Advertisement

Ringschluß mit N und Methylierung am N

  • H.-B. Schröter
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Zusammenfassung

Die in den nachfolgenden Abschnitten dieses Kapitels zu behandelnden Stickstoffverbindungen lassen in ihrer überwiegenden Zahl zwei Besonderheiten erkennen:
  1. 1.

    Der Stickstoff ist als Heteroatom Bestandteil mehr oder weniger kompli-zierter Ringsysteme.

     
  2. 2.

    Der Stickstoff — in aliphatischer oder cyclischer Bindung — fungiert als Trägeratom für CH3-Gruppen.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abderhalden, E.: Fütterungsversuche mit vollständig abgebauten Nahrungsstoffen. Z. physiol. Chem. 77, 22–58 (1912).Google Scholar
  2. Abderhalden, E., U. S. Buadze: Über die Wirkung des Cholins auf den tierischen Organismus und seine Beziehungen zum Kreatin. Z. physiol. Chem. 164, 280–305 (1927).Google Scholar
  3. Ackermann, D.: Zur vergleichenden Biochemie des Stickstoffs. Vergleichend biochemische Fragen (6. Mosbacher Kolloquium), S. 100–131. Berlin: Springer 1956.Google Scholar
  4. Ackermann, D., U. S. Skraup: Endgültige Konstitutionsermittlung und Synthese des Spinacins. Z. physiol. Chem. 284, 129–131 (1949).Google Scholar
  5. Ames, B. N.: The biosynthesis of histidine. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 357 bis 372. Baltimore 1955.Google Scholar
  6. Arnstein, H. R. V.: The metabolism of glycine. Adv. Protein Chem. 9, 1–91 (1954).PubMedGoogle Scholar
  7. The function of vitamin B12 and folic acid in the metabolism of one-carbon units. Vitamin B12 und Intrinsic Factor, S. 86–100. Stuttgart: Ferdinand Enke 1957.Google Scholar
  8. Aronoff, S.: Biogenesis of the pyridine ring in higher plants. Federat. Proc. 15, 212 (1956).Google Scholar
  9. Baddiley, J., and G. A. Jamieson: Synthesis of “active methionine”. J. Chem. Soc. (Lond.) 1954, 4280–4284.Google Scholar
  10. Berg, P.: A study of formate utilization in pigeon liver extract. J. of Biol. Chem. 205, 145–162 (1953).Google Scholar
  11. Bergmann: Diskussionsbemerkung zum Vortrag von D. Ackermann. Vergleichend biochemische Fragen (6. Mosbacher Kolloquium), S. 129 bis 131. Berlin: Springer 1956.Google Scholar
  12. Berlin, N. I., A. Neuberger and J. J. Scott: The metabolism of δ-aminolaevulic acid. 1. Normal pathways, studied with the aid of N15. Biochemic. J. 64, 80–90 (1956a).Google Scholar
  13. The metabolism of δ-aminolaevulic acid. 2. Normal pathways, studied with the aid of C14. Biochemic. J. 64, 90–100 (1956b).Google Scholar
  14. Beyerman, H. C, et P. H. Enthoven: Synthesis of ⍺-phenacyl-N-methylpiperidine (“sedamine-ketone”) under pseudo-physiological conditions. Rec. Trav. chim. Pays-Bas 75, 82–84 (1956).Google Scholar
  15. Birkinshaw, J. H., W. P. K. Findlay and R. A. Webb: The production of methyl mercaptan by Schizo-phyllum commune Fr. Biochemic. J. 36, 526–529 (1942).Google Scholar
  16. Bloch, K., and R. Schoenheimer: The biological precursors of creatine. J. of Biol. Chem. 138, 167–194 (1941).Google Scholar
  17. Block, R. J., J. A. Stekol and J. K. Loosli: Synthesis of cystine and methionine from sodium sulfate by the goat and by microorganisms of the rumen of the ewe. Arch. of Biochem. a. Biophysics 33, 353–363 (1951).Google Scholar
  18. Bogorad, L., and S. Granick: The enzymatic synthesis of porphyrins from porphobilinogen. Proc. Nat. Acad. Sci. U.S.A. 39, 1176–1186 (1953).Google Scholar
  19. Bohlmann, F.: Die natürlich vorkommenden Polyacetylen-Verbindungen. Angew. Chem. 67, 389–394 (1955).Google Scholar
  20. Borsook, H., and J. W. Dubnoff: The formation of creatine from glycocyamine in the liver. J. of Biol. Chem. 132, 559 (1940).Google Scholar
  21. Bothner-By, A. A., R. F. Dawson and D. R. Christman: IS lysine the source of the pyridine ring in nicotine ? Experientia (Basel) 12, 151–152 (1956).Google Scholar
  22. Bowden, K.: Biogenesis of nicotine. Nature (Lond.) 172, 768 (1953).Google Scholar
  23. Brockmann, H, U. H. Muxfeldt: Die Konstitution des Despeptidoactinomycins. Angew. Chem. 67, 617–618 (1955).Google Scholar
  24. Brown, S. A., and R. U. Byerrum: The origin of the methyl carbon of nicotine formed by Nicotiana rustica L. J. Amer. Chem. Soc. 74, 1523–1526 (1952).Google Scholar
  25. Burroughs, L. F.: 1-Aminocyclopropane-1-carboxylic acid: a new amino-acid in perry pears and cider apples. Nature (Lond.) 179, 360–361 (1957).Google Scholar
  26. Butenandt, A., E. Biekert U. G. Neubert: Untersuchungen über Ommochrome, eine Klasse natürlicher Phenoxazonfarbstoffe. Angew. Chem. 68, 379 (1956).Google Scholar
  27. Butenandt, A., P. Karlson u. W. Zillig: Über das Vorkommen von Kynurin in Seidenspinnerpuppen. Z. physiol. Chem. 288, 125–129 (1951).Google Scholar
  28. Butenandt, A., U. U. Renner: Über Kynuramin als Intermediärprodukt des Tryptophan-Stoffwechsels. Z. Naturforsch. 8b, 454–462 (1953).Google Scholar
  29. Butenandt, A., U. Schiedt, E. Biekert u. R. J. T. Cromartie: Über Ommochrome. IV. Mitt. Konstitution des Xanthommatins. Ann. Chem. 590, 75–90 (1954).Google Scholar
  30. Butenandt, A., W. Weidel U. H. Schlossberger: 3-Oxy-kynurenin als cn+-Genabhängiges Glied im intermediären Tryptophan-Stoffwechsel. Z. Naturforsch. 4b, 242–244 (1949).Google Scholar
  31. Byerrum, R. U., L. J. Dewey, R. L. Kamill and C. D. Ball: The utilization of glycolic acid for methyl group synthesis in tobacco. J. of Biol. Chem. 219, 345–350 (1956).Google Scholar
  32. Byerrum, R. U., J. H. Flokstra, L.J. Dewey and C. D. Ball: Incorporation of formate and the methyl group of methionine into methoxyl groups of lignin. J. of Biol. Chem. 210, 633–643 (1954).Google Scholar
  33. Byerrum, R. U., R. L. Hamill and C. D. Ball: The incorporation of glycine into nicotine in tobacco plant metabolism. J. of Biol. Chem. 210, 645–650 (1954).Google Scholar
  34. Byerrum, R. U., R. L. Ringler, R. L. Hamill and C. D. Ball: Serine and formaldehyde as metabolic precursors for the nicotine N-methyl group. J. of Biol. Chem. 216, 371–378 (1955).Google Scholar
  35. Byerrum, R. U., C. S. Sato and C. D. Ball: Utilization of betaine as a methyl group donor in tobacco. Plant Physiol. 31, 374–377 (1956).PubMedGoogle Scholar
  36. Byerrum, R. U., and R. E. Wing: The role of choline in some metabolic reactions of Nicotiana rustica. J. of Biol. Chem. 205, 637–642 (1953).Google Scholar
  37. Cantoni, G. L.: Enzymatic mechanisms and biological significance of transmethylation reactions. 3. Congr. Internat. de Biochemie, Bruxelles, 1955, S. 233–237.Google Scholar
  38. Cantoni, G. L., and J. Durell: Activation of methionine for transmethylation. II. The methionine-acti-vating enzyme: studies on the mechanism of the reaction. J. of Biol. Chem. 226, 1033–1048 (1957).Google Scholar
  39. Cantoni, G. L., and E. Scarano: The formation of S-adenosylhomocysteine in enzymatic transmethylation reactions. J. Amer. Chem. Soc. 76, 4744 (1954).Google Scholar
  40. Challenger, F.: Biological methylation. Adv. Enzymol. 12, 429–491 (1951).Google Scholar
  41. Some aspects of mycological methylation and their relation to analogous processes in plants and animals, and to purely chemical reactions. 3. Congr. Internat. de Biochimie, Bruxelles, 1955, S. 238–241.Google Scholar
  42. Challenger, F., and C. Higginbottom: The production of trimethyl-arsine by Penicillium brevicaule (Scopulariopsis brevicaulis). Biochemic. J. 29, 1757–1778 (1935).Google Scholar
  43. Challenger, F., D. B. Lisle and P. B. Dransfield: The study of mycological methylation with radioactive methyl donors or sources. Chem. a. Ind. 1953, 128–129.Google Scholar
  44. Cookson, G. H.: The structure of porphobilinogen. Nature (Lond.) 172, 457–458 (1953).Google Scholar
  45. Cookson, G. H., and C. Rimington: Isolation of porphobilinogen from the urine of a patient with acute porphyria. Nature (Lond.) 170, 614 (1952).Google Scholar
  46. Connell, G. E., and C. S. Hanes: Enzymic formation of pyrrolidone carboxylic acid from γ-glutamyl peptides. Nature (Lond.) 177, 377–378 (1956).Google Scholar
  47. Davis, B.D.: Biosynthetic interrelations of lysine, diaminopimelic acid and threonine in mutants of Escherichia coli. Nature (Lond.) 169, 534–536 (1952).Google Scholar
  48. Biosynthesis of aromatic amino acids. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 779–811. Baltimore 1955a.Google Scholar
  49. Intermediates in amino acid biosynthesis. Adv. Enzymol. 16, 247–312 (1955b).Google Scholar
  50. Dawson, R. F.: Alkaloid biogenesis: nicotine demethylation on excised leaves of Nicotiana glutinosa. Amer. J. Bot. 39, 250–253 (1952).Google Scholar
  51. Della Rosa, R. J., K. I. Altman and K. Salomon: The biosynthesis of chlorophyll as studied with labeled glycine and acetic acid. J. of Biol. Chem. 202, 771–779 (1953).Google Scholar
  52. Dewey, L. J., and R. U. Byerrum: Biosynthese des Pyrrolidin-Ringes von Nicotin. (Vortragsreferat.) Angew. Chem. 67, 351 (1955).Google Scholar
  53. Dewey, L. J., R. U. Byerrum and C. D. Ball: The origin of the methyl group of nicotine through transmethylation. J. Amer. Chem. Soc. 76, 3997–3999 (1954).Google Scholar
  54. Diener, T. O., and C. A. Dekker: Isolation and identification of L-pipecolic acid from westem-X diseased peach leaves. Phytopathology 44, 643–645 (1954).Google Scholar
  55. Dresel, E. I. B., and J. E. Falk: Conversion of δ-aminolaevulinic acid to porphobilinogen in a tissue system. Nature (Lond.) 172, 1185 (1953).Google Scholar
  56. Studies on the biosynthesis of blood pigments. II. Haem and porphyrin formation in intact chicken erythrocytes. Biochemic. J. 63, 72–79 (1956a).Google Scholar
  57. Studies on the biosynthesis of blood pigments. III. Haem and porphyrin formation from δ-aminolaevulic acid and from porphobilinogen in haemolysed chicken erythrocytes. Biochemic. J. 63, 80–87 (1956b).Google Scholar
  58. Studies on the biosynthesis of blood pigments. V. Intermediates in haem biosynthesis. Biochemic. J. 63, 388–395 (1956c).Google Scholar
  59. Dubbck, M., and S.Kirkwood: The origin of the O- and N-methyl groups of the alkaloid ricinine. J. of Biol. Chem. 199, 307–312 (1952).Google Scholar
  60. Dubnoff, J. W.: The role of choline oxidase in labilizing choline methyl. Arch. of Biochem. 24, 251–262 (1949).Google Scholar
  61. Eds, F. de, A. N. Booth and F. T. Jones: Methylation and dehydroxylation of phenolic compounds by rats and rabbits. J. of Biol. Chem. 225, 615–621 (1957).Google Scholar
  62. Ehrensvärd, G.: Metabolism of amino acids and proteins. Annual Rev. Biochem. 24, 275–303 (1955).Google Scholar
  63. Ellfolk, N., and R. L. M. Synge: Detection of pyrrolidone carboxylic acid. Biochemic. J. 59, 523–526 (1955).Google Scholar
  64. Elwyn, D., and D. Sprinson: The extensive synthesis of the methyl group of thymine in the adult rat. J. Amer. Chem. Soc. 72, 3317 (1950).Google Scholar
  65. Elwyn, D., A. Weissbach, S. S. Henry and D. B. Sprinson: The biosynthesis of choline from serine and related compounds. J. of Biol. Chem. 213, 281–(1955).Google Scholar
  66. Euler, U. S. V.: Identification of a urine base with nicotine-like action. Nature (Lond.) 154, 17 (1944).Google Scholar
  67. Falk, J. E., E. I. B. Dresel, A. Benson and B. C. Knight: Studies on the biosynthesis of blood pigments. IV. The nature of porphyrins formed on incubation of chicken erythrocyte preparations with glycine, δ-aminolaevulic acid or porphobilinogen. Biochemic. J. 63, 87–94 (1956).Google Scholar
  68. Falk, J. E., E. I. B. Dresel and C. Rimington: Porphobilinogen as a porphyrin precursor, and interconversion of porphyrins in a tissue system. Nature (Lond.) 172, 292–294 (1953).Google Scholar
  69. Fieser, L. F., u. M. Fieser: Ringbildung. In Lehrbuch der organischen Chemie, S. 313–346. Weinheim: Verlag Chemie 1954.Google Scholar
  70. Fincham, J. R. S.: Ornithine transaminase in Neurospora and its relation to the biosynthesis of proline. Biochemic. J. 53, 313–320 (1953).Google Scholar
  71. Fowden, L.: Azetidine-2-carboxylic acid: A new constituent of plants. Nature (Lond.) 176, 347–348 (1955).Google Scholar
  72. Azetidine-2-carboxylic acid: a new cyclic imino acid occuring in plants. Biochemic. J. 64, 323–332 (1956).Google Scholar
  73. Fowden, L., and F. C. Steward: Nitrogenous compounds and nitrogen metabolism in the Liliaceae. I. The occurence of soluble nitrogenous compounds. Ann. of Bot., N. S. 21, 53–67 (1957).Google Scholar
  74. Gale, E. F.: The bacterial amino acid decarboxylases. Adv. Enzymol. 6, 1–32 (1946).Google Scholar
  75. Gibson, K. D., A. Neuberger and J. J. Scott: The purification and properties of δ-amino-laevulic acid dehydrase. Biochemic. J. 61, 618–629 (1955).Google Scholar
  76. Glass, B.: Summary. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 1025. Baltimore 1955.Google Scholar
  77. Gosio, B.: Zur Frage, wodurch die Giftigkeit arsenhaltiger Tapeten bedingt ist. Ber. dtsch. chem. Ges. 30, 1024–1026 (1897).Google Scholar
  78. Granick, S.: Enzymatic conversion of (δ-amino levulinic acid to porphobilinogen. Science (Lancaster, Pa.) 120, 1105–1106 (1954a).Google Scholar
  79. Metabolism of heme and chlorophyll. In D. M. Greenberg, Chemical pathways of metabolism, Bd. II, S. 287–342. New York: Academic Press 1954b.Google Scholar
  80. Greenberg, D. M.: Synthetic processes involving amino acids. In D. M. Greenberg, Chemical pathways of metabolism, Bd. II, S. 113–147. New York: Academic Press 1954.Google Scholar
  81. Grobbelaar, N., and F. C. Steward: Pipecolic acid in Phaseolus vulgaris: Evidence on its derivation from lysine. J. Amer. Chem. Soc. 75, 4341–4343 (1953).Google Scholar
  82. Grobbelaar, N., J. K. Pollard and F. C. Steward: New soluble nitrogen compounds (amino- and iminoacids) in plants. Nature (Lond.) 175, 703–708 (1955).Google Scholar
  83. Guggenheim, M.: Lysin. Die biogenen Amine, 4. Aufl., S. 297–308. Basel u. New York: S. Karger 1951.Google Scholar
  84. Hamill, R. L., R. U. Byerrum and C. D. Ball: A study of the biosynthesis of the methoxyl groups of lignin in tobacco plants. J. of Biol. Chem. 224, 713–716 (1957).Google Scholar
  85. Harris, G., and J. R. A. Pollock: Pipecolinic acid, a widely occuring amino-acid. Chem. a. Ind. 1952, 931.Google Scholar
  86. Harris, J. O., and F. Binns: α-Aminomethylmuconic acid as a possible precursor of niacin. Nature (Lond.) 179, 475–476 (1957).Google Scholar
  87. Hasse, K., U. H. Maisack: Δ1-Pyrrolin und Δ1-Piperidein aus Putrescin imd Cadaverin durch enzymatische Oxydation. Naturwiss. 42, 627–628 (1955a).Google Scholar
  88. Die Reaktionsprodukte der enzymatischen Oxydation von Putrescin und Cadaverin. Biochem. Z. 327, 296–304 (1955b).Google Scholar
  89. Δ1-Aza-cyclohepten, ein enzymatisches Oxydationsprodukt von Hexamethylendiamin. Biochem. Z. 328, 429–432 (1957).Google Scholar
  90. Hayaishi, O.: Enzymatic studies on the metabolic interrelationship of hydroxy-substituted derivatives of tryptophan and its intermediate metabolites. In W. D. Mc Elroy u. B. Glass, Amino acid metabolism, S. 914–929. Baltimore 1955.Google Scholar
  91. Heath, H., and J. Wildy: The biosynthesis of ergothioneine and histidine by Claviceps purpurea. I. The incorporation of 2-C14-acetate. Biochemic. J. 64, 612–620 (1956).Google Scholar
  92. Biosynthesis of ergothioneine. Nature (Lond.) 179, 196–197 (1957).Google Scholar
  93. Heidelberger, C, E. P. Abraham and S. Lepkovsky: Tryptophan metabolism. II. Concerning the mechanism of the mammalian conversion of tryptophan into nicotinic acid. J. of Biol. Chem. 179, 151–155 (1949).Google Scholar
  94. His, W.: Über das Stoffwechselprodukt des Pyridins. Arch. exper. Path. u. Pharmakol. 22, 253–260 (1887).Google Scholar
  95. Hoffmann-Ostenhof, O.: Transmethylasen und verwandte Enzyme. Enzymologie, S. 357–364. Wien: Springer 1954.Google Scholar
  96. Hofmeister, F.: Über Methylirung im Thierkörper. Arch. exper. Path. u. Pharmakol. 33, 198–215 (1894).Google Scholar
  97. Hoppe-Seyler, F. A.: Über das Homarin, eine bisher unbekannte tierische Base. Z. physiol. Chem. 222, 105 (1933).Google Scholar
  98. Hückel, W.: Spannungstheorie. Anwendung der Spannungstheorie auf hetero-cyclische Verbindungen und Verbindungen mit mehrfacher Bindung. Theoretische Grund-lagen der Organischen Chemie, Bd. I, S. 71–85. Leipzig: Geest u. Portig 1952.Google Scholar
  99. Ring-bildung und Ringöffnung. Theoretische Grundlagen der Organischen Chemie, Bd. II, S. 667–680. Leipzig: Geest u. Portig 1954.Google Scholar
  100. Hughes, G. K., and E. Ritchie: Synthesis of alkaloids under physiological conditions, relation to alkaloid biogenesis. Rev. Pure a. Appl. Chem. 2, 125–138 (1952).Google Scholar
  101. Huisgen, R.: Neuere Beiträge zur Chemie mittlerer Ringe. Angew. Chem. 69, 341–359 (1957).Google Scholar
  102. Hulme, A. C, and W. Arthington: New amino-acids in young apple fruits. Nature (Lond.) 170, 659–660 (1952).Google Scholar
  103. Jaffé, M.: Untersuchungen über die Entstehung des Kreatins im Organismus. Z. physiol. Chem. 48, 430–468 (1906).Google Scholar
  104. James, W. O.: Alkaloids in the plant. In R. H. F. Manske u. H. L. Holmes, The alkaloids, Bd. I, S. 16–90. New York: Academic Press 1950.Google Scholar
  105. Alkaloid formation in plants. J. Pharmacy a. Pharmacol. 5, 809–822 (1953).Google Scholar
  106. Jucker, E.: Anwendung von zellmöglichen Alkaloidsynthesen auf einige Gebiete der Arzneimittelsynthese. Chimia 9, 195–215 (1955).Google Scholar
  107. Karlson, P.: Biochemische Wirkungen der Gene. Erg. Enzymforsch. 13, 85–206 (1954).Google Scholar
  108. Klein, G., U. H. Linser: Zur Bildung der Betaine und der Alkaloide in der Pflanze. L Die Bildung von Stachydrin und Trigonellin. Z. physiol. Chem. 209, 75–96 (1932).Google Scholar
  109. Zur Bildung der Betaine und der Alkaloide in der Pflanze. II. Stachydrin und Trigonellin. Planta (Berl.) 19, 366–388 (1933).Google Scholar
  110. Kisliuk, R. L., and W. Sakami: A study on the mechanism of serine biosynthesis. J. of Biol. Chem. 214, 47–57 (1955).Google Scholar
  111. Krebs, H. A., M. M. Hafez and L. V. Eggleston: Indole formation in Bacterium coli commune. Biochemic. J. 36, 306–309 (1942).Google Scholar
  112. Lang, K., U. G. Schmid: Über Prolinoxydase. Biochem. Z. 322, 1–8 (1951).PubMedGoogle Scholar
  113. Lascelles, J.: The synthesis of porphyrins and bacteriochlorophyll by cell suspensions of Rhodo-Pseudomonas sphaeroides. Biochemic. J. 62, 78–93 (1956).Google Scholar
  114. Leete, E.: The biogenesis of nicotine. Chem. a. Ind. 1955, 537.Google Scholar
  115. Leete, E., L. Marion and I. D. Spenser: The biogenesis of alkaloids. XII. The mode of formation of the tropine base of hyoscyamine. Canad. J. Chem. 32, 1116–1123 (1954).Google Scholar
  116. The biogenesis of alkaloids. XIV. A study of the biosynthesis of damascenine and trigonelline. Canad. J. Chem. 33, 405–410 (1955).Google Scholar
  117. Lerner, A. B.: Metabolism of phenylalanine and tyrosine. Adv. Enzymol. 14, 73–128 (1953).Google Scholar
  118. Levy, L., and M. J. Coon: The role of formate in the biosynthesis of histidine. J. of Biol. Chem. 192, 807–815 (1951).Google Scholar
  119. Biosynthesis of histidine from radioactive acetate and glucose. J. of Biol. Chem. 208, 691–700 (1954).Google Scholar
  120. Long, C. L., H. N. Hill and I. M. Weinstock: Studies on the enzymatic transformation of 3-hydroxy-anthranilate to quinolate. J. of Biol. Chem. 211, 405–417 (1954).Google Scholar
  121. Lowy, P. H.: The conversion of lysine to pipecolic acid by Phaseolus vulgaris. Arch. of Biochem. a. Biophysics 47, 228–229 (1953).Google Scholar
  122. Mackenzie, C. G.: Conversion of N-methyl glycines to active formaldehyde and serine. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 684–726. Baltimore 1955.Google Scholar
  123. Mann, P. J. G., and W. R. Smithies: Plant enzyme reactions leading to the formation of heterocyclic compounds. I. The formation of unsaturated pyrrolidine and piperidine compounds. Biochemic. J. 61, 89–100 (1955a).Google Scholar
  124. Plant enzyme reactions leading to the formation of heterocyclic compounds. II. The formation of indole. Biochemic. J. 61, 101–105 (1955b).Google Scholar
  125. Manske, R. H. F.: The isoquinoline alkaloids. J. Chem. Soc. (Lond.) 1954a, 2987–2990.Google Scholar
  126. Die Isochinolin-Alkaloide. Angew. Chem. 66, 568 (1954b).Google Scholar
  127. Marion, L.: The alkaloids of Sedum acre L. Canad. J. Res., Sect. B 23, 165–166 (1945).Google Scholar
  128. Marion, L., R. Lavigne and L. Lemay: The structure of sedamine. Canad. J. Chem. 29, 347–351 (1951).PubMedGoogle Scholar
  129. Mauzerall, D., and S. Granick: The occurrence and determination of δ5-amino-levulinic acid and porphobilinogen in urine. J. of Biol. Chem. 219, 435–446 (1956).Google Scholar
  130. Mehler, A. H.: Metabolism of tryptophan. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 882–908. Baltimore 1955.Google Scholar
  131. Formation of picolinic and quinolinic acids following enzymatic oxydation of 3-hydroxyanthranilic acid. J. of Biol. Chem. 218, 241–254 (1956).Google Scholar
  132. Meister, A.: The α-keto analogues of arginine, ornithine, and lysine. J. of Biol. Chem. 206, 577–585 (1954).Google Scholar
  133. Melville, D. B., and S. Eich: The occurence of ergothioneine in plant material. J. of Biol. Chem. 218, 647–651 (1956).Google Scholar
  134. Melville, D. B., S. Eich and M. L. Ludwig: Biosynthesis of ergothioneine. Federat. Proc. 15, 314 (1956).Google Scholar
  135. The biosynthesis of ergothioneine. J. of Biol. Chem. 224, 871–878 (1957).Google Scholar
  136. Melville, D. B., D. S. Genghof, E. Inamine and V. Kovalenko: Ergothioneine in microorganisms. J. of Biol. Chem. 223, 9–17 (1956).Google Scholar
  137. Mistry, S. P., and B. C. Johnson: Vitamin B12 in methyl group and purine biosynthesis. Vitamin B12 und Intrinsic Factor, S. 101–108. Stuttgart: Ferdinand Enke 1957.Google Scholar
  138. Mitchell, H. K., and M. B. Houlaean: An intermediate in the biosynthesis of lysine in Neurospora. J. of Biol. Chem. 174, 883–887 (1948).Google Scholar
  139. Miyake, A., A. H. Bokman and B. S. Schweigert: 3-Hydroxyanthramlic acid metabolism. J. of Biol. Chem. 211, 391–404 (1954).Google Scholar
  140. Morrison, R. L: Naturally occuring L-pipecolinic acid. Biochemic. J. 50, XIV–XV (1952).Google Scholar
  141. The isolation of L-pipecolinic acid from Trifolium repens. Biochemic. J. 53, 474–478 (1953).Google Scholar
  142. Mothes, K.: Physiology of alkaloids. Annual Rev. Plant Physiol. 6, 393–432 (1955).Google Scholar
  143. Ammoniak-Entgiftung und Amino gruppen-Vorrat. Die Kulturpflanze, Beiheft 1, Biochemie der Kulturpflanzen, S. 103–115. Berlin: Akademie-Verlag 1956.Google Scholar
  144. Muntz, J. A.: The inability of choline to transfer a methyl group directly to homocysteine for methionine formation. J. of Biol. Chem. 182, 489–499 (1950).Google Scholar
  145. Musso, H.: Neue natürliche Aminosäuren. Angew. Chem. 68, 313–323 (1956).Google Scholar
  146. Neidle, A., and H. Waelsch: Histidine synthesis in E.coli. Federat. Proc. 16, 225 (1957).Google Scholar
  147. Neuberg, C, U. A. Grauer: Biosynthese von Mercaptanen. Z. physiol. Chem. 289, 253–256 (1952).Google Scholar
  148. Neuberger, A.: The metabolism of δ-aminolaevulic acid “in vivo” and properties of the δ-aminolaevulic dehydrase. 3. Congr. Internat. de Biochimie, Bruxelles, 1955, S. 204–207.Google Scholar
  149. Neuberger, A., and J. J. Scott: Aminolaevulinic acid and porphyrin biosynthesis. Nature (Lond.) 172, 1093–1094 (1953).Google Scholar
  150. Nyc, J. F., H. K. Mitchell, E. Leifer and W. H. Langham: The use of isotopic carbon in a study of the metabolism of anthranilic acid in Neurospora. J. of Biol. Chem. 179, 783–787 (1949).Google Scholar
  151. Pailer, M.: Die Biogenese der Alkaloide. Österreich. Chem.-Ztg 51, 23–29 (1950).Google Scholar
  152. Parks, L. W., and H. C. Douglas: N-Fructosyl anthranilic acid as a possible intermediate in the synthesis of indole by Saccharomyces. Biochim. et Biophysica Acta 23, 207–208 (1957).Google Scholar
  153. Partridge, C. W. H., D. M. Bonner and C. Yanofsky: A quantitative study of the relationship between tryptophan and niacin in Neurospora. J. of Biol. Chem. 194, 269–278 (1952).Google Scholar
  154. Perry, J. J., and J. W. Foster: Studies on the biosynthesis of dipicolinic acid in spores of Bacillus cereus var. mycoides. J. Bacter. 69, 337–346 (1955).Google Scholar
  155. Phillips, D. M.: Pipecolic acid (piperidine-2-carboxylic acid). Chem. a. Ind. 1953, 127–128.Google Scholar
  156. Pictet, A.: Über die Bildungsweise der Alkaloide in der Pflanze. Arch. Pharmaz. 244, 389 (1906).Google Scholar
  157. Pictet, A., u. G. Court: Über einige neue Pflanzenalkaloide. Ber. dtsch. chem. Ges. 40, 3771–3783 (1907).Google Scholar
  158. Pontecorvo, G.: New fields in the biochemical genetics of microorganisms. Biochem. Soc. Symp. 4, 40–50 (1950).Google Scholar
  159. Powell, J. F.: Isolation of dipicolinic acid (pyridine-2,6-dicarboxylic acid) from spores of Bacillus megatherium. Biochemic. J. 54, 210–211 (1953).Google Scholar
  160. Prasad, K. S. N., and R. Raper: Chemical structures of porphobilinogen. Nature (Lond.) 175, 629–630 (1955).Google Scholar
  161. Rauen, H. M.: Vergleichende Biochemie der C1-Körper. Vergleichend biochemische Fragen (6. Mosbacher Kolloquium), S. 132–164. Berlin: Springer 1956.Google Scholar
  162. Transformy-lierungen und Transoxymethylierungen. Biochem. Z. 328, 562–575 (1957).Google Scholar
  163. Rege, D. V., and A. Sreenivasan: Conversion of uracil to thymine by strains of Bacillus subtilis. J. of Biol. Chem. 208, 471–476 (1954).Google Scholar
  164. Reichard, P.: Biosynthesis of purines and pyrimidines. In E. Chargaff U. J. N. Davidson, The nucleic acids. Bd. II, S. 277–308. New York: Academic Press 1955.Google Scholar
  165. Riesser, O.: Theoretisches und Experimentelles zur Frage der Kreatinbildung im tierischen Organismus. Z. physiol. Chem. 86, 415–435 (1913).Google Scholar
  166. Weitere Beiträge zur Frage der Kreatinbildung aus Cholin und Betain. Z. physiol. Chem. 90, 221–235 (1914).Google Scholar
  167. Rimngton, C, and H. L. Booij: Porphyrin biosynthesis in human red cells. Biochemic. J. 65, 3P (1957).Google Scholar
  168. Rimington, C, and S. Krol: Chemical synthesis of porphobilinogen. Nature (Lond.) 175, 630–631 (1955).Google Scholar
  169. Robinson, R.: A synthesis of tropinone. J. Chem. Soc. (Lond.) 111, 762–768 (1917a).Google Scholar
  170. A theory of the mechanism of the phyto-chemical synthesis of certain alkaloids. J. Chem. Soc. (Lond.) 1917b, 876–899.Google Scholar
  171. Synthesis in biochemistry. J. Chem. Soc. (Lond.) 1936, 1079–1090.Google Scholar
  172. Rothstein, M., C. G. Bly and L. L. Miller: The metabolism of D-lysine-ε-C14. Arch. of Biochem. a. Biophysics 50, 252–256 (1954).Google Scholar
  173. Rothstein, M., and L. L. Miller: The formation of pipecolic acid from lysine in the rat. Federat. Proc. 13, 286 (1954a).Google Scholar
  174. The conversion of lysine to pipecolic acid in the rat. J. of Biol. Chem. 211, 851–865 (1954b).Google Scholar
  175. Loss of the α-amino group in lysine metabolism to form pipecolic acid. J. Amer. Chem. Soc. 76, 1459 (1954c).Google Scholar
  176. The metabolism of L-lysine-6-C14. J. of Biol. Chem. 206, 243–253 (1954d).Google Scholar
  177. Saito, Y., O. Hayaishi, S. Rothberg and S. Senoh: L-Kynurenine hydroxylase. Federat. Proc. 16, 240 (1957).Google Scholar
  178. Sato, C. S., R. U. Byerrum and C. D. Ball: The biosynthesis of pectinic acid methyl esters through transmethylation from methionine. J. of Biol. Chem. 224, 717–723 (1957).Google Scholar
  179. Schayer, R. W., and L. M. Henderson: The conversion of deutero-N15-tryptophan to quinolinic acid by the rat. J. of Biol. Chem. 195, 657–661 (1952).Google Scholar
  180. Schiffmann, E., and D. Shemin: Further studies on the utilization of δ-amino-laevulic acid for porphyrin synthesis. J. of Biol. Chem. 225, 623–628 (1957).Google Scholar
  181. Schlüssel, H., W. Maurer, A. Hock U. O. Hummel: Biosynthese von S35-markiertem Methionin. Biochem. Z. 322, 226–229 (1951).PubMedGoogle Scholar
  182. Schöpf, C: Die Synthese von Naturstoffen, insbesondere von Alkaloiden, unter physiologischen Bedingungen und ihre Bedeutung für die Frage der Entstehung einiger pflanzlicher Naturstoffe in der Zelle. Angew. Chem. 50, 779–790, 797–805 (1937).Google Scholar
  183. Neue Synthesen unter physiologischen Bedingungen. Angew. Chem. 59, 174–175 (1947).Google Scholar
  184. Neuere Synthesen unter physiologischen Bedingungen. Angew. Chem. 61, 31–32 (1949).Google Scholar
  185. Synthesen unter physiologischen Bedingungen. In Naturforschung und Medizin in Deutschland (Fiat-Review). Bd. 37: Präparative Organische Chemie, Teil 2, S. 117–123. 1953.Google Scholar
  186. Schöpf, C, U. G. Lehmann: Die Synthese des Tropinons, Pseudopelletierins, Lobelanins und verwandter Alkaloide unter physiologischen Bedingungen. Liebigs Ann. 518, 1–37 (1935).Google Scholar
  187. Schöpf, C, u. R. Unger: Über physiologische, durch einen Gehalt an verschiedenen Alkaloiden charakterisierte Rassen von Sedum acre L. Experientia (Basel) 12, 19–20 (1956).Google Scholar
  188. Schröter, H.-B.: Biologische Methylierungen. Pharmazie 10, 141–157 (1955).PubMedGoogle Scholar
  189. Zur Frage der Umwandlung von Nicotin in Anabasin im Sproß von Nicotiana glauca. Z.Naturforsch. 12b, 334–336 (1957).Google Scholar
  190. Schröter, H.-B., u. L. Engelbrecht: Nachweis der Nornicotin-Bildung in isolierten Tabakwurzeln. Arch. Pharmaz. Ber. dtsch. pharmaz. Ges. 290, 204–206 (1957).Google Scholar
  191. Schulman, M. P.: Purines and pyrimidines. In D. M. Greenberg, Chemical pathways of metabolism, Bd. II, S. 223–262. New York: Academic Press 1954.Google Scholar
  192. Schweet, R. S.: The quantitative determination of proline and pipecolic acid with ninhydrin. J. of Biol. Chem. 208, 603–612 (1954).Google Scholar
  193. Schweet, R. S., J. T. Holden and P. H. Lowy: The metabolism of lysine in Neurospora. J. of Biol. Chem. 211, 517–529 (1954a).Google Scholar
  194. Lysine metabolism in Neurospora. Federat. Proc. 13, 293 (1954b).Google Scholar
  195. The isolation and metabolism of the α-keto acid of lysine. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 496–506. Baltimore 1955.Google Scholar
  196. Shemin, D.: The succinate-glycine cycle. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 727–740. Baltimore 1955a.Google Scholar
  197. The biosynthesis of porphyrins. 3. Congr. Internat. de Biochimie, Bruxelles, 1955b, S. 197–204.Google Scholar
  198. Shemin, D., J. W. Corcoran, C. Rosenblum and I. M. Miller: On the biosynthesis of the porphyrin-like moiety of vitamin B12. Science (Lancaster, Pa.) 124, 272 (1956).Google Scholar
  199. Shemin, D., and C. S. Russell: δ-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J. Amer. Chem. Soc. 75, 4873–4874 (1953).Google Scholar
  200. Shemin, D., C. S. Russell and T. Abramsky: The succinate-glycine cycle. I. The mechanism of pyrrole synthesis. J. of Biol. Chem. 215, 613–626 (1955).Google Scholar
  201. Shimizu, T.: Verhalten des Pyrrols im Tierkörper. Biochem. Z. 117, 266–268 (1921).Google Scholar
  202. Sourkes, T. L.: Transmethylases. In Sumner-Myrbäck, The enzymes, Bd. I, Teil 2, S. 1068–1078. New York: Academic Press 1951.Google Scholar
  203. Sprinson, D. B.: On the formation of C1-fragments from serine. In W. D.Mc Elroy u. B. Glass, Amino acid metabolism, S. 608–615. Baltimore 1955.Google Scholar
  204. Sribney, M., and S. Kirkwood: Origin of the methylendioxy groups of the alkaloid protopine. Nature (Lond.) 171, 931 (1953).Google Scholar
  205. Stekol, J. A.: Synthetic pathways of methionine, cysteine and threonine. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 509–557. Baltimore 1955.Google Scholar
  206. Stetten, M. R.: Metabolic relationship between glutamic acid, proline, hydroxyproline and ornithine. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 277–290. Baltimore 1955.Google Scholar
  207. Tabor, H.: Diamine oxidase. J. of Biol. Chem. 188, 125–136 (1951).Google Scholar
  208. Treibs, A.: Chemische Grundlagen zur Biosynthese der Porphyrine. 3. Congr. Internat. de Biochimie, Bruxelles, 1955, S. 207–210.Google Scholar
  209. Trier, G.: Über einfache Pflanzenbasen und ihre Beziehungen zum Aufbau der Eiweisse und Lecithine. Berlin: Gebrüder Borntraeger 1912.Google Scholar
  210. Tyler jr. V. E., and A. E. Schwarting: The culture of Claviceps purpurea. III. Tryptophan metabolism. J. Amer. Pharmaceut. Assoc., Sci. Ed. 43, 207 (1954).Google Scholar
  211. Vähätalo, M.-L., and A. I. Virtanen: A new cyclic α-aminocarboxylic acid in berries of cowberry. Acta chem. scand. (Copenh.) 11, 741–743 (1957).Google Scholar
  212. Verly, W. G.: Contribution à l’étude du métabolisme du groupe méthyle labile. Thèse. Université de Liège 1956.Google Scholar
  213. Vigneaud, V. du: A trail of research in sulfur chemistry and metabolism and related fields. Ithaca, N.Y.: Cornell University Press 1952.Google Scholar
  214. Virtanen, A. I.: A new imino-acid in some Liliaceae. Nature (Lond.) 176, 984 (1955).Google Scholar
  215. Virtanen, A. I., u. P. Linko: A new type of nitrogen compound in green plants. A cyclic homoserine derivative in some Liliaceae plants. Acta chem. scand. (Copenh.) 9, 551–553 (1955).Google Scholar
  216. Vogel, H. J.: On the glutamate-proline-ornithine interrelation in various microorganisms. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 335–346. Baltimore 1955.Google Scholar
  217. Waldenström, J., u. B. Vahlquist: Studien über die Entstehung der roten Harn-pigmente (Uroporphyrin und Porphobilin) bei der akuten Porphyrie aus der farblosen Vorstufe (Porphobilinogen). Z. physiol. Chem. 260, 189–209 (1939).Google Scholar
  218. Welch, A. D., and C. A. Nichol: Water-soluble vitamins concerned with one- and two-carbon intermediates. Annual Rev. Biochem. 21, 633–686 (1952).Google Scholar
  219. Westall, R. G.: Isolation of porphobilinogen from the urine of a patient with acute porphyria. Nature (Lond.) 170, 614–616 (1952).Google Scholar
  220. Westley, J., and J. Ceithaml: Synthesis of histidine in E. coli. I. Biochemical mutant studies. Arch. of Biochem. a. Biophysics 60, 215–225 (1956a).Google Scholar
  221. Synthesis of histidine in E. coli. II. Radioisotopic tracer studies. J. of Biol. Chem. 219, 139–149 (1956b).Google Scholar
  222. Wildy, J., and H. Heath: Biosynthesis of ergothioneine by Claviceps purpurea. II Incorporation of S35-methionine and the non-utilization of 2(ring)-C14-histamine. Biochemic. J. 65, 220–222 (1957).Google Scholar
  223. Winterstein, E., U. G. Trier: Die Alkaloide, 1. Aufl. Berlin 1910.Google Scholar
  224. Wiss, O.: Die oxydative Spaltung der 3-Oxyanthranilsäure. Z. Naturforsch. 9b, 740–741 (1954).Google Scholar
  225. Über die Wirkungsweise der Hydroxy-anthranilsäure-Oxydase. Z. Natur-forsch. 11b, 54 (1956).Google Scholar
  226. Wiss, O., u. G. Bettendorf: Über die Umwandlung der 3-Hydroxy-anthranilsäure in Chinolinsäure und Nicotinsäure im tierischen Organismus. II. Die Iso-lierung und vorläufige Charakterisierung des primären Oxydationsproduktes der 3-Hydroxy-anthranilsäure. Z. physiol. Chem. 306, 145–153 (1957).Google Scholar
  227. Wiss, O., H. Simmer U. H. Peters: Über die Umwandlung der 3-Hydroxy-anthranilsäure in Chinolinsäure und Nicotin-säure im tierischen Organismus. I. Die enzymatische Oxydation der 3-Hydroxy-anthranil-säure. Z. physiol. Chem. 304, 221–231 (1956).Google Scholar
  228. Woodward, R. B.: Neuere Entwicklungen in der Chemie der Naturstoffe. Angew. Chem. 68, 13–20 (1956).Google Scholar
  229. Work, E.: The isolation of α,ε-diaminopimelic acid from Corynebacterium diphtheriae and Mycobacterium tuberculosis. Biochemie. J. 49, 17–23 (1951).Google Scholar
  230. Some comparative aspects of lysine metabolism. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 462–492. Baltimore 1955.Google Scholar
  231. Work, E., and R. F. Denman: The use of a bacterial culture field as a source of α,ε-diaminopimelic acid. Biochim. et Biophysica Acta 10, 183 (1953 a).Google Scholar
  232. Work, E., and D. L. Dewey: The distribution of α,ε-diaminopimelic acid among various microorganisms. J. Gen. Microbiol. 9, 394–409 (1953b).Google Scholar
  233. Yanofsky, C.: The absence of a tryptophan-niacin relationship in E. coli and B. subtilis. J. Bacter. 68, 577–584 (1954).Google Scholar
  234. Tryptophan and niacin synthesis in various organisms. In W. D. Mc Elroy U. B. Glass, Amino acid metabolism, S. 930–939. Baltimore 1955a.Google Scholar
  235. On the conversion of anthranilic acid to indole. Science (Lancaster, Pa.) 121, 138–139 (1955b).Google Scholar
  236. The enzymatic conversion of anthranilic acid to indole. J. of Biol. Chem. 223, 171–184 (1956a).Google Scholar
  237. Indole-3-glycerol phosphate, an intermediate in the biosynthesis of indole. Biochim. et Biophysica Acta 20, 438–439 (1956b).Google Scholar
  238. Enzymatic studies with a series of tryptophan auxothrophs of Escherichia coli. J. of Biol. Chem. 224, 783–791 (1957).Google Scholar
  239. Yura, T., and H. J. Vogel: On the biosynthesis of proline in Neurospora crassa: enzymic reduction of Δ1-pyrroline-5-carboxylate. Biochim. et Biophysica Acta 17, 582 (1955).Google Scholar
  240. Zacharius, R. M., J. F. Thompson and F. C. Steward: The detection, isolation and identification of (—)-pipecolic acid as a constituent of plants. J. Amer. Chem. Soc. 74, 2949 (1952).Google Scholar
  241. The detection, isolation and identification of L(—)-pipecolic acid in the nonprotein fraction of beans (Phaseolus vulgaris). J. Amer. Chem. Soc. 76, 2908–2912 (1954).Google Scholar
  242. Zeijlemaker, F. C. J.: The metabolism of nicotinic acid in the green pea and its connection with trigonelline. Acta bot. neerl. 2, 123–143 (1953).Google Scholar
  243. Zeile, K.: Die Biosynthese des Hämins. Angew. Chem. 66, 729–735 (1954).Google Scholar
  244. Neuere Entwicklungen in der Chemie der Porphin-Farbstoffe. Angew. Chem. 68, 193–201 (1956).Google Scholar
  245. Ziegler, K.: Methoden zur Herstellung und Umwandlung großer Ringsysteme. In Houben-Weyl, Methoden der organischen Chemie, 4. Aufl., Bd. IV/2, S. 730–822. 1955.Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • H.-B. Schröter

There are no affiliations available

Personalised recommendations