacal sur le developpement du mais. Ann. Inst. Pasteur 14, 26–45 (1899).Google Scholar
  78. Mc Calla, A. G., and E. K. Woodford: Effects of a limiting element on the absorption of individual elements and on the anion: cation balance in wheat. Plant Physiol. 13, 695–712 (1938).PubMedCrossRefGoogle Scholar
  79. Merwe, A. J. van der: Nitrogen nutrition of citrus in the nitrate and ammonium form. S. Africa Dept. Agricult. Sci. Bull. 299 (1953).Google Scholar
  80. Mevius, W.: Die Wirkung der Ammoniumsalze in ihrer Abhängigkeit von der Wasserstoffionenkonzentration. Planta (Berl.) 6, 379–455 (1928).CrossRefGoogle Scholar
  81. Mevius, W., U. H. Engel: Die Wirkung der Ammoniumsalze in ihrer Abhängigkeit von der Wasserstoffionenkonzentration. II. Planta (Berl.) 9, 1–83 (1929).CrossRefGoogle Scholar
  82. Moore, R. H.: Nutritional levels in the peanut plant. Bot. Gaz. 98, 464–490 (1937).CrossRefGoogle Scholar
  83. Mulder, E. G.: Investigation on the nitrogen nutrition of pea plants. Plant a. Soü 1, 179–211 (1948).CrossRefGoogle Scholar
  84. Naftel, J. A.: The absorption of ammonia and nitrate nitrogen by various plants at different stages of growth. J. Amer. Soc. Agronom. 23, 142–158 (1931).CrossRefGoogle Scholar
  85. Nance, J. F.: Role of oxygen in nitrate assimilation by wheat roots. Amer. J. Bot. 35, 602–606 (1948).CrossRefGoogle Scholar
  86. Inhibition of nitrate assimilation in excised wheat roots by various respiratory poisons. Plant Physiol. 25, 722–735 (1950).Google Scholar
  87. Nason, A., and H. J. Evans: Triphosphopyridine-nucleotide nitrate reductase in Neurospora. J. of Biol. Chem. 202, 655–673 (1953).Google Scholar
  88. Nicholas, D. J. D., and A. Nason: Molybdenum as an electron carrier in nitrate reductase action. Arch. of Biochem. a. Biophysics 51, 310 (1954).CrossRefGoogle Scholar
  89. Nightingale, G. T.: The nitrogen nutrition of green plants. Bot. Rev. 3, 85–174 (1937).CrossRefGoogle Scholar
  90. Potassium and phosphate nutrition of pineapple in relation to nitrate and carbohydrate reserves. Bot. Gaz. 104, 191–223 (1942).Google Scholar
  91. The nitrogen nutrition of green plants. II. Bot. Rev. 14, 185–221 (1948).Google Scholar
  92. Nightingale, G. T., and R. B. Farnham: Effects of nutrient concentration on anatomy, metabolism and bud abscission of sweet pea. Bot. Gaz. 97, 477–517 (1936).CrossRefGoogle Scholar
  93. Nightingale, G. T., and R. W. Robbins: Some phases of nitrogen metabolism in Polyanthus narcissus. N. J. Agricult. Exper. Stat. Bull. 472 (1928).Google Scholar
  94. Nightingale, G. T., and L. G. Schermerhorn: Nitrate assimilation by asparagus in the absence of light. J. N. Agricult. Exper. Stat. Bull. 476 (1928).Google Scholar
  95. Nightingale, G. T., L. G. Schermerhorn and W. R. Robbins: The growth status of the tomato as correlated with organic nitrogen and carbohydrates in roots, stems and leaves. N. J. Agricult. Exper. Stat. Bull. 461 (1928).Google Scholar
  96. Some effects of potassium deficiency on the histological structure and nitrogenous and carbohydrate constituents of plants. N. J. Agricult. Exper. Stat. Bull. 499 (1930).Google Scholar
  97. Noack, K., U. A. Pirson: Die Wirkung von Eisen und Mangan auf die Stickstoffassimilation von Chlorella. Ber. dtsch. bot. Ges. 57, 442–452 (1939).Google Scholar
  98. Pardo, J. H.: Ammonium in the nutrition of higher green plants. Quart. Rev. Biol. 10, 1–31 (1935).CrossRefGoogle Scholar
  99. Pearsall, W. H., and R. P. Bengry: Growth of Chlorella in relation to light intensity. Ann. of Bot., N. S. 4, 485 (1940).CrossRefGoogle Scholar
  100. Pirschle, K.: Nitrate und Ammonsalze als Stickstoff quellen für höhere Pflanzen bei konstanter Wasserstoffionenkonzentration. Planta (Berl.) 9, 89–103 (1929a).CrossRefGoogle Scholar
  101. Nitrate und Ammonsalze als Stickstoffquellen für höhere Pflanzen bei konstanter Wasserstoffionenkonzentration. II. Ber. dtsch. bot. Ges. 47, 86–92 (1929 b).Google Scholar
  102. Nitrate und Ammonsalze als Stickstoffquellen für höhere Pflanzen bei konstanter Wasserstoffionenkonzentration. III. Planta (Berl.) 14, 583–676 (1931a).Google Scholar
  103. Nitrate und Ammonsalze als Stickstoffquellen für höhere Pflanzen bei konstanter Wasserstoffionenkonzentration. IV. Z. Pflanzenernährg, Düng. u. Bodenkde 22, 51–86 (1931b).Google Scholar
  104. Pratt, R., and J. Fong: Studies on Chlorella vulgaris. III. Growth of Chlorella and changes in the hydrogen ion and ammonium-ion concentrations in solutions containing nitrate and ammonium nitrogen. Amer. J. Bot. 27, 735–743 (1940).CrossRefGoogle Scholar
  105. Prianischnikov, D. N.: Über physiologische Acidität von Ammoniumnitrat. Biochem. Z. 182, 204–215 (1927).Google Scholar
  106. Zur Frage nach der Ammoniakernährung von höheren Pflanzen. Biochem. Z. 207, 341–349 (1929).Google Scholar
  107. Über den Einfluß des Entwicklungsstadiums auf die Ausnutzung des Ammoniak und Nitratstickstoff durch die Pflanzen. Trans. 3. Internat. Congr. Soil Sci. 1, 207–209 (1935).Google Scholar
  108. Nitrogen in the life of plants. Kramer Business Service Inc. Madison U.S.A. 1951.Google Scholar
  109. Prianischnikov, D., u. J. Schulow: Über die synthetische Asparaginbildung in den Pflanzen. Ber. dtsch. bot. Ges. 28, 253–264 (1910).Google Scholar
  110. Prince, A. L., L. H. Jones and J. W. Shive: Notes on differential ion absorption by plants in relation to reaction changes in nutrient solutions. N. J. Agricult. Exper. Stat. Ann. Rep. 1922, No 378.Google Scholar
  111. Pucher, G. W., C. S. Leavenworth, W. D. Gutter and H. B. Vickery: Studies in the metabolism of Crassulacean plants. Effect upon the composition of Bryophyllum calycinum of the form in which nitrogen is supplied. Plant Physiol. 22, 205–227 (1947).PubMedCrossRefGoogle Scholar
  112. Riker, A. J., and A. E. Gutsche: The growth of sunflower tissue in vitro on synthetic media with various organic and inorganic sources of nitrogen. Amer. J. Bot. 35, 227–238 (1948).CrossRefGoogle Scholar
  113. Ruhland, W., u. K. Wetzel: Zur Physiologie der organischen Säuren in grünen Pflanzen. I. Wechselbeziehungen im Stickstoff und Sauerstoffwechsel von Begonia semperflorens. Planta (Berl.) 1, 558–564 (1926).CrossRefGoogle Scholar
  114. Zur Physiologie der organischen Säuren in grünen Pflanzen. III. Rheum Hybridum. Hort. Planta (Berl.) 3, 765–769 (1927).Google Scholar
  115. Zur Physiologie der organischen Säuren in grünen Pflanzen. V. Weitere Untersuchungen an Eheum Hybridum Hort. Planta (Berl.) 7, 503–507 (1929).Google Scholar
  116. Russell, Sir E. John: Soil conditions and plant growth. 6. edit. London 1932.Google Scholar
  117. Said, H., and E. D. H. El-Shishiny: Nitrate absorption and assimilation by radish Toot slices. Proc. Egypt. Acad. Sci. 5, 64–77 (1949).Google Scholar
  118. Sakamura, T., and K. Maeda: On the assimilation of nitrate nitrogen by Hansenula anomala. J. Fac. Sci. Hokkaido Univ., Ser. V, Bot. 7, 79–99 (1950).Google Scholar
  119. Sani, G.: Intorno all’attivita riduttrice delle graminacee, la riduzione del nitrato di calcio per le radici delle graminacee. C. r. Acad. naz. Lincei 10, 197 (1929).Google Scholar
  120. Schropp, W., u. B. Arenz: Über die Wirkung des Kaliums bei der Ernährung der Pflanzen mit Nitrat und Ammoniakstickstoff. Ernähr. Pflanze 35, 97–106 (1939).Google Scholar
  121. Sessions, A. C., and J. W. Shive: The effect of culture solutions on growth and nitrogen fractions of oat plants at different stages during development. Soil Sci. 35, 355–374 (1933).CrossRefGoogle Scholar
  122. Shear, G. M.: Factors affecting physiological breakdown of maturing tobacco. Va. Agricult. Exper. Stat. Techn. Bull. 74 (1941).Google Scholar
  123. Shive, J. W.: Nitrogen absorption and aeration. N. J. Agricult. 16, 2–3 (1934).Google Scholar
  124. Recent concepts of ion availability in plant nutrition. The balance of ions and oxygen tension in nutrient substrates for plants. Soil Sci. 51, 445–459 (1941).Google Scholar
  125. Shive, J. W., and W. R. Robbins: Methods of growing plants in solution and sand cultures. N. J. Agricult. Exper. Stat. Bull. 636 (1942).Google Scholar
  126. Shive, J. W., and A. L. Stahl; Constant rates of continuous solution renewal for plants in water culture. Bot. Gaz. 84, 317–323 (1927).CrossRefGoogle Scholar
  127. Sibuya, K., and H. Salki: Utilization of nitrate and ammonia nitrogen by plant. VIII. Physiological relations among phosphoric acid, potash and different forms of nitrogen nutrients. J. Soc. Trop. Agricult. Taihoku Imp. Univ. 11, 66–75 (1939). Ref. Amer. Chem. Abstr. 34, 6326 (1949).Google Scholar
  128. Sideris, C. P., B. H. Krauss and H. Y. Young: Assimilation of ammonium and nitrate nitrogen from solution cultures by roots of Pandanus veitchii Hort., and the distribution of the various nitrogen fractions and sugars in the stele and cortex. Plant Physiol. 12, 899–928 (1937).PubMedCrossRefGoogle Scholar
  129. Assimilation of ammonium and nitrate by pineapple plants grown in nutrient solutions and its effects on nitrogenous and carbohydrate constituents. Plant Physiol. 13, 489–527 (1938).Google Scholar
  130. Sideris, C. P., and H. Y. Young: Effects of iron on chlorophyllous pigments, ascorbic acid, acidity and carbohydrates of Ananas comosus (L.) Merr. supplied with nitrate and ammonium salts. Plant Physiol. 19, 52–75 (1944).PubMedCrossRefGoogle Scholar
  131. Effects of potassium on chlorophyll, acidity, ascorbic acid and carbohydrates of Ananas comosus (L.) Merr. Plant Physiol. 20, 649–670 (1945).Google Scholar
  132. Effect of iron on certain nitrogenous fractions of Ananas comosus (L.) Merr. Plant Physiol. 21, 75–94 (1946 a).Google Scholar
  133. Effects of potassium on the nitrogenous constituents of Ananas comosus (L.) Merr. Plant Physiol. 21, 218–232 (1946b).Google Scholar
  134. Effects of nitrogen on growth and ash constituents of Ananas camosus (L.). Plant Physiol. 21, 247–270 (1946c).Google Scholar
  135. Small, J.: Hydrogen ion concentration in plant cells and tissues. Protoplasma-Monogr. Berlin 1929.Google Scholar
  136. Stahl, A. L., and J. W. Shive: Studies on nitrogen absorption from culture solutions. I. Oats. Soil Sci. 35, 375–399 (1933).CrossRefGoogle Scholar
  137. II. Buckwheat. Soü Sci. 35, 469–483 (1933).Google Scholar
  138. Steinberg, R. A.: Role of molybdenum in the utilization of ammonium and nitrate nitrogen by Aspergillus niger. J. Agricult. Res. 55, 891–902 (1937).Google Scholar
  139. Effect of nitrogen compounds and trace elements on growth of Aspergillus niger. J. Agricult. Res. 59, 731–748 (1939).Google Scholar
  140. Stewart, G. R., E. C. Thomas and J. Horner: The comparative growth of pineapple plants with ammonia and nitrate nitrogen. Soil Sci. 20, 227–241 (1925).CrossRefGoogle Scholar
  141. Street, H. E., A. E. Kenyon and G. M. Watson: The assimilation of ammonium and nitrate nitrogen by detached potato sprouts. Ann. Appl. Biol. 33, 369–581 (1946).PubMedCrossRefGoogle Scholar
  142. Street, H. E., M. P. Mc Gonagle and J. S. Lowe: Observations on the “staling” of White’s medium by excised tomato roots. Physiol. Plantarum (Copenh.) 4, 592–616 (1951).CrossRefGoogle Scholar
  143. Street, H. E., and E. H. Roberts: Factors controlling meristematic activity in excised roots. I. Experiments showing the operation of internal factors. Physiol. Plantarum (Copenh.) 5, 498–509 (1952).CrossRefGoogle Scholar
  144. Syrett, P. J.: Ammonia and nitrate assimilation bygreen algae (Chlorophyceae) in “Autotrophic micro-organisms”. 4. Symp. Soc. General Microbiol., p. 126, 1954.Google Scholar
  145. Tombesi, L., S. Fortini, T. Cervigni, A. Baroccio, M. E. Venezian e M. Tarantula: The metabolism of Beta vulgaris as related to nitrate and ammoniacal nutrition. Ann. per agrar. (Rome) 6, 1055–1064 (1952).Google Scholar
  146. Theron, J. J.: Influence of reaction on interrelations between the plant and its culture medium. Univ. Calif. Publ. Agricult. Sci. 4, 413 (1924).Google Scholar
  147. Thomas, W.: The seat of formation of amino-acids in Pyrus malus L. Science (Lancaster, Pa.) 66, 115–116 (1927).Google Scholar
  148. Thomas, W., and W. B. Mack: Foliar diagnosis for differentially fertilized greenhouse tomatoes with and without manure. J. Agricult. Res. 60, 811–832 (1940).Google Scholar
  149. Tiedjens, V. A.: Factors affecting assimilation of ammonia and nitrate nitrogen particularly in tomato and apple. Plant Physiol. 9, 31–57 (1934).PubMedCrossRefGoogle Scholar
  150. Tiedjens, V. A., and M. A. Blake: Factors affecting the use of nitrate and ammonium nitrate by apple trees. N.J. Agricult. Exper. Stat. Bull. 547 (1932).Google Scholar
  151. Tiedjens, V. A., and W. R. Robbins: The use of ammonia and nitrate nitrogen by certain crop plants. N. J. Agricult. Exper. Stat. Bull. 526 (1931).Google Scholar
  152. Trelease, S. F., and H. M. Trelease: Physiologically balanced culture solutions with stable hydrogen-ion concentrations. Science (Lancaster, Pa.) 78, 438 (1933).Google Scholar
  153. Vickery, H. B., G. W. Pucher and H. E. Clark: Glutamine metabolism of the beet. Plant Physiol. 11, 413–422 (1936).PubMedCrossRefGoogle Scholar
  154. Vickery, H. B., G. W. Pucher, A. J. Wakeman and C. S. Leavenworth: Chemical investigations of the tobacco plant. VIII. The effect upon the composition of the tobacco plant of the form in which nitrogen is supplied. Conn. Agricult. Exper. Stat. Bull. 442, 65–119 (1940).Google Scholar
  155. Vladimirov, A. V.: Variations in the citric acid and nicotine contents of Makhorka leaves (Nicotiana rustica) in relation to the ammonium and nitrate nutrition of plants. Chemisation Socialistic Agricult. USSR. 1939, No 8, 35–42.Google Scholar
  156. Influence of nitrogen sources in the formation of oxidized and reduced organic compounds in plants. Soil Sci. 60, 265–276 (1945).Google Scholar
  157. Vlasyuk, P. A.: Influence of manganese upon the utilization of ammonia nitrogen and nitrate nitrogen by transplanted sugar beets. C. r. Acad. Sci. URSS. 28, 181–183 (1940).Google Scholar
  158. Wadleigh, C. H.: Growth status of the cotton plant as influenced by the supply of nitrogen. Ark. Agricult. Exper. Stat. Bull. 446 (1944).Google Scholar
  159. Wadleigh, C. H., and J. W. Shive: Base content of corn plants as influenced by pH of substrate and form of nitrogen supply. Soil Sci. 47, 273–284 (1939).CrossRefGoogle Scholar
  160. Wallace, A.: Ammonium and nitrate nitrogen absorption. Soü Sci. 78, 89–94 (1954).CrossRefGoogle Scholar
  161. Warburg, O., u. E. Negelein: Über die Reduktion der Salpetersäure in grünen Zellen. Biochem. Z. 110, 66–115 (1920).Google Scholar
  162. Weissman, G. S.: Growth and nitrogen absorption of wheat seedlings as influenced by the ammonium: nitrate ratio and the hydrogen ion concentration. Amer. J. Bot. 37, 725–738 (1950).CrossRefGoogle Scholar
  163. Nitrogen metabolism of wheat seedlings as influenced by the ammonium: nitrate ratio and the hydrogen-ion concentration. Amer. J. Bot. 38, 162–174 (1951).Google Scholar
  164. Went, F. W.: Plant growth under controlled conditions. I. The air-conditioned greenhouses at the California Institute of Technology. Amer. J. Bot. 30, 157–163 (1943).CrossRefGoogle Scholar
  165. Wilson, P. W.: The biochemistry of symbiotic nitrogen fixation. Madison: Univ. Wisconsin Press 1940.Google Scholar
  166. Woolfe, M.: The effect of molybdenum on the nitrogen metabolism of Anabaena cylindrica. I. A study of the molybdenum requirement for nitrogen fixation and for nitrate and ammonia assimilation. Ann. of Bot. 18, 299–308 (1954).Google Scholar
  167. The effect of molybdenum on the nitrogen metabolism of Anabaena cylindrica. II. A more detailed study of the action of molybdenum in nitrate assimilation. Ann. of Bot. 18, 309–325 (1954).Google Scholar
  168. Yoshimura, F.: Influence of light on the consumption of nitrate and ammonia in Lemnaceous plants. Bot. Mag. 65, 176 (1952).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • H. E. Street
  • D. E. G. Sheat

There are no affiliations available

Personalised recommendations