Advertisement

Biological aspects of symbiotic nitrogen fixation

  • Ethel K. Allen
  • O. N. Allen
Chapter
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Abstract

The subject of symbiosis between the root nodule bacteria and leguminous plants, as reflected in the practical significance of nitrogen fixation, has had a broad and comprehensive development. Two authoritative volumes (Fred, Baldwin and McCoy 1932, Wilson 1940) are well known. Less extensive reviews in recent years have concerned specialized topics (Allen and Allen 1950, 1954, Allen and Baldwin 1955, Thornton 1954, Vincent 1954a, Virtanen 1947, Wilson and Burris 1947).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Abdel-Ghaffar, A. S., and O. N. Allen: The effects of certain microorganisms on the growth and function of rhizobia. Internat. Congr. Soil Sci. 4, Amsterdam, Trans. 3, pp. 93–96, 1950.Google Scholar
  2. Acharya, C. N., S. P. Jain and J. Jha: Studies on the building up of soil fertility by the phosphatic fertilization of legumes. Influence of growing berseem on the nitrogen content of the soil. J. Indian Soc. Soil. Sci. 1, 55–64 (1953).Google Scholar
  3. Adams, A. F. R.: Molybdenum and legumes. Proc. 14th Conf. N. Z. Grassl. Ass. 11 pp., 1953.Google Scholar
  4. Albrecht, W. A., and T. M. Mc Calla: A new medium for rhizobia. J. Bacter. 34, 455–457 (1937a).Google Scholar
  5. Longevity of legume bacteria (Rhizobium) in water. J. Amer. Soc. Agron. 29, 76–79 (1937b).Google Scholar
  6. Aldrich-Blake, R. N.: On the fixation of atmospheric nitrogen by bacteria living symbiotically in root nodules of Casuarina equisetifolia. Oxf. For. Mem. 14, 20 pp. (1932).Google Scholar
  7. Allen, Ethel K., and O. N. Allen: The anatomy of the nodular growth on the roots of Tribulus cistoides L. Proc. Soil. Sci. Soc. Amer. 14, 179–183 (1949).CrossRefGoogle Scholar
  8. Biochemical and symbiotic properties of the rhizobia. Bacter. Rev. 14, 273–330 (1950).Google Scholar
  9. Allen, Ethel K., O. N. Allen and A. S. Newman: Pseudonodulation of leguminous plants induced by 2-bromo-3,5-dichlorobenzoic acid. Amer. J. Bot. 40, 429–435 (1953).CrossRefGoogle Scholar
  10. Allen, Ethei K., K. F. Gregory and O. N. Allen: Morphological development of nodules on Caragana arborescens Lam. Canad. J. Bot. 33, 139–148 (1955).CrossRefGoogle Scholar
  11. Allen, O. N., and Ethel K. Allen: Plants in the sub-family Caesalpinioideae observed to be lacking nodules. Soil Sci. 42, 87–91 (1936).CrossRefGoogle Scholar
  12. Root nodule bacteria of some tropical leguminous plants: II. Cross-inoculation tests within the cowpea group. Soil. Sci. 47, 63–76 (1939).CrossRefGoogle Scholar
  13. Response of the peanut plant to inoculation with rhizobia, with special reference to morphological development of the nodules. Bot. Gaz. 102, 121–142 (1940).Google Scholar
  14. A survey of nodulation among leguminous plants. Proc. Soil Soc. Amer. 12, 203–208 (1947).Google Scholar
  15. Morphogenesis of the leguminous root nodule. In Abnormal and Pathological Plant Growth. Brookhaven Symposia in Biol., Bd. 6, pp. 209–234. Upton, L. I.: Brookhaven National Laboratory 1954.Google Scholar
  16. Allen, O. N., and I. L. Baldwin: The direct isolation of rhizobia from soil. J. Amer. Soc. Agron. 23, 28–31 (1931a).CrossRefGoogle Scholar
  17. The effectiveness of rhizobia as influenced by passage through the host plant. Res. Bull. Wis. Agricult. Exper. Stat. 106, 56 pp. (1931b).Google Scholar
  18. Rhizobia-legume relationships. Soü Sci. 78, 415–427 (1954).Google Scholar
  19. Allison, F. E.: The growth of Bacillus radicicola on artificial media containing various plant extracts. J. Agricult. Res. 35, 915–924 (1927).Google Scholar
  20. Can nodule bacteria of leguminous plants fix atmospheric nitrogen in the absence of the host? J. Agricult. Res. 39, 893–924 (1929).Google Scholar
  21. Carbohydrate supply as a primary factor in legume symbiosis. Soil. Sci. 39, 123–143 (1935).Google Scholar
  22. Allison, F. E., and Janet Doetsch: Attempts to demonstrate the production of nitrogen gas by rhizobia. J. Bacter. 61, 47–50 (1951).Google Scholar
  23. Allison, F. E., and S. R. Hoover: An accessory factor for legume nodule bacteria. J. Bacter. 27, 561–581 (1934).Google Scholar
  24. The response of rhizobia to natural humic acid. Soil Sci. 41, 333–340 (1936).Google Scholar
  25. Allison, F. E., and F. W. Minor: Coenzyme R requirements of rhizobia. Soil Sci. 46, 473–483 (1938).CrossRefGoogle Scholar
  26. Synthesis of coenzyme R by certain rhizobia and by Azotobacter chroococcum. J. Bacter. 39, 373–381 (1940).Google Scholar
  27. Allyn, W. P., and I. L. Baldwin: The effect of the oxidation-reduction character of the medium on the growth of an aerobic form of bacteria. J. Bacter. 20, 417–439 (1930).Google Scholar
  28. Oxidation-reduction potentials in relation to the growth of an aerobic form of bacteria. J. Bacter. 23, 369–398 (1932).Google Scholar
  29. Almon, Lois: Concerning the reproduction of bacteroids. Zbl. Bakter. II 87, 289–297 (1933).Google Scholar
  30. Almon, Lois, and I. L. Baldwin: The stability of cultures of Rhizobium. J. Bacter. 26, 229–250 (1933).Google Scholar
  31. Almon, Lois, and E. B. Fred: The production of tyrosinase among various species of rhizobia and related organisms. Zbl. Bakter. II 88, 302–304 (1933).Google Scholar
  32. Almon, Lois, and P. W. Wilson: Bacteriophage in relation to nitrogen fixation by red clover. Arch. Mikrobiol. 4, 209–219 (1933).CrossRefGoogle Scholar
  33. Anderson, A. J.: The influence of plant nutrients on symbiotic nitrogen fixation. British Commonwealth Scientific Official Conference. Specialist Conference in Agricult. Australia, 190–199. Session B: Plant Nutrition. 13 pp., 1949.Google Scholar
  34. Anderson, A. J., and D. V. Moye: Lime and molybdenum in clover development on acid soils. Austral. J. Agricult. Res. 3, 95–110 (1952).CrossRefGoogle Scholar
  35. Anderson, A. J., and D. Spencer: Molybdenum in nitrogen metabolism of legumes and non-legumes. Austral. J. Sci. Res., Ser. B –, 414–430 (1950a).Google Scholar
  36. Sulphur in nitrogen metabolism of legumes and non-legumes. Austral. J. Sci. Res., Ser. B 3, 431–449 (1950b).Google Scholar
  37. Anderson, D. A.: The production of gum by certain species of Rhizobium. Res. Bull. Ia. Agricult. Exper. Stat. 158, 27–56 (1933).Google Scholar
  38. Appleman, M. D., and O. H. Sears: Studies on lyophiled cultures: Lyophile storage of cultures of Rhizobium leguminosarum. J. Bacter. 52, 209–211 (1946).Google Scholar
  39. Arcularius, J. J.: Zytologische Untersuchungen an einigen endotrophen Mykorrhizen. Zbl. Bakter. II 74, 191–207 (1928).Google Scholar
  40. Arnaudi, C., et E. Castellani: Sur le bacteriophage du «rhizobium radicicola». Boll. Sez. ital. Soc. internaz. Microbiol. 6, 317–321 (1934).Google Scholar
  41. Arora, N.: Morphological development of the root and stem nodules of Aeschynomene indica L. Phytomorphology 4, 211–216 (1954).Google Scholar
  42. Arzberger, E. G.: The fungous root-tubercles of Ceanothus americanus, Elaeagnus argentea, and Myrica cerifera. Rep. Mo. bot. gdn. 21, 60–102 (1910).Google Scholar
  43. Aughtry, J. D.: Effect of genetic factors in Medicago on symbiosis with Rhizobium. Mem. Cornell Agricult. Exper. Stat. 280, 18 pp. (1948).Google Scholar
  44. Baird, Kathleen J.: Clover root-nodule bacteria in the New England region of New South Wales. Austral. J. Agricult. Res. 6, 15–26 (1955).CrossRefGoogle Scholar
  45. Balassa, R.: Transformationsmechanismen der Rhizobien. Acta Microbiol. Acad. Sci. Hungaricae 2, 51–78 (1954).Google Scholar
  46. Baldwin, I. L., and E. B. Fred: Nomenclature of the root-nodule bacteria of the Leguminosae. J. Bacter. 17, 141–150 (1929).Google Scholar
  47. Barthel, Chr.: Kunna baljväxtbakterieri renkultur fixera atmosfäriskt kväve? Medd. No 308, CentAnst. Försöksv. Jordbr. Bakt. 43, 16 pp. (1926).Google Scholar
  48. Bary, A. de: Die Erscheinung der Symbiose. Vortrag 8. Straßburg: Trübner 1879.Google Scholar
  49. Baur, K.: The use of bulk inoculum for peas in western Washington. Proc. Soil Sci. Soc. Amer. 8, 223–225 (1943).CrossRefGoogle Scholar
  50. Baylor, Martha B., M. D. Appleman, O. H. Sears and G. L. Clark: Some morphological characteristics of nodule bacteria as shown by the electron microscope. II. J. Bacter. 50, 249–256 (1945).Google Scholar
  51. Bazarewski, S.: Badania nad bakteroidami. Roczn. Nauk. rol. 17, 1–34 (1927).Google Scholar
  52. Beijerinck, M. W.: Die Bakterien der Papilionaceenknöllchen. Bot. Ztg 46, 726–735, 741–750, 757–771, 781–790, 797–804 (1888).Google Scholar
  53. Über die Natur der Fäden der Papüionaceenknöllchen. Zbl. Bakter. II 15, 728–732 (1894).Google Scholar
  54. Bewley, W. F., and H. B. Hutchinson: On the changes through which the nodule organism (Ps. radicicola) passes under cultural conditions. J. Agricult. Sci. 10, 144–162 (1920).CrossRefGoogle Scholar
  55. Bhaduri, S. N.: Influence of the numbers of Rhizobium supplied on the subsequent nodulation of the legume host plant. Ann. Bot. (Lond.) N.S. 15, 209–217 (1951).Google Scholar
  56. Bieberdorf, F. W.: The cytology and histology of the root nodules of some Leguminosae. J. Amer. Soc. Agron. 30, 375–389 (1938).CrossRefGoogle Scholar
  57. Billen, D., and H. C. Lichstein: Studies on the aspartic acid decarboxylase of Rhizobium trifolii. J. Bacter. 58, 215–221 (1949).Google Scholar
  58. Bisset, K. A.: Complete and reduced life cycles in Rhizobium. J. Gen. Microbiol. 7, 233–242 (1952).PubMedGoogle Scholar
  59. Bisset, K. A., and C. M. F. Hale: The production of swarmers in Rhizobium spp. J. Gen. Microbiol. 5, 592–595 (1951).PubMedGoogle Scholar
  60. Bjälfve, G.: Inoculation trials of leguminous plants 1914 to 1948. Lucerne and clover trials. Ann. Roy. Agricult. Col. Sweden 16, 603–617 (1949).Google Scholar
  61. Bjälfve, G., u. R. Nilsson: Stroh als Nährboden für Bact. radicicola und andere Mikroorganismen. Ann. landwirtsch. Hochschule Schwedens 5, 71–88 (1938).Google Scholar
  62. Bjälfve, G., R. Nilsson u. D. Burström: Vitamin B1 als Zuwachsfaktor für Bact. radicicola. III. Naturwiss. 26, 840 (1938).CrossRefGoogle Scholar
  63. Über Zuwachsfaktoren bei Bact. radicicola. IV. Lantbr.-Högsk. Ann. 7, 291–299 (1939).Google Scholar
  64. Bond, G.: Quantitative observations on the fixation and transfer of nitrogen in the soya bean, with especial reference to the mechanism of transfer of fixed nitrogen from bacillus to host. Ann. Bot. (Lond.) 50, 559–578 (1936).Google Scholar
  65. Root nodules of bog myrtle or sweet gale (Myrica gale L.). Nature (Lond.) 163, 730 (1949).Google Scholar
  66. The fixation of nitrogen associated with the root nodules of Myrica gale L., with special reference to its pH relation and ecological significance. Ann. Bot. (Lond.) N.S. 15, 447–459 (1951).Google Scholar
  67. Some features of root growth in nodulated plants of Myrica gale L. Ann. Bot. (Lond.) N.S. 16, 467–475 (1952).Google Scholar
  68. Bond, G., W. W. Fletcher and T. P. Ferguson: The developement and function of the root nodules of Alnus, Myrica, and Hippophaë. Plant a. Soil 5, 309–323 (1954).CrossRefGoogle Scholar
  69. Bond, G., and M. P. Mc Gonagle: The effectiveness of strains of the nodule organism when associated with different species of clover. Ann. Appl. Biol. 38, 246–251 (1951).CrossRefGoogle Scholar
  70. Bond, Lora: Origin and developmental morphology of nodules of Pisum sativum. Bot. Gaz. 109, 411–434 (1948a).CrossRefGoogle Scholar
  71. Responses of pea roots to application of certain growth-regulating substances. Bot. Gaz. 109, 435–447 (1948b).Google Scholar
  72. Bonnier, C.: Classification et specificite de l’hôte, dans le genre Rhizobium. Rep. Proc., 6. Congr. int. Microbiol., Rome, 3, pp. 109–110, 1953.Google Scholar
  73. Bonnier, C., F. H. Hely et P. Manil: Essai d’adaptation à Soja hispida de souches de Rhizobium non spécifiques. Influence de greffes sur la spécificité d’hôte du genre Rhizobium. Bull. Inst. agron. Gembloux 20, 137–140 (1952).Google Scholar
  74. Symbiose plante-bacteria chez le légumineuses. Influence de la greffe. Rep. Proc, 6.Congr. int. Microbiol., Rome, 3, pp. 111–112, 1953.Google Scholar
  75. Borm, L.: Die Wurzelknöllchen von Hippophaë rhamnoides und Alnus glutinosa. Bot. Arch. 31, 441–488 (1931).Google Scholar
  76. Bose, S. R.: Hereditary (seed-borne) symbiosis in Gasuarina equisetifolia Forst. Nature (Lond.) 159, 512–514 (1947).CrossRefGoogle Scholar
  77. Bottomley, W. B.: The cross-inoculation of Leguminosae and other root-nodule bearing plants. Rep. Brit. Assoc. 76, 752–753 (1906).Google Scholar
  78. The structure of root tubercles in leguminous and other plants. Rep. Brit. Assoc. 77, 693 (1907).Google Scholar
  79. The structure and physiological significance of the root-nodules of Myrica gale. Proc. Roy. Soc. Lond., Ser. B 84, 215–216 (1911).Google Scholar
  80. The root-nodules of Myrica gale. Ann. Bot. (Lond.) 26, 111–117 (1912).Google Scholar
  81. The root-nodules of Ceanothus americanus. Ann. Bot. (Lond.) 29, 605–610 (1915).Google Scholar
  82. Bouwens, H.: Investigations of the symbiont of Alnus glutinosa, Alnus incana and Hippophaë rhamnoides. Leeuwenhoek nederl. Tijdschr. 9, 107–114 (1943).Google Scholar
  83. Bray, H. G., E. Schlechterer and M. Stacey: Enzyme formation and polysaccharide synthesis by bacteria. 2. Polysaccharide formation by Rhizobium radicicolum strains. Biochemic. J. 38, 154–156 (1944).Google Scholar
  84. Breed, R. S., E. G. D. Murray and A. P. Hitchens: Bergey’S manual of determinative bacteriology, 6th ed. 1529pp. Baltimore, Md.: Wilhams & Wilkins Co. 1948.Google Scholar
  85. Bremekamp, C. E. B.: The bacteriophilous species of Psychotria. J. Bot. (Lond.) 71, 271–281 (1933).Google Scholar
  86. Brenchley, W. W., and H. G. Thornton: The relation between the development, structure and functioning of the nodules on Vicia faba, as influenced by the presence or absence of boron in the nutrient medium. Proc. Roy. Soc. Lond., Ser. B 98, 373–398 (1925).CrossRefGoogle Scholar
  87. Brian, P. W.: The production of antibiotics by micro-organisms in relation to biological equilibria in soil. Symposia Soc. f. Exper. Biol. 3, 357–372 (1949).Google Scholar
  88. Bruch, C. W., and O. N. Allen: Description of two bacteriophages active against Lotus rhizobia. Proc. Soil Sci. Soc. Amer. 19, 175–179 (1955).CrossRefGoogle Scholar
  89. Brunchorst, J.: Über die Knöllchen an den Leguminosenwurzeln. Ber. dtsch. bot. Ges. 3, 241–257 (1885).Google Scholar
  90. Über einige Wurzelanschwellungen, besonders diejenigen von Alnus und den Elaeagnaceen. Bot. Inst., Tübingen, Untersuch. 2, 151–177 (1886).Google Scholar
  91. Bryan, C. S.: Identification of Phytomonas, Azotobacter, and Rhizobium or Achromobacter upon initial isolation. Soil Sci. 45, 185–187 (1938).CrossRefGoogle Scholar
  92. Budinov, L.: [Tubercle bacteria and clover sickness.] Viestnik Bakt. Aghron. Stantzii V. K. Ferrein No 13, 17–109 (1907).Google Scholar
  93. Burrill, T. J., and R. Hansen: IS symbiosis possible between legume bacteria and non-legume plants? Bull. HI. Agricult. Exper. Stat. 202, 115–181 (1917).Google Scholar
  94. Burris, R. H., F. J. Eppling, H. B. Wahlin and P. W. Wilson: Studies of biological nitrogen fixation with isotopic nitrogen. Proc. Soil Sci. Soc. Amer. 7, 258–262 (1942).CrossRefGoogle Scholar
  95. Burris, R. H., and E. Haas: The red pigment of leguminous root nodules. J. of Biol. Chem. 155, 227–229 (1944).Google Scholar
  96. Burris, R. H., A. S. Phelps and J. B. Wilson: Adaptations of Rhizobium and Azotobacter. Proc. Soil Sci. Soc. Amer. 7, 272–275 (1942).CrossRefGoogle Scholar
  97. Burris, R. H., and P. W. Wilson: Oxidation and assimilation of glucose by the root nodule bacteria. J. Cellul. a. Comp. Physiol. 19, 361–371 (1942).CrossRefGoogle Scholar
  98. Burton, J. C.: Symbiotic relationships betweeen the common bean (Phaseolus vulgaris L.) and rhizobia. Ph. D. thesis, University of Wisconsin, Madison 1952.Google Scholar
  99. Burton, J. C., and O. N. Allen: Inoculation of crimson clover (Trifolium incarnatum L.) with mixtures of rhizobia strains. Proc. Soil. Sci. Soc. Amer. 14, 191–195 (1949).CrossRefGoogle Scholar
  100. Burton, J. C., O. N. Allen and K. C. Berger: The prevalence of strains of Rhizobium phaseoli in some Midwestern soils. Proc. Soil Sci. Soc. Amer. 16, 167–170 (1951).CrossRefGoogle Scholar
  101. Burton, J. C., and L. W. Erdman: A division of the alfalfa cross-inoculation group correlating efficiency in nitrogen fixation with source of Rhizobium meliloti. J. Amer. Soc. Agron. 32, 439–450 (1940).CrossRefGoogle Scholar
  102. Burton, Margaret O., and A. G. Lochhead: Production of vitamin B12 by Rhizobium species. Canad. J. Bot. 30, 521–524 (1952).CrossRefGoogle Scholar
  103. Bushnell, O. A., and W. B. Sables: Studies on the root-nodule bacteria of wild leguminous plants in Wisconsin. Soil. Sci 44, 409–423 (1937).CrossRefGoogle Scholar
  104. Bystryi, N. F.: [Isolation of root-nodule bacteria from soil by the chemotactic method.] Mikrobiology, Moscow 10, 247–249 (1941) (English summary).Google Scholar
  105. Campbell, Thressa, and A. W. Hofer: A medium adapted to the bacteriophage of Rhizobium leguminosarum. J. Bacter. 45, 406–407 (1943).Google Scholar
  106. Carroll, W. R.: A study of Rhizobium species in relation to nodule formation on the roots of Florida legumes: II. Soil Sci. 37, 227–241 (1934).CrossRefGoogle Scholar
  107. Casas-Campillo, C.: El bacteriöfago de Rhizobium meliloti. Com. Imp. y Coord. Invest. Ciencia, Méx. Anuario, 1943, pp. 233–239.1943.Google Scholar
  108. Estudio del bacteriöfago de Rhizobium meliloti en suelos de Mexico. Fitofilo 3b, 3–46 (1944).Google Scholar
  109. Importancia de los virus bacterianos (bacteriöfagos) en la agricultura. Fitöfilo 4, 3–22 (1945).Google Scholar
  110. Bacterias aerobias esporulades con propiedades antagonistas para Rhizobium. Ciencia, Méx. 8, 108 (1947a).Google Scholar
  111. Presencia en el suelo de substancias inhibidoras del crecimiento de Rhizobium. An. Esc. nac. Cienc. biol., Méx. 4, 339–352 (1947b).Google Scholar
  112. El antagonismo microbiano en relacion con las bacterias de los nodulos de las plantes leguminosas. Ciencia, Méx. 9, 193–199 (1949).Google Scholar
  113. Castellani, E.: Osservazioni sul batteriofago nei medicae. Nuovo Giorn. bot. ital. N. S. 42, 160–165 (1935).CrossRefGoogle Scholar
  114. Castellanos, A.: Los tubérculos radiculares del aliso (Alnus jorullensis H. B. K, var spachii Regel). Lilloa 10, 413–416 (1944).Google Scholar
  115. Caullery, M.: Parasitism and Symbiosis. 217 pp. London: Sidgwick & Jackson, Ltd. 1952.Google Scholar
  116. Chaudhuri, H.: Recherches sur la bactérie des nodosités radiculaires du Casuarina equisetifolia (Fort.) Bull. Soc. bot. France 78, 447–452 (1931).Google Scholar
  117. Chen, H. K.: Production of growth-substances by clover nodule bacteria. Nature (Lond.) 142, 753–754 (1938).CrossRefGoogle Scholar
  118. The limited numbers of nodules produced on legumes by different strains of Rhizobium. J. Agricult. Sci. 31, 479–487 (1941).Google Scholar
  119. Chen, H. K., H. Nicol and H. G. Thornton: The growth of nodule bacteria in the expressed juices from legume roots bearing effective and ineffective nodules. Proc. Roy. Soc. Lond., Ser. B 129, 475–491 (1940).CrossRefGoogle Scholar
  120. Chen, H. K., and H. G. Thornton: The structure of “ineffective” nodules and its influence on nitrogen fixation. Proc. Roy. Soc. Lond., Ser. B 129, 208–229 (1940).CrossRefGoogle Scholar
  121. Chevalier, A.: Monographie des Myricacées, Chapt. II. Les tubercules radicaux. Mém. Soc. nat. Sci., Cherbourg 32, 121–139 (1902).Google Scholar
  122. Clark, D. G.: Physiological studies on Rhizobium species. Mem. Cornell Agricult. Exper. Stat. 196, 30 pp. (1936)Google Scholar
  123. Conn, H. J., Elizabeth J. Böttcher and Challiss Randall: The value of bacteriophage in classifying certain soil bacteria. J. Bacter. 49, 359–373 (1945).Google Scholar
  124. Conn, H. J., and R. P. Elrod: Concerning flagellation and motility. J. Bacter. 54, 681–687 (1947).Google Scholar
  125. Dangeard, P. A.: Recherches sur les tubercles radicaux des légumineuses. Botaniste 16, 269 pp. (1926).Google Scholar
  126. Dangeard, P. A., et Mara Lechtova-Trnka: Sur les phénomènes de symbiose chez le Myrica gale. C. r. Acad. Sci. Paris 188, 1584–1588 (1929).Google Scholar
  127. Datta, S. C.: On the bacteriophage of root nodule organisms. Indian J. Agricult. Sci. 14, 272–276 (1944).Google Scholar
  128. Dawson, Maria: Nitragin and the nodules of leguminous plants. Philosophic. Trans. Roy. Soc. Lond., Ser. B 192, 1–28 (1900).CrossRefGoogle Scholar
  129. Demolon, A., et A. Dunez: Bacteriophage et fatigue des sols cultivés en luzerne. C. r. Acad. Sci. Paris 197, 1344–1346 (1933).Google Scholar
  130. Sur le rôle du bacteriophage dans la fatigue des sols cultivés en luzerne. 3. Internat. Congr. Soil Sci., Oxford, Trans. 1, pp. 156–157, 1935a.Google Scholar
  131. Recherches sur le rôle du bacteriophage dans la fatigue des luzernières. Annales agronom., N. S. 5, 89–111 (1935b).Google Scholar
  132. Nouvelles observations sur le bacteriophage et la fatigue des sols cultivés en luzerne. (2. mémoire.) Annales agronom., N. S. 6, 434–454 (1936a).Google Scholar
  133. La fatigue des sols. Causes et remèdes. C. r. Acad. Sci. Paris 202, 1704–1706 (1936b).Google Scholar
  134. Symbiose bactérienne et culture des légumineuses. Annales agronom., N. S. 8, 220–237 (1938).Google Scholar
  135. Observations sur la résistance à la lyse phagique du Bact. radicicola. C. r. Acad. Sci. Paris 208, 1600–1602 (1939a).Google Scholar
  136. Sur la lyso-résistance du B. radicicola et son importance pratique. Third Comm. Internat. Soc. Soil Sci., Trans., A, pp. 39–42, 1939b.Google Scholar
  137. Symbiose bactérienne et physiologie des légumineuses. C. r. Acad. Sci. Paris 221, 586–588 (1945).Google Scholar
  138. Observations sur le bacteriophage du Bacillus radicicola. 4. Congr. Internat. Microbiol., Copenhagen (Abst. of Communications), Sect. VII A, p. 147, 1947.Google Scholar
  139. Demolon, A., et Rosa Rozowska: Observations sur les produits d’excrétion du Bacterium radicicola et leurs propriétés vitaminiques. C. r. Acad. Sci. Paris 233, 217–220 (1951).PubMedGoogle Scholar
  140. Demolon, A., Rosa Rozowska et Gisèle Jacobelli: Observations biochimiques sur le développement du Bacterium radicicola (Rhizobium leguminosarum). C. r. Acad. Sci. Paris 230, 1015–1018 (1950).Google Scholar
  141. Diener, T.: Über die Bedingungen der Wurzelknöllchenbildung bei Pimm sativum L. Phytopath. Z. 16, 129–170 (1950).Google Scholar
  142. Dorosinskii, L. M.: [The effect of bacteriophage on the development of clover.] Mikrobiology, Moscow 10, 208–215 (1941) (English summary).Google Scholar
  143. Dunham, D. H., and I. L. Baldwin: Double infection of leguminous plants with good and poor strains of rhizobia. Soil Sci. 32, 235–249 (1931).CrossRefGoogle Scholar
  144. Edwards, S. F.: A note on the longevity of some cultures of B. radicicola. Abstr. Bacter. 7, 9 (1923).Google Scholar
  145. Efron, N. N., and I. E. Milova: [Effect of root-nodule bacteria on melilot.] Mikrobiology, Moscow 10, 456–460 (1941) (English summary).Google Scholar
  146. Egle, K., u. H. Munding: Über den Gehalt an Häminkörpern in den Wurzelknöllchen von Nicht-Leguminosen. Naturwiss. 23, 548–549 (1951).CrossRefGoogle Scholar
  147. Ellfolk, N., and A. I. Virtanen: Electrophoresis of leghemoglobin. Acta chem. scand. (Copenh.) 4, 1014–1019 (1950).CrossRefGoogle Scholar
  148. The molecular weight of leghemoglobin. Acta chem. scand. (Copenh.) 6, 411–420 (1952).Google Scholar
  149. Engel, H., u. M. Roberg: Die Stickstoffausscheidung der Wurzelknöllchen. Ber. dtsch. bot. Ges. 56, 337–353 (1938).Google Scholar
  150. Erdman, L. W.: The rise of inoculation. Seed World 51 (11), 106–108, 110 (1942).Google Scholar
  151. Studies to determine if antibiosis occurs among rhizobia: I. Between Rhizobium meliloti and Rhizobium trifolii. J. Amer. Soc. Agron. 38, 251–258 (1946a).Google Scholar
  152. Strain variation and host specificity of Rhizobium trifolii on different species of Trifolium. Proc. Soil Sci. Soc. Amer. 11, 255–259 (1946b).Google Scholar
  153. Legume inoculation: what it is; what it does. Fmrs’ Bull. U.S. Dept. Agricult. 2003, 20 pp. (1948); Revised (1953).Google Scholar
  154. Erdman, L. W., and Ura Mae Means: Strains of Rhizobium effective on the trefoils, Lotus comiculatus and Lotus uliginosus. Proc. Soil Sci. Soc. Amer. 14, 170–175 (1949).CrossRefGoogle Scholar
  155. Single strains and a mixture of Rhizobium trifolii for inoculating true clovers. Proc. Soil Sci. Soc. Amer. 16, 199–200 (1951).Google Scholar
  156. Strains of rhizobia effective on Trifolium ambiuum. Agron. Abstr. 1954 Annu. Meetings Amer. Soc. Agron., p. 22. 1954.Google Scholar
  157. Faber, F. C. v.: Die Bakteriensymbiose der Rubiaceen (Erwiderung und ergänzende Mitteüungen). Jb. wiss. Bot. 54, 243–265 (1914).Google Scholar
  158. Ferguson, T. P., and G. Bond: Observations on the formation and function of the root nodules of Alnus glutinosa (L.) Gaertn. Ann. Bot. (Lond.) N. S. 17, 175–188 (1953).Google Scholar
  159. Fogle, C. E., and O. N. Allen: Associative growth of actinomycetes and rhizobia. Proc. Soc. Amer. Bacter. (48th General Meetings) 1, 53 (1948).Google Scholar
  160. Frank, A. B.: Die Krankheiten der Pflanzen, 884 pp. Breslau: Eduard Trewendt 1880.Google Scholar
  161. Die Wurzelanschwellungen bildenden Erlen, Elaeagnaceen und Myricaceen. Die Krankheiten der Pflanzen, vol. 1, pp. 296–297. Breslau: Eduard Trewendt 1895.Google Scholar
  162. Frank, B.: Über die Parasiten in den Wurzelanschwellungen der Papüionaceen. Bot. Ztg 37, 377–388, 393–400 (1879).Google Scholar
  163. Sind die Wurzelanschwellungen der Erlen und Elaeagnaceen Pilzgallen? Ber. dtsch. bot. Ges. 5, 50–58 (1887).Google Scholar
  164. Über die Pilzsymbiose der Leguminosen. Landw. Jb. 19, 523–640 (1890).Google Scholar
  165. Über die auf Verdauung von Pilzen abzielende Symbiose, der mit endotrophen Mykorhizen begabten Pflanzen, sowie der Leguminosen und Erlen. Ber. dtsch. bot. Ges. 9, 244–253 (1891).Google Scholar
  166. Frazer, Helen L.: The occurrence of endodermis in leguminous root nodules and its effect upon nodule function. Proc. Roy. Soc. Edinburgh, Ser. B 61, 328–343 (1942).Google Scholar
  167. Fred, E. B.: Report of the Assistant Bacteriologist. Annu. Rep. Va. Agricult. Exper. Stat. 1908, 25–26 (1909).Google Scholar
  168. Fred, E. B., I. L. Baldwin and Elizabeth Mc Coy: Root nodule bacteria and leguminous plants. Univ. Wis. Stud. Sci. 5, 343 pp. (1932).Google Scholar
  169. Gäumann, E.: Types of defensive reactions in plants. Phytopathology 36, 624–633 (1946).Google Scholar
  170. Georgi, C. E., and A. E. Beguin: Heteroauxin production by efficient and inefficient strains of rhizobia. Nature (Lond.) 143, 25 (1939).CrossRefGoogle Scholar
  171. Georgi, C. E., and Jane M. Ettinger: Utilization of carbohydrates and sugar acids by the rhizobia. J. Bacter. 41, 323–340 (1941).Google Scholar
  172. Georgi, C. E., and P. W. Wilson: The influence of the tension of oxygen on the respiration of rhizobia. Arch. Mikrobiol. 4, 543–564 (1933).CrossRefGoogle Scholar
  173. Gerretsen, F. C., A. Gryns, J. Sack u. N. L. Söhngen: Das Vorkommen eines Bakteriophagen in den Wurzelknöllchen der Leguminosen. Zbl. Bakter. II 60, 311–316 (1923).Google Scholar
  174. Gibson, T.: Observations on B. radicicola Beijk. J. Agricult. Sci. 18, 76–89 (1928).CrossRefGoogle Scholar
  175. Giöbel, G.: The relation of the soil nitrogen to nodule development and fixation of nitrogen by certain legumes. Bull. N. J. Agricult. Exper. Stat. 436, 125 pp. (1926).Google Scholar
  176. Goodding, T. H., and J. C. Russel: Hairy vetch … legume for sandy dry-land soil. Crops a. Soils 5, (5), 12–14 (1953).Google Scholar
  177. Greaves, J. E., and L. W. Jones: Influence of legumes on soil nitrogen. Soil Sci. 69, 71–76 (1950).CrossRefGoogle Scholar
  178. Gregory, K. F., and O. N. Allen: Physiological variations and host plant specificities of rhizobia isolated from Garagana arborescens L. Canad. J. Bot. 31, 730–738 (1953).CrossRefGoogle Scholar
  179. Harris, J. O., Ethel K. Allen and O. N. Allen: Morphological development of nodules on Sesbania grandiflora Poir., with reference to the origin of nodule rootlets. Amer. J. Bot. 36, 651–661 (1949).CrossRefGoogle Scholar
  180. Harshbarger, J. W.: The form and structure of the mycodomatia of Myrica cerifera L. Proc. Acad. Nat. Sci. Philad. 55, 352–362 (1903).Google Scholar
  181. Hartleb, R.: Die Morphologie und systematische Stellung der sogenannten Knöllchenbakterien. Chem. Ztg 24, 2d sem., 887–888 (1900).Google Scholar
  182. Nutrient medium for producing cultures of bacteroids of micro-organisms. u. S. Patent No 674, 764 May 21, 1901.Google Scholar
  183. Hawker, Lilian E., and Joan Fraymouth: A re-investigation of the root-nodules of species of Elaeagnus, Hippophae, Alnus and Myrica, with special reference to the morphology and life histories of the causative organisms. J. Gen. Microbiol. 5, 369–386 (1951).PubMedGoogle Scholar
  184. Haworth, N., and M. Stacey: The chemistry of the immuno-polysaccharides. Annual Rev. Biochem. 17, 97–114 (1948).CrossRefGoogle Scholar
  185. Hedlin, R. A., and J. D. Newton: Some factors influencing the growth and survival of rhizobia in humus and soil cultures. Canad. J. Res. C 26, 174–187 (1948).CrossRefGoogle Scholar
  186. Hely, F. W., C. Bonnier and P. Manil: Effect of grafting on nodulation of Trifolium ambiguum. Nature (Lond.) 171, 884–885 (1953).CrossRefGoogle Scholar
  187. Heitmann, W.: Über Wesen und Bedeutung der Bakteroide in den Wurzelknöllchen der Erbse. Naturwiss. 39, 66 (1952a).Google Scholar
  188. Die asymbiontische Stickstoffbindung durch Rhizobium leguminosarum (Pisum) auf Blutnährboden. Naturwiss. 39, 239 (1952 b).Google Scholar
  189. Physiologische und morphologische Studien an Rhizobium leguminosarum in Knöllchen und auf verschiedenen Nährböden. Ber. dtsch. bot. Ges. 65, 229–233 (1952c).Google Scholar
  190. Hill, R., and E. F. Hartree: Hematin compounds in plants. Annual Rev. Plant Physiol. 4, 115–150 (1953).CrossRefGoogle Scholar
  191. Hiltner, L.: Über die Bedeutung der Wurzelknöllchen von Alnus glutinosa für die Stickstoffernährung dieser Pflanze. Landw. Versuchsstat. 46, 153–161 (1896).Google Scholar
  192. Über Entstehung und physiologische Bedeutung der Wurzelknöllchen. B. Die Wurzelknöllchen der Erlen und Elaeagnaceen. Forstl. naturwiss. Z. 7, 415–423 (1898).Google Scholar
  193. Hocquette, M.: Évolution du noyau dans les cellules bactérifères des nodosités d’Ornithopus perpusillus pendant les phénomènes d’infection et de digestion intracellulaire. C. r. Acad. Sci. Paris 191, 1363–1365 (1930).Google Scholar
  194. Hofer, A. W.: A characterization of Bacterium radiobacter (Beijerinck and van Delden) Löhnis. J. Bacter. 41, 193–224 (1941).Google Scholar
  195. Bacteriophage as a possible factor in reducing yields of canning peas. J. Bacter. 45, 39 (1943).Google Scholar
  196. Nitrogen fixation by mixed cultures of Rhizobium. Proc. Soil Sci. Soc. Amer. 10, 202–205 (1945).Google Scholar
  197. Hopkins, C. G.: Alfalfa on Illinois soil. Illinois Agricult. Exper. Stat. Bull 76, 311–353 (1902).Google Scholar
  198. Hopkins, E. W.: Studies of nitrogen fixation by the root nodule bacteria of the Leguminosae. Soil Sci. 28, 433–447 (1929).CrossRefGoogle Scholar
  199. Humm, H. J.: Bacterial leaf nodules. J. N. Y. Bot. Gdn. 45, 193–199 (1944).Google Scholar
  200. Hunt, G. E.: A comparative chromatographic survey of the amino acids in five species of legume roots and nodules. Amer. J. Bot. 38, 452–457 (1951).CrossRefGoogle Scholar
  201. Ishizawa, S.: [Studies on the root-nodule bacteria of leguminous plants.] J. Sci. Soil (Tokyo) 23, 125–130, 189–195, 241–244; 24, 29–35, 114–121, 163–168, 169–172, 227–230, 249–252, 297–302, 303–306; 25, 4–8 (1953/54) (English summaries).Google Scholar
  202. Ishizawa, S., and H. Toyada: Comparative study on effective and ineffective nodules of leguminous plants. Soil a. Plant Food 1, 47–48 (1955).Google Scholar
  203. Israilsky, W.: [Investigations of the changes in nodule bacteria when grown in filtrates of other bacteria.] Mikrobiology, Moscow 23, 22–26 (1954).Google Scholar
  204. Israilsky, W., and Z. Artemjewa: [Virulence of B. radicicola and the immunity to them of the bean plant.] Arch. Sci. biol., St. Pétersb. 43, 95–110 (1936) (English summary).Google Scholar
  205. Israilsky, W., u. Katharine Leonowitsch: Dissoziation bei einigen Bakterienarten. II. Zbl. Bakter. II 88, 216–235 (1933).Google Scholar
  206. Israilsky, W., u. Lydia Starygin: Die Dissoziation bei einigen Bakterienarten. Zbl. Bakter. II 81, 1–11 (1930).Google Scholar
  207. Studies on nodule bacteria. V. Influence of plant extract as accessory substance on the growth of nodule bacteria. Ber. Ohara Inst. 7, 185–214 (1936 a).Google Scholar
  208. Studies on the nodule _bacteria. VI. Influence of different parts of plant on the growth of nodule bacteria. Ber. Ohara Inst. 7, 359–379 (1936b).Google Scholar
  209. Studies on nodule bacteria. VII. Influence of the extract of nodules on the growth of nodule bacteria. Ber. Ohara Inst. 7, 379–401 (1936c).Google Scholar
  210. Studies on jthe nodule bacteria. IX. On the electrical properties of the accessory substance. Ber. Ohara Inst. 7, 517–527 (1937).Google Scholar
  211. Studies on the nodule bacteria. X. Influence of some stimulatingc hemicals with special reference to the alkaloids upon the growth and morphology of the nodule bacteria. Ber. Ohara Inst. 8, 53–68 (1938).Google Scholar
  212. Itano, A., and Y. Tsuji: Studies on nodule nacteria. XII. Influence of various iron compounds on the nodule bacteria of Astragalus sinicus (Genge). Ber. Ohara Inst. 8, 273–281 (1938).Google Scholar
  213. Jacobs, S. E.: The relationship of Corynebacterium fasciens (Tilford) Dowson, to the bacteria causing gall and nodule formation. 4. Internat. Congr. Microbiol., Copenhagen, 1947. Proc, Sect. IV, p. 425, 1949.Google Scholar
  214. Jäger, G. v.: Über eine krankhafte Veränderung der Blüthen-Organe der Weintraube. Flora (Jena) 43, 49–51 (1860).Google Scholar
  215. Janse, J. M.: Les endophytes radicaux de quelques plantes javanaises. Ann. Jard. bot. Buitenzorg. 14, 53–201 (1897).Google Scholar
  216. Jenkins, H. V., J. M. Vincent and Lawrie M. Waters: The root-nodule bacteria as factors in clover establishment in the red basaltic soils of the Lismore district, New SouthGoogle Scholar
  217. Wales. III. Field inoculation trials. Austral. J. Agricult. Res. 5, 77–89 (1954).Google Scholar
  218. Jensen, H. L.: Nitrogen fixation in leguminous plants. I. General characters of root-nodule bacteria isolated from species of Medicago and Trifolium in Australia. Proc. Linnean Soc. N. S. Wales 67, 98–108 (1942).Google Scholar
  219. Nitrogen-fixation in leguminous plants. VII. The nitrogen-fixing activity of root nodule tissue in Medicago and Trifolium. Proc. Linnean Soc. N. S. Wales 72, 265–291 (1948).Google Scholar
  220. Nitrification of oxime compounds by heterotrophic bacteria. J. Gen. Microbiol. 5, 360–368 (1951).Google Scholar
  221. The coryneform bacteria. Annual Rev. Microbiol. 6, 77–90 (1952).Google Scholar
  222. Jensen, H. L., and D. Frith: Production of nitrate from roots and root nodules of lucerne and subterranean clover. Proc. Linnean Soc. N. S. Wales 69, 210–214 (1944).Google Scholar
  223. Jimbo, T.: Physiological anatomy of the root-nodule of Wistaria sinensis. Proc. Imp. Acad. Japan 3, 164–166 (1927).Google Scholar
  224. Jones, D. H.: The viability of Rhizobium Legumenosum Frank and Rhizobium Radicicolum Beijerinck. J. Bacter. 13, 55–56 (1927).Google Scholar
  225. Jones, F. R.: Growth and decay of the transient (noncambial) roots of alfalfa. J. Amer. Soc. Agron. 35, 625–634 (1943).CrossRefGoogle Scholar
  226. Jordan, D. C.: Studies on the legume root nodule bacteria. II. The production and behavior of colonial mutants produced by x-ray irradiation. Canad. J. Bot. 30, 125–103 (1952a).CrossRefGoogle Scholar
  227. Studies on the legume root nodule bacteria. III. Growth factor requirements for effective, ineffective, and parasitic strains. Canad. J. Bot. 30, 693–700 (1952b).Google Scholar
  228. Transamination in cell-free extracts of effective and parasitic rhizobia. J. Bacter. 65, 220–221 (1953).Google Scholar
  229. Jordan, D. C., and E. H. Garrard: Studies on the legume root nodule bacteria. I. Detection of effective and ineffective strains. Canad. J. Bot. 29, 360–372 (1951).CrossRefGoogle Scholar
  230. Kasugai, S., H. Kubo and K. Tsujimura: (Title in Japanese.) J. Agricult. Chem. Soc. Japan 19, 765–770 (1943).CrossRefGoogle Scholar
  231. Kataoka, T.: On the significance of the root-nodules of Coriaria japonica A. Gr. in the nitrogen nutrition of the plant. Jap. J. Bot. 5, 209–218 (1930).Google Scholar
  232. Katznelson, H.: Bacteriophage and the legume bacteria. Third. Comm. Internat. Soc. Soil Sci., Trans., A, pp. 43–48, 1939.Google Scholar
  233. Katznelson, H., and J. K. Wilson: Occurrence of Rhizobium meliloti bacteriophage in soils. Soil Sci. 51, 59–63 (1941).CrossRefGoogle Scholar
  234. Keilin, D.: Haemoglobin in fungi. Occurrence of haemoglobin in yeast and the supposed stabilization of the oxygenated cytochrome oxidase. Nature (Lond.) 172, 390–393 (1953).CrossRefGoogle Scholar
  235. Keilin, D., and E. F. Hartree: Relationship between haemoglobin and erythrocruorin. Nature (Lond.) 168, 266–269 (1951).CrossRefGoogle Scholar
  236. Keilin, D., and J. D. Smith: Haemoglobin and nitrogen fixation in the root nodules of leguminous plants. Nature (Lond.) 159, 692–694 (1947).CrossRefGoogle Scholar
  237. Keilin, D., and A. Tissières: Haemoglobin in moulds: Neurospora crassa and Penicillium notatum. Nature (Lond.) 172, 393–394 (1953).CrossRefGoogle Scholar
  238. Keilin, D., and Y. L. Wang: Haemoglobin in the root nodules of leguminous plants. Nature (Lond.) 155, 227–229 (1945).CrossRefGoogle Scholar
  239. Keissler, K.: Beitrag zur Kenntnis der Pilzflora Kärntens. Ann. mycol. (Berl.) 5, 220 (1907).Google Scholar
  240. Kellerman, K. F.: Nitrogen-gathering plants. Yearb. U.S. Dep. Agricult. (1910), pp. 213–218 (1911).Google Scholar
  241. Kleczkowska, J.: The production of plaques by Rhizobium bacteriophage in poured plates and its value as a counting method. J. Bacter. 50, 71–79 (1945a).Google Scholar
  242. A quantitative study of the interaction of bacteriophage with Rhizobium using the technique of poured plates. J. Bacter. 50, 81–94 (1945b).Google Scholar
  243. A study of phage-resistant mutants of Rhizobium trifolii. J. Gen. Microbiol. 4, 298–310 (1950).Google Scholar
  244. Kleczkowska, J., P. S. Nutman and G. Bond: Note on the ability of certain strains of Rhizobium from peas and clover to infect each other’s host plants. J. Bacter. 48, 673–675 (1944).Google Scholar
  245. Kleczkowski, A., and H. G. Thornton: A serological study of root nodule bacteria from pea and clover inoculation groups. J. Bacter. 48, 661–672 (1944).Google Scholar
  246. Klüver, H.: On naturally occurring porphyrins in the root nodules of leguminous plants. Federat. Proc. (I) 7, 66 (1948a).Google Scholar
  247. On a possible use of the root nodules of leguminous plants for research in neurology and psychiatry (preliminary report on a free porphyrin-hemoglobin system). J. of Psychol. 25, 331–356 (1948b).Google Scholar
  248. Isolation of legcoproporphyrin. Federat. Proc. (I) 8, 86–87 (1949).Google Scholar
  249. Functional differences between the occipital and temporal lobes. In Cerebral Mechanisms in Behavior. L. A. Jeffress, editor, pp. 147–182. New York: John Wiley & Son 1951.Google Scholar
  250. Knaysi, G., and S. Mudd: The internal structure of certain bacteria as revealed by the electron microscope.—A contribution to the study of the bacterial nucleus. J. Bacter. 45, 349–359 (1943).Google Scholar
  251. Knight, H. G.: Report of the chief of the Bureau of Chemistry and Sous. Rep. U.S. Dep. Agricult. Bur. Chem. Soils, pp. 50–53, 1930.Google Scholar
  252. Kobus, J.: [Some morphological and physiological properties of Rhizobium.] Acta Microbiol. Polonica 1, 137–150 (1952) (English summary).Google Scholar
  253. Konishi, K., and R. Fukuchi: [Effect of certain actinomyces on the growth of the root nodule bacteria.] J. Sci. Soil (Tokyo) 9, 75–82 (1935) (English summary).Google Scholar
  254. Konishi, K., and T. Tsuge: On the mineral matters of certain leguminous crops. L–II. Mem. Coll. Agricult. (Kyoto) 37, 35 pp. (1936).Google Scholar
  255. Konokotina, A. G.: [Mutual relations of nodule bacteria and leguminous plants. II. Morphologic changes of nodule bacteria in the nodules of “chikpea” (Cicer arietinum) and lupine.] Mikrobiology, Moscow 3, 221–231 (1934) (English summary).Google Scholar
  256. Korenyako, A. I.: Biological method of discriminating microbacteria. C. r. Acad. Sci. URSS. 23, 185–186 (1939).Google Scholar
  257. Kostoff, D., and J. Kendall: Studies on plant tumors and polyploidy produced by bacteria and other agents. Arch. Mikrobiol. 4, 487–508 (1933).CrossRefGoogle Scholar
  258. Krasilnikov, N. A.: Mutability of nodule bacteria. C. r. Acad. Sci. URSS. 31, 75–76 (1941).Google Scholar
  259. Krasilnikov, N. A., and A. I. Korenyako: [Influence of soil bacteria on the virulence and activity of nodule bacteria.] Mikrobiology, Moscow 13, 39–44 (1944) (English summary).Google Scholar
  260. Krebber, O.: Untersuchungen über die Wurzelknöllchen der Erle. Arch. Mikrobiol. 3, 588–608 (1932).CrossRefGoogle Scholar
  261. Kronberger, M.: Über die gegenseitige Hemmung und Förderung der Knöllchenbakterien. Prakt. Bl. Pflanzenbau 14, 203–209 (1936).Google Scholar
  262. Kubo, H.: Über das Hämoprotein aus den Wurzelknöllchen von Leguminosen. Acta phytochim. (Tokyo) 11, 195–200 (1939).Google Scholar
  263. Laird, D. G.: Bacteriophage and the root nodule bacteria. Arch. Mikrobiol. –, 159–193 (1932).Google Scholar
  264. Laird. D. G., and P. M. West: The influence of bios on nodule bacteria and legumes. B. Influence of crude bios preparations on acid production by strains of Rhizobium trifolii. Canad. J. Res. C 16, 347–353 (1938).CrossRefGoogle Scholar
  265. Landerkin, G. B., and A. G. Lochhead: A comparative study of the activity of fifty antibiotic actinomycetes against a variety of soil bacteria. Canad. J. Res., Sect. C 26, 501–506 (1948).CrossRefGoogle Scholar
  266. Lechtova-Trnka, Mara: Étude sur les bactéries des Légumineuses et observations sur quelques champignons parasites des nodosités. Botaniste 23, 301–530 (1931).Google Scholar
  267. Lefèvre, J.: Observations sur la teneur de divers organes végétaux en acide indol-3-acétique. C. r. Soc. Biol. Paris 130, 225–227 (1939).Google Scholar
  268. Lemmermann, O.: Untersuchungen über einige Ernährungsunterschiede der Leguminosen und Gramineen und ihre wahrscheinliche Ursache. Landw. Versuchsstat. 67, 207–251 (1907).Google Scholar
  269. Leonard, L. T.: Lack of nodule-formation in a sub-family of the Leguminosae. Soil Sci. 20, 165–167 (1925).CrossRefGoogle Scholar
  270. A failure of Austrian winter peas apparently due to nodule bacteria. J. Amer. Soc. Agron. 22, 277–279 (1930a).Google Scholar
  271. The commercial legume inoculant business in the United States. Proc. 2. Int. Congr. Soil Sci., Moscow, III Commission, pp. 74–82,1930b.Google Scholar
  272. Method of testing legume bacteria cultures and results of tests of commercial inoculants in 1943. Cire. u. S. Dep. Agricult. 703, 8 pp. (1944).Google Scholar
  273. Leonard, L. T., and W. R. Dodson: The effects of nonbeneficial nodule bacteria on Austrian winter pea. J. Agricult. Res. 46, 649–663 (1933).Google Scholar
  274. Levin, A. P., Helen B. Funk and M. D. Tendler: Vitamin B12, rhizobia, and leguminous plants. Science (Lancaster, Pa.) 120, 784 (1954).Google Scholar
  275. Levine, M.: The chromosome number in cancer tissue of man, of rodent, of bird and in crown-gall tissue of plants. J. Cancer Res. 14, 400–425 (1930).Google Scholar
  276. Lewis, I. M.: Cell inclusions and the life cycle of rhizobia. J. Bacter. 35, 573–587 (1938).Google Scholar
  277. The cytology of bacteria. Bacter. Rev. 5, 181–230 (1941).Google Scholar
  278. Lieske, R.: Morphologie und Biologie der Strahlenpilze (Actinomyceten). 292 pp. Leipzig: Borntraeger 1921.Google Scholar
  279. Lilly, V. G., and L. H. Leonian: The interrelationship of iron and certain accessory factors in the growth of Rhizobium trifolii, strain 205. J. Bacter. 50, 383–395 (1945).Google Scholar
  280. Link, G. K. K.: Role of heteroauxones in legume nodule formation, beneficial host effects of nodules, and soil fertility. Nature (Lond.) 140, 507 (1937).CrossRefGoogle Scholar
  281. Link, G. K. K., and Virginia Eggers: Avena coleoptile assay of ether extracts of nodules and roots of bean, soybean, and pea. Bot. Gaz. 101, 650–657 (1940).CrossRefGoogle Scholar
  282. Link, G. K. K., Virginia Eggers and J. E. Moulton: Use of frozen vacuum-dried material in auxin and other chemical analyses of plant organs: Its extraction with dry ether. Bot. Gaz. 102, 590–601 (1941).CrossRefGoogle Scholar
  283. Link, G. K. K., Hazel W. Wilcox and Adeline de S. Link: Responses of bean and tomato to Phytomonas tumefaciens, P. tumefaciens extracts, ß-indoleacetic acid, and wounding. Bot. Gaz. 98. 816–867 (1937).CrossRefGoogle Scholar
  284. Lipman, J. G., and A. B. Conybeare: Preliminary note on the inventory and balance sheet of plant nutrients in the United States. Bull. N. J. Agricult. Exper. Stat. 607, 23 pp. (1936).Google Scholar
  285. Little, H. N.: Properties of the red pigment from soybean nodules. J. Amer. Chem. Soc. 71, 1973–1975 (1949).CrossRefGoogle Scholar
  286. Little, H. N., and R. H. Burris: Activity of the red pigment from leguminous root nodules. J. Amer. Chem. Soc. 69, 838–841 (1947).CrossRefGoogle Scholar
  287. Locke, S. B., A. J. Riker, and B. M. Duggar: Growth substances and the development of crown gall. J. Agricult. Res. 57, 21–39 (1938).Google Scholar
  288. Löhnis, F., and R. Hansen: Nodule bacteria of leguminous plants. J. Agricult. Res. 20, 543–556 (1921).Google Scholar
  289. Löhnis, F., and L. T. Leonard: Inoculation of legumes and non-legumes with nitrogen-fixing and other bacteria. U. S. Dep. Agricult. Frnrs’. Bull, 1496, 28 pp. (1926).Google Scholar
  290. Löhnis, Marie P.: Investigations upon the ineffectiveness of root-nodules on Leguminosae. Zbl. Bakter. II 80, 342–368 (1930a).Google Scholar
  291. Can Bacterium radicicola assimilate nitrogen in the absence of the host plant? Soil Sci. 29, 37–57 (1930b).Google Scholar
  292. Lojtjanskaja, M. S.: [On the development of nodule bacteria in the roots of alkaloid-free lupine.] Mikrobiology, Moscow 10, 15–32 (1941) (English summary).Google Scholar
  293. Longley, B. J., T. O. Berge, J. M. van Lanen and I. L. Baldwin: Changes in the infective ability of rhizobia and Phytomonas tumefaciens induced by culturing on media containing glycine. J. Bacter. 33, 29–30 (1937).Google Scholar
  294. Lynch, D. L., and O. H. Sears: The nitrogen-fixing efficiency of strains of Lotus corniculatus nodule bacteria. Proc. Soil. Sci. Soc. Amer. 14, 168–170 (1949).CrossRefGoogle Scholar
  295. Differential response of strains of Lotus nodule bacteria to soil treatment practices. Proc. Soil. Sci. Soc. Amer. 15, 176–180 (1950).Google Scholar
  296. Nodulation of legumes and nitrogen fixation: I. A new tool for measurement. Abst. Annu. Mtg., Amer. Soc. Agron., 1952, pp. 68–69.1952.Google Scholar
  297. Lyon, T. L., and J. A. Bizzell: A comparison of several legumes with respect to nitrogen accretion. J. Amer. Soc. Agron. 26, 651–656 (1934).CrossRefGoogle Scholar
  298. Maire, R., u. A. Tison: La cytologie des Plasmodiophoracées et la classe des Phytomyxinae. Ann. mycol. (Berl.) 7, 226–253 (1909).Google Scholar
  299. Manil, P., et C. Bonnier: Fixation symbiotique d’azote, chez la Luzerne (Medicago saliva L.). Bull. Inst. agron. Gembloux 18, 89–126 (1950).Google Scholar
  300. Marroquin, A. S., y C. Casas-Campillo: Aislamiento, incidencia y caracterizaciôn del bacteriöfago de Rhizobium meliloti. An. Esc. nac. Cienc. biol., Mex. 3, 305–329 (1944).Google Scholar
  301. Mc Burney, C. H., W. B. Bollen and R. J. Williams: Pantothenic acid and the nodule bacteria legume symbiosis. Proc. Nat. Acad. Sci., U.S.A. 21, 301–304 (1935).CrossRefGoogle Scholar
  302. Mc Calla, T. M.: Behavior of legume bacteria (Rhizobium) in relation to exchangeable calcium and hydrogen ion concentration of the colloidal fraction of the soil. Res. Bull. Mo. Agricult. Exper. Stat. 256, 44 pp. (1937).Google Scholar
  303. Mc Coy, Elizabeth: A cytological and histological study of the root nodules of bean, Phaseolus vulgaris L. Zbl. Bakter. II 79, 394–412 (1929).Google Scholar
  304. Infection by Bact. radicicola in relation to the microchemistry of the host’s cell walls. Proc. Roy. Soc. Lond., Ser. B 110, 514–533 (1932).Google Scholar
  305. Mc Dougall, W. B.: Thick-walled root hairs of Gleditsia and related genera. Amer. J. Bot. 8, 171–175 (1921).CrossRefGoogle Scholar
  306. Mc Kee, R.: A general view of the Leguminosae. Yearb. U. S. Dep. Agricult. pp. 701–726, 1948.Google Scholar
  307. Mc Knight, T.: Efficiency of isolates of Rhizobium in the cowpea group, with proposed additions to this group. Qd. J. Agricult. Sci. –, 61v76 (1949).Google Scholar
  308. Mc Luckie, J.: Studies in symbiosis. IV. The root-nodules of Casuarina Cunninghamiana and their physiological significance. Proc. Linnean Soc. N. S. Wales 48, 194–205 (1923).Google Scholar
  309. Meyen, J.: Über das Herauswachsen parasitischer Gewächse aus den Wurzeln anderer Pflanzen. Flora (Jena) 12, 49–64 (1829).Google Scholar
  310. Mezzadroli, G., e L. Sgarzi: Azione di alcuni alcaloidi sul “Bac. Radicicola” in cultura pura. Atti Accad. Lincei, Ser. VI 21, 105–110 (1935).Google Scholar
  311. Miehe, H.: Anatomische Untersuchung der Pilzsymbiose bei Casuarina equisetifolia nebst einigen Bemerkungen über das Mykorhizenproblem. Flora (Jena) 111–112, 431–449 (1918).Google Scholar
  312. Miettinen, J. K., and A. I. Virtanen: The free amino acids in the leaves, roots, and root nodules of the alder (Alnus). Physiol. Plant. 5, 540–557 (1952).CrossRefGoogle Scholar
  313. Nitrogen metabolism of the alder (Alnus). The absence of arginase and presence of glutamic acid decarboxylase. Acta chem. scand. (Copenh.) 7, 289–296 (1953).Google Scholar
  314. Milovidov, P. F.: Recherches sur les tubercules du lupin. Rev. gén. Bot. 40, 192–205 (1928).Google Scholar
  315. Ergebnisse der Nuclealfärbung bei den Myxobakterien und einigen anderen Bakterien. Arch. Mikrobiol. 6, 475–509 (1935).Google Scholar
  316. Mirsky, A. E., and A. W. Pollister: Nucleoproteins of cell nuclei. Proc. Nat. Acad. Sci. U. S. A. 28, 344–352 (1942).CrossRefGoogle Scholar
  317. Molisch, H.: Über die Periodizität der Wurzelknöllchen bei Wistaria sinensis. Pflanzenbiologie in Japan, pp. 227–228. Jena 1926.Google Scholar
  318. Moeller, H.: Plasmodiophora Alni. Ber. dtsch. bot. Ges. 3, 102–105 (1885).Google Scholar
  319. Beitrag zur Kenntnis der Frankia subtilis Brunchorst. Ber. dtsch. bot. Ges. 8, 215–224 (1890).Google Scholar
  320. Entgegnung gegen Frank, betreffend den angeblichen Dimorphismus der Wurzelknöllchen der Erbse. Ber. dtsch. bot. Ges. 10, 568–570 (1892).Google Scholar
  321. Molliard, M.: Action hypertrophiante des produits élaborés par le Rhizobium radicicola Beij. C. r. Acad. Sci. Paris 155, 1531–1534 (1912).Google Scholar
  322. Montasir, A. H., and G. H. Sidrak: Root nodulation in Zygophyllum coccineum L. Inst. Fouad Ier du Désert, B 2, 68–70 (1952).Google Scholar
  323. Mostafa, M. A., and M. Z. Mahmoud: Bacterial isolates from root nodules of Zygophyllaceae. Nature (Lond.) 167, 446–447 (1951).CrossRefGoogle Scholar
  324. Mothes, K., u. J. Pietz: Zur Physiologie der Leguminosensymbiose. Naturwiss. 25, 201–202 (1937).CrossRefGoogle Scholar
  325. Mowry, H.: Symbiotic nitrogen fixation in the genus Casuarina. Soil Sci. 36, 409–425 (1933).CrossRefGoogle Scholar
  326. Müller, A., u. C. Stapp: Beiträge zur Biologie der Leguminosenknöllchenbakterien mit besonderer Berücksichtigung ihrer Artverschiedenheit. Arb. biol. Aht. (Anst.-Reichsanst.), Berl. 14, 455–554 (1925).Google Scholar
  327. Mulder, E. G.: Investigations on the nitrogen nutrition of pea plants. Plant a. Soil 1, 179–212 (1948).CrossRefGoogle Scholar
  328. Nakhimovskaja, M. I.: [The antagonism between actinomycetes and soil bacteria.] Mikrobiology, Moscow 6, 131–157 (1937) (English summary).Google Scholar
  329. Narasimhan, M. J.: A preliminary study of the root nodules of Casuarina. Indian For. 44, 265–268 (1918).Google Scholar
  330. Naundorf, G., und R. Nilsson: Über formbildende Wirkstoffe bei Azotobacter chroococcum und der Einfluß dieser formativen Wirkstoffe auf die Bakteroidenbildung von Bacterium radicicola. Naturwiss. 30, 753 (1942).CrossRefGoogle Scholar
  331. Über formbildende Wirkstoffe bei Azotobacter chroococcum und der Einfluß dieser formativen Wirkstoffe auf die Bildung von Gigasformen bei Bacterium radicicola. Naturwiss. 31, 346 (1943).Google Scholar
  332. Neal, O. R., and R. H. Walker: Physiological studies on Rhizobium. IV. Utilization of carbonaceous materials. J. Bacter. 30, 173–187 (1935).Google Scholar
  333. Newbould, F. H. S.: Studies on humus type legume inoculants. I. Growth and survival in storage. Sci. Agricult. 31, 463–469 (1951).Google Scholar
  334. Nicol, H.: The derivation of the nitrogen of crop plants, with special reference to associated growth. Biol. Rev. Cambridge Philos. Soc. 9, 383–410 (1934).CrossRefGoogle Scholar
  335. Mixed cropping in primitive agriculture. Empire J. Exper. Agricult. 3, 189–195 (1935).Google Scholar
  336. The utilization of atmospheric nitrogen by mixed crops. Monthly Bull. Agricult. Sci. a. Pract. 6–7, 201–256 (1936).Google Scholar
  337. Nicol, H., and H. G. Thornton: Competition between related strains of nodule bacteria and its influence on infection of the legume host. Proc. Roy. Soc. Lond., Ser. B 130, 32–59 (1941).CrossRefGoogle Scholar
  338. Nielsen, N.: Untersuchungen über biologische Stickstoffbindung. I. Der Wert verschiedener Aminosäuren als Stickstoffquelle für Bacterium radicicola. C. r. Labor. Carlsberg, Sér. physiol. 23, 115–134 (1940).Google Scholar
  339. Nielsen, N., und G. Johansen: Untersuchungen über biologische Stickstoffbindung. V. Untersuchungen über die Wirkung verschiedener Wuchsstoffe auf 4 Stämme von B. radicicola. C. r. Labor. Carlsberg, Sér. physiol. 23, 173–193 (1941).Google Scholar
  340. Nilsson, P. E., and C. Rydin: Studies on svmbiotic nitrogen fixation by a new strain of tetraploid clover (U036). Arch Mikrobiol. 20, 398–403 (1954).PubMedCrossRefGoogle Scholar
  341. Nilsson, R., G. Bjälfve u. D. Burström: Über Zuwachsfaktoren bei Bact. radicicola. I. Lantbruks-Högsk. Ann. 5, 291–322 (1938a).Google Scholar
  342. Vitamin B1 als Zuwachsfaktor für Bact. radicicola. I. II. Naturwiss. 26, 284, 661 (1938b).Google Scholar
  343. Über Zuwachsfaktoren bei Bact. radicicola. III. Lantbruks-Högsk. Ann. 7, 51–61 (1939a).Google Scholar
  344. Über Zuwachsfaktoren bei Bact. radicicola. V. Lantbruks-Högsk. Ann. 7, 301–331 (1939b).Google Scholar
  345. Niss, H. F., and P. W. Wilson: Hemoprotein from root nodules and nitrogen fixation by Rhizobium. Proc. Soc. Exper. Biol. a. Med. 66, 233–235 (1947).Google Scholar
  346. Nobbe, F., u. L. Hiltner: Wodurch werden die Knöllchenbesitzenden Leguminosen befähigt, den freien atmosphärischen Stickstoff für sich zu verwerten? Landw. Versuchsstat. 42, 459–478 (1893).Google Scholar
  347. Über das Stickstoffsammlungsvermögen der Erlen und Elaeagnaceen. Naturwiss. Z. Land- u. Forstw. 2, 366–369 (1904).Google Scholar
  348. Nobbe, F., E. Schmid, L. Hiltner u. E. Hotter: Über die physiologische Bedeutung der Wurzelknöllchen von Elaeagnus angustifolius. Landw. Versuchsstat. 41, 138–140 (1892).Google Scholar
  349. Norman, A. G.: The nitrogen nutrition of soybeans: I. Effect of inoculation and nitrogen fertilizer on the yield and composition of beans on Marshall silt loam. Proc. Soil Sci. Soc. Amer. 8, 226–228 (1943).CrossRefGoogle Scholar
  350. Nowotny-Mieczynska, Anna: Studies on the root nodules of leguminous plants. Bull, internat. Acad. pol. Sci. Lettres, Cl. Sci. math, et natur., Sér. B (1) 1949, No 1–3 Bl, 53–83.Google Scholar
  351. [Root nodules of leguminous plants. I. Pigmentation of nodules.] Prace roln. lésne, Krakow No 50, 35 pp. (1950) (English summary)Google Scholar
  352. [Some factors influencing the pigmentation of nodules of leguminous plants.] Acta Microbiol. Polonica 1, 42–51 (1952) (English summary).Google Scholar
  353. Nowotny-Mieczyńska, A., and M. Ruszkowska: [The influence of mineral nitrogen upon the growth of leguminous plants. II.] Acta Microbiol. Polonica 3, 381ń393 (1954).Google Scholar
  354. Nutman, P. S.: Variation within strains of clover nodule bacteria in the size of nodule produced and in the “effectivity” of the symbiosis. J. Bacter. 51, 411–432 (1946a).Google Scholar
  355. Genetical factors concerned in the symbiosis of clover and nodule bacteria. Nature (Lond.) 157, 463–465 (1946b).Google Scholar
  356. Physiological studies on nodule formation. I. The relation between nodulation and lateral root formation in red clover. Ann. Bot. (Lond.) N. S. 12, 81–96 (1948).Google Scholar
  357. The influence of strain and host factors on the efficiency of nitrogen fixation in clover. Proc. Specialist Conference in Agric, Australia. Sess. B, Plant Nutrition, pp. 183–189, 1949 a.Google Scholar
  358. Nuclear and cytoplasmic inheritance of resistance to infection by nodule bacteria in red clover. Heredity (Lond.) 3, 263–291 (1949b).Google Scholar
  359. Physiological studies on nodule formation. II. The influence of delayed inoculation on the rate of nodulation in red clover. Ann. Bot. (Lond.) N. S. 13, 261–283 (1949c).Google Scholar
  360. Studies on the physiology of nodule formation. III. Experiments on the excision of root-tips and nodules. Ann. Bot. (Lond.) N. S. 16, 79–101 (1952a).Google Scholar
  361. A discussion on symbiosis involving microorganisms. Host factors influencing infection and nodule development in leguminous plants. Proc. roy. Soc. Lond., Ser. B 139, 176–185 (1952b).Google Scholar
  362. Symbiotic effectiveness in nodulated red clover. Heredity (Lond.) 8, 35–46 (1954a).Google Scholar
  363. Symbiotic effectiveness in nodulated red clover. II. A major gene for ineffectiveness in the host. Heredity (Lond.) 8, 47–60 (1954b).Google Scholar
  364. Palacios-de Borao, G.: Las bacterias simbioticas del nitrogeno bajo el microscopio electronico. Microbiol, españ. 2, 51–56 (1949).Google Scholar
  365. Parker, D. T., and O. N. Allen: The nodulation status of Trifolium ambiguum. Proc. Soil Sci. Soc. Amer. 16, 350–353 (1952).CrossRefGoogle Scholar
  366. Parker, R. N.: Gasuarina root-nodules. Indian For. 58, 362–364 (1932).Google Scholar
  367. Peirce, G. J.: The root-tubercles of bur clover (Medicago denticulata Willd.) and of some other leguminous plants. Proc. Calif. Acad. Sci., Ser. III, Bot. 2, 295–328 (1902).Google Scholar
  368. Peklo, J.: Die pflanzlichen Aktinomykosen. (Ein Beitrag zur Physiologie der pathogenen Mikroorganismen.) Zbl. Bakter. II 27, 451–579 (1910).Google Scholar
  369. Pfeiffer, H.: Die Stickstoffsammlung und die aus ihr zu ziehenden Rückschlüsse auf die Formumgestaltung der Knöllchenbakterien. Zbl. Bakter. II 73, 28–57 (1928).Google Scholar
  370. Phillips, J.: Root nodules of Podocarpus. Ecology 13, 189–195 (1932).CrossRefGoogle Scholar
  371. Pietschmann, K.: Über die Begeißelung der Bakterien. Arch. Mikrobiol. 12, 377–472 (1942).CrossRefGoogle Scholar
  372. Pietz, J.: Beitrag zur Physiologie des Wurzelknöllchenbakteriums. Zbl. Bakter. II 99, 1–32 (1938).Google Scholar
  373. Plotho, O. v.: Die Synthese der Knöllchen an den Wurzeln der Erle. Arch. Mikrobiol. 12, 1–18 (1941).CrossRefGoogle Scholar
  374. Prazmowski, A.: Das Wesen und die biologische Bedeutung der Wurzelknöllchen der Erbse. Bot. Zbl. 39, 356–362 (1889).Google Scholar
  375. Die Wurzelknöllchen der Erbse. Landw. Versuchsstat. 37, 161–238 (1890).Google Scholar
  376. Purchase, H. F., and J. M. Vincent: A detailed study of the field distribution of clover nodule bacteria. Proc. Linnean Soc. N. S. Wales 74, 227–236 (1949).Google Scholar
  377. Purchase, H. F., J. M. Vincent and L. M. Ward: The contribution of legumes to soil nitrogen economy in New South Wales. J. Austral. Inst. Agricult. Sci. 15, 112–117 (1949).Google Scholar
  378. Serological studies of the root-nodule bacteria. IV. Further analysis of isolates from Trifolium and Medicago. Proc. Linnean Soc. N. S. Wales 76, 1–6 (1951).Google Scholar
  379. Quispel, A.: Some theoretical aspects of symbiosis. Leeuwenhoek nederl. Tijdschr. 17, 69–80 (1951).Google Scholar
  380. Symbiotic nitrogen fixation in non-leguminous plants. I. Preliminary experiments on the root-nodule symbiosis of Alnus glutinosa. Acta bot. neerl. 3, 495–511 (1954a).Google Scholar
  381. Symbiotic nitrogen fixation in non-leguminous plants. II. The influence of inoculation density and external factors on the nodulation of Alnus glutinosa and its importance to our understanding of the mechanism of infection. Acta bot. neerl. 3, 512–532 (1954b).Google Scholar
  382. Rao, K. A.: Casuarina root nodules and nitrogen fixation. Yearb. Madras Agric. Dep. pp. 60–67. 1923.Google Scholar
  383. Rasnizina, E. A.: Formation of growth substances (auxin type) by bacteria. C. r. Acad. Sci. URSS. 18, 353–355 (1938).Google Scholar
  384. Rasumovskaja, S. G.: [Nodule bacteria in the soil.] Bull. State Inst, agricult. Microbiol. USSR. 5, 108–111 (1933).Google Scholar
  385. Read, Margaret P.: The establishment of serologically identifiable strains of Rhizobium trifolii in field soils in competition with the native microflora. J. Gen. Microbiol. 9, 1–14 (1953).PubMedGoogle Scholar
  386. Reid, J. J., E. B. Fred and I. L. Baldwin: The effects of storage on rhizobia. J. Bacter. 29, 75–76 (1935).Google Scholar
  387. Riede, W., u. H. Bucherer: Über Lebensdauer, Wirksamkeit und Leistung der Sojaknöllchenbakterien. Zbl. Bakter. II 100, 25–34 (1939).Google Scholar
  388. Roberg, M.: Über den Erreger der Wurzelknöllchen von Alnus und den Elaeagnaceen Elaeagnus und Hippophaë. Jb. wiss. Bot. 79, 472–492 (1934a).Google Scholar
  389. Weitere Untersuchungen über die Stickstoffernährung der Erle. Ber. dtsch. bot. Ges. 52, 54–64 (1934b).Google Scholar
  390. Roberts, J. L., and F. R. Olson: The relative efficiency of strains of Rhizobium trifolii as influenced by soil fertility. Science (Lancaster, Pa.) 95, 413–414 (1942).Google Scholar
  391. Robison, R. S.: The antagonistic action of the by-products of several soil microorganisms on the activities of the legume bacteria. Proc. Soil Sci. Soc. Amer. 10, 206–210 (1945).CrossRefGoogle Scholar
  392. Rudakov, K. I., and M. R. Birkel’: [The bacterial complex determining the formation of nodules in leguminous plants.] Dokl. Vaskhnil 4, 22–29 (1953).Google Scholar
  393. Sabet, Y. S.: Bacterial root nodules in the Zygophyllaceae. Nature (Lond.) 157, 656 (1946).CrossRefGoogle Scholar
  394. Sanchez-Marroquin, A., and M. Zapata: On the pigment of Streptomyces coelicolor and its antibiotic properties. 6. Congr. int. Microbiol., Rome, Abstr. 1, p. 305, 1953.Google Scholar
  395. Sarles, W. B., J. C. Mc Caffrey and M. N. Mickelson: Studies on the classification and differentiation of the rhizobia. J. Bacter. 29, 74–75 (1935).Google Scholar
  396. Scarisbrick, R.: Haematin compounds in plants. Annual Rep. Progr. Chem. (Chem. Soc. Lond.) 44, 226–236 (1948).Google Scholar
  397. Schacht, H.: Beitrag zur Entwicklungs-Geschichte der Wurzel. Flora (Jena) 36, 257–266 (1853).Google Scholar
  398. Schaede, R.: Das Schicksal der Bakterien in den Knöllchen von Lupinus albus nebst cytologischen Untersuchungen. Zbl. Bakter. II 85, 416–425 (1932).Google Scholar
  399. Über die Symbioten in den Knöllchen der Erle und des Sanddornes und die cytologischen Verhältnisse in ihnen. Planta (Berl.) 19, 389–416 (1933).Google Scholar
  400. Zum Problem des Vorkommens von chromatischer Substanz bei Bakterien und Actinomyceten. Arch. Mikrobiol. 10, 473–507 (1939a).Google Scholar
  401. Die Actinomyceten-Symbiose von Myrica Gale. Planta (Berl.) 29, 32–46 (1939b).Google Scholar
  402. Die Knöllchen der adventiven Wasserwurzeln von Neptunia oleracea und ihre Bakteriensymbiose. Planta (Berl.) 31, 1–21 (1940).Google Scholar
  403. Untersuchungen an den Wurzelknöllchen von Vicia faba und Pisum sativum. Beitr. Biol. Pflanz., 27, H. 2, 165–188 (1941).Google Scholar
  404. Scheerlinck:, H.: Les nodosités radicales des légumineuses. Ann. Soc. sci. Brüx., Ser. B 56, 250–302 (1936).Google Scholar
  405. Schiel, E., and P. R. Marco: Efecto de la infeeeiön artificial de Trifolium alexandrinum con Rhizobium trifolii. Rev. argentina agron. 10, 169–177 (1943).Google Scholar
  406. Schmidt, O. C.: Über einige einfache Nährböden zur Kultur von Bacterium radicicola. Z. Pflanzenernährg u. Düng. 38, 165–166 (1947).CrossRefGoogle Scholar
  407. Schreven, D. A. van, G. W. Harmsen, D. J. Lindenbergh and D. Otzen: Experiments on the cultivation of Rhizobium in liquid media for use on the Zuiderzee polders. Leeuwenhoek nederl. Tijdschr. 19, 300–308 (1953).Google Scholar
  408. Schreven, D. A. van, D. Otzen and D. J. Lendenbergh: On the production of legume inoculants in a mixture of peat and soil. Leeuwenhoek nederl. Tijdschr. 20, 33–57 (1954).Google Scholar
  409. Schroeter, J.: In Engler und PrantlS Natürliche Pflanzenfamilien, vol. 1 (1), 7 1897.Google Scholar
  410. Sears, O. H.: A nitrogen factory on every farm. Circ. Ill. Agricult. Exper. Stat. 326, 12 pp. (1923).Google Scholar
  411. Sears, P. D.: Pasture growth and soil fertility. VII. General discussion of the experimental results, and of their application to farming practice in New Zealand. New Zealand J. Sci. Technol., Sect. A 25, 221–236 (1953).Google Scholar
  412. Sen, S. P., and D. P. Burma: A study with paper chromatography of the amino acids in legume nodules. Bot. Gaz. 115, 185–190 (1953).CrossRefGoogle Scholar
  413. Shibata, K.: Cytologische Studien über die endotrophen Mykorrhizen. Jb. wiss. Bot. 37, 643–684 (1902).Google Scholar
  414. Shibata, K., and M. Tahara: Studies on the root nodules of non-leguminous plants in Japan. Bot. Mag. (Tokyo) 31, 157–182 (1917).Google Scholar
  415. Singh, B. N.: Selection of bacterial food by soil flagellates and amoebae. Ann. Appl. Biol. 29, 18–22 (1942).CrossRefGoogle Scholar
  416. Smith, E. F.: Bacteria in relation to plant diseases. Root nodules of Leguminosae. Publ. Carneg. Instn. (27) 2, 97–146 (1911).Google Scholar
  417. Smith, F. B., R. E. Blaser and G. D. Thornton: Legume inoculation. Bull. Fla. Agricult. Exper. Stat. 417, 42 pp. (1945).Google Scholar
  418. Smith, J. D.: The concentration and distribution of haemoglobin in the root nodules of leguminous plants. Biochemie. J. 44, 585–591 (1949a).Google Scholar
  419. Haemoglobin and oxygen uptake of leguminous root nodules. Biochemic. J. 44, 591–598 (1949b).Google Scholar
  420. Spencer, J. F. T., and J. D. Newton: Factors influencing the growth and survival of rhizobia in humus and soil cultures. II. Canad. J. Bot. 31, 253–264 (1953).CrossRefGoogle Scholar
  421. Spicher, G.: Lebensdauer und Stickstoffbindung der Knöllchenbakterien von Lupine, Serradella und Klee in Abhängigkeit von ihrer Gestalt. Zbl. Bakter II 107, 383–418 (1954).Google Scholar
  422. Spratt, Ethel: The morphology of the root tubercles of Alnus and Elaeagnus, and the polymorphism of the organism causing their formation. Ann. Bot. (Lond.) 26, 119–128 (1912).Google Scholar
  423. A comparative account of the root nodules of the Leguminosae. Ann. Bot. (Lond.) 33, 189–199 (1919).Google Scholar
  424. Stapp, C.: Zur Frage der Lebensund Wirksamkeitsdauer der Knöllchenbakterien. Angew. Bot. 6, 152–159 (1924).Google Scholar
  425. Stapp, C., u. D. Knösel: Zur Genetik sternbildender Bakterien. Zbl. Bakter. II 108, 243–259 (1954).Google Scholar
  426. Steinberg, R. A.: Applicability of nutrient-solution purification to the study of trace-element requirements of Rhizobium and Azotobacter. J. Agricult. Res. 57, 461–476 (1938).Google Scholar
  427. Sternberg, H., and A. I. Virtanen: Studies on the absorption spectrum of leghemoglobin, especially of leghemiglobin. Acta chem. scand. (Copenh.) 6, 1342–1352 (1952).CrossRefGoogle Scholar
  428. Steyaert, R. L.: Une epiphytie bactérienne des racines de Coffea robusta et C. klainii. Rev. Zool. Bot. afr. 22, 133–139 (1932).Google Scholar
  429. Stolp, H.: Beiträge zur Frage der Beziehungen zwischen Mikroorganismen und höheren Pflanzen. Arch. Mikrobiol. 17, 1–29 (1952).CrossRefGoogle Scholar
  430. Strong, T. H.: The influence of host plant species in relation to the effectiveness of the Rhizobium of -clovers. J. Council Sci. Industr. Res. Austral. 10, 12–16 (1937).Google Scholar
  431. Süchting, H.: Kritische Studien über die Knöllchenbakterien. Zbl. Bakter. II 11, 377–388, 417–441, 496–520 (1904).Google Scholar
  432. Thimann, K.: On the physiology of the formation of nodules on legume roots. Proc. Nat. Acad. Sci. U.S.A. 22, 511–514 (1936).CrossRefGoogle Scholar
  433. The physiology of nodule formation. Third Comm. Internat. Soc. Soil Sci., Trans. A, pp. 24–28, 1939.Google Scholar
  434. Thimann, K. V., and F. Skoog: The extraction of auxin from plant tissues. Amer. J. Bot. 27, 951–960 (1940).CrossRefGoogle Scholar
  435. Thorne, D. W., and R. H. Burris: Respiratory enzyme systems in symbiotic nitrogen fixation. II. The respiration of Rhizobium from legume nodules and laboratory cultures. J. Bacter. 39, 187–196 (1940).Google Scholar
  436. Thorne, D. W., O. R. Neal and R. H. Walker: Physiological studies on Rhizobium. VIII. The respiratory quotient. Arch. Mikrobiol. 7, 477–487 (1936).CrossRefGoogle Scholar
  437. Thorne, D. W., and R. H. Walker: Some factors influencing the respiration of Rhizobium. Proc. Iowa Acad. Sci. 41, 63–70 (1934).Google Scholar
  438. Physiological studies on Rhizobium. VI. Accessory factors. Soil Sci. 42, 231–240 (1936a).Google Scholar
  439. Physiological studies on Rhizobium. VII. Some physiological effects of accessory growth factors. Soil Sci. 42, 301–310 (1936b).Google Scholar
  440. Thornton, G. D.: The effect of nitrogen fertilization on the nitrogen nutrition of legumes. Iowa State •Coll. J. SCI. 22, 84–86 (1948).Google Scholar
  441. Thornton, G. D., J. de Alencar and F. B. Smith: Some effects of Streptomyces albus and Penicillium spp. on Rhizobium meliloti. Proc. Soil Sci. Soc. Amer. 14, 188–191 (1949).CrossRefGoogle Scholar
  442. Thornton, H. G.: The influence of the number of nodule bacteria applied to the seed upon nodule formation in legumes. J. Agricult. Sci. 19, 373–381 (1929).CrossRefGoogle Scholar
  443. The influence of the host plant in inducing parasitism in lucerne and clover nodules. Proc. Roy. Soc. Lond., Ser. B 106, 110–122 (1930a).Google Scholar
  444. The early development of the root nodule of lucerne (Medicago sativa L.). Ann. Bot. (Lond.) 44, 385–392 (1930b).Google Scholar
  445. The present state of our ignorance concerning the nodules of leguminous plants. Science Progr. (Lond.) 31 (122), 236–249 (1936).Google Scholar
  446. Effective and ineffective strains of legume nodule bacteria. Nature (Lond.) 156, 654–655 (1945).Google Scholar
  447. Report of the Department of Soil Microbiology for the years 1939–1945. Rep. Rothamst. Exper. Stat., 21 pp., 1947.Google Scholar
  448. The biology of ineffective strains of Rhizobium. 4. Internat. Congr. Microbiol., Copenhagen, Rep. Proc., pp. 471–474, 1949.Google Scholar
  449. The nodule bacteria and their host legumes: Some problems that they still present. Science Progr. (Lond.) 42 (166), 185–204 (1954).Google Scholar
  450. Thornton, H. G., and N. Gangulee: The life cycle of the nodule organism Bacillus radicicola (Beij.) in soil and its relation to the infection of the host plant. Proc. Roy. Soc. Lond., Ser. B 99, 427–451 (1926).CrossRefGoogle Scholar
  451. Thornton, H. G., and J. Kleczkowski: Use of antisera to identify nodules produced by the inoculation of legumes in the field. Nature (Lond.) 166, 1118–1119 (1950).CrossRefGoogle Scholar
  452. Tove, Shirley R., and P. W. Wilson: Isotopic studies of fixation by rhizobia in presence of hemoprotein. Proc Soc. Exper. Biol. a. Med. 69, 184–186 (1948).Google Scholar
  453. Trussell, P. C., and W. B. Sarles: Effect of antibiotic substances upon rhizobia. J. Bacter. 45, 29 (1943).Google Scholar
  454. Tubeuf, K. F. v.: Mykodomatien der Erlen, Elaeagnaceen, und Myricaceen, veranlaßt durch Frankia-Arten. Pflanzenkrankheiten durch kryptogame Parasiten verursacht, pp. 1–117. Berlin 1895.Google Scholar
  455. Uher, M.: [A contribution to the problem of the nucleus of bacteria.] Ann. Acad. tchécosl. Agricult. 12, 474–478 (1937) (German summary).Google Scholar
  456. Uemura, S.: [Studies on the root nodules of alders (Alnus spp.). II. The times to producing the root nodules on alders and the effects of some fertilizers on them.] Rep. Govt. Forest Exper. Stat. (Tokyo) 62, 41–52 (1952a) (English summary).Google Scholar
  457. [Studies on the root nodules of alders (Alnus spp.). IV. Experiment on the isolation of actinomycetes from alder nodules.] Bull. Govt. Forest Exper. Stat. (Tokyo) 52, 1–18 (1952b) (English summary).Google Scholar
  458. Vandecaveye, S. C., W. H. Fuller and H. Katznelson: Bacteriophage of rhizobia in relation to symbiotic nitrogen fixation by alfalfa. Soil Sci. 50, 15–27 (1940).CrossRefGoogle Scholar
  459. Vandecaveye, S. C., and H. Katznelson: Bacteriophage as related to the root nodule bacteria of alfalfa. J. Bacter. 31, 465–477 (1936).Google Scholar
  460. Vandecaveye, S. C., and C. D. Moodie: Effects of Rhizobium meliloti bacteriophage on alfalfa. Proc. Soil Sci. Soc. Amer. 8, 241–247 (1944).CrossRefGoogle Scholar
  461. Vincent, J. M.: Effective and ineffective association between root-nodule bacteria and the host plant. Nature (Lond.) 148, 315–316 (1941a).CrossRefGoogle Scholar
  462. Serological studies of the root-nodule bacteria. I. Strains of Rhizobium meliloti. Proc. Linnean Soc. N. S. Wales 66, 145–154 (1941b).Google Scholar
  463. Serological studies of the root-nodule bacteria. II. Strains of Rhizobium trifolii. Proc. Linnean Soc. N. S. Wales 67, 82–86 (1942).Google Scholar
  464. Variation in the nitrogen-fixing property of Rhizobium trifolii. Nature (Lond.) 153, 496–497 (1944).Google Scholar
  465. The root-nodule bacteria of pasture legumes. Proc. Linnean Soc. N. S. Wales 79, IV–XXXII (1954a).Google Scholar
  466. The root-nodule bacteria as factors in clover establishment in the red basaltic soils of the Lismore district, New South Wales. I. A survey of “native” strains. Austral. J. Agricult. Res. 5, 55–60 (1954b).Google Scholar
  467. Vincent, J. M., and L. M. Waters: The influence of the host on competition amongst clover root-nodule bacteria. J. Gen. Microbiol. 9, 357–370 (1953).PubMedGoogle Scholar
  468. The root-nodule bacteria as factors in clover establishment in the red basaltic soils of the Lismore district, New South Wales. II. Survival and success of inocula in laboratory trials. Austral. J. Agricult. Res. 5, 61–76 (1954).Google Scholar
  469. Vertanen, A. I.: Roter Farbstoff in den Wurzelknöllchen von Hülsenpflanzen. Sitzgsber. firm. Akad. Wiss., Jan. 12, 1945a.Google Scholar
  470. Symbiotic nitrogen fixation. Nature (Lond.) 155, 747–748 (1945b).Google Scholar
  471. On the symbiotic nitrogen fixation. Acta chem. fenn. B 18, 33 (1945c).Google Scholar
  472. Some additional notes to the studies on leghaemoglobin. Acta chem. fenn. B 19, 48 (1946).Google Scholar
  473. The biology and chemistry of nitrogen fixation by legume bacteria. Biol. Rev. Cambridge Philos. Soc. 22, 239–269 (1947).Google Scholar
  474. Biological nitrogen fixation. Annual Rev. Microbiol. 2, 485–506 (1948).Google Scholar
  475. Some problems concerning the legume bacteria and the nitrogen fixation. Rep. 4. Internat. Congr. Microbiol., Copenhagen, pp. 476–477, 1949.Google Scholar
  476. Vertanen, A. I., J. Ereama and H. Linkola: On the relation between nitrogen fixation and leghaemoglobin content of leguminous root nodules. II. Acta chem. scand. (Copenh.) 1, 861–870 (1947).CrossRefGoogle Scholar
  477. Vertanen, A. I., J. Jorma and T. Laine: The iron and haemin content of leghaemoglobin. Acta chem. fenn., Ser. B 18, 49 (1945).Google Scholar
  478. Vertanen, A. I., J. Jorma, H. Linkola and A. Linnasalmi: On the relation between nitrogen fixation and leghaemoglobin content of leguminous root nodules. Acta chem. scand. (Copenh.) 1, 90–111 (1947).CrossRefGoogle Scholar
  479. Vertanen, A. I., and T. Laine: Red, brown and green pigments in leguminous root nodules. Nature (Lond.) 157, 25–26 (1946).CrossRefGoogle Scholar
  480. Vertanen, A. I., T. Laine and H. Linkola: The green pigment in the root nodules of leguminous plants. Acta chem. fenn., Ser. B 18, 36 (1945).Google Scholar
  481. Vertanen, A. I., and H. Linkola: Competition of Rhizobium strains in nodule-formation. Leeuwenhoek nederl. Tijdschr. 12, 65–77 (1947).Google Scholar
  482. On the antibacterial effect of spore-forming soil bacteria on the legume bacteria. Acta chem. fenn., Ser. B 21, 12–13 (1948).Google Scholar
  483. Vertanen, A. I., and J. K. Miettinen: Formation of biliverdin from legcholeglobin, the green pigment in leguminous root nodules. Acta chem. scand. (Copenh.) 3, 17–21 (1949).CrossRefGoogle Scholar
  484. Vertanen, A. I., T. Moisio, R. M. Allison and R. B. Burris: Fixation of molecular nitrogen by excised nodules of the alder. Acta chem. scand. (Copenh.) 8, 1730–1731 (1955).CrossRefGoogle Scholar
  485. Vertanen, A. I., M. Nordlund and E. Hollo: Fermentation of sugar by the root nodule bacteria. Biochemie. J. 28, 796–802 (1934).Google Scholar
  486. Vertanen, A. I., u. S. Saastamoinen: Über die Stickstoffbindung bei der Erle (Alnus). Acta chem. fenn., Ser. B 6, 57–58 (1933).Google Scholar
  487. Untersuchungen über die Stickstoffbindung bei der Erle. Biochem. Z. 284, 72–85 (1936).Google Scholar
  488. Voets, J.: Onderzoek over de nucléaire structuur van Rhizobium. Meded. Landbouwhoogesch. Gent. 14, 235–250 (1949).Google Scholar
  489. Wahhab, A., and T. Muhammad: The role of legumes in improving soil fertility. III. Nitrogen derived by legumes from soil and air. Pakist. J. Sci. Res. 6, 52–54 (1954).Google Scholar
  490. Waksman, S. A., and H. B. Woodruff: The occurrence of bacteriostatic and bactericidal substances in the soil. Soil Sci. 53, 233–239 (1942).CrossRefGoogle Scholar
  491. Walker, R. H., D. A. Anderson and P. E. Brown: Physiological studies on Rhizobium. I. The effect of nitrogen source on oxygen consumption by Rhizobium leguminosarum Frank. Soil Sci. 37, 387–401 (1933).CrossRefGoogle Scholar
  492. Physiological studies on Rhizobium: II. The effect of nitrogen source on oxygen consumption by Rh. meliloti, Rh. trifolii, and Rh. phaseoli. Soil Sci. 38, 207–217 (1934).Google Scholar
  493. Walker, T. W., H. D. Orchiston and A. F. R. Adams: The nitrogen economy of grass legume associations. J. Brit. Grassl. Soc. 9, 249–274 (1954).CrossRefGoogle Scholar
  494. Wallen, I. E.: Symbionticism and the Origin of Species. 171 pp. Baltimore, Md.: William & Wilkins Co. 1927.CrossRefGoogle Scholar
  495. Warren, J. A.: Additional notes on the number and distribution of native legumes in Nebraska and Kansas. Circ. U. S. Dep. Agricult. Bur. PI. Ind. 70, 8 pp. (1910).Google Scholar
  496. Wendel, E.: Zur physiologischen Anatomie der Wurzelknöllchen einiger Leguminosen. Beitr. allg. Bot. 1, 151–189 (1918).Google Scholar
  497. West, P. M., and P. W. Wilson: Growth factor requirements of the root nodule bacteria. J. Bacter. 37, 161–185 (1939a).Google Scholar
  498. Effect of biotin concentrates on growth of Rhizobium and related species. J. Bacter. 38, 110–111 (1939b).Google Scholar
  499. Biotin as a growth stimulant for the root nodule bacteria. Enzymologia (Den Haag) 8, 152–162 (1940).Google Scholar
  500. Whiting, A. L., E. B. Fred and J. W. Stevens: Inoculation increases yield and quality of peas for canning. Bull. Wis. Agricult. Exper. Stat. 372, 23 pp. (1925).Google Scholar
  501. Williams, L. F., and D. L. Lynch: Inheritance of a non-nodulating character in the soybean. Agron. J. 46, 28–29 (1954).CrossRefGoogle Scholar
  502. Wilson, J. B., and P. W. Wilson: Biotin as a growth factor for rhizobia. J. Bacter. 43, 329–341 (1942).Google Scholar
  503. Wilson, J. K.: Physiological studies of Bacillus radicicola of soybean (Soya max Piper) and of factors influencing nodule production. Bull. Cornell Agricult. Exper. Stat. 386, 367–413 (1917).Google Scholar
  504. The shedding of nodules by beans. J. Amer. Soc. Agron. 23, 670–674 (1931).Google Scholar
  505. Desiccated nodules as a source of the root-nodule organisms. Proc. Soil. Sci. Soc. Amer. 2, 269 (1937).Google Scholar
  506. A relationship between pollination and nodulation of the Leguminosae. J. Amer. Soc. Agron. 31, 159–170 (1939a).Google Scholar
  507. Leguminous plants and their associated organisms. Mem. Cornell Agricult. Exper. Stat. 221, 48 pp. (1939b).Google Scholar
  508. Symbiotic promiscuity in the Leguminosae. Third Comm. Int. Soc. Soil Sci., Trans., A, pp. 49–63, 1939 c.Google Scholar
  509. Symbiotic promiscuity of two species of Crotalaria. J. Amer. Soc. Agron. 31, 934–939 (1939 d).Google Scholar
  510. The loss of nodules from legume roots and its significance. J. Amer. Soc. Agron. 34, 460–471 (1942).Google Scholar
  511. Over five hundred reasons for abandoning the cross -inoculation groups of the legumes. Soil Sci. 58, 61–69 (1944).Google Scholar
  512. The symbiotic performance of isolates from soybean with species of Crotalaria and certain other plants. Mem. Cornell Agricult. Exper. Stat. 276, 20 pp. (1945).Google Scholar
  513. Variation in seed as shown by symbiosis. Mem. Cornell Agricult. Exper. Stat. 272, 21 pp. (1946).Google Scholar
  514. The legume bacteria liberate gaseous nitrogen from nitrate. Proc. Soil Sci. Soc. Amer. 12, 215–216 (1947).Google Scholar
  515. Symbiotic segregation of strains of the root nodule bacteria by leguminous plants. Mem. Cornell Agricult. Exper. Stat. 279, 23 pp. (1948).Google Scholar
  516. Wilson, P. W.: Symbiotic nitrogen-fixation by the Leguminosae. Bot. Review 3, 365–399 (1937).CrossRefGoogle Scholar
  517. The Biochemistry of Symbiotic Nitrogen Fixation. 302 pp. Madison, Wis.: Univ. Wis. Press 1940.Google Scholar
  518. Wilson, P. W., and R. H. Burris: The mechanism of biological nitrogen fixation. Bacter. Rev. 11, 41–73 (1947).Google Scholar
  519. Biological nitrogen fixation— a reappraisal. Annual Rev. Microbiol. 7, 415–432 (1953).Google Scholar
  520. Wipe, Louise: Chromosome numbers in root nodules and root tips of certain Leguminosae. Bot. Gaz. 101, 51–67 (1939).CrossRefGoogle Scholar
  521. Wipf, Louise, and D. C. Cooper: Chromosome numbers in nodules and roots of red clover, common vetch and garden pea. Proc. Nat. Acad. Sci. U.S.A. 24, 87–91 (1938).CrossRefGoogle Scholar
  522. Somatic doubling of chromosomes and nodular infection in certain Leguminosae. Amer. J. Bot. 27, 821–824 (1940).Google Scholar
  523. Wolf, M., and i. L. Baldwin: The effect of glycine on the rhizobia. J. Bacter. 39, 344 (1940).Google Scholar
  524. Wolpert, J.: Die Mycorrhizen von Alnus alnobetula. Flora (Jena) 100, 60–67 (1910).Google Scholar
  525. Woodhead, T. W.: On the structure of root-nodules of Alnus glutinosa. Rep. Brit. Assoc. 70, 931–932 (1900).Google Scholar
  526. Woronine, M.: Über die bei der Schwarzerle (Alnus glutinosa) und der gewöhnlichen Gartenlupine (Lupinus mutabilis) auftretenden Wurzelanschwellungen. Mém. Acad. imp. Sci. St. Pétersb., Sér. VII 10 (6), 1–13 (1866).Google Scholar
  527. Observations sur certaines excroissances que présentent les racines de l’aune et du lupin des jardins. Ann. des Sci. natur. Bot., Sér. V 7, 73–86 (1867).Google Scholar
  528. Bemerkung zu dem Aufsatze von Herrn H. Moeller über Plasmodiophora Alni. Ber. dtsch. bot. Ges. 3, 177–178 (1885).Google Scholar
  529. Wyss, O., R. H. Burris and P. W. Wilson: Occurrence and significance of oxalacetic acid in plant tissues. Proc. Soc. Exper. Biol. a. Med. 40, 372–375 (1939).Google Scholar
  530. Yendo, Y., and T. Takase: [On the root-nodule of Elaeagnus.] Bull. Serie. Silk Ind. (Uyeda) 4, 5 (1932).Google Scholar
  531. Youngken, H. W.: The comparative morphology, taxonomy and distribution of the Myricaceae of the eastern United States. Contr. Bot. Lab. Univ. Pa. 4, 339–400 (1919).Google Scholar
  532. Ziegenspeck, H.: Die cytologischen Vorgänge in den Knöllchen von Hippophaë rhamnoides (Sanddorn) und Alnus glutinosa (Erie). Ber. dtsch. bot. Ges. 47, (50)–(58) (1929) (43. Generalversammlung).Google Scholar
  533. Zuur, A. J.: Drainage and reclamation of lakes and of the Zuiderzee. Soü Sci. 74, 75–89 (1952).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Ethel K. Allen
  • O. N. Allen

There are no affiliations available

Personalised recommendations