Skip to main content

Stoffwechsel der Purine und Pyrimidine

  • Chapter

Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532,volume 8)

Zusammenfassung

Purin, Pyrimidin

Purine und Pyrimidine sind Bestandteile physiologisch wichtiger Verbindungen und Stoffklassen. Darum ist die Klärung ihres Stoffwechsels von weittragender Bedeutung.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-94733-9_35
  • Chapter length: 51 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-94733-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abrams, R.: Purine synthesis in a purine-requiring yeast mutant. J. Amer. Chem. Soc. 73, 1888–1889 (1951a).

    CAS  CrossRef  Google Scholar 

  • Some factors influencing nucleic acid purine reneval in the rat. Arch. of Biochem. a. Biophysics 33, 436–447 (1951b).

    Google Scholar 

  • Observations on pentose nucleic acid composition in sea urchin embryos and in mammalian cell fractions. Phosphorus Metabolism, ed. by Mc Elroy and Glass, Bd. II, S. 335. Baltimore: John Hopkins Press 1952.

    Google Scholar 

  • Stability of the adenine ring structure in the rat. Biochim. et Biophysica Acta 21, 439–440 (1956).

    Google Scholar 

  • Abrams, R., and M. Bentley: Transformation of inosinic acid to adenylic and guanylic acids in a soluble enzyme system. J. Amer. Chem. Soc. 77, 4179–4180 (1955a).

    CAS  CrossRef  Google Scholar 

  • Biosynthesis of nucleic acid purines. II. Rôle of hypoxanthine and xanthine compounds. Arch. of Biochem. a. Biophysics 58, 109–118 (1955b).

    Google Scholar 

  • Biosynthesis of adenine and guanine nucleotides from inosinic acid in a soluble enzyme system. III. Congrès internat. de Biochimie Bruxelles, résumés des communications, 40. 1955 c.

    Google Scholar 

  • Biosynthesis of nucleic acid purines. I. Formation of guanine from adenine compounds in bone marrow extracts. Arch, of Biochem. a. Biophysics 56, 184–195 (1955d).

    Google Scholar 

  • Abrams, R., and J. M.Goldinger: Utilization of purines for nucleic acid synthesis in bone marrow slices. Arch. of Biochem. 30, 261–268 (1951).

    CAS  Google Scholar 

  • Formation of nucleic acid purines from hypoxanthine and formate in bone marrow slices. Arch. of Biochem. a. Biophysics 35, 243–247 (1952).

    Google Scholar 

  • Abrams, R., E. Hammarsten and D. Shemin: Glycine as a precursor of purines in yeast. J. of Biol. Chem. 173, 429–430 (1948).

    CAS  Google Scholar 

  • Albert, A.: The transformation of purines into pteridines. Biochemic. J. 65, 124–127 (1957).

    CAS  Google Scholar 

  • Alivisatos, S. G. A., and D. W. Woolley: Formation of a new dinucleotid from cozymase by enzymic destruction of the “onium linkage”. J. Amer. Chem. Soc. 77, 1065–1066 (1955).

    CAS  CrossRef  Google Scholar 

  • Enzymic synthesis of a new dinucleotide from cozymase by a new method of biosynthesis. J. of Biol. Chem. 221, 651–663 (1956).

    Google Scholar 

  • Anderson, E. P., C. Y. Yen, H. G. Mandel and P. K. Smith: Ureidosuccinic acid as a precursor of nucleic acid pyrimidines in normal and tumor-bearing mice. J. of Biol. Chem. 213, 625–633 (1955).

    CAS  Google Scholar 

  • Arvidson, H., N. A. Eliasson, E. Hammarsten, P. Reichard, H. V. Ubisch and S. Bergström: Orotic acid as a precursor of pyrimidines in the rat. J. of Biol. Chem. 179, 169–173 (1949).

    CAS  Google Scholar 

  • Back, K. J. C, and D. D. Woods: Studies with a strain of Bacterium coli requiring citrulline and a pyrimidine for growth. Biochemic. J. 55, xii (1953).

    CAS  Google Scholar 

  • Baddiley, J., J. G. Buchanan, B. Carss and A. P. Mathias: Cytidine diphosphate ribitol. Biochim. et Biophysica Acta 21, 191–192 (1956).

    CAS  CrossRef  Google Scholar 

  • Baddiley, J., J. G. Buchanan, B. Carss, A. P. Mathias and A. R. Sanderson: The isolation of cytidine diphosphate glycerol, cytidine diphosphate ribitol and mannitol 1-phosphate from Lactobacillus arabinosus. Biochemic. J. 64, 599–603 (1956a).

    CAS  Google Scholar 

  • Cytidine diphosphate glycerol and related compounds from Lactobacillus arabinosus. Biochemic. J. 63, 15 P. (1956b).

    Google Scholar 

  • Baer, B., u. K.Lang: Lokalisation des Stoffwechsels der Orotsäure in der Zelle. Biochem. Z. 328, 581–590 (1957).

    PubMed  CAS  Google Scholar 

  • Balis, M. E., M. S. Brocke, G. B. Brown and B. Magasanik: The utilization of purines by purineless mutants of Aerobacter aerogenes. J. of Biol. Chem. 219, 917–926 (1956).

    CAS  Google Scholar 

  • Balis, M. E., G. B. Brown, G. B. Elion, G. H. Hitchings and H. van der Werff: On the interconversion of purines by Lactobacillus casei. J. of Biol. Chem. 188, 217–219 (1951).

    CAS  Google Scholar 

  • Balis, M. E., and G. B. Elion: Utilization of some purine ribose derivatives by Lactobacillus casei. Federat. Proc. 11, 183 (1952).

    Google Scholar 

  • Balis, M. E., D. H. Levin, G. B. Brown, G. B. Elion, H. van der Werff and G. H. Hitchings: The incorporation of exogenous purines into pentose nucleic acid by Lactobacillus casei. J. of Biol. Chem. 196, 729–747 (1952a).

    CAS  Google Scholar 

  • Utilization of some purine riboside derivatives by Lactobacillus casei. J. of Biol. Chem. 199, 227–232 (1952b).

    Google Scholar 

  • Balis, M. E., D. H. Marrian and G. B. Brown: On the utilization of guanine by the rat. J. Amer. Chem. Soc. 73, 3319–3320 (1951).

    CAS  CrossRef  Google Scholar 

  • Ball, E. G.: Xanthine oxidase: Purification and properties. J. of Biol. Chem. 128, 51–67 (1939).

    CAS  Google Scholar 

  • Ballio, A., and G. Serlupi-Crescenzi: Isolation of adenylosuccinic acid from Penicillium chrysogenum. Nature (Lond.) 179, 154 (1957).

    CAS  CrossRef  Google Scholar 

  • Barker, H. A., and J. V. Beck: The fermentative decomposition of purines by Clostridium Handbuch d. Pflanzenphysiologie, Bd. VIII. 51 acidi-urici and Clostridium cylindrosporum. J. of Biol. Chem. 141, 3–27 (1941).

    CAS  Google Scholar 

  • Barker, H. A., and S. R. Elsden: Carbon dioxide utilization in the formation of glycine and acetic acid. J. of Biol. Chem. 167, 619–620 (1947).

    CAS  Google Scholar 

  • Barnes jr. F, W., and R. Schoenheimer: On the biological synthesis of purines and pyrimidines. J. of Biol. Chem. 151, 123–139 (1943).

    CAS  Google Scholar 

  • Batt, R. D., and J. H. Exton: The catabolism of dihydro-pyrimidines by rat tissue preparations. Arch. of Biochem. a. Biophysics 63, 368–375 (1956).

    CAS  CrossRef  Google Scholar 

  • Batt, R. D., and D. D. Woods; The oxidation of thymine by an unidentified bacterium. Biochemic. J. 49, Ixx–Ixxi (1951).

    Google Scholar 

  • Behrend, R.: Über die Oxydation der Harnsäure in alkalischer Lösung. Liebigs Ann. 333,141–160 (1904).

    CAS  CrossRef  Google Scholar 

  • Bendich, A., and G. B. Brown: 2,6-Diamino-purine, a precursor of nucleic acid guanine. J. of Biol. Chem. 176, 1471–1472 (1948).

    CAS  Google Scholar 

  • Bendich, A., G. B. Brown, F. S. Philips and J. B. Thiersch: The direct oxidation of adenine in vivo. J. of Biol. Chem. 183, 267–277 (1950).

    CAS  Google Scholar 

  • Bendich, A., S. S. Furst and G. B. Brown: On the rôle of 2,6-diamino-purine in the biosynthesis of nucleic acid guanine. J. of Biol. Chem. 185, 423–433 (1950).

    CAS  Google Scholar 

  • Ben-Ishai, R., E. D. Bergmann and B. Volcani: Ribosidation of AICA by E. coli. Nature (Lond.) 168, 1124 (1951).

    CAS  CrossRef  Google Scholar 

  • Ben-Ishai, R., B. Volcani u. E. D. Bergmann: The synthesis of the purine nucleus by E. coli, a study on the mode of action of sulfa-drugs. Experientia (Basel) 7, 63–64 (1951).

    CAS  CrossRef  Google Scholar 

  • Bennett jr. L. L., and H. E. Skipper: In vivo utilization of hypoxanthine and other precursors for synthesis of nucleic acid purines. Arch. of Biochem. a. Biophysics 54, No 2, 566–569 (1955).

    CAS  CrossRef  Google Scholar 

  • Bentley, M., and R. Abrams: Formation of 8-oxyadenine from adenine in bone marrow extracts. Arch. of Biochem. a. Biophysics 53, 314–315 (1954).

    CAS  CrossRef  Google Scholar 

  • Amide-N of glutamine as source of guanine amino group. Federat. Proc. 15, 218 (1956).

    Google Scholar 

  • Bentley, M., and A. Neuberger: The mechanism of the action of uricase. Biochemic. J. 52,694–699 (1952).

    CAS  Google Scholar 

  • Berg, P.: A study of formate utilization in pigeon liver extract. J. of Biol. Chem. 205, 145–162 (1953).

    CAS  Google Scholar 

  • Berg, P., and W. K. Joklik: Transphosphorylation between nucleosid-polyphosphates. Nature (Lond.) 172, 1008–1009 (1953).

    CAS  CrossRef  Google Scholar 

  • Enzymatic phosphorylation of nucleoside diphosphates. J. of Biol. Chem. 210, 657–672 (1954).

    Google Scholar 

  • Bergkvist, R., u. A. Deutsch: Guanosine triphosphate and uridine triphosphate from muscle. Acta chem. scand. (Copenh.) 7, 1307–1308 (1953).

    CAS  CrossRef  Google Scholar 

  • Bergmann, E. D., R. Ben-Ishai and B. E. Volcani: Rôle of 4-amino-imidazole-5-carboxamide in purine synthesis by E. coli. J. of Biol. Chem. 194, 531–537 (1952).

    CAS  Google Scholar 

  • Bergmann, E. D., B. E. Volcani and R. Ben-Ishai: Effect of methyl donors on 4-aminoimidazole-5-carboxamide in E. coli. J. of Biol. Chem. 194, 521–529 (1952).

    CAS  Google Scholar 

  • Bergmann, P., and S. Dikstein: Studies on uric acid and related compounds. III. Observations on the specificity of mammalian xanthine oxidases. J. of Biol. Chem. 223, 765–780 (1956).

    CAS  Google Scholar 

  • Bergström, S., H. Arvidson, E. Hammarsten, A. Eliasson, P. Reichard and H. v. Ubisch: Orotic acid, a precursor of pyrimidines in the rat. J. of Biol. Chem. 177, 495 (1949).

    Google Scholar 

  • Biesele, I. I., R. E. Berger and G. H. Hitchings: Tissue culture studies with 2,6-diaminopurine and related substances. Cancer Res. 10, 204 (1950).

    Google Scholar 

  • Bolton, E. T., P. H. Abelson and E. Aldous: Utilization of carbon dioxide in the synthesis of nucleic acid by E. coli. J. of Biol. Chem. 198, 179–185 (1952).

    CAS  Google Scholar 

  • Bolton, E. T., and A. M. Reynard: Utilization of purine and pyrimidine compounds in nucleic acid synthesis by E. coli. Biochim. et Biophysica Acta 13, 381–385 (1954).

    CAS  CrossRef  Google Scholar 

  • Boné, G. J., and M. Steinert: Isotopes incorporated in the nucleic acids of Trypanosoma mega. Nature (Lond.) 178, 308–309 (1956).

    CrossRef  Google Scholar 

  • Bradshaw, W., and J. V. Beck: The degradation of xanthine by cell-free extracts of Clostridium acidi-urici. Bacter. Proc. 1953, 86.

    Google Scholar 

  • Brandenberger, H.: Eine weitere Isotopenstudie über den Abbau der Harnsäure. Chimia 7, 233 (1953).

    Google Scholar 

  • The oxidation of uric acid to oxonic acid (allan-toxanic acid) and its application in tracer studies of uric acid biosynthesis. Biochim. et Biophysica Acta 15, 108–116 (1954 a).

    Google Scholar 

  • Über den Abbau der Harnsäure zur Oxon-säure (Allantoxansäure). Helvet. chim. Acta 37, 641–644 (1954b).

    Google Scholar 

  • Determination of the isotope distribution in carbon labeled uric acids. Biochim. et Biophysica Acta 18, 519–522 (1955).

    Google Scholar 

  • Brooke, M. S., D. Ushiba and B. Magasanik: Some factors affecting the excretion of orotic acid by mutants of Aerobacter aerogenes. J. Bacter. 68, 534–540 (1954).

    CAS  Google Scholar 

  • Brown, E. G., T. W. Goodwin and O. T. G. Jones: Purine metabolism and riboflavin synthesis in Eremothecium ashbyii. Biochemic. J. 64, 37 P (1956).

    Google Scholar 

  • Brown, G. B.: Biosynthesis of nucleic acids in the mammalian. Federat. Proc. 9, 517–523 (1950).

    CAS  Google Scholar 

  • Brown, G. B., A. Bendich, P. M. Roll and K. Sugiura: Utilization of guanine by the C57 black mouse bearing adenocarcinoma-E 0771. Proc. Soc. Exper. Biol. a. Med. 72, 501–502 (1949).

    CAS  Google Scholar 

  • Brown, G. B., M. L. Peterman and S. S. Furst: The incorporation of adenine into pentose and desoxypentose nucleic acids. J. of Biol. Chem. 174, 1043–1044 (1948).

    CAS  Google Scholar 

  • Brown, G. B., P. M. Roll and L. Cavalieri: The in vivo oxidation of uric acid. J. of Biol. Chem. 171, 635 (1947).

    Google Scholar 

  • Brown, G. B., P. M. Roll, A. A. Plentl and L. Cavalieri: The utilization of adenine for nucleic acid synthesis and as a precursor of guanine. J. of Biol. Chem. 172, 469–484 (1948).

    CAS  Google Scholar 

  • Brunel, M. A.: Le métabolisme de l’azote d’origine purique chez les champignons. I. Répartition des ases allantoinase et uricase chez les Basidiomycetes. Bull. Soc. Chim. biol. Paris 19, 747–756 (1937).

    CAS  Google Scholar 

  • Evolution de l’allantoicase dans les mycéliums du Sterigmatocystis nigra et du Sterigmatocystis phoenicis. Bull. Soc. Chim. biol. Paris 21, 380–387 (1939).

    Google Scholar 

  • Buchanan, J. G.: The path of carbon in photosynthesis. XIX. The identification of sucrose phosphate in sugar beet leaves. Arch. of Bio-chem. a Biophysics 44, 140–149 (1953).

    CAS  CrossRef  Google Scholar 

  • Buchanan, J.G., J.A.Bassham, A.A.Benson, D. F. Bradley, M. Calvin, L. L. Daus, M. Goodman, P. M. Hayes, V. H. Lynch, L. T Norris and A. T. Wilson: The rôle of phosphate in the metabolism of photosynthetic and chemoautotrophic organisms. In: Phosphorus Metabolism, Bd. II. Baltimore: John Hopkins Press 1952.

    Google Scholar 

  • Buchanan, J. G., V. H. Lynch, A. A. Benson, D. F. Bradley and M. Calvin: The path of carbon in photosynthesis. XVIII. The identification of nucleotide coenzymes. J. of Biol. Chem. 203, 935–945 (1953).

    CAS  Google Scholar 

  • Buchanan, J. M.: Biosynthesis of the purines. J. Cellul. a. Comp. Physiol. 38, Suppl. 1, 143–171 (1951).

    CAS  CrossRef  Google Scholar 

  • Some reactions involved in biosynthesis of the purines. Science (Lancaster, Pa.) 118, 568 (1953).

    Google Scholar 

  • Buchanan, J. M., and M. P. Schulman: Biosynthesis of the purines. III. Reactions of formate and inosinic acid and an effect of the citrovorum factor. J. of Biol. Chem. 202, 241–252 (1953).

    CAS  Google Scholar 

  • Buchanan, J. M. and J. C. Sonne: The utilization of formate in uric acid synthesis. J. of Biol. Chem. 166, 781 (1946).

    CAS  Google Scholar 

  • Buchanan, J. M., J. C. Sonne and A. M. Delluva: Biological precursors of uric acid. II. The rôle of lactate, glycine, and carbon dioxide as precursors of the carbon chain and nitrogen atom 7 of uric acid. J. of Biol. Chem. 173, 81–98 (1948).

    CAS  Google Scholar 

  • Buchanan, J. M., and D. W. Wilson: Biosynthesis of purines and pyrimidines. Federat. Proc. 12, 646–650 (1953).

    CAS  Google Scholar 

  • Burma, D. P., and D. C. Mortimer: The biosynthesis of UDP-glucose and sucrose in sugar beet leaf. Arch. of Biochem. a. Biophysics 62, 16–28 (1956).

    CAS  CrossRef  Google Scholar 

  • Cabib, E., and L. F. Leloir: Guanosine diphosphate mannose. J. of Biol. Chem. 206, 779–790 (1954).

    CAS  Google Scholar 

  • Cabib, E., L. F. Leloir and C. E. Cardini: Uridine diphosphate acetyl-glucosamine. J. of Biol. Chem. 203, 1055–1070 (1953).

    CAS  Google Scholar 

  • Campbell jr. L. L.: The mechanism of allantoin degradation by a Pseudomonas. J. Bacter. 68, 598–603 (1954).

    CAS  Google Scholar 

  • Oxidative degradation of uric acid by cell extracts of a Pseudomonas. Biochim. et Biophysica Acta 18, 160–161 (1955).

    Google Scholar 

  • Canellakis, E. S.: Pyrimidine metabolism. I. Enzymatic pathways of uracil and thymine degradation. J. of Biol. Chem. 221, 315–322 (1956).

    CAS  Google Scholar 

  • Canellakis, E. S., and P. P. Cohen: On the nature of oxonic acid and allantoxaidin as oxidation products of uric acid and allantoin. J. of Biol. Chem. 213, 379–384 (1955a).

    CAS  Google Scholar 

  • The endproducts and intermediates of uric acid oxidation by uricase. J. of Biol. Chem. 213, 385–395 (1955 b).

    Google Scholar 

  • Canellakis, E. S., A. L. Tuttle and P. P. Cohen: A comparative study of the endproducts of uric acid oxidation by peroxidases. J. of Biol. Chem. 213, 397–404 (1955).

    CAS  Google Scholar 

  • Caputto, R., L. F. Leloir, C. E. Cardini and A. C. Paladine: Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J. of Biol. Chem. 184, 333–350 (1950).

    CAS  Google Scholar 

  • Cardini, C. E., L. F. Leloir and I. Chiriboga: The biosynthesis of sucrose. J. of Biol. Chem. 214, 149–155 (1955).

    CAS  Google Scholar 

  • Carter, C. E.: Metabolism of purines and pyrimidines. Annual Rev. Biochem. 25, 123–146 (1956a).

    CAS  CrossRef  Google Scholar 

  • Synthesis of 6-succino-amino-purine. J. of Biol. Chem. 223, 139–146 (1956b).

    Google Scholar 

  • Carter, C. E., and L. H. Cohen: Enzymatic synthesis of adenylo-succinic acid. J. Amer. Chem. Soc. 77, 499–500 (1955).

    CAS  CrossRef  Google Scholar 

  • The preparation and properties of adenylo-succinase and adenylo-succinic acid. J. of Biol. Chem. 222, 17–30 (1956).

    Google Scholar 

  • Cerecedo, L. R.: The chemistry and metabolism of the nucleic acids, purines and pyrimidines. Annual Rev. Biochem. 2, 109–128 (1933).

    CAS  CrossRef  Google Scholar 

  • Chamberlain, N., N. S. Cutts and C. Rainbow: The formation of pigment and arylamine by yeasts. J. Gen. Microbiol. 7, 54–60 (1952).

    PubMed  CAS  Google Scholar 

  • Chamberlain, N., and C. Rainbow: The formation of diazotizable amine and hypoxanthine by a yeast: possible implications in the biosynthesis of purines. J. Gen. Microbiol. 11, 180–190 (1954).

    PubMed  CAS  Google Scholar 

  • Chattaway, F. W.: Growth stimulation of L. casei E. by pyrimidines. Nature (Lond.) 153, 250–251 (1944).

    CAS  CrossRef  Google Scholar 

  • Christman, A. A.: Der Purin- und Pyrimidinstoffwechsel. Physiologic. Rev. 32, 303–348 (1952).

    CAS  Google Scholar 

  • Cohen, S. S., M. Green and H. D. Barner: Thymine and thymidine synthesis. Biochim. et Biophysica Acta 22, 210–211 (1956).

    CAS  CrossRef  Google Scholar 

  • Cooper, C, and D. W. Wilson: Biosynthesis of pyrimidines. Federat. Proc. 13, 194 (1954).

    Google Scholar 

  • Cooper, C, R. WU and D. W. Wilson: Studies of some precursors of pyrimidines. J. of Biol. Chem. 216, 37–49 (1955).

    CAS  Google Scholar 

  • Dalgliesh, C. E., and A. Neuberger: The mechanism for the conversions of uric acid into allantoin and glycin. J. Chem. Soc. (Lond.) 1954, 3407–3414.

    Google Scholar 

  • Debow, S. S.: Methylierung von Uracil in homogenisiertem Gewebe. Ber. Akad. Wiss. USSR., N. S. 99, 589–592 (1954).

    Google Scholar 

  • Dimroth, K., L. Jaenicke U. E. W. Becker: Serin als Partner bei der Biosynthese der Purine von Nucleinsäuren. Naturwiss. 39, 134 (1952).

    CAS  CrossRef  Google Scholar 

  • Drysdale, G. R., G. W. E. Plaut and A. H. Lardy: The relationship of folic acid to formate metabolism in the rat. Formate incorporation into purines. J. of Biol. Chem. 193, 533–538 (1951).

    CAS  Google Scholar 

  • Dunn, D. B., and J. D. Smith: Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature (Lond.) 175, 336–337 (1955a).

    CAS  CrossRef  Google Scholar 

  • The occurrence of 6-methyl-aminopurine in microbial deoxyribonucleic acids. Biochemic. J. 60, XVII (1955b).

    Google Scholar 

  • Dutton, G. J.: Uridine diphosphate glucuronic acid as glucuronyl donor in the synthesis of “ester” aliphatic and steroid glucuronides. Biochemic. J. 64, 693–701 (1956).

    CAS  Google Scholar 

  • Dutton, G. J., and J. H. Spencer: Further observations on the specificity of uridine-diphosphate-glucuronic acid as glucuronyl donor. Biochemic. J. 63, 8 P. (1956).

    Google Scholar 

  • Dutton, G. J., and I. D. E. Storey: Uridine compounds in glucuronic acid metabolism. I. The formation of glucuronides in liver suspensions. Biochemic. J. 57, 275–283 (1954).

    CAS  Google Scholar 

  • Edmonds, M., A. M. Delluva and D. W. Wilson: The metabolism of purines and pyrimidines by growing yeast. J. of Biol. Chem. 197, 251–259 (1952).

    CAS  Google Scholar 

  • Elion, G. B., and M. E. Balis: Purine metabolism of diaminopurine resistant L. casei. Federat. Proc. 11, 207 (1952).

    Google Scholar 

  • Effect of 6-mercaptopurine on the interconversion of purine moieties in L. casei. Federat. Proc. 14, 207 (1955).

    Google Scholar 

  • Elion, G. B., and G. H. Hitchings: Antagonists of nucleic acid derivatives. III. The specificity of the purine requirement of L. casei. J. of Biol. Chem. 185, 651–655 (1950).

    CAS  Google Scholar 

  • Antagonists of nucleic acid derivatives. IV. Reversal studies with 2-aminopurine and 2,6-diaminopurine. J. of Biol. Chem. 187, 511–522 (1952).

    Google Scholar 

  • Elion, G. B., S. Singer and G. H. Hitchings: The purine metabolism of a 6-mercaptopurine-resistant L. casei. J. of Biol. Chem. 204, 35–41 (1953).

    CAS  Google Scholar 

  • Elion, G. B., S. Singer, G. H. Hitchings, M. Balis and B. Brown: Effects of purine antagonists on a diaminopurine resistant stram of L. casei. J. of Biol. Chem. 202, 647–654 (1953).

    CAS  Google Scholar 

  • Elion, G. B., H. Van Der Werfe, G. H. Hitchings, E. M. Balis, D. H. Levin and G. B. Brown: Purine metabolism of a diaminopurine-resistant strain of L. casei. J. of Biol. Chem. 200, 7–16 (1953).

    CAS  Google Scholar 

  • Elwyn, D., and D. B. Sprinson: The rôle of serine and acetate in uric acid formation. J. of Biol. Chem. 184, 465–474 (1950a).

    CAS  Google Scholar 

  • The relation of folic acid to the metabolism of serine. J. of Biol. Chem. 184, 475–478 (1950b).

    Google Scholar 

  • The synthesis of thymine and purines from serine and glycine in the rat. J. of Biol. Chem. 207, 467–476 (1954).

    Google Scholar 

  • Felix, K., F. Scheel U. W. Schuler: Die Urikolyse. Hoppe-Seylers Z. 180, 90–106 (1929).

    CrossRef  Google Scholar 

  • Fink, K.: Excretion of pyrimidine reduction products by the rat. J. of Biol. Chem. 218, 9–14 (1956).

    CAS  Google Scholar 

  • Fink, K., R. E. Cline, R. B. Henderson and R. M. Fink: Metabolism of thymine (methyl-C14 or -2 C14)by rat liver in vitro. J. of Biol. Chem. 221, 425–433 (1956).

    CAS  Google Scholar 

  • Fink, K., R. B. Henderson and R. M. Fink: β-Aminoisobutyric acid in rat urine following administration of pyrimidines. J. of Biol. Chem. 197, 441–452 (1952).

    CAS  Google Scholar 

  • Fink, K., and C. Mc Gaughey: Reductive pathway for pyrimidine metabolism in rat. Federat. Proc. 13, 207 (1954).

    Google Scholar 

  • Fink, K., C. Mc Gaughey, R. B. Henderson and R. M. Fink: Isotopic and enzymatic studies of thymine metabolites. Federat. Proc. 15, 251 (1956).

    Google Scholar 

  • Fink, K. K., R. B. Henderson and R. M. Fink: β-Aminoisobutyric acid a possible factor in pyrimidine metabolism. Proc. Soc. Exper. Biol. a. Med. 78, 135–141 (1951).

    CAS  Google Scholar 

  • Fink, R. M., R. E. Cline and H. M. G. Koch: Chromatographic detection of pyrimidine reduction products: microbiological application. Federat. Ptoc. 13, 207 (1954).

    Google Scholar 

  • Fink, R. M., K. K. FINK and R. B. Henderson: β-Amino acid formation by tissue slices incubated with pyrimidines. J. of Biol. Chem. 201, 349–355 (1953).

    CAS  Google Scholar 

  • Fink, R. M., R. B. Henderson and K. Fink: Thymine synthesized with C14 in the methyl group. Federat. Proc. 14, 210 (1955).

    Google Scholar 

  • Fink, R. M., Ch. Mc Gaughey, R. E. Cline and K. Fink: Metabolism of intermediate pyrimidine reduction products in vitro. J. of Biol. Chem. 218, 1–9 (1956).

    CAS  Google Scholar 

  • Fischer, E., U. F. Ach: Über die Isomerie der Methylhamsäuren. Ber. dtsch. chem. Ges. 32, 2721–2749 (1899).

    CAS  CrossRef  Google Scholar 

  • Flaks, J. G., and J. M. Buchanan: The enzymatic formation of 4-amino-5-imidazole-carboxamide ribotide from inosinic acid. J. Amer. Chem. Soc. 76, 2275–2276 (1954).

    CAS  CrossRef  Google Scholar 

  • Flavin, M.: Effect of 8-azaguanine on purine utilization by Tetra-hymena geleii. Cancer Res. 12, 261–262 (1952).

    Google Scholar 

  • Flavin, M., and M. Engelman: Amino-purine interconversion in Tetrahymena geleii: rôle of 8-azaguanine and hypoxanthine. J. of Biol. Chem. 200, 59–68 (1953).

    CAS  Google Scholar 

  • Flavin, M., and S. Graff: Utilization of guanine for nucleic acid biosynthesis by Tetrahymena geleii. J. of Biol. Chem. 191, 55–61 (1951).

    CAS  Google Scholar 

  • Fosse, R., A. Brunel et P. de Graeve: Sur I’allantoinase et l’origine de l’acide allantoique chez les vegetaux. C. r. Acad. Sci. Paris 189, 716–717 (1929).

    CAS  Google Scholar 

  • Nouvelle fermentation de l’acide urique provoquée par la foie de divers animaux. C. r. Acad. Sci. Paris 190, 79–84 (1930).

    Google Scholar 

  • Fosse, R., A. Brunel, P. de Graeve, P. E. Thomas et J. Savazin: Présence dans de nombreux végétaux alimentaires de l’allantoine, accompagnée ou non d’acide allantoique d’allantoinase et d’uricase. C. r. Acad. Sci. Paris 191, 1153–1155 (1930).

    CAS  Google Scholar 

  • Fosse, R., P. de Graeve et P.Thomas: Un nouveau principe des végétaux: l’acide urique. C. r. Acad. Sci. Paris 194, 1408–1413 (1932a).

    CAS  Google Scholar 

  • Un nouveau principe des végétaux: l’acide urique. C. r. Acad. Sci. Paris 195, 1198–1200 (1932b).

    Google Scholar 

  • Fox jr. C. L,: Production of a diazotizable substance by E. coli during sulfonamide bacteriostasis. Proc. Soc. Exper. Biol. a. Med. 51, 102–104 (1942).

    CAS  Google Scholar 

  • Franke, W.: Zum Stoffwechsel der Purine und Pyrimidine. Z. Vitamin-, Hormon- u. Fermentforsch. (Wien) 5, 279–314 (1953).

    CAS  Google Scholar 

  • Franke, W., U. G. E. Hahn: Untersuchungen zum bakteriellen Purinabbau. I. Über den Harnsäureabbau durch Pseudomonas aeruginosa. Hoppe-Seylers Z. 299, 15–38 (1955a).

    CAS  CrossRef  Google Scholar 

  • Untersuchungen zum bakteriellen Purinabbau. II. Über den Abbau von Amino-, Oxy- und Methylpurinen durch Pseudomonas aeruginosa. Hoppe-Seylers Z. 301,90–106 (1955b).

    Google Scholar 

  • Zum oxydativen Purinabbau durch Bakterien. Zbl. Bakter. 109, 343–346 (1956).

    Google Scholar 

  • Franke, W., U. E. M. Taha: Purinoxydierende Fermente aus Schimmelpilzen. III. Mitt. Zur Kenntnis der Altemaria-Uricasen. Chem. Ber. 85, 913–921 (1952).

    CrossRef  Google Scholar 

  • Franke, W., E. M. Taha U. L.Krieg: Purinoxydierende Fermente aus Schimmelpilzen. I. Mitt. Über die Uricase der Schimmelpilze. Arch. Mikrobiol. 17, 255–291 (1952).

    CAS  CrossRef  Google Scholar 

  • Friedkin, M., and W. Roberts: Conversion of uracil deoxyriboside to thymidine of desoxynucleic acid. J. of Biol. Chem. 220, 653–660 (1956).

    CAS  Google Scholar 

  • Fridovich, J., and P. Handler: Hypoxanthine as a cofactor for the enzymatic oxidation of sulfite. J. of Biol. Chem. 221, 323–331 (1956a).

    CAS  Google Scholar 

  • Hypoxanthine, cofactor for cysteine oxidation by liver preparations. Biochim. et Biophysica Acta 21, 173–174 (1956b).

    Google Scholar 

  • Fries, N.: Über röntgen-induzierte physiologische Mutationen bei Ophiostoma multiannulatum. Ark. Bot. (Stockh.) A 32, No 8 (1945).

    Google Scholar 

  • Mutant strains of Ophiostoma multiannulatum requiring components of different nucleotides. Ark. Bot. (Stockh.) A 33, No 7 (1946).

    Google Scholar 

  • Experiment with different methods of isolating physiological mutations of filamentous fungi. Nature (Lond.)159, 199 (1947).

    Google Scholar 

  • Effects of different purine compounds on the growth of guanine-deficient Ophiostoma. Physiol. Plantarum (Copenh.) 2, 78–102 (1949).

    Google Scholar 

  • Further studies on mutant strains of Ophiostoma which require guanine. J. of Biol. Chem. 200, 325–333 (1953).

    Google Scholar 

  • The inhibitory effect of diamino-purine riboside on the growth of Ophiostoma. Acta chem. scand. (Copenh.) 9, 1020 (1955).

    Google Scholar 

  • Fries, N., S. Bergström and M. Rottenberg: The effect of various imidazole compounds on the growth of purine-deficient mutants of Ophiostoma. Physiol. Plantarum (Copenh.) 2, 210–211 (1949).

    CrossRef  Google Scholar 

  • Funk, C., A. J. Merritt and A. Ehrlich: The isolation of hydro-uracil from beef spleen. Arch. of Biochem. 35, 468–469 (1952).

    CAS  CrossRef  Google Scholar 

  • Gehring, L. B., and B. Magasanik: Biosynthesis of nucleic acid guanine: the enzymic conversion of inosine-5′-phosphate to xanthosine-5-phosphate. J. Amer. Chem. Soc. 77, 4685–4686 (1955).

    CAS  CrossRef  Google Scholar 

  • Getler, H., P. M. Roll, J. F. Tinker and G. B. Brown: A study of the metabolism of dietary hypoxanthine and xanthine in the rat. J. of Biol. Chem. 178, 259–264 (1949).

    CAS  Google Scholar 

  • Ginsburg, V., E. F. Neufeld and W. Z. Hassid: Enzymatic synthesis of uridine diphosphate xylose and uridine phosphate arabinose. Proc. Nat. Acad. Sci. U.S.A. 42, 333–335 (1956).

    CAS  CrossRef  Google Scholar 

  • Ginsburg, V., P. K. Stumpf and W. Z. Hassid: The isolation of uridine diphosphate derivatives of D-glucose, D-galactose, D-xylose, and L-arabinose from mung bean seedlings. J. of Biol. Chem. 223, 977–983 (1956).

    CAS  Google Scholar 

  • Glasziou, K. T.: The metabolism of arginine in Serratia marcescens. II. Carbamyladenosine diphosphate phos-phoferase. Austral. J. Biol. Sci. 9, 253–262 (1956).

    CAS  Google Scholar 

  • Goldthwait, D. A.: 5-Phospho-ribosylamine, a precursor of glycinamide ribotide. Federat. Proc. 15, 263 (1956a).

    Google Scholar 

  • 5-Phos-phoribosylamine, a precursor of glycinamide ribotide. J. of Biol. Chem. 222, 1051–1068 (1956b).

    Google Scholar 

  • Goldthwait, D. A., and A. Bendich: Effect of aminopterin on nucleic acid metabolism in the rat. Federat. Proc. 10, 190 (1951).

    Google Scholar 

  • Effects of a folic acid antagonist on nucleic acid metabolism. J. of Biol. Chem. 196, 841–852 (1952).

    Google Scholar 

  • Goldthwait, D. A., G. R. Greenberg and R. A. Peabody: The involvement of 5-phosphoribosylamine in the biosynthesis of glycinamide ribotide. Biochim. et Biophysica Acta 18, 148–149 (1955).

    CAS  CrossRef  Google Scholar 

  • Goldthwait, D. A., and R. A. Peabody: Glycine ribotide precursors of inosinic acid. Federat. Proc. 13, 218 (1954).

    Google Scholar 

  • Goldthwait, D. A., R. A. Peabody and G. R. Greenberg: Glycine ribotide intermediates in the de novo synthesis of inosinic acid. J. Amer. Chem. Soc. 76, 5258–5259 (1954).

    CAS  CrossRef  Google Scholar 

  • On the occurrence of glycinamide ribotide and its formyl derivative. J. of Biol. Chem. 221, 555–567 (1956a).

    Google Scholar 

  • On the mechanism of synthesis of glycinamide ribotide and its formyl derivative. J. of Biol. Chem. 221, 569–577 (1956b).

    Google Scholar 

  • Goodwin, T. W., and S. Pendlington: Studies on the biosynthesis of riboflavin. Nitrogen metabolism and flavinogenesis in Eremothecium Ashbyii. Biochemic. J. 57, 631–641 (1954).

    CAS  Google Scholar 

  • Gordon, M. P., and G. B. Brown: A study of the metabolism of purine riboside. J. of Biol. Chem. 220, 927–937 (1956).

    CAS  Google Scholar 

  • Gots, J. S.: The accumulation of 4-amino-5-imidazolecarboxamide by a purine-requiring mutant of E. coli. Arch. of Biochem. 29, 222–224 (1950a).

    CAS  Google Scholar 

  • Accumulation of 5(4)-amino-4(5)-imidazolecarboxamide in relation to sulfonamide bacteriostasis and purine metabolism in E. coli. Federat. Proc. 9, 178–179 (1950b).

    Google Scholar 

  • Occurrence of 4-amino-5-imidazolecarboxamide as a pentose derivative. Nature (Lond.) 172, 256–257 (1953).

    Google Scholar 

  • Inhibition of the biosynthesis of 5-amino-4-imidazolecarboxamide by purines. Federat. Proc. 14, 220 (1955).

    Google Scholar 

  • Gots, J. S., and E. G. Chu: Studies on purine metabolism in bacteria. I. The rôle of p-aminobenzoic acid. J. Bacter. 64, 537–546 (1952).

    CAS  Google Scholar 

  • Gots, J. S., and S. H. Love: Purine metabolism in bacteria. II. Factors influencing biosynthesis of 4-amino-5-imidazolecarboxamide by E. coli. J. of Biol. Chem. 210, 395–405 (1954).

    CAS  Google Scholar 

  • Gray, C., and E. Tatum: x-ray induced growth factor requirements in bacteria. Proc. Nat. Acad. Sci. U.S.A. 30, 404–410 (1944).

    CAS  CrossRef  Google Scholar 

  • Green, M., J. Lichtenstein, H. Barner and S. S. Cohen: Synthesis and metabolic properties of dihydropyrimidine nucleosides. Federat. Proc. 15, 265 (1956).

    Google Scholar 

  • Greenberg, G. R.: Incorporation of carbon-labeled formic acid and carbon dioxide into hypoxanthine in pigeon liver homogenates. Arch. of Biochem. 19, 337–339 (1948).

    CAS  Google Scholar 

  • Mechanism of biosynthesis of purine. Federat. Proc. 9, 179 (1950).

    Google Scholar 

  • De novo synthesis of hypoxanthine via inosine-5-phosphate and inosine. J. of Biol. Chem. 190, 611–631 (1951a).

    Google Scholar 

  • Synthesis of purine in dialyzed liver extracts. Federat. Proc. 10, 192 (1951b).

    Google Scholar 

  • Isolation of 4-amino-5-imidazolecarboxamide riboside from the culture medium of sulfonamide-inhibited E. coli. J. Amer. Chem. Soc. 74, 6307–6308 (1952).

    Google Scholar 

  • Conversion of 5-amino-4-imidazolecarboxamide riboside to its phosphoribotide and to inosinic acid. Federat. Proc. 12, 211–212 (1953a).

    Google Scholar 

  • Mechanisms involved in the biosynthesis of purines. Federat. Proc. 12, 651–659 (1953b).

    Google Scholar 

  • Chemical pathways of metabolism, Bd. II, S. 383. New York: Academic Press 1954a.

    Google Scholar 

  • A formylation cofactor. J. Amer. Chem. Soc. 76,1458–1459 (1954b).

    Google Scholar 

  • Transformylation cofactor and mechanism of activation of formate. Federat. Proc. 13, 221 (1954 c).

    Google Scholar 

  • Rôle of folic acid derivatives in purine biosynthesis. Federat. Proc. 13, 745–759 (1954d).

    Google Scholar 

  • Preparation of 5′-phosphoribosyl-5-amino-4-imidazolecarboxamide. J. of Biol. Chem. 219, 423–433 (1956).

    Google Scholar 

  • Greenberg, G. R., and L. Jaenicke: The rôle of N10-formyltetrahydrofolic acid in transformylation reactions. 3. Congrès Internat, de Biochimic Bruxelles. Résumés des Communications, S. 49–50. 1955.

    Google Scholar 

  • Greenberg, G. R., L. Jaenicke and M. Silverman: On the occurrence of N10-formyltetrahydrofolic acid by enzymic formylation of tetrahydrofolic acid and on the mechanism of this reaction. Biochim. et Biophysica Acta 17, 589–591 (1955).

    CAS  CrossRef  Google Scholar 

  • Greenberg, G. R., and E. L. Spilman: Isolation of 5-amino-4-imidazolecarboxamide riboside. J. of Biol. Chem. 219, 411–422 (1956).

    CAS  Google Scholar 

  • Grisolia, S.: Rôle of L-formylglutamic acid in biosynthesis of citrulline. Federat. Proc. 12, 212 (1953).

    Google Scholar 

  • Grisolia, S., and Ph. P. Cohen: The catalytic rôle of carbamyl glutamate in citrulline biosynthesis. J. of Biol. Chem. 198, 561–571 (1952).

    CAS  Google Scholar 

  • Catalytic rôle of glutamate derivatives in citrulline biosynthesis. J. of Biol. Chem. 204, 753–757 (1953).

    Google Scholar 

  • Grisolia, S., H. S. Grady and D. P. Wallach: Biosynthetic and structural relationships of compound x and carbamyl phosphate. Biochim. et Biophysica Acta 17, 277–278 (1955).

    CAS  CrossRef  Google Scholar 

  • Grisolia, S., and D. P. Wallach: Enzymic interconversion of hydrouracil and β-ureidopropionic acid. Biochim. et Biophysica Acta 18, 449 (1955).

    CAS  CrossRef  Google Scholar 

  • Grossman, L., and D. W. Visser: The incorporation of 4-C14-cytidine in rat liver slices. J. of Biol. Chem. 209, 447–452 (1954).

    CAS  Google Scholar 

  • The isolation of 5,6-dihydro-cytidylic acid from the acid-soluble fraction of rat liver slices. J. of Biol. Chem. 216, 775–781 (1955).

    Google Scholar 

  • Hall, L. M., R. L. Metzenberg and P. P. Cohen: Isolation and characterization of a naturally occurring stimulator of citrulline biosynthesis. Nature (Lond.) 178, 1468–1469 (1956).

    CAS  CrossRef  Google Scholar 

  • Hamill, R. L., R. L. Herrmann, R. U. Byerrum and J. L. Fairley: The synthesis of purines and thymine from formaldehyde in the rat. Biochim. et Biophysica Acta 21, 394–395 (1956).

    CAS  CrossRef  Google Scholar 

  • Hamilton, L.: Utilization of purines for nucleic acid synthesis in man. Nature (Lond.) 172, 457 (1953).

    CAS  CrossRef  Google Scholar 

  • Hamilton, L., G. B. Brown and C. C. Stock: Biosynthesis of nucleic acids studied in unicellular systems. J. Clin. Invest. 31, 636 (1952).

    Google Scholar 

  • Hamilton, L. D.: Nucleic acid turnover studies in human leukaemic cells and the function of lymphocytes. Nature (Lond.) 178, 597–599 (1956).

    CAS  CrossRef  Google Scholar 

  • Hammarsten, E., P. Reichard u. E. Saluste: Pyrimidine nucleosides as precursors of ribonucleic acid (RNA) pyrimidines. Acta chem. scand. (Copenh.) 3, 432–433 (1949).

    CAS  CrossRef  Google Scholar 

  • Pyrimidine nucleosides as precursors of pyrimidines in polynucleotides. J. of Biol. Chem. 183, 105–109 (1950).

    Google Scholar 

  • Hansen, R. G., and E. Hagemann: The isolation of glutamic and aspartic acid derivatives of ADP. Arch. of Biochem. a. Biophysics 62, 511–513 (1956).

    CAS  CrossRef  Google Scholar 

  • Hartman, ST. C: Phosphorolysis of glycinamide ribotide. Federat. Proc. 15, 269 (1956).

    Google Scholar 

  • Hartman, St. C., B. Levenberg and J. M. Buchanan: Involvement of ATP, 5-phosphoribosyl-pyrophosphate and L-azaserine in the enzymatic formation of glycinamide ribotide intermediates in inosinic acid biosynthesis. J. Amer. Chem. Soc. 77, 501–503 (1955).

    CAS  CrossRef  Google Scholar 

  • Biosynthesis of the purines. XI. Structure, enzymatic synthesis and metabolism of glycinamide ribotide and (α-N-formyl)-glycin-amide ribotide. J. of Biol. Chem. 221, 1057–1070 (1956).

    Google Scholar 

  • Hayaishi, O., and A. Kornberg: Enzymatic formation of barbituric acid from uracil and of 5-methylbarbituric acid from thymine. J. Amer. Chem. Soc. 73, 2975–2976 (1951).

    CAS  CrossRef  Google Scholar 

  • Metabolism of cytosine, thymine, uracil, and barbituric acid by bacterial enzymes. J. of Biol. Chem. 197, 717–732 (1952).

    Google Scholar 

  • Heidelberger, C, and E. Harbers: Metabolism of uracil in normal and neoplastic tissues. Federat. Proc. 15, 271 (1956).

    Google Scholar 

  • Heinrich, M. R., V. C. Dewey and G. W. Kidder: Citrulline as a precursor of pyrimidines. J. Amer. Chem. Soc. 76, 3102–3103 (1954).

    CAS  CrossRef  Google Scholar 

  • Heinrich, M. R., and D. W. Wilson: The biosynthesis of nucleic acid components studied with C14. I. Purines and pyrimidines in the rat. J. of Biol. Chem. 186, 447–460 (1950).

    CAS  Google Scholar 

  • Heinrich, M. R., D. W. Wilson and S. Gurin: Isotopic studies of the biosynthesis of nucleic acid components. Federat. Proc. 8, 205 (1949).

    Google Scholar 

  • Herrmann, R. L., J. L. Fairley and R. U. Byerrum: The synthesis of purines and thymine from methionine in the rat. J. Amer. Chem. Soc. 77, 1902–1903 (1955).

    CAS  CrossRef  Google Scholar 

  • Hinton, T., J. Ellis and D. T. Noyes: An adenine requirement in a strain of Drosophila. Proc. Nat. Acad. Sci. U.S.A. 37, 293–299 (1951).

    CAS  CrossRef  Google Scholar 

  • Hitchings, G. H., and G. B. Elion: Chemistry and biochemistry of antimetabolites related to the purines. 3. Congrès Internat. de Biochimie Bruxelles, Rapports S. 185–191. 1955.

    Google Scholar 

  • Hitchings, G. H., G. B. Elion, E. A. Falco, P. B. Russell, M. B. Sherwood and H. Van der Werff: Antagonists of nucleic acid derivatives. I. The Lactobacillus casei model. J. of Biol. Chem. 183, 1–9 (1950).

    CAS  Google Scholar 

  • Hitchings, G. H., G. B. Elion and H. Van der Werff: The limitations of inhibition analysis. J. of Biol. Chem. 174, 1037–1038 (1948a).

    CAS  Google Scholar 

  • 2-aminopurine as a purine antagonist. Federat. Proc. 7, 160 (1948 b).

    Google Scholar 

  • Hoagland, M. B.: An enzymic mechanism for amino acid activation in animal tissues. Biochim. et Biophysica Acta 16, 288–289 (1955).

    CAS  CrossRef  Google Scholar 

  • Hoagland, M. B., E. B. Keller and P. C. Zamecnik: Enzymatic carboxyl activation of amino acids. J. of Biol. Chem. 218, 345–358 (1956).

    CAS  Google Scholar 

  • Hoffmann-Ostenhof, O.: Enzymologie, S. 531–533. Wien: Springer 1954.

    Google Scholar 

  • Holmes, W. L., and W. H. Prusoff: Synthesis and biochemical investigation of thymine-6-carboxylic acid-2-C14. J. of Biol. Chem. 206, 817–823 (1954).

    CAS  Google Scholar 

  • Holmes, W. L., W. H. Prusoff and A. D. Welch: Studies on the metabolism of thymine-2-C14 by the rat. J. of Biol. Chem. 209, 503–509 (1954).

    CAS  Google Scholar 

  • Hübscher, G., H. Baum and H. R. Mahler: Studies on uricase. IV. The nature and composition of some stable reaction products. Biochim. et Biophysica Acta 23, 43–53 (1957).

    CrossRef  Google Scholar 

  • Huff, J. W., D. K. Bosshardt, L. D. Wright, D. S. Spicer, K. A. Valentik and H. R. Skeggs: A growth-promoting substance for L. bulgaricus 09 in whey: isolation and identification as orotic acid. Proc. Soc. Exper. Biol. a. Med. 75, 297–301 (1950).

    CAS  Google Scholar 

  • Hultin, T.: Incorporation of N15-labelled ammonium chloride into pyrimidins and purines during the early sea urchin development. Ark. Kemi (Stockh.) 5, 267–275 (1953).

    CAS  Google Scholar 

  • Hurlbert, R. B.: Studies on the acid-soluble products of the metabolism of orotic acid-6-C14. Federat. Proc. 11, 234 (1952).

    Google Scholar 

  • Uridine-5-phosphate compounds as intermediates in the incorporation of orotic acid into RNS. Federat. Proc. 12, 222 (1953).

    Google Scholar 

  • Hurlbert, R. B., and V. R. Potter: A survey of the metabolism of orotic acid in the rat. J. of Biol. Chem. 195, 257–270 (1952).

    CAS  Google Scholar 

  • Nucleotide metabolism. I. The conversion of orotic acid-6-C14 to uridine nucleotides. J. of Biol. Chem. 209, 1–21 (1954).

    Google Scholar 

  • Hurlbert, R. B., U. P. Reichard: Formation in vitro of uridine phosphates from orotic acid. Acta chem. scand. (Copenh.) 8, 1095–1096 (1954a).

    CrossRef  Google Scholar 

  • Conversion of orotic acid to uridine phosphates by soluble enzymes of liver. Acta chem. scand. (Copenh.) 8, 701–702 (1954b).

    Google Scholar 

  • The conversion of orotic acid to uridine nucleotides in vitro. Acta chem. scand. (Copenh.) 9, 251–262 (1955).

    Google Scholar 

  • Jacob, A.: Rôle de l’hypoxanthine dans la désaturation des acides gras supérieurs. C. r. Acad. Sci. Paris 242, 2180–2182 (1956).

    CAS  Google Scholar 

  • Jaenicke, L.: Purine. In Hoppe-Seyler-Thierfelder, Handbuch der physiologischen und pathologischen chemischen Analyse, 10. Aufl., Bd. III, S. 1245–1339. 1955a.

    Google Scholar 

  • Occurrence of N10-formyltetrahydrofolic acid and its general involvement in transformylation. Biochim. et Biophysica Acta 17, 588–589 (1955 b).

    Google Scholar 

  • Joklik, W. K.: The occurrence of adenine- and adenyl-succinic acid in mamma-lian liver. Biochim. et Biophysica Acta 22, 211–212 (1956).

    CAS  CrossRef  Google Scholar 

  • Jones, M. E.: Über die Selbstverdauung von Nucleoproteiden. Z. physiol. Chem. 42, 35–54 (1904).

    CAS  CrossRef  Google Scholar 

  • Jones, M. E., L. Spector and F. Lipmann: Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. Chem. Soc. 77, 819–820 (1955a).

    CAS  CrossRef  Google Scholar 

  • Carbamyl phosphate. 3. Congrès Internat. de Biochimie, Bruxelles, Rapports S. 67–70. 1955b.

    Google Scholar 

  • Carbamyl phosphate. 3. Congrès Internat. de Biochimie, Bruxelles, Conférences et Rapports, S. 278 bis 281. 1955 c.

    Google Scholar 

  • Kalckar, H. M.: Biochemical mutants in man and microorganisms. Science (Lancaster, Pa.) 125, 105–108 (1957).

    CAS  Google Scholar 

  • Karlsson, J. L., and H. A. Barker: Biosynthesis of uric acid labeled with radioactive carbone. J. of Biol. Chem. 177, 597–599 (1949a).

    CAS  Google Scholar 

  • Tracer experiments on the mechanism of uric acid decomposition and acetic acid synthesis by Clostridium acidi-urici. J. of Biol. Chem. 178, 891–902 (1949b).

    Google Scholar 

  • Keilin, D., and E. F. Hartree: Uricase, amino acid oxidase, and xanthine oxidase. Proc. Roy. Soc. Lond., Ser. B 119, 114–159 (1936).

    CAS  CrossRef  Google Scholar 

  • Keller, E. B., and P. C. Zamecnik: The effect of guanosine diphosphate and triphosphate on the incorporation of labeled amino acids into proteins. J. of Biol. Chem. 221, 45–59 (1956).

    CAS  Google Scholar 

  • Kennedy, E. P.: The synthesis of cytidine diphosphate choline, cytidine diphosphate ethanolamine. and related compounds. J. of Biol. Chem. 222, 185–191 (1956).

    CAS  Google Scholar 

  • Kennedy, E. P., and S. B. Weiss: Cytidine diphosphate choline: a new intermediate in lecithin biosynthesis. J. Amer. Chem. Soc. 77, 250–251 (1955).

    CAS  CrossRef  Google Scholar 

  • The function of cytidine coenzymes in the biosynthesis of phospholipides. J. of Biol. Chem. 222, 193–214 (1956).

    Google Scholar 

  • Kerr, S. E., and K. Seraidarian: The pathway of decomposition of hyoadenylic acid during autolysis in various tissues. J. of Biol. Chem. 159, 637–645 (1945).

    CAS  Google Scholar 

  • Kerr, S. E., K. Seraidarian and G. B. Brown: On the utilization of purines and their ribose derivatives by yeast. J. of Biol. Chem. 138, 207–216 (1951).

    Google Scholar 

  • Kidder, G. W., and V. C. Dewey: Studies on the biochemistry of Tetrahymena. XIV. The activity of natural purines and pyrimidines. Proc. Nat. Acad. Sci. U.S.A. 34, 566–574 (1948).

    CAS  CrossRef  Google Scholar 

  • Kidder, G. W., V. C. Dewey, R. E. Parks and J. M. Heinrich: Further studies on the purine and pyrimidine metabolism of Tetrahymena. Proc. Nat. Acad. Sci. U.S.A. 36, 431–439 (1950).

    CAS  CrossRef  Google Scholar 

  • Kiesel, A.: Über das Verhalten der Nucleinbasen bei Verdunkelung von Pflanzen. Hoppe-Seylers Z. 67, 241–250 (1910).

    CrossRef  Google Scholar 

  • Klemperer, F. W.: Enzymatic oxidation of uric acid. J. of Biol. Chem. 160, 111–121 (1945).

    CAS  Google Scholar 

  • Klenow, H.: The enzymic oxidation and assay of adenine. Biochemic. J. 50, 404–407 (1952).

    CAS  Google Scholar 

  • Koch, A. L., F. W. Putnam and E. A. Evans: The purine metabolism of E. coli. J. of Biol. Chem. 197, 105–112 (1952).

    CAS  Google Scholar 

  • Korn, E. D., F. C. Chara-lampous and J. M. Buchanan: Enzymatic synthesis of 4-amino-5-imidazolecarboxamide riboside from 4-amino-5-imidazolecarboxamide and riboside-1-phosphate. J. Amer. Chem. Soc. 75, 3610–3611 (1953).

    CAS  CrossRef  Google Scholar 

  • Kornberg, A., J. Lieberman and E. S. Simms: Enzymatic synthesis of pyrimidine and purine nucleotides. I. Formation of 5-phosphoribosylpyro-phosphate. J. Amer. Chem. Soc. 76, 2027–2028 (1954).

    CAS  CrossRef  Google Scholar 

  • Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate. J. of Biol. Chem. 215, 389–402 (1955).

    Google Scholar 

  • Lagerkvist, U.: The isolation of nitrogen 1 and 3 as methylamine and ammonia from pyrimidine ribosides. Acta chem. scand. (Copenh.) 4, 543–548 (1950a).

    CAS  CrossRef  Google Scholar 

  • The degradation of pyrimidines for tracer work. Bicarbonate as a precursor for ribonucleic acid pyrimidines. Acta chem. scand. (Copenh.) 4, 1151–1152 (1950b).

    Google Scholar 

  • The incorporation of ammonia into uric acid in pigeons and ribonucleic acid pyrimidines in rats. Ark. Kemi (Stockh.) 5, 569–580 (1953a).

    Google Scholar 

  • The degradation of pyrimidines for tracer work. Acta chem. scand. (Copenh.) 7, 114–118 (1953b).

    Google Scholar 

  • Enzymic synthesis of xanthosine- and guanosine-5-phos-phate from inosine-5-phosphate. Acta chem. scand. (Copenh.) 9, 1028–1029 (1955).

    Google Scholar 

  • Lagerkvist, U., U. P. Reichard: Uracil, a precursor of polynucleotide pyrimidines in the mouse. Acta chem. scand. (Copenh.) 8, 361 (1954).

    CAS  CrossRef  Google Scholar 

  • Lagerkvist, U., P. Reichard U. G. Ehrensvärd: Aspartic acid as a precursor for ribonucleic acid pyrimidines. Acta chem. scand. (Copenh.) 5, 1212 (1951).

    CAS  CrossRef  Google Scholar 

  • Lara, E. J. S.: On the decomposition of pyrimidines by bacteria. I. Studies by means of the technique of simultaneous adaption. J. Bacter. 64, 271–277 (1952a).

    CAS  Google Scholar 

  • On the decomposition of pyrimidines by bacteria. II. Studies with cell-free enzyme preparations. J. Bacter. 64, 279–285 (1952 b).

    Google Scholar 

  • Laskowski, M.: The enzymes. Bd. I, Teil 2. In Sumner U. Myrbäck, S. 976. New York: Academic Press 1951.

    Google Scholar 

  • Leloir, L. F.: The uridine coenzymes. 3. Congrès Internat. de Biochimie, Bruxelles, Conférences et Rapports S. 154–162. 1955.

    Google Scholar 

  • Leloir, L. F., and C. E. Cardini: The biosynthesis of sucrose phosphate. J. of Biol. Chem. 214, 157–165 (1955).

    CAS  Google Scholar 

  • Levenberg, B., and J. M. Buchanan: Formylglycinamidine ribotide and 5-aminoimidazole ribotide-inter-mediates in the biosynthesis of inosinic acid de novo. J. Amer. Chem. Soc. 78, 504–505 (1956).

    CAS  CrossRef  Google Scholar 

  • Biosynthesis of the purines. XII. Structure, enzymatic synthesis and metabolism of 5-aminoimidazole ribotide. J. of Biol. Chem. 224, 1005–1018 (1957a).

    Google Scholar 

  • Biosynthesis of the purines. XIII. Structure, enzymatic synthesis and metabolism of (α-N-formyl)-glycin-amidine ribotide. J. of Biol. Chem. 224, 1019–1027 (1957b).

    Google Scholar 

  • Levenberg, B., S. C. Hartman and J. M. Buchanan: Precursors and intermediates in purine biosynthesis. Federat. Proc. 14, 243–244 (1955).

    Google Scholar 

  • Biosynthesis of the purines. X. Further studies in vitro on the metabolic origin of N atoms 1 and 3 of the purine ring. J. of Biol. Chem. 220, 379–390 (1956).

    Google Scholar 

  • Levenberg, B., and J. Melnick: Formylglycinamidine ribotide and 5-aminoimidazole ribotide-intermediates in purine biosynthesis. Federat. Proc. 15, 117–118 (1956).

    Google Scholar 

  • Levenberg, B., J. Melnick and J. M. Buchanan: Biosynthesis of the purines. XV. The effect of aza-L-serine and 6-diazo-5-oxo-L-norleucine on inosinic acid biosynthesis de novo. J. of Biol. Chem. 225, 163–176 (1957).

    CAS  Google Scholar 

  • Lieberman, J.: Enzymatic amination of uridine triphosphate to cytidine triphosphate. J. Amer. Chem. Soc. 77, 2661–2662 (1955a).

    CAS  CrossRef  Google Scholar 

  • Identification of adenosine tetraphosphate from horse muscle. J. Amer. Chem. Soc. 77, 3373–3375 (1955 b).

    Google Scholar 

  • Guanosine triphosphate in the conversion of inosinic acid to adenylic acid. Federat. Proc. 15, 301 (1956a).

    Google Scholar 

  • Involvement of guanosine triphosphate in the synthesis of adenylosuccinate from inosine-5′-phosphate. J. Amer. Chem. Soc. 78, 251 (1956b).

    Google Scholar 

  • Enzymatic amination of uridine triphosphate to cytidine triphosphate. J. of Biol. Chem. 222, 765–775 (1956c).

    Google Scholar 

  • Enzymatic synthesis of adenosine-5′-phosphate from inosine-5′-phosphate. J. of Biol. Chem. 223, 327–339 (1956d).

    Google Scholar 

  • Lieberman, J., L. Berger and W. Th. Gimenez: Crystallization of cytidine diphosphate choline from yeast. Science (Lancaster, Pa.) 124, 81 (1956).

    CAS  Google Scholar 

  • Lieberman, J., and A. Kornberg: Enzymic synthesis and breakdown of a pyrimidine, orotic acid. I. Dihydroorotic dehydrogenase. Biochim. et Biophysica Acta 12, 223–234 (1953a).

    CAS  CrossRef  Google Scholar 

  • Enzymatic synthesis and breakdown of orotic acid. Federat. Proc. 12, 239–240 (1953b).

    Google Scholar 

  • Enzymatic synthesis and breakdown of a pyrimidine, orotic acid. II. Dihydroorotic acid, ureidosuccinic acid, and 5-carboxy-methylhydantoin. J. of Biol. Chem. 207, 911–924 (1954).

    Google Scholar 

  • Enzymatic synthesis and breakdown of a pyrimidine, orotic acid. III. Ureidosuccinase. J. of Biol. Chem. 212, 909–920 (1955).

    Google Scholar 

  • Lieberman, J., A. Kornberg and E. S. Simms: Enzymatic synthesis of pyrimidine and purine nucleotides. I. Formation of 5-phosphoribosylpyrophosphate. J. Amer. Chem. Soc. 76, 2027–2028 (1954a).

    CrossRef  Google Scholar 

  • Enzymatic synthesis of pyrimidine and purine nucleotides. II. Orotidine-5-phosphate pyrophosphorylase and decarboxylase. J. Amer. Chem. Soc. 76, 2844–2845 (1954b).

    Google Scholar 

  • Enzymatic synthesis of pyrimidine and purine nucleotides. III. Formation of nucleoside diphosphates and triphosphates. J. Amer. Chem. Soc. 76, 3608–3609 (1954 c).

    Google Scholar 

  • Enzymatic synthesis of pyrimidine nucleotides. Orotidine-5′-phos-phate and uridine-5′.phosphate. J. of Biol. Chem. 215, 403–415 (1955).

    Google Scholar 

  • Lipton, S. H., S. A. Morell, A. Frieden and R. M. Bock: Uridine-5′-triphosphate. J. Amer. Chem. Soc. 75, 5449–5450 (1953).

    CAS  CrossRef  Google Scholar 

  • London, M., and P. B. Hudson: Purification and properties of solu-bilized uricase. Biochim. et Biophysica Acta 21, 290–298 (1956).

    CAS  CrossRef  Google Scholar 

  • Loring, H. S., and J. G. Pierce: Pyrimidine nucleosides and nucleotides as growth factors for mutant strains of Neurospora. J. of Biol. Chem. 153, 61–69 (1944).

    CAS  Google Scholar 

  • Love, S. H., and J. S. Gots: Accumulation of a new pentose-containing imidazole compound by a purine-requiring mutant of E. coli. Federat. Proc. 13, 503 (1954).

    Google Scholar 

  • Purine metabolism in bacteria. III. Accumulation of a new pentose-containing arylamine by a purine-requiring mutant of E. coli. J. of Biol. Chem. 212, 647–654 (1955).

    Google Scholar 

  • Lowenstein, J. M., and P. P. Cohen: The formation of carbamyl aspartic acid by rat liver preparations. J. Amer. Chem. Soc. 76, 5571–5572 (1954).

    CAS  CrossRef  Google Scholar 

  • Studies on the mechanism of carbamylaspartic acid synthesis. J. of Biol. Chem. 213, 689–696 (1955).

    Google Scholar 

  • Studies on the biosynthesis of carbamylaspartic acid. J. of Biol. Chem. 220, 57–70 (1956 a).

    Google Scholar 

  • Carbamylphosphate-aspartate transcarbamylase. Biochemic. J. 63, 11 P (1956b).

    Google Scholar 

  • Lowy, B. A., G. B. Brown and J. R. Rachele: A study of formaldehyde-C14D. as a one-C metabolite in the rat. J. of Biol. Chem. 220, 325–339 (1956).

    CAS  Google Scholar 

  • Lowy, B. A., J. Davoll and G. B. Brown: The utilization of purine nucleosides for nucleic acid synthesis in the rat. J. of Biol. Chem. 197, 591–600 (1952).

    CAS  Google Scholar 

  • Lukens, L. N., and J. M. Buchanan: A new intermediate in purine biosynthesis. Federat. Proc. 15, 305 (1956).

    Google Scholar 

  • Mac Laren, J. A.: The effects of certain purines and pyrimidines upon the production of riboflavin by Eremothecium ashbyii. J. Bacter. 63, 233–241 (1952).

    CAS  Google Scholar 

  • Magasanik, B., and M. S. Brooke: The accumulation of xanthosine by a guanineless mutant of Aerobacter aerogenes. J. of Biol. Chem. 206, 83–87 (1954).

    CAS  Google Scholar 

  • Magasanik, B., U. L. B. Gehring: Enzymatische Umwandlung von Inosin-5′-phosphat in Xanthinphosphat. Angew. Chem. 67, 662 (1955).

    Google Scholar 

  • Mahler, H. R., H. M. Baum and G. Hübscher: Enzymatic oxidation of urate. Science (Lancaster, Pa.) 124, 705–708 (1956).

    CAS  Google Scholar 

  • Mahler, H. R., G. Hübscher and H. Baum: Studies on uricase. I. Preparation, purification, and properties of a cupro-protein. J. of Biol. Chem. 216, 625–641 (1955).

    CAS  Google Scholar 

  • Mandel, H. G., and P.-E. Carĺ: The incorporation of guanine into nucleic acids of tumor-bearing mice. J. of Biol. Chem. 201, 335–341 (1953).

    CAS  Google Scholar 

  • Mannell, W. A., and R. J. Rossiter: 14C formate labelling of bases of nucleic acids in respiring slices of rat tissues. Biochemic. J. 61, 418–424 (1955).

    CAS  Google Scholar 

  • Markham, R.: Nucleic acids, their components and related compounds. In Paech-Tracey, Modern methods of plant analysis, S. 246–304. Berlin-Göttingen-Heidelberg: Springer 1955.

    Google Scholar 

  • Marrian, D. H.: A new adenine nucleotide. Biochim. et Biophysica Acta 12, 492 (1953).

    CAS  CrossRef  Google Scholar 

  • A new adenine nucleotide. Biochim. et Biophysica Acta 13, 278–281 (1954).

    Google Scholar 

  • Marrian, D. H., V. L. Spicer, M. E. Balis and G. B. Brown: Purine incorporation into pentose nucleotides of the rat. J. of Biol. Chem. 189, 533–541 (1951).

    CAS  Google Scholar 

  • Marsh, W. H.: On the biosynthesis of purines in the bird; r̂le of formate. J. of Biol. Chem. 190, 633–641 (1951).

    CAS  Google Scholar 

  • Marshall, R. O., L. M. Hall and P. P. Cohen: On the nature of the carbamyl group donor in citrulline biosynthesis. Biochim. et Biophysica Acta 17, 279–281 (1955).

    CAS  CrossRef  Google Scholar 

  • Mc Cluer, R. H., J. van Eys and O. Touster: The isolation of a uridine diphosphate acylaminosugar peptide from hemolytic streptococcal cells. Abstr. Minneapolis meeting, Amer. Chem. Soc, S. 65c. 1955.

    Google Scholar 

  • Mc Nutt jr. W. S.: The enzymically catalysed transfer of the deoxyribosyl group from one purine or pyrimidine to another. Biochemic. J. 50, 384–397 (1952).

    Google Scholar 

  • The direct contribution of adenine to the biogenesis of riboflavin by Eremothecium ashbyii. J. of Biol. Chem. 210, 511–519 (1954).

    Google Scholar 

  • Incorporation of the pyrimidine ring of adenine into the isoalloxazine ring of riboflavine. Science (Lancaster, Pa.) 122, 878 (1955).

    Google Scholar 

  • The incorporation of the pyrimidine ring of adenine into the isoalloxazine ring of riboflavin. J. of Biol. Chem. 219, 365–373 (1956).

    Google Scholar 

  • Melnick, J., and J. M. Buchanan: Biosynthesis of the purines. XIV. Conversion of (α-N-formyl) glycinamide ribotide to (α-N-formyl)-glycinamidine ribotide; purification and requirements of the enzyme system. J. of Biol. Chem. 225, 157–162 (1957).

    CAS  Google Scholar 

  • Michelson, A. M., W. Drell and H. K. Mitchell: A new ribose nucleoside from Neurospora “Orotidine”. Proc. Nat. Acad. Sci. U.S.A. 37, 396–399 (1951).

    CAS  CrossRef  Google Scholar 

  • Miller, A., and H. Waelsch: The transfer of the formimino group of formamidinoglutaric acid to tetrahydrofolic acid. Arch. of Biochem. a. Biophysics 63, 263–266 (1956).

    CAS  CrossRef  Google Scholar 

  • Miller, Z., and L.Warren: Studies on the metabolism of 4-amino-5-imidazolecarboxamide in vitro. I. Utilization by normal tissue preparations. J. of Biol. Chem. 205, 331–343 (1953).

    CAS  Google Scholar 

  • Mitchell, H. K., and M. B. Houlahan: Adenine-requiring mutants of Neurospora crassa. Federat. Proc. 5, 370–375 (1946).

    CAS  Google Scholar 

  • Investigations on the biosynthesis of pyrimidine nucleosides in Neurospora. Federat. Proc. 6, 506–509 (1947).

    Google Scholar 

  • Mitchell, H. K., M. B. Houlahan and J. F. Nyc: The accumulation of orotic acid by a pyrimidineless mutant of Neurospora. J. of Biol. Chem. 172, 525–529 (1948).

    CAS  Google Scholar 

  • Moat, A. G., and C. N. Wilkins: Biotin in purine biosynthesis. Federat. Proc. 15, 605 (1956).

    Google Scholar 

  • Moat, A. G., Ch. N. Wilkins and H. Friedman: A rôle for biotin in purine biosynthesis. J. of Biol. Chem. 223, 985–991 (1956).

    CAS  Google Scholar 

  • Moore, A. M., and J. B. Boylen: Utilization of uracil by a strain of E. coli. Arch. of Biochem. a. Biophysics 54, 312–317 (1955).

    CAS  CrossRef  Google Scholar 

  • Moss, J. A. de, S. M. Genuth and G. D. Novelli: The enzymatic activation of amino acids via their acyl-adenylate derivatives. Proc. Nat. Acad. Sci. U.S.A. 42, 325–332 (1956).

    CrossRef  Google Scholar 

  • Moyed, H. S., and B. Magasanik: Biosynthesis of nucleic acid guanine: the enzymic conversion of xanthosine-5′-phosphate to guanosine-5′-phosphate. Federat. Proc. 15, 318 (1956).

    Google Scholar 

  • Munch-Petersen, A.: Metabolism of uridine triphosphate in yeast. Acta chem. scand. (Copenh.) 8, 1102–1103 (1954).

    CrossRef  Google Scholar 

  • Investigations of the properties and mechanism of the uridine diphosphate glucose pyrophosphorylase reaction. Acta chem. scand. (Copenh.) 9, 1523–1536 (1955a).

    Google Scholar 

  • Note on the transphosphorylation reaction between uridine monophosphate and adenosine triphosphate. Acta chem. scand. (Copenh). 9, 1537–1539 (1955b).

    Google Scholar 

  • Enzymatic synthesis and pyrophosphorolysis of guanosine diphosphate mannose. Arch. of Biochem. a. Biophysics 55, 592–593 (1955 c).

    Google Scholar 

  • Park, J. T.: Uridine-5′-pyrophosphate derivatives. III. Amino acid containing derivatives. J. of Biol. Chem. 194, 897–904 (1952).

    CAS  Google Scholar 

  • Park, J. T., and J. L. Strominger: Mode of action of penicillin. Biochemical basis for the mechanism of action of penicillin and for its selective toxicity. Science (Lancaster, Pa.) 125, 99–101 (1957).

    CAS  Google Scholar 

  • Paul, K. G., U. Y. Avi-Dor: The oxidation of uric acid with horse radish peroxidase. Acta chem. scand. (Copenh.) 8, 637–648 (1954).

    Google Scholar 

  • Peabody, R. A.: Activation of formate for purine synthesis. Federat. Proc. 12, 254 (1953).

    Google Scholar 

  • Peabody, R. A., D. A. Goldthwait and G. R. Greenberg: The structure of glycinamide ribotide. J. of Biol. Chem. 221, 1071–1081 (1956).

    CAS  Google Scholar 

  • Pierce, J. G., and H. S. Loring: Growth requirements of a purine-deficient strain of Neurospora. J. of Biol. Chem. 160, 409–415 (1945).

    CAS  Google Scholar 

  • Purine and pyrimidine antagonism in a pyrimidine-deficient mutant of Neurospora. J. of Biol. Chem. 176, 1131–1140 (1948).

    Google Scholar 

  • Plentl, A. A., and R. Schoen-heimer: Studies in the metabolism of purines and pyrimidines by means of isotopic nitrogen. J. of Biol. Chem. 153, 203–217 (1944).

    CAS  Google Scholar 

  • Pomper, S.: Purine-requiring and pyrimidine-requiring mutants of Saccharomyces cerevisiae. J. Bacter. 63, 707–713 (1952).

    CAS  Google Scholar 

  • Pontis, H. G.: Uridine diphosphate acetylgalactosamine in liver. J. of Biol. Chem. 216, 195–202 (1955).

    CAS  Google Scholar 

  • Potter, R. L., and S. Schlesinger: The occurrence of deoxy-pyrimidine nucleotides in the acid-soluble extract of thymus. J. Amer. Chem. Soc. 77, 6714–6715 (1955).

    CAS  CrossRef  Google Scholar 

  • Praetorius, E.: The enzymatic conversion of uric acid spectrophotometric analysis. Biochim. et Biophysica Acta 2, 602–613 (1948).

    CAS  CrossRef  Google Scholar 

  • Prusoff, W. H., and L. G. Lajtha: A new acid-stable component of DNA derived from formate C14. Federat. Proc. 15, 331 (1956).

    Google Scholar 

  • Prusoff, W. H., L. G. Lajtha and A. D. Welch: Effect of the deoxyriboside of 6-azathy-mine (azathymidine) on the biosynthesis of deoxyribonucleic acid by bone marrow and neoplastic cells (in vitro). Biochim. et Biophysica Acta 20, 209–214 (1956).

    CAS  CrossRef  Google Scholar 

  • Purucker, H.: Untersuchungen über die Entstehung des Allantoins in der Pflanze. Planta (Berl.) 16, 277–331 (1932).

    CAS  CrossRef  Google Scholar 

  • Rabinowitz, J. C.: Purine fermentation by Clostridium cylindrosporum. III. 4-Amino-5-imidazolecarboxylic aeid and 4-aminoimidazole. J. of Biol. Chem. 218, 175–187 (1956).

    CAS  Google Scholar 

  • Rabinowitz, J. C, and H. A. Barker: Intermediates in purine decomposition by Clostridium cylindrosporum. Federat. Proc. 12, 255–256 (1953).

    Google Scholar 

  • Purine fermentation by Clostridium cylindrosporum. I. Tracer experiments on the fermentation of guanine. J. of Biol. Chem. 218, 147–160 (1956a).

    Google Scholar 

  • Purine fermentation by Clostridium cylindrosporum. II. Purine transformations. J. of Biol. Chem. 218, 161–173 (1956b).

    Google Scholar 

  • Rabinowitz, J. C., and H. A. Pricer: Isolation of an intermediate in xanthine decomposition by Clostridium cylindrosporum. Federat. Proc. 13, 278 (1954).

    Google Scholar 

  • Rabinowitz, J. C., and W. E. Pricer: Formation and degradation of 4-amino-imidazole by extracts of Clostridium cylindrosporum. Federat. Proc. 14, 266 (1955).

    Google Scholar 

  • Purine fermentation by Clostridium cylindrosporum. IV. 4-Ureido-5-imidazolecarboxylic acid. J. of Biol. Chem. 218, 189–199 (1956a).

    Google Scholar 

  • ATP-formation accompanying formimino-glycine utilization. J. Amer. Chem. Soc. 78, 1513–1514 (1956b).

    Google Scholar 

  • Purine fermentation by Clostridium cylindrosporum. V. Form-immoglycine. J. of Biol. Chem. 222, 537–554 (1956c).

    Google Scholar 

  • The enzymatic synthesis of N10-formyltetrahydrofolic acid and its rôle inATP-formation during formiminoglycine degradation. J. Amer. Chem. Soc. 78, 4176–4178 (1956d).

    Google Scholar 

  • Formimino-tetrahydrofolic acid and methe-nyltetrahydrofolic acid as intermediates in the formation of N10-formyltetrahydrofolic acid. J. Amer. Chem. Soc. 78, 5702–5704 (1956e).

    Google Scholar 

  • Radin, N. S., and H. A. Barker: Enzymatic reactions in purine decomposition by preparations of Clostridium acidi-urici. Proc. Nat. Acad. Sci. U.S.A. 39, 1196–1204 (1953).

    CAS  CrossRef  Google Scholar 

  • Ratner, S., and A. Pappas: Biosynthesis of urea. I. Enzymatic mechanism of arginine synthesis from citrulline. J. of Biol. Chem. 179, 1183–1212 (1949).

    CAS  Google Scholar 

  • Ratner, S., B. Petrack and O. Rochovansky: Biosynthesis of urea. V. Isolation and properties of argininosuccinic acid. J. of Biol. Chem. 204, 95–113 (1953).

    CAS  Google Scholar 

  • Rege, D. V., and A. Sreenivasan: Influence of folic acid and vitamin B12 on the impairment of nucleic acid synthesis in Lactobacillus casei by aureomycin. Nature (Lond.) 173, 728–729 (1954a).

    CAS  CrossRef  Google Scholar 

  • Conversion of uracil to thymine by strains of Bacillus subtilis. J. of Biol. Chem. 208, 471–476 (1954b).

    Google Scholar 

  • Reichard, P.: The function of orotic acid in the biogenesis of pyrimidines in slices from regenerating liver. J. of Biol. Chem. 197, 391–398 (1952).

    CAS  Google Scholar 

  • Enzymatic synthesis of ureidosuccinic acid in rat liver mitochondria. Acta chem. scand. (Copenh.) 8, 795–805 (1954a).

    Google Scholar 

  • Enzymatic synthesis of ureidosuccinic acid. Acta chem. scand. (Copenh.) 8, 1102–1103 (1954b).

    Google Scholar 

  • Biosynthesis of purines and pyrimidines. In Chargaff and Davidson: The Nucleic Acids, Bd. II, S. 277–308. New York: Academic Press Inc. 1955.

    Google Scholar 

  • Reichard, P., u. S. Bergström: Synthesis of polynucleotides in slices from regenerating liver. Acta chem. scand. (Copenh.) 5, 190–191 (1951).

    CAS  CrossRef  Google Scholar 

  • Reichard, P., and B. Estborn: Preparation of desoxyribonucleosides from thymonucleic acid. Acta chem. scand. (Copenh.) 4, 1047–53 (1950).

    CAS  CrossRef  Google Scholar 

  • Utilization of desoxyribosides in the synthesis of polynucleotides. J. of Biol. Chem. 188, 839–846 (1951).

    Google Scholar 

  • Reichard, P., u. G. Hanshoff: Synthesis of ureidosuccinic acid with soluble enzymes from liver mitochondria and E. coli. Acta chem. scand. (Copenh.) 9, 519–530 (1955).

    CAS  CrossRef  Google Scholar 

  • Reichard, P., u. U. Lagerkvist: The biogenesis of orotic acid in liver slices. Acta chem. scand. (Copenh.) 7, 1207–1217 (1953).

    CAS  CrossRef  Google Scholar 

  • Reichard, P., L. H. Smith U. G. Hanshoff: Enzymic synthesis of ureidosuccinic acid from citrulline via compound x and carbamyl phosphate. Acta chem. scand. (Copenh.) 9, 1010–1012 (1955).

    CAS  CrossRef  Google Scholar 

  • Remy, Ch. N., W. T. Remy and J. M. Buchanan: Biosynthesis of the purines. VIII. Enzymatic synthesis and utilization of α-5-phospho-ribosylpyrophosphate. J. of Biol. Chem. 217, 885–895 (1955).

    CAS  Google Scholar 

  • Reynolds, E. S., J. Lieberman and A. Kornberg: The metabolism of orotic acid in aerobic bacteria. J. Bacter. 69, 250–255 (1955).

    CAS  Google Scholar 

  • Richert, W. W., and A. W. Westerfeld: Purine metabolism in rat liver homogenates. J. of Biol. Chem. 184, 203–209 (1950).

    CAS  Google Scholar 

  • Rogers, H. J.: Importance of pyrimidine derivatives in the growth of group streptococci upon a simplified medium. Nature (Lond.) 153, 251 (1944).

    CAS  CrossRef  Google Scholar 

  • Rogers, L. L., and W. Shive: Biochemical transformations as determined by competitive analogue-metabolite growth inhibitions. VII. Relationship of purines and thymine to folic acid. J. of Biol. Chem. 172, 751–758 (1948).

    CAS  Google Scholar 

  • Roll, P. M., H. Wetnfeld and E. Carroll: The utilization of nucleotides by the mammal. V. Metabolism of pyrimidine nucleotides. J. of Biol. Chem. 220, 455–465 (1956).

    CAS  Google Scholar 

  • Rutman, R. J., A. Cantarow and K. E. Paschkis: The catabolism of uracil in vivo and in vitro. J. of Biol. Chem. 210, 321–329 (1954).

    CAS  Google Scholar 

  • Sacks, J.: Adenosine pentaphosphate from commercial ATP. Biochim. et Biophysica Acta 16, 436 (1955).

    CAS  CrossRef  Google Scholar 

  • Sagers, R. D., and J. V. Beck: Studies on the formation of formate, glycine, serine, pyruvate and acetate from purines by Clostridium acidi-urici. J. Bacter. 72, 199–208 (1956).

    CAS  Google Scholar 

  • Sagers, R. D., and J. V. Beck: Tracer studies on pyruvate formation from purines by Clostridium acidi-urici. Bacter. Proc. 1955, 136 (1955).

    Google Scholar 

  • Sagers, R. D., J. V. Beck, W. Gruber and I. C. Gunsalus: A tetrahydro-folic acid linked formimino transfer enzyme. J. Amer. Chem. Soc. 78, 694–695 (1956).

    CAS  Google Scholar 

  • Schitten-helm, A.: Über die Fermente des Nucleinstoffwechsels in Lupinenkeimlingen. Hoppe-Seylers Z. 63, 289 (1909).

    CrossRef  Google Scholar 

  • Schmitz, H.: Embau von 14C aus Glucose-l-14C in die freien und gebundenen Nucleotide. Angew. Chem. 66, 110 (1954).

    CrossRef  Google Scholar 

  • Schmitz, H., R. B. Hurlbert and V. R. Potter: Nucleotide metabolism. III. Mono-, di- and triphosphates of cytidine, guanosine and uridine. J. of Biol. Chem. 209, 41–54 (1954).

    CAS  Google Scholar 

  • Schmitz, H., u. J. J. Saukkonen: Vergleichende Untersuchungen über den Bestand an Adenosin-Guanosin-, Cytidin- und Uridin-5′-mono- und Polyphosphorsäureestem ruhender und wachsender Gewebe. 3. Congrès Internat. de Biochimie Bruxelles, Résumés des Communications, S. 72. 1955.

    Google Scholar 

  • Schuler, B.: Die Urikolyse. Hoppe-Seylers Z. 208, 237–248 (1932).

    CAS  CrossRef  Google Scholar 

  • Schuler, B., U. B. Reindel: Die Urikolyse. III. Mitt. Hoppe-Seylers Z. 215, 258–266 (1933).

    CAS  CrossRef  Google Scholar 

  • Schulman, M. P.: Purines and pyrimidines. In Greenberg, Chemical pathways of metabolism, Bd. II, S. 223–261. New York: Academic Press Inc. 1954.

    Google Scholar 

  • Schulman, M. P., and S. J. Badger: Pyrimidine biosynthesis from citrulline ureide carbon. Federat. Proc. 13, 292 (1954).

    Google Scholar 

  • Schulman, M. P., and J. M. Buchanan: Mechanism of hypoxanthine synthesis from glycine, formate, and 4-amino-5-imidazolecarboxamide. Federat. Proc. 10, 244–245 (1951).

    Google Scholar 

  • Biosynthesis of the purines. II. Metabolism of 4-amino-5-imidazolecarboxamide in pigeon liver. J. of Biol. Chem. 196, 513–521 (1952).

    Google Scholar 

  • Schulman, M. P., J. M. Buchanan and C. S. Miller: Precursors of purines. Federat. Proc. 9, 225 (1950).

    Google Scholar 

  • Schulman, M. P., J. C. Sonne and J. M. Buchanan: Biosynthesis of the purines. I. Hypoxanthine formation in pigeon liver homogenates and extracts. J. of Biol. Chem. 196, 499–512 (1952).

    CAS  Google Scholar 

  • Shemin, D., and D. Rittenberg: On the utilization of glycine for uric acid synthesis in man. J. of Biol. Chem. 167, 875–876 (1947).

    CAS  Google Scholar 

  • Shive, W.: The utilization of antimetabolites in the study of biochemical processes in living organisms. Ann. New York Acad. Sci. 52, 1212–1234 (1950).

    CAS  CrossRef  Google Scholar 

  • B-vitamins involved in single carbon unit metabolism. Federat. Proc. 12, 639–646 (1953).

    Google Scholar 

  • Shive, W., W. W. Ackermann, M. Gordon, M. E. Getzendaner and R. E. Eakin: 5(4)-amino-4(5)-imidazolecarboxamide, a precursor of purines. J. Amer. Chem. Soc. 69, 725–726 (1947).

    CAS  CrossRef  Google Scholar 

  • Siminovitch, L., and A. F. Graham: Synthesis of nucleic acids in E. coli. Canad. J. Microbiol. 1, 721–732 (1955).

    CAS  CrossRef  Google Scholar 

  • Slotnick, I. J.: Dihydrouracil as a growth factor for a mutant strain of E. coli. J. Bacter. 72, 276–277 (1956).

    CAS  Google Scholar 

  • Slotnick, I. J., and M. G. Sevag: An investigation of the natural occurrence of 4-amino-5-imidazolecarboxamide in several strains of E. coli. Arch. of Biochem. a. Biophysics 57, 491–495 (1955).

    CAS  CrossRef  Google Scholar 

  • Smith, E., and G. T. Mills: Biosynthesis of 14C-labelled UDPG and uridine diphosphateacetylglucosamine (UDPAG). Biochemic. J. 64, 52 P (1956).

    Google Scholar 

  • Smith, E. E. B., G. T. Mills and E. M. Harper: The isolation of uridine Pyrophosphogalacturonic acid from a type I pneumococcus. Biochim. et Biophysica Acta 23, 662–663 (1957).

    CAS  CrossRef  Google Scholar 

  • Smith, J. D., and O. B. Dunn: The occurrence of 6-methyl-aminopurine in deoxyribonucleic acids and its relation to nucleic acid structure and function. 3. Congrès Internat. de Biochimie Bruxelles. Résumés des Communications, S. 24. 1955.

    Google Scholar 

  • Smith jr. L. H., and D. Stetten jr.: Biosynthesis of orotic acid from citrulline. J. Amer. Chem. Soc. 76, 3864–3865 (1954).

    CAS  CrossRef  Google Scholar 

  • Sonne, J. C, J. M. Buchanan and A. M. Delluva: Biological precursors of uric acid carbon. J. of Biol. Chem. 166, 395–396 (1946).

    CAS  Google Scholar 

  • Biological precursors of uric acid. J. of Biol. Chem. 173, 69–79 (1948).

    Google Scholar 

  • Sonne, J. C, and L. Lin: Nitrogen precursors of hypoxanthine. Federat. Proc. 11, 290 (1952).

    Google Scholar 

  • Sonne, J. C, J. Lin and J. M. Buchanan: The rôle of N15 glycine, glutamine, aspartate and glutamate in hypoxanthine synthesis. J. Amer. Chem. Soc. 75, 1516–1517 (1953).

    CAS  CrossRef  Google Scholar 

  • Spicer, D. S., K. V. Liebert, L. D. Wright and J. W. Huff: Study of ureidosuccinic acid and related compounds in pyrimidine synthesis by Lactobacillus bulgaricus O9. Proc. Soc. Exper. Biol. a. Med. 79, 587–588 (1952).

    CAS  Google Scholar 

  • Stegwee, D.: Some aspects of purine metabolism in mutants of Ophiostoma multiannulatum. Amsterdam: North-Holland Publishing Company 1955.

    Google Scholar 

  • Betrachtungen über den Purinstoffwechsel in Mutanten von Ophiostoma multiannulatum. Acta bot. néerl. 4, 575–636 (1955).

    Google Scholar 

  • Steinert, M.: Incorporation de bases puriques marquées par les embryons de Batraciens. Biochim. et Biophysica Acta 18, 511–515 (1955).

    CAS  CrossRef  Google Scholar 

  • Stetten, M. R., and C. L. Fox jr.: An amine formed by bacteria during sulfonamide bacteriostasis. J. of Biol. Chem. 161, 333–349 (1945).

    CAS  Google Scholar 

  • Stewart, R. C., and M. G. Sevag: 4-Amino-5-imidazolecarboxamide; rôle of carbohydrates as critical factors for its accumulation. Arch. of Biochem. a. Biophysics 41, 9–13 (1952).

    CAS  CrossRef  Google Scholar 

  • Storey, I. D. E., and G. J. Dutton: Uridine compounds in glucuronic acid metabolism. II. The isolation and structure of uridine-diphosphate-glucuronic acid. Biochemic. J. 59, 279–288 (1955a).

    CAS  Google Scholar 

  • Uridine diphosphate glucuronic acid. 3. Congrès Internat. de Biochimie, Bruxelles. Conférences et Rapports, S. 162–163. 1955b.

    Google Scholar 

  • Strecker, A.: Bildung von Glykokoll aus Harnsäure. Ann. Chem. u. Pharm. 146, 142–144 (1868).

    CrossRef  Google Scholar 

  • Strominger, J. L.: Uridine diphosphate acetylglucosamine phosphate and uridine diphosphate acetylgalactosamine sulfate. Biochim. et Biophysica Acta 17, 283–285 (1955).

    CAS  CrossRef  Google Scholar 

  • Strominger, J. L., L. A. Heppel and E. S. Maxwell: A new mechanism for dephosphorylation of nucleoside di- and triphosphates. I. Transphosphorylation between nucleoside monophosphates and nucleoside triphosphates. Arch. of Biochem. a. Biophysics 52, 488–491 (1954).

    CrossRef  Google Scholar 

  • Sumi, M.: Über die chemischen Bestandteile der Sporen von Aspergillus oryzae. Biochem. Z. 195, 161–174 (1928).

    CAS  Google Scholar 

  • Sutton, W. B., F. Schlenk and C. H. Werkman: Glycine as a precursor of bacterial purines. Arch, of Biochem. a. Biophysics 32, 85–88 (1951).

    CAS  CrossRef  Google Scholar 

  • Sutton, W. B., and C. H. Werkman: The carbon and nitrogen precursors of bacterial purines. Arch. of Biochem. a. Biophysics 47, 1–7 (1953).

    CAS  CrossRef  Google Scholar 

  • Tabor, H., and J. C. Rabinowitz: Intermediate steps in the formylation of tetrahydrofolic acid by formiminoglutamic acid in rabbit liver. J. Amer. Chem. Soc. 78, 5705–5706 (1956).

    CAS  CrossRef  Google Scholar 

  • Taha, E. E. M., L. Storck-Krieg U. W. Franke: Purinoxydierende Fermente aus Schimmelpilzen. IV. Arch. Mikrobiol. 23, 67–78 (1955).

    CAS  CrossRef  Google Scholar 

  • Totter, J. R.: Incorporation of isotopic formate into the thymine of bone marrow deoxyribonucleic acid in vitro. J. Amer. Chem. Soc. 76, 2196–2197 (1954).

    CAS  CrossRef  Google Scholar 

  • Totter, J. R., E. Volkin and C. E. Carter: Incorporation of isotopic formate into the nucleotides of ribo- and desoxyribonucleic acid. J. Amer. Chem. Soc. 73, 1521–1522 (1951).

    CAS  CrossRef  Google Scholar 

  • Tracey, M. V.: A. The occurrence of urea and its precursors in plants. I. Intermediates in purine catabolism. In Paech-Tracey, Moderne Methoden der Pflanzenanalyse, Bd. IV: Urea and ureides, S. 119–141. 1955.

    Google Scholar 

  • Ushiba, D., and B. Magasanik: Effects of auxotrophic mutations on the adaptation to inositol degradation in Aerobacter aerogenes. Proc. Soc. Exper. Biol. a. Med. 80, 626–632 (1952).

    CAS  Google Scholar 

  • Wahba, A. J., J. M. Ravel and W. Sheve: Involvement of aspartic acid in purine biosynthesis. Biochim. et Biophysica Acta 14, 569 (1954).

    CAS  CrossRef  Google Scholar 

  • Walker, E. B.: Arginosuccinic acid from Chlorella. Proc. Nat. Acad. Sci. U.S.A. 38, 561–566 (1952).

    CAS  CrossRef  Google Scholar 

  • Walker, E. B., and J. Myers: The formation of arginosuccinic acid from arginine and fumarate. J. of Biol. Chem. 203, 143–152 (1953).

    CAS  Google Scholar 

  • Wang, T. P., and J. O. Lampen: Metabolism of pyrimidines by a soil Bacterium. J. of Biol. Chem. 194, 775–783 (1952).

    CAS  Google Scholar 

  • Uracil oxidase and the isolation of barbituric acid from uracil oxidation. J. of Biol. Chem. 194, 785–791 (1952).

    Google Scholar 

  • Warren, L. and J. G. FLAKS: Single- carbon transferreactions and purine biosynthesis. Federat. Proc. 15, 379 (1956).

    Google Scholar 

  • Webb, M., and W. J. Nickerson: Differential reversal of inhibitory effects of folic acid analogues on growth, division and deoxyribonucleic acid synthesis of microorganisms. J. Bacter. 71, 140–148 (1956).

    CAS  Google Scholar 

  • Weed, L. L.: Incorporation of radioactive orotic acid into the nucleic acid pyrimidines of animal and human tumors. Cancer Res. 11, 470–473 (1951).

    CAS  Google Scholar 

  • Weed, L. L., and S. S. Cohen: The utilization of host pyrimidines in the synthesis of bacterial viruses. J. of Biol. Chem. 192, 693–700 (1951).

    CAS  Google Scholar 

  • Weed, L. L., M. Edmonds and D. W. Wilson: Conversion of radioactive orotic acid into pyrimidine nucleotides of nucleic acid by slices of rat liver. Proc. Soc. Exper. Biol. a. Med. 75, 192–193 (1950).

    CAS  Google Scholar 

  • Weed, L. L., and D. W. Wilson: The incorporation of C14-orotic acid into nucleic acid pyrimidines in vitro. J. of Biol. Chem. 189, 435–442 (1951).

    CAS  Google Scholar 

  • Studies of pyrimidine nucleotides with orotic acid-2-C14 and P32. J. of Biol. Chem. 202, 745 (1953).

    Google Scholar 

  • Studies on precursors of pyrimidines of nucleic acid. J. of Biol. Chem. 207, 439–442 (1954).

    Google Scholar 

  • Weinfeld, H., P. M. Roll and G. B. Brown: The utilization of nucleotides by the mammal. III. Isomeric purine nucleotides labeled with C14. J. of Biol. Chem. 213, 523–531 (1955).

    CAS  Google Scholar 

  • Weiss, S. B., S. W. Smith and E. P. Kennedy: Net synthesis of lecithin in an isolated enzyme system. Nature (Lond.) 178, 594–595 (1956).

    CAS  CrossRef  Google Scholar 

  • Weygand, F., A. Wacker U. H. Dellweg: Stoff-wechseluntersuchungen bei Mikroorganismen mit Hilfe radioaktiver Isotope. IV. Umwandlung von Guanin in Adenin durch Lactobacillus leichmannii 313, untersucht mit Guanin-(8-14C) und Adenin-(14C). Z. Naturforsch. 7b, 156–161 (1952).

    Google Scholar 

  • Weygand, F., A. Wacker, A. Trebst U. P. Swoboda: Über die Biosynthese des Thymins bei Bakterien. Z. Naturforsch. 9b, 764–769 (1954).

    Google Scholar 

  • Weygand, F., u. M. Waldschmidt: Über die Biosynthese des Leueopterins, untersucht mit 14C-markierten Verbindungen am Kohlweißling. Angew. Chem. 67, 328 (1955).

    CAS  CrossRef  Google Scholar 

  • Wheeler, Gl. P., and H. E. Skipper: Incorporation of 2,6-diaminopurine into the nucleoside phosphates of the mouse. J. of Biol. Chem. 205, 749–754 (1953a).

    CAS  Google Scholar 

  • Chromatographic evidence for incorporation of 2,6-diaminopurine into nucleoside phosphates of the mouse. Federat. Proc. 12, 289 (1953b).

    Google Scholar 

  • Whiteley, H. R.: The fermentation of purines by Micrococcus aerogenes. J. Bacter. 63, 163–175 (1952).

    CAS  Google Scholar 

  • Whiteley, H. R., and H. C. Douglas: The fermentation of purines by Micrococcus lactilyticus. J. Bacter. 61, 605–616 (1951).

    CAS  Google Scholar 

  • Whitfeld, P. R.: Accumulation of adenine-succinic acid by an adenine-requiring mutant of Neurospora crassa. Arch. of Biochem. a. Biophysics 65, 585–586 (1956).

    CAS  CrossRef  Google Scholar 

  • Wiechowski, W.: Die Produkte der fermentativen Harnsäurezersetzung durch tierische Organe. Beitr. chem. Physiol. u. Path. 9, 295–310 (1907).

    CAS  Google Scholar 

  • Wieland, O. P., J. Avener, E. M. Boggiano, N. Bohonos, B. L. Huchings and J. H. Williams: Orotic acid in the nutrition of a strain of Lactobacillus bulgaricus. J. of Biol. Chem. 186, 737–742 (1950).

    CAS  Google Scholar 

  • Williams, W. J.: Verwendung von 4-Amino-5-imidazol-carboxamid zur Purinsynthese durch Hefe. Federat. Proc. 10, 270 (1951).

    Google Scholar 

  • Williams, W. J., and J. M. Buchanan: Biosynthesis of the purines. IV. The metabolism of 4-amino-5-imidazolecarboxamide in yeast. J. of Biol. Chem. 202, 253–262 (1953).

    CAS  Google Scholar 

  • Woods, L., J. M. Ravel and W. Shive: Relationship of aspartic acid to pyrimidine biosynthesis. J. of Biol. Chem. 209, 559–567 (1954).

    CAS  Google Scholar 

  • Woolley, D. W., and R. B. Pringle: Formation of 4-amino-5-carboxamideimidazole during growth of E. coli in the presence of 4-amino-pteroylglutamic acid. J. Amer. Chem. Soc. 72, 634–635 (1950).

    CAS  CrossRef  Google Scholar 

  • Wright, L. D., Ch. A. Driscoll, Ch. L. Miller and H. R. Skeggs: Dihydroorotic acid in nutrition of lactic acid bacteria. Proc. Soc. Exper. Biol. a. Med. 84, 716–719 (1953).

    CAS  Google Scholar 

  • Wright, L. D., J. W. Huff, H. R. Skeggs, K. A. Valentik and D. K. Bosshardt: Orotic acid, a growth factor for Lactobacillus bulgaricus. J. Amer. Chem. Soc. 72, 2312–2313 (1950).

    CAS  CrossRef  Google Scholar 

  • Wright, L. D., C. S. Miller, H. R. Skeggs, J. W. Huff, L. L. Weed and D. W. Wilson: Biological precursors of the pyrimidines. J. Amer. Chem. Soc. 73, 1898–1899 (1951).

    CAS  CrossRef  Google Scholar 

  • Wright, L. D., K. A. Valentik, D. O. Spicer, J. W. Huff and H. R. Skeggs: Orotic acid and related compounds in the nutrition of Lactobacillus. Proc. Soc. Exper. Biol. a. Med. 75, 293–297 (1950).

    CAS  Google Scholar 

  • Wu, R., and W. Wilson: Studies of the biosynthesis of orotic acid. J. of Biol. Chem. 223, 195–205 (1956).

    CAS  Google Scholar 

  • Wulff, C: Beiträge zur Kenntnis der Nucleinbasen. Z. physiol. Chem. 17, 468–510 (1893).

    Google Scholar 

  • Wyatt, G. R., and S. S. Cohen: A new pyrimidine base from bacteriophage nucleic acids. Nature (Lond.) 170, 1072–1073 (1952).

    CAS  CrossRef  Google Scholar 

  • Yates, R. A., and A. B. Pardee: Pyrimidine biosynthesis in E. coli. J. of Biol. Chem. 221, 743–756 (1956a).

    CAS  Google Scholar 

  • Control of pyrimidine biosynthesis in E. coli by a feed-back mechanism. J. of Biol. Chem. 221, 757–770 (1956b).

    Google Scholar 

  • Ziegler-Günder, I., H. Simon U. A. Wacker: Über den Stoffwechsel von Guanin (2-14C) und Hypoxanthin (8-14C) bei Amphibien. Z. Naturforsch. 11b, 82–85 (1956).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Böttger, I. (1958). Stoffwechsel der Purine und Pyrimidine. In: , et al. Der Stickstoffumsatz / Nitrogen Metabolism. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94733-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94733-9_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94734-6

  • Online ISBN: 978-3-642-94733-9

  • eBook Packages: Springer Book Archive