Abrams, R.: Purine synthesis in a purine-requiring yeast mutant. J. Amer. Chem. Soc. 73, 1888–1889 (1951a).
CAS
CrossRef
Google Scholar
Some factors influencing nucleic acid purine reneval in the rat. Arch. of Biochem. a. Biophysics 33, 436–447 (1951b).
Google Scholar
Observations on pentose nucleic acid composition in sea urchin embryos and in mammalian cell fractions. Phosphorus Metabolism, ed. by Mc
Elroy and Glass, Bd. II, S. 335. Baltimore: John Hopkins Press 1952.
Google Scholar
Stability of the adenine ring structure in the rat. Biochim. et Biophysica Acta 21, 439–440 (1956).
Google Scholar
Abrams, R., and M. Bentley: Transformation of inosinic acid to adenylic and guanylic acids in a soluble enzyme system. J. Amer. Chem. Soc. 77, 4179–4180 (1955a).
CAS
CrossRef
Google Scholar
Biosynthesis of nucleic acid purines. II. Rôle of hypoxanthine and xanthine compounds. Arch. of Biochem. a. Biophysics 58, 109–118 (1955b).
Google Scholar
Biosynthesis of adenine and guanine nucleotides from inosinic acid in a soluble enzyme system. III. Congrès internat. de Biochimie Bruxelles, résumés des communications, 40. 1955 c.
Google Scholar
Biosynthesis of nucleic acid purines. I. Formation of guanine from adenine compounds in bone marrow extracts. Arch, of Biochem. a. Biophysics 56, 184–195 (1955d).
Google Scholar
Abrams, R., and J. M.Goldinger: Utilization of purines for nucleic acid synthesis in bone marrow slices. Arch. of Biochem. 30, 261–268 (1951).
CAS
Google Scholar
Formation of nucleic acid purines from hypoxanthine and formate in bone marrow slices. Arch. of Biochem. a. Biophysics 35, 243–247 (1952).
Google Scholar
Abrams, R., E. Hammarsten and D. Shemin: Glycine as a precursor of purines in yeast. J. of Biol. Chem. 173, 429–430 (1948).
CAS
Google Scholar
Albert, A.: The transformation of purines into pteridines. Biochemic. J. 65, 124–127 (1957).
CAS
Google Scholar
Alivisatos, S. G. A., and D. W. Woolley: Formation of a new dinucleotid from cozymase by enzymic destruction of the “onium linkage”. J. Amer. Chem. Soc. 77, 1065–1066 (1955).
CAS
CrossRef
Google Scholar
Enzymic synthesis of a new dinucleotide from cozymase by a new method of biosynthesis. J. of Biol. Chem. 221, 651–663 (1956).
Google Scholar
Anderson, E. P., C. Y. Yen, H. G. Mandel and P. K. Smith: Ureidosuccinic acid as a precursor of nucleic acid pyrimidines in normal and tumor-bearing mice. J. of Biol. Chem. 213, 625–633 (1955).
CAS
Google Scholar
Arvidson, H., N. A. Eliasson, E. Hammarsten, P. Reichard, H. V. Ubisch and S. Bergström: Orotic acid as a precursor of pyrimidines in the rat. J. of Biol. Chem. 179, 169–173 (1949).
CAS
Google Scholar
Back, K. J. C, and D. D. Woods: Studies with a strain of Bacterium coli requiring citrulline and a pyrimidine for growth. Biochemic. J. 55, xii (1953).
CAS
Google Scholar
Baddiley, J., J. G. Buchanan, B. Carss and A. P. Mathias: Cytidine diphosphate ribitol. Biochim. et Biophysica Acta 21, 191–192 (1956).
CAS
CrossRef
Google Scholar
Baddiley, J., J. G. Buchanan, B. Carss, A. P. Mathias and A. R. Sanderson: The isolation of cytidine diphosphate glycerol, cytidine diphosphate ribitol and mannitol 1-phosphate from Lactobacillus arabinosus. Biochemic. J. 64, 599–603 (1956a).
CAS
Google Scholar
Cytidine diphosphate glycerol and related compounds from Lactobacillus arabinosus. Biochemic. J. 63, 15 P. (1956b).
Google Scholar
Baer, B., u. K.Lang: Lokalisation des Stoffwechsels der Orotsäure in der Zelle. Biochem. Z. 328, 581–590 (1957).
PubMed
CAS
Google Scholar
Balis, M. E., M. S. Brocke, G. B. Brown and B. Magasanik: The utilization of purines by purineless mutants of Aerobacter aerogenes. J. of Biol. Chem. 219, 917–926 (1956).
CAS
Google Scholar
Balis, M. E., G. B. Brown, G. B. Elion, G. H. Hitchings and H. van der
Werff: On the interconversion of purines by Lactobacillus casei. J. of Biol. Chem. 188, 217–219 (1951).
CAS
Google Scholar
Balis, M. E., and G. B. Elion: Utilization of some purine ribose derivatives by Lactobacillus casei. Federat. Proc. 11, 183 (1952).
Google Scholar
Balis, M. E., D. H. Levin, G. B. Brown, G. B. Elion, H. van der
Werff and G. H. Hitchings: The incorporation of exogenous purines into pentose nucleic acid by Lactobacillus casei. J. of Biol. Chem. 196, 729–747 (1952a).
CAS
Google Scholar
Utilization of some purine riboside derivatives by Lactobacillus casei. J. of Biol. Chem. 199, 227–232 (1952b).
Google Scholar
Balis, M. E., D. H. Marrian and G. B. Brown: On the utilization of guanine by the rat. J. Amer. Chem. Soc. 73, 3319–3320 (1951).
CAS
CrossRef
Google Scholar
Ball, E. G.: Xanthine oxidase: Purification and properties. J. of Biol. Chem. 128, 51–67 (1939).
CAS
Google Scholar
Ballio, A., and G. Serlupi-Crescenzi: Isolation of adenylosuccinic acid from Penicillium chrysogenum. Nature (Lond.) 179, 154 (1957).
CAS
CrossRef
Google Scholar
Barker, H. A., and J. V. Beck: The fermentative decomposition of purines by Clostridium Handbuch d. Pflanzenphysiologie, Bd. VIII. 51 acidi-urici and Clostridium cylindrosporum. J. of Biol. Chem. 141, 3–27 (1941).
CAS
Google Scholar
Barker, H. A., and S. R. Elsden: Carbon dioxide utilization in the formation of glycine and acetic acid. J. of Biol. Chem. 167, 619–620 (1947).
CAS
Google Scholar
Barnes jr. F, W., and R. Schoenheimer: On the biological synthesis of purines and pyrimidines. J. of Biol. Chem. 151, 123–139 (1943).
CAS
Google Scholar
Batt, R. D., and J. H. Exton: The catabolism of dihydro-pyrimidines by rat tissue preparations. Arch. of Biochem. a. Biophysics 63, 368–375 (1956).
CAS
CrossRef
Google Scholar
Batt, R. D., and D. D. Woods; The oxidation of thymine by an unidentified bacterium. Biochemic. J. 49, Ixx–Ixxi (1951).
Google Scholar
Behrend, R.: Über die Oxydation der Harnsäure in alkalischer Lösung. Liebigs Ann. 333,141–160 (1904).
CAS
CrossRef
Google Scholar
Bendich, A., and G. B. Brown: 2,6-Diamino-purine, a precursor of nucleic acid guanine. J. of Biol. Chem. 176, 1471–1472 (1948).
CAS
Google Scholar
Bendich, A., G. B. Brown, F. S. Philips and J. B. Thiersch: The direct oxidation of adenine in vivo. J. of Biol. Chem. 183, 267–277 (1950).
CAS
Google Scholar
Bendich, A., S. S. Furst and G. B. Brown: On the rôle of 2,6-diamino-purine in the biosynthesis of nucleic acid guanine. J. of Biol. Chem. 185, 423–433 (1950).
CAS
Google Scholar
Ben-Ishai, R., E. D. Bergmann and B. Volcani: Ribosidation of AICA by E. coli. Nature (Lond.) 168, 1124 (1951).
CAS
CrossRef
Google Scholar
Ben-Ishai, R., B. Volcani u. E. D. Bergmann: The synthesis of the purine nucleus by E. coli, a study on the mode of action of sulfa-drugs. Experientia (Basel) 7, 63–64 (1951).
CAS
CrossRef
Google Scholar
Bennett jr. L. L., and H. E. Skipper: In vivo utilization of hypoxanthine and other precursors for synthesis of nucleic acid purines. Arch. of Biochem. a. Biophysics 54, No 2, 566–569 (1955).
CAS
CrossRef
Google Scholar
Bentley, M., and R. Abrams: Formation of 8-oxyadenine from adenine in bone marrow extracts. Arch. of Biochem. a. Biophysics 53, 314–315 (1954).
CAS
CrossRef
Google Scholar
Amide-N of glutamine as source of guanine amino group. Federat. Proc. 15, 218 (1956).
Google Scholar
Bentley, M., and A. Neuberger: The mechanism of the action of uricase. Biochemic. J. 52,694–699 (1952).
CAS
Google Scholar
Berg, P.: A study of formate utilization in pigeon liver extract. J. of Biol. Chem. 205, 145–162 (1953).
CAS
Google Scholar
Berg, P., and W. K. Joklik: Transphosphorylation between nucleosid-polyphosphates. Nature (Lond.) 172, 1008–1009 (1953).
CAS
CrossRef
Google Scholar
Enzymatic phosphorylation of nucleoside diphosphates. J. of Biol. Chem. 210, 657–672 (1954).
Google Scholar
Bergkvist, R., u. A. Deutsch: Guanosine triphosphate and uridine triphosphate from muscle. Acta chem. scand. (Copenh.) 7, 1307–1308 (1953).
CAS
CrossRef
Google Scholar
Bergmann, E. D., R. Ben-Ishai and B. E. Volcani: Rôle of 4-amino-imidazole-5-carboxamide in purine synthesis by E. coli. J. of Biol. Chem. 194, 531–537 (1952).
CAS
Google Scholar
Bergmann, E. D., B. E. Volcani and R. Ben-Ishai: Effect of methyl donors on 4-aminoimidazole-5-carboxamide in E. coli. J. of Biol. Chem. 194, 521–529 (1952).
CAS
Google Scholar
Bergmann, P., and S. Dikstein: Studies on uric acid and related compounds. III. Observations on the specificity of mammalian xanthine oxidases. J. of Biol. Chem. 223, 765–780 (1956).
CAS
Google Scholar
Bergström, S., H. Arvidson, E. Hammarsten, A. Eliasson, P. Reichard and H. v. Ubisch: Orotic acid, a precursor of pyrimidines in the rat. J. of Biol. Chem. 177, 495 (1949).
Google Scholar
Biesele, I. I., R. E. Berger and G. H. Hitchings: Tissue culture studies with 2,6-diaminopurine and related substances. Cancer Res. 10, 204 (1950).
Google Scholar
Bolton, E. T., P. H. Abelson and E. Aldous: Utilization of carbon dioxide in the synthesis of nucleic acid by E. coli. J. of Biol. Chem. 198, 179–185 (1952).
CAS
Google Scholar
Bolton, E. T., and A. M. Reynard: Utilization of purine and pyrimidine compounds in nucleic acid synthesis by E. coli. Biochim. et Biophysica Acta 13, 381–385 (1954).
CAS
CrossRef
Google Scholar
Boné, G. J., and M. Steinert: Isotopes incorporated in the nucleic acids of Trypanosoma mega. Nature (Lond.) 178, 308–309 (1956).
CrossRef
Google Scholar
Bradshaw, W., and J. V. Beck: The degradation of xanthine by cell-free extracts of Clostridium acidi-urici. Bacter. Proc. 1953, 86.
Google Scholar
Brandenberger, H.: Eine weitere Isotopenstudie über den Abbau der Harnsäure. Chimia 7, 233 (1953).
Google Scholar
The oxidation of uric acid to oxonic acid (allan-toxanic acid) and its application in tracer studies of uric acid biosynthesis. Biochim. et Biophysica Acta 15, 108–116 (1954 a).
Google Scholar
Über den Abbau der Harnsäure zur Oxon-säure (Allantoxansäure). Helvet. chim. Acta 37, 641–644 (1954b).
Google Scholar
Determination of the isotope distribution in carbon labeled uric acids. Biochim. et Biophysica Acta 18, 519–522 (1955).
Google Scholar
Brooke, M. S., D. Ushiba and B. Magasanik: Some factors affecting the excretion of orotic acid by mutants of Aerobacter aerogenes. J. Bacter. 68, 534–540 (1954).
CAS
Google Scholar
Brown, E. G., T. W. Goodwin and O. T. G. Jones: Purine metabolism and riboflavin synthesis in Eremothecium ashbyii. Biochemic. J. 64, 37 P (1956).
Google Scholar
Brown, G. B.: Biosynthesis of nucleic acids in the mammalian. Federat. Proc. 9, 517–523 (1950).
CAS
Google Scholar
Brown, G. B., A. Bendich, P. M. Roll and K. Sugiura: Utilization of guanine by the C57 black mouse bearing adenocarcinoma-E 0771. Proc. Soc. Exper. Biol. a. Med. 72, 501–502 (1949).
CAS
Google Scholar
Brown, G. B., M. L. Peterman and S. S. Furst: The incorporation of adenine into pentose and desoxypentose nucleic acids. J. of Biol. Chem. 174, 1043–1044 (1948).
CAS
Google Scholar
Brown, G. B., P. M. Roll and L. Cavalieri: The in vivo oxidation of uric acid. J. of Biol. Chem. 171, 635 (1947).
Google Scholar
Brown, G. B., P. M. Roll, A. A. Plentl and L. Cavalieri: The utilization of adenine for nucleic acid synthesis and as a precursor of guanine. J. of Biol. Chem. 172, 469–484 (1948).
CAS
Google Scholar
Brunel, M. A.: Le métabolisme de l’azote d’origine purique chez les champignons. I. Répartition des ases allantoinase et uricase chez les Basidiomycetes. Bull. Soc. Chim. biol. Paris 19, 747–756 (1937).
CAS
Google Scholar
Evolution de l’allantoicase dans les mycéliums du Sterigmatocystis nigra et du Sterigmatocystis phoenicis. Bull. Soc. Chim. biol. Paris 21, 380–387 (1939).
Google Scholar
Buchanan, J. G.: The path of carbon in photosynthesis. XIX. The identification of sucrose phosphate in sugar beet leaves. Arch. of Bio-chem. a Biophysics 44, 140–149 (1953).
CAS
CrossRef
Google Scholar
Buchanan, J.G., J.A.Bassham, A.A.Benson, D. F. Bradley, M. Calvin, L. L. Daus, M. Goodman, P. M. Hayes, V. H. Lynch, L. T Norris and A. T. Wilson: The rôle of phosphate in the metabolism of photosynthetic and chemoautotrophic organisms. In: Phosphorus Metabolism, Bd. II. Baltimore: John Hopkins Press 1952.
Google Scholar
Buchanan, J. G., V. H. Lynch, A. A. Benson, D. F. Bradley and M. Calvin: The path of carbon in photosynthesis. XVIII. The identification of nucleotide coenzymes. J. of Biol. Chem. 203, 935–945 (1953).
CAS
Google Scholar
Buchanan, J. M.: Biosynthesis of the purines. J. Cellul. a. Comp. Physiol. 38, Suppl. 1, 143–171 (1951).
CAS
CrossRef
Google Scholar
Some reactions involved in biosynthesis of the purines. Science (Lancaster, Pa.) 118, 568 (1953).
Google Scholar
Buchanan, J. M., and M. P. Schulman: Biosynthesis of the purines. III. Reactions of formate and inosinic acid and an effect of the citrovorum factor. J. of Biol. Chem. 202, 241–252 (1953).
CAS
Google Scholar
Buchanan, J. M. and J. C. Sonne: The utilization of formate in uric acid synthesis. J. of Biol. Chem. 166, 781 (1946).
CAS
Google Scholar
Buchanan, J. M., J. C. Sonne and A. M. Delluva: Biological precursors of uric acid. II. The rôle of lactate, glycine, and carbon dioxide as precursors of the carbon chain and nitrogen atom 7 of uric acid. J. of Biol. Chem. 173, 81–98 (1948).
CAS
Google Scholar
Buchanan, J. M., and D. W. Wilson: Biosynthesis of purines and pyrimidines. Federat. Proc. 12, 646–650 (1953).
CAS
Google Scholar
Burma, D. P., and D. C. Mortimer: The biosynthesis of UDP-glucose and sucrose in sugar beet leaf. Arch. of Biochem. a. Biophysics 62, 16–28 (1956).
CAS
CrossRef
Google Scholar
Cabib, E., and L. F. Leloir: Guanosine diphosphate mannose. J. of Biol. Chem. 206, 779–790 (1954).
CAS
Google Scholar
Cabib, E., L. F. Leloir and C. E. Cardini: Uridine diphosphate acetyl-glucosamine. J. of Biol. Chem. 203, 1055–1070 (1953).
CAS
Google Scholar
Campbell jr. L. L.: The mechanism of allantoin degradation by a Pseudomonas. J. Bacter. 68, 598–603 (1954).
CAS
Google Scholar
Oxidative degradation of uric acid by cell extracts of a Pseudomonas. Biochim. et Biophysica Acta 18, 160–161 (1955).
Google Scholar
Canellakis, E. S.: Pyrimidine metabolism. I. Enzymatic pathways of uracil and thymine degradation. J. of Biol. Chem. 221, 315–322 (1956).
CAS
Google Scholar
Canellakis, E. S., and P. P. Cohen: On the nature of oxonic acid and allantoxaidin as oxidation products of uric acid and allantoin. J. of Biol. Chem. 213, 379–384 (1955a).
CAS
Google Scholar
The endproducts and intermediates of uric acid oxidation by uricase. J. of Biol. Chem. 213, 385–395 (1955 b).
Google Scholar
Canellakis, E. S., A. L. Tuttle and P. P. Cohen: A comparative study of the endproducts of uric acid oxidation by peroxidases. J. of Biol. Chem. 213, 397–404 (1955).
CAS
Google Scholar
Caputto, R., L. F. Leloir, C. E. Cardini and A. C. Paladine: Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J. of Biol. Chem. 184, 333–350 (1950).
CAS
Google Scholar
Cardini, C. E., L. F. Leloir and I. Chiriboga: The biosynthesis of sucrose. J. of Biol. Chem. 214, 149–155 (1955).
CAS
Google Scholar
Carter, C. E.: Metabolism of purines and pyrimidines. Annual Rev. Biochem. 25, 123–146 (1956a).
CAS
CrossRef
Google Scholar
Synthesis of 6-succino-amino-purine. J. of Biol. Chem. 223, 139–146 (1956b).
Google Scholar
Carter, C. E., and L. H. Cohen: Enzymatic synthesis of adenylo-succinic acid. J. Amer. Chem. Soc. 77, 499–500 (1955).
CAS
CrossRef
Google Scholar
The preparation and properties of adenylo-succinase and adenylo-succinic acid. J. of Biol. Chem. 222, 17–30 (1956).
Google Scholar
Cerecedo, L. R.: The chemistry and metabolism of the nucleic acids, purines and pyrimidines. Annual Rev. Biochem. 2, 109–128 (1933).
CAS
CrossRef
Google Scholar
Chamberlain, N., N. S. Cutts and C. Rainbow: The formation of pigment and arylamine by yeasts. J. Gen. Microbiol. 7, 54–60 (1952).
PubMed
CAS
Google Scholar
Chamberlain, N., and C. Rainbow: The formation of diazotizable amine and hypoxanthine by a yeast: possible implications in the biosynthesis of purines. J. Gen. Microbiol. 11, 180–190 (1954).
PubMed
CAS
Google Scholar
Chattaway, F. W.: Growth stimulation of L. casei E. by pyrimidines. Nature (Lond.) 153, 250–251 (1944).
CAS
CrossRef
Google Scholar
Christman, A. A.: Der Purin- und Pyrimidinstoffwechsel. Physiologic. Rev. 32, 303–348 (1952).
CAS
Google Scholar
Cohen, S. S., M. Green and H. D. Barner: Thymine and thymidine synthesis. Biochim. et Biophysica Acta 22, 210–211 (1956).
CAS
CrossRef
Google Scholar
Cooper, C, and D. W. Wilson: Biosynthesis of pyrimidines. Federat. Proc. 13, 194 (1954).
Google Scholar
Cooper, C, R. WU and D. W. Wilson: Studies of some precursors of pyrimidines. J. of Biol. Chem. 216, 37–49 (1955).
CAS
Google Scholar
Dalgliesh, C. E., and A. Neuberger: The mechanism for the conversions of uric acid into allantoin and glycin. J. Chem. Soc. (Lond.) 1954, 3407–3414.
Google Scholar
Debow, S. S.: Methylierung von Uracil in homogenisiertem Gewebe. Ber. Akad. Wiss. USSR., N. S. 99, 589–592 (1954).
Google Scholar
Dimroth, K., L. Jaenicke U. E. W. Becker: Serin als Partner bei der Biosynthese der Purine von Nucleinsäuren. Naturwiss. 39, 134 (1952).
CAS
CrossRef
Google Scholar
Drysdale, G. R., G. W. E. Plaut and A. H. Lardy: The relationship of folic acid to formate metabolism in the rat. Formate incorporation into purines. J. of Biol. Chem. 193, 533–538 (1951).
CAS
Google Scholar
Dunn, D. B., and J. D. Smith: Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature (Lond.) 175, 336–337 (1955a).
CAS
CrossRef
Google Scholar
The occurrence of 6-methyl-aminopurine in microbial deoxyribonucleic acids. Biochemic. J. 60, XVII (1955b).
Google Scholar
Dutton, G. J.: Uridine diphosphate glucuronic acid as glucuronyl donor in the synthesis of “ester” aliphatic and steroid glucuronides. Biochemic. J. 64, 693–701 (1956).
CAS
Google Scholar
Dutton, G. J., and J. H. Spencer: Further observations on the specificity of uridine-diphosphate-glucuronic acid as glucuronyl donor. Biochemic. J. 63, 8 P. (1956).
Google Scholar
Dutton, G. J., and I. D. E. Storey: Uridine compounds in glucuronic acid metabolism. I. The formation of glucuronides in liver suspensions. Biochemic. J. 57, 275–283 (1954).
CAS
Google Scholar
Edmonds, M., A. M. Delluva and D. W. Wilson: The metabolism of purines and pyrimidines by growing yeast. J. of Biol. Chem. 197, 251–259 (1952).
CAS
Google Scholar
Elion, G. B., and M. E. Balis: Purine metabolism of diaminopurine resistant L. casei. Federat. Proc. 11, 207 (1952).
Google Scholar
Effect of 6-mercaptopurine on the interconversion of purine moieties in L. casei. Federat. Proc. 14, 207 (1955).
Google Scholar
Elion, G. B., and G. H. Hitchings: Antagonists of nucleic acid derivatives. III. The specificity of the purine requirement of L. casei. J. of Biol. Chem. 185, 651–655 (1950).
CAS
Google Scholar
Antagonists of nucleic acid derivatives. IV. Reversal studies with 2-aminopurine and 2,6-diaminopurine. J. of Biol. Chem. 187, 511–522 (1952).
Google Scholar
Elion, G. B., S. Singer and G. H. Hitchings: The purine metabolism of a 6-mercaptopurine-resistant L. casei. J. of Biol. Chem. 204, 35–41 (1953).
CAS
Google Scholar
Elion, G. B., S. Singer, G. H. Hitchings, M. Balis and B. Brown: Effects of purine antagonists on a diaminopurine resistant stram of L. casei. J. of Biol. Chem. 202, 647–654 (1953).
CAS
Google Scholar
Elion, G. B., H. Van
Der
Werfe, G. H. Hitchings, E. M. Balis, D. H. Levin and G. B. Brown: Purine metabolism of a diaminopurine-resistant strain of L. casei. J. of Biol. Chem. 200, 7–16 (1953).
CAS
Google Scholar
Elwyn, D., and D. B. Sprinson: The rôle of serine and acetate in uric acid formation. J. of Biol. Chem. 184, 465–474 (1950a).
CAS
Google Scholar
The relation of folic acid to the metabolism of serine. J. of Biol. Chem. 184, 475–478 (1950b).
Google Scholar
The synthesis of thymine and purines from serine and glycine in the rat. J. of Biol. Chem. 207, 467–476 (1954).
Google Scholar
Felix, K., F. Scheel U. W. Schuler: Die Urikolyse. Hoppe-Seylers Z. 180, 90–106 (1929).
CrossRef
Google Scholar
Fink, K.: Excretion of pyrimidine reduction products by the rat. J. of Biol. Chem. 218, 9–14 (1956).
CAS
Google Scholar
Fink, K., R. E. Cline, R. B. Henderson and R. M. Fink: Metabolism of thymine (methyl-C14 or -2 C14)by rat liver in vitro. J. of Biol. Chem. 221, 425–433 (1956).
CAS
Google Scholar
Fink, K., R. B. Henderson and R. M. Fink: β-Aminoisobutyric acid in rat urine following administration of pyrimidines. J. of Biol. Chem. 197, 441–452 (1952).
CAS
Google Scholar
Fink, K., and C. Mc
Gaughey: Reductive pathway for pyrimidine metabolism in rat. Federat. Proc. 13, 207 (1954).
Google Scholar
Fink, K., C. Mc
Gaughey, R. B. Henderson and R. M. Fink: Isotopic and enzymatic studies of thymine metabolites. Federat. Proc. 15, 251 (1956).
Google Scholar
Fink, K. K., R. B. Henderson and R. M. Fink: β-Aminoisobutyric acid a possible factor in pyrimidine metabolism. Proc. Soc. Exper. Biol. a. Med. 78, 135–141 (1951).
CAS
Google Scholar
Fink, R. M., R. E. Cline and H. M. G. Koch: Chromatographic detection of pyrimidine reduction products: microbiological application. Federat. Ptoc. 13, 207 (1954).
Google Scholar
Fink, R. M., K. K. FINK and R. B. Henderson: β-Amino acid formation by tissue slices incubated with pyrimidines. J. of Biol. Chem. 201, 349–355 (1953).
CAS
Google Scholar
Fink, R. M., R. B. Henderson and K. Fink: Thymine synthesized with C14 in the methyl group. Federat. Proc. 14, 210 (1955).
Google Scholar
Fink, R. M., Ch. Mc
Gaughey, R. E. Cline and K. Fink: Metabolism of intermediate pyrimidine reduction products in vitro. J. of Biol. Chem. 218, 1–9 (1956).
CAS
Google Scholar
Fischer, E., U. F. Ach: Über die Isomerie der Methylhamsäuren. Ber. dtsch. chem. Ges. 32, 2721–2749 (1899).
CAS
CrossRef
Google Scholar
Flaks, J. G., and J. M. Buchanan: The enzymatic formation of 4-amino-5-imidazole-carboxamide ribotide from inosinic acid. J. Amer. Chem. Soc. 76, 2275–2276 (1954).
CAS
CrossRef
Google Scholar
Flavin, M.: Effect of 8-azaguanine on purine utilization by Tetra-hymena geleii. Cancer Res. 12, 261–262 (1952).
Google Scholar
Flavin, M., and M. Engelman: Amino-purine interconversion in Tetrahymena geleii: rôle of 8-azaguanine and hypoxanthine. J. of Biol. Chem. 200, 59–68 (1953).
CAS
Google Scholar
Flavin, M., and S. Graff: Utilization of guanine for nucleic acid biosynthesis by Tetrahymena geleii. J. of Biol. Chem. 191, 55–61 (1951).
CAS
Google Scholar
Fosse, R., A. Brunel et P. de
Graeve: Sur I’allantoinase et l’origine de l’acide allantoique chez les vegetaux. C. r. Acad. Sci. Paris 189, 716–717 (1929).
CAS
Google Scholar
Nouvelle fermentation de l’acide urique provoquée par la foie de divers animaux. C. r. Acad. Sci. Paris 190, 79–84 (1930).
Google Scholar
Fosse, R., A. Brunel, P. de
Graeve, P. E. Thomas et J. Savazin: Présence dans de nombreux végétaux alimentaires de l’allantoine, accompagnée ou non d’acide allantoique d’allantoinase et d’uricase. C. r. Acad. Sci. Paris 191, 1153–1155 (1930).
CAS
Google Scholar
Fosse, R., P. de
Graeve et P.Thomas: Un nouveau principe des végétaux: l’acide urique. C. r. Acad. Sci. Paris 194, 1408–1413 (1932a).
CAS
Google Scholar
Un nouveau principe des végétaux: l’acide urique. C. r. Acad. Sci. Paris 195, 1198–1200 (1932b).
Google Scholar
Fox jr. C. L,: Production of a diazotizable substance by E. coli during sulfonamide bacteriostasis. Proc. Soc. Exper. Biol. a. Med. 51, 102–104 (1942).
CAS
Google Scholar
Franke, W.: Zum Stoffwechsel der Purine und Pyrimidine. Z. Vitamin-, Hormon- u. Fermentforsch. (Wien) 5, 279–314 (1953).
CAS
Google Scholar
Franke, W., U. G. E. Hahn: Untersuchungen zum bakteriellen Purinabbau. I. Über den Harnsäureabbau durch Pseudomonas aeruginosa. Hoppe-Seylers Z. 299, 15–38 (1955a).
CAS
CrossRef
Google Scholar
Untersuchungen zum bakteriellen Purinabbau. II. Über den Abbau von Amino-, Oxy- und Methylpurinen durch Pseudomonas aeruginosa. Hoppe-Seylers Z. 301,90–106 (1955b).
Google Scholar
Zum oxydativen Purinabbau durch Bakterien. Zbl. Bakter. 109, 343–346 (1956).
Google Scholar
Franke, W., U. E. M. Taha: Purinoxydierende Fermente aus Schimmelpilzen. III. Mitt. Zur Kenntnis der Altemaria-Uricasen. Chem. Ber. 85, 913–921 (1952).
CrossRef
Google Scholar
Franke, W., E. M. Taha U. L.Krieg: Purinoxydierende Fermente aus Schimmelpilzen. I. Mitt. Über die Uricase der Schimmelpilze. Arch. Mikrobiol. 17, 255–291 (1952).
CAS
CrossRef
Google Scholar
Friedkin, M., and W. Roberts: Conversion of uracil deoxyriboside to thymidine of desoxynucleic acid. J. of Biol. Chem. 220, 653–660 (1956).
CAS
Google Scholar
Fridovich, J., and P. Handler: Hypoxanthine as a cofactor for the enzymatic oxidation of sulfite. J. of Biol. Chem. 221, 323–331 (1956a).
CAS
Google Scholar
Hypoxanthine, cofactor for cysteine oxidation by liver preparations. Biochim. et Biophysica Acta 21, 173–174 (1956b).
Google Scholar
Fries, N.: Über röntgen-induzierte physiologische Mutationen bei Ophiostoma multiannulatum. Ark. Bot. (Stockh.) A 32, No 8 (1945).
Google Scholar
Mutant strains of Ophiostoma multiannulatum requiring components of different nucleotides. Ark. Bot. (Stockh.) A 33, No 7 (1946).
Google Scholar
Experiment with different methods of isolating physiological mutations of filamentous fungi. Nature (Lond.)159, 199 (1947).
Google Scholar
Effects of different purine compounds on the growth of guanine-deficient Ophiostoma. Physiol. Plantarum (Copenh.) 2, 78–102 (1949).
Google Scholar
Further studies on mutant strains of Ophiostoma which require guanine. J. of Biol. Chem. 200, 325–333 (1953).
Google Scholar
The inhibitory effect of diamino-purine riboside on the growth of Ophiostoma. Acta chem. scand. (Copenh.) 9, 1020 (1955).
Google Scholar
Fries, N., S. Bergström and M. Rottenberg: The effect of various imidazole compounds on the growth of purine-deficient mutants of Ophiostoma. Physiol. Plantarum (Copenh.) 2, 210–211 (1949).
CrossRef
Google Scholar
Funk, C., A. J. Merritt and A. Ehrlich: The isolation of hydro-uracil from beef spleen. Arch. of Biochem. 35, 468–469 (1952).
CAS
CrossRef
Google Scholar
Gehring, L. B., and B. Magasanik: Biosynthesis of nucleic acid guanine: the enzymic conversion of inosine-5′-phosphate to xanthosine-5-phosphate. J. Amer. Chem. Soc. 77, 4685–4686 (1955).
CAS
CrossRef
Google Scholar
Getler, H., P. M. Roll, J. F. Tinker and G. B. Brown: A study of the metabolism of dietary hypoxanthine and xanthine in the rat. J. of Biol. Chem. 178, 259–264 (1949).
CAS
Google Scholar
Ginsburg, V., E. F. Neufeld and W. Z. Hassid: Enzymatic synthesis of uridine diphosphate xylose and uridine phosphate arabinose. Proc. Nat. Acad. Sci. U.S.A. 42, 333–335 (1956).
CAS
CrossRef
Google Scholar
Ginsburg, V., P. K. Stumpf and W. Z. Hassid: The isolation of uridine diphosphate derivatives of D-glucose, D-galactose, D-xylose, and L-arabinose from mung bean seedlings. J. of Biol. Chem. 223, 977–983 (1956).
CAS
Google Scholar
Glasziou, K. T.: The metabolism of arginine in Serratia marcescens. II. Carbamyladenosine diphosphate phos-phoferase. Austral. J. Biol. Sci. 9, 253–262 (1956).
CAS
Google Scholar
Goldthwait, D. A.: 5-Phospho-ribosylamine, a precursor of glycinamide ribotide. Federat. Proc. 15, 263 (1956a).
Google Scholar
5-Phos-phoribosylamine, a precursor of glycinamide ribotide. J. of Biol. Chem. 222, 1051–1068 (1956b).
Google Scholar
Goldthwait, D. A., and A. Bendich: Effect of aminopterin on nucleic acid metabolism in the rat. Federat. Proc. 10, 190 (1951).
Google Scholar
Effects of a folic acid antagonist on nucleic acid metabolism. J. of Biol. Chem. 196, 841–852 (1952).
Google Scholar
Goldthwait, D. A., G. R. Greenberg and R. A. Peabody: The involvement of 5-phosphoribosylamine in the biosynthesis of glycinamide ribotide. Biochim. et Biophysica Acta 18, 148–149 (1955).
CAS
CrossRef
Google Scholar
Goldthwait, D. A., and R. A. Peabody: Glycine ribotide precursors of inosinic acid. Federat. Proc. 13, 218 (1954).
Google Scholar
Goldthwait, D. A., R. A. Peabody and G. R. Greenberg: Glycine ribotide intermediates in the de novo synthesis of inosinic acid. J. Amer. Chem. Soc. 76, 5258–5259 (1954).
CAS
CrossRef
Google Scholar
On the occurrence of glycinamide ribotide and its formyl derivative. J. of Biol. Chem. 221, 555–567 (1956a).
Google Scholar
On the mechanism of synthesis of glycinamide ribotide and its formyl derivative. J. of Biol. Chem. 221, 569–577 (1956b).
Google Scholar
Goodwin, T. W., and S. Pendlington: Studies on the biosynthesis of riboflavin. Nitrogen metabolism and flavinogenesis in Eremothecium Ashbyii. Biochemic. J. 57, 631–641 (1954).
CAS
Google Scholar
Gordon, M. P., and G. B. Brown: A study of the metabolism of purine riboside. J. of Biol. Chem. 220, 927–937 (1956).
CAS
Google Scholar
Gots, J. S.: The accumulation of 4-amino-5-imidazolecarboxamide by a purine-requiring mutant of E. coli. Arch. of Biochem. 29, 222–224 (1950a).
CAS
Google Scholar
Accumulation of 5(4)-amino-4(5)-imidazolecarboxamide in relation to sulfonamide bacteriostasis and purine metabolism in E. coli. Federat. Proc. 9, 178–179 (1950b).
Google Scholar
Occurrence of 4-amino-5-imidazolecarboxamide as a pentose derivative. Nature (Lond.) 172, 256–257 (1953).
Google Scholar
Inhibition of the biosynthesis of 5-amino-4-imidazolecarboxamide by purines. Federat. Proc. 14, 220 (1955).
Google Scholar
Gots, J. S., and E. G. Chu: Studies on purine metabolism in bacteria. I. The rôle of p-aminobenzoic acid. J. Bacter. 64, 537–546 (1952).
CAS
Google Scholar
Gots, J. S., and S. H. Love: Purine metabolism in bacteria. II. Factors influencing biosynthesis of 4-amino-5-imidazolecarboxamide by E. coli. J. of Biol. Chem. 210, 395–405 (1954).
CAS
Google Scholar
Gray, C., and E. Tatum: x-ray induced growth factor requirements in bacteria. Proc. Nat. Acad. Sci. U.S.A. 30, 404–410 (1944).
CAS
CrossRef
Google Scholar
Green, M., J. Lichtenstein, H. Barner and S. S. Cohen: Synthesis and metabolic properties of dihydropyrimidine nucleosides. Federat. Proc. 15, 265 (1956).
Google Scholar
Greenberg, G. R.: Incorporation of carbon-labeled formic acid and carbon dioxide into hypoxanthine in pigeon liver homogenates. Arch. of Biochem. 19, 337–339 (1948).
CAS
Google Scholar
Mechanism of biosynthesis of purine. Federat. Proc. 9, 179 (1950).
Google Scholar
De novo synthesis of hypoxanthine via inosine-5-phosphate and inosine. J. of Biol. Chem. 190, 611–631 (1951a).
Google Scholar
Synthesis of purine in dialyzed liver extracts. Federat. Proc. 10, 192 (1951b).
Google Scholar
Isolation of 4-amino-5-imidazolecarboxamide riboside from the culture medium of sulfonamide-inhibited E. coli. J. Amer. Chem. Soc. 74, 6307–6308 (1952).
Google Scholar
Conversion of 5-amino-4-imidazolecarboxamide riboside to its phosphoribotide and to inosinic acid. Federat. Proc. 12, 211–212 (1953a).
Google Scholar
Mechanisms involved in the biosynthesis of purines. Federat. Proc. 12, 651–659 (1953b).
Google Scholar
Chemical pathways of metabolism, Bd. II, S. 383. New York: Academic Press 1954a.
Google Scholar
A formylation cofactor. J. Amer. Chem. Soc. 76,1458–1459 (1954b).
Google Scholar
Transformylation cofactor and mechanism of activation of formate. Federat. Proc. 13, 221 (1954 c).
Google Scholar
Rôle of folic acid derivatives in purine biosynthesis. Federat. Proc. 13, 745–759 (1954d).
Google Scholar
Preparation of 5′-phosphoribosyl-5-amino-4-imidazolecarboxamide. J. of Biol. Chem. 219, 423–433 (1956).
Google Scholar
Greenberg, G. R., and L. Jaenicke: The rôle of N10-formyltetrahydrofolic acid in transformylation reactions. 3. Congrès Internat, de Biochimic Bruxelles. Résumés des Communications, S. 49–50. 1955.
Google Scholar
Greenberg, G. R., L. Jaenicke and M. Silverman: On the occurrence of N10-formyltetrahydrofolic acid by enzymic formylation of tetrahydrofolic acid and on the mechanism of this reaction. Biochim. et Biophysica Acta 17, 589–591 (1955).
CAS
CrossRef
Google Scholar
Greenberg, G. R., and E. L. Spilman: Isolation of 5-amino-4-imidazolecarboxamide riboside. J. of Biol. Chem. 219, 411–422 (1956).
CAS
Google Scholar
Grisolia, S.: Rôle of L-formylglutamic acid in biosynthesis of citrulline. Federat. Proc. 12, 212 (1953).
Google Scholar
Grisolia, S., and Ph. P. Cohen: The catalytic rôle of carbamyl glutamate in citrulline biosynthesis. J. of Biol. Chem. 198, 561–571 (1952).
CAS
Google Scholar
Catalytic rôle of glutamate derivatives in citrulline biosynthesis. J. of Biol. Chem. 204, 753–757 (1953).
Google Scholar
Grisolia, S., H. S. Grady and D. P. Wallach: Biosynthetic and structural relationships of compound x and carbamyl phosphate. Biochim. et Biophysica Acta 17, 277–278 (1955).
CAS
CrossRef
Google Scholar
Grisolia, S., and D. P. Wallach: Enzymic interconversion of hydrouracil and β-ureidopropionic acid. Biochim. et Biophysica Acta 18, 449 (1955).
CAS
CrossRef
Google Scholar
Grossman, L., and D. W. Visser: The incorporation of 4-C14-cytidine in rat liver slices. J. of Biol. Chem. 209, 447–452 (1954).
CAS
Google Scholar
The isolation of 5,6-dihydro-cytidylic acid from the acid-soluble fraction of rat liver slices. J. of Biol. Chem. 216, 775–781 (1955).
Google Scholar
Hall, L. M., R. L. Metzenberg and P. P. Cohen: Isolation and characterization of a naturally occurring stimulator of citrulline biosynthesis. Nature (Lond.) 178, 1468–1469 (1956).
CAS
CrossRef
Google Scholar
Hamill, R. L., R. L. Herrmann, R. U. Byerrum and J. L. Fairley: The synthesis of purines and thymine from formaldehyde in the rat. Biochim. et Biophysica Acta 21, 394–395 (1956).
CAS
CrossRef
Google Scholar
Hamilton, L.: Utilization of purines for nucleic acid synthesis in man. Nature (Lond.) 172, 457 (1953).
CAS
CrossRef
Google Scholar
Hamilton, L., G. B. Brown and C. C. Stock: Biosynthesis of nucleic acids studied in unicellular systems. J. Clin. Invest. 31, 636 (1952).
Google Scholar
Hamilton, L. D.: Nucleic acid turnover studies in human leukaemic cells and the function of lymphocytes. Nature (Lond.) 178, 597–599 (1956).
CAS
CrossRef
Google Scholar
Hammarsten, E., P. Reichard u. E. Saluste: Pyrimidine nucleosides as precursors of ribonucleic acid (RNA) pyrimidines. Acta chem. scand. (Copenh.) 3, 432–433 (1949).
CAS
CrossRef
Google Scholar
Pyrimidine nucleosides as precursors of pyrimidines in polynucleotides. J. of Biol. Chem. 183, 105–109 (1950).
Google Scholar
Hansen, R. G., and E. Hagemann: The isolation of glutamic and aspartic acid derivatives of ADP. Arch. of Biochem. a. Biophysics 62, 511–513 (1956).
CAS
CrossRef
Google Scholar
Hartman, ST. C: Phosphorolysis of glycinamide ribotide. Federat. Proc. 15, 269 (1956).
Google Scholar
Hartman, St. C., B. Levenberg and J. M. Buchanan: Involvement of ATP, 5-phosphoribosyl-pyrophosphate and L-azaserine in the enzymatic formation of glycinamide ribotide intermediates in inosinic acid biosynthesis. J. Amer. Chem. Soc. 77, 501–503 (1955).
CAS
CrossRef
Google Scholar
Biosynthesis of the purines. XI. Structure, enzymatic synthesis and metabolism of glycinamide ribotide and (α-N-formyl)-glycin-amide ribotide. J. of Biol. Chem. 221, 1057–1070 (1956).
Google Scholar
Hayaishi, O., and A. Kornberg: Enzymatic formation of barbituric acid from uracil and of 5-methylbarbituric acid from thymine. J. Amer. Chem. Soc. 73, 2975–2976 (1951).
CAS
CrossRef
Google Scholar
Metabolism of cytosine, thymine, uracil, and barbituric acid by bacterial enzymes. J. of Biol. Chem. 197, 717–732 (1952).
Google Scholar
Heidelberger, C, and E. Harbers: Metabolism of uracil in normal and neoplastic tissues. Federat. Proc. 15, 271 (1956).
Google Scholar
Heinrich, M. R., V. C. Dewey and G. W. Kidder: Citrulline as a precursor of pyrimidines. J. Amer. Chem. Soc. 76, 3102–3103 (1954).
CAS
CrossRef
Google Scholar
Heinrich, M. R., and D. W. Wilson: The biosynthesis of nucleic acid components studied with C14. I. Purines and pyrimidines in the rat. J. of Biol. Chem. 186, 447–460 (1950).
CAS
Google Scholar
Heinrich, M. R., D. W. Wilson and S. Gurin: Isotopic studies of the biosynthesis of nucleic acid components. Federat. Proc. 8, 205 (1949).
Google Scholar
Herrmann, R. L., J. L. Fairley and R. U. Byerrum: The synthesis of purines and thymine from methionine in the rat. J. Amer. Chem. Soc. 77, 1902–1903 (1955).
CAS
CrossRef
Google Scholar
Hinton, T., J. Ellis and D. T. Noyes: An adenine requirement in a strain of Drosophila. Proc. Nat. Acad. Sci. U.S.A. 37, 293–299 (1951).
CAS
CrossRef
Google Scholar
Hitchings, G. H., and G. B. Elion: Chemistry and biochemistry of antimetabolites related to the purines. 3. Congrès Internat. de Biochimie Bruxelles, Rapports S. 185–191. 1955.
Google Scholar
Hitchings, G. H., G. B. Elion, E. A. Falco, P. B. Russell, M. B. Sherwood and H. Van der
Werff: Antagonists of nucleic acid derivatives. I. The Lactobacillus casei model. J. of Biol. Chem. 183, 1–9 (1950).
CAS
Google Scholar
Hitchings, G. H., G. B. Elion and H. Van der
Werff: The limitations of inhibition analysis. J. of Biol. Chem. 174, 1037–1038 (1948a).
CAS
Google Scholar
2-aminopurine as a purine antagonist. Federat. Proc. 7, 160 (1948 b).
Google Scholar
Hoagland, M. B.: An enzymic mechanism for amino acid activation in animal tissues. Biochim. et Biophysica Acta 16, 288–289 (1955).
CAS
CrossRef
Google Scholar
Hoagland, M. B., E. B. Keller and P. C. Zamecnik: Enzymatic carboxyl activation of amino acids. J. of Biol. Chem. 218, 345–358 (1956).
CAS
Google Scholar
Hoffmann-Ostenhof, O.: Enzymologie, S. 531–533. Wien: Springer 1954.
Google Scholar
Holmes, W. L., and W. H. Prusoff: Synthesis and biochemical investigation of thymine-6-carboxylic acid-2-C14. J. of Biol. Chem. 206, 817–823 (1954).
CAS
Google Scholar
Holmes, W. L., W. H. Prusoff and A. D. Welch: Studies on the metabolism of thymine-2-C14 by the rat. J. of Biol. Chem. 209, 503–509 (1954).
CAS
Google Scholar
Hübscher, G., H. Baum and H. R. Mahler: Studies on uricase. IV. The nature and composition of some stable reaction products. Biochim. et Biophysica Acta 23, 43–53 (1957).
CrossRef
Google Scholar
Huff, J. W., D. K. Bosshardt, L. D. Wright, D. S. Spicer, K. A. Valentik and H. R. Skeggs: A growth-promoting substance for L. bulgaricus 09 in whey: isolation and identification as orotic acid. Proc. Soc. Exper. Biol. a. Med. 75, 297–301 (1950).
CAS
Google Scholar
Hultin, T.: Incorporation of N15-labelled ammonium chloride into pyrimidins and purines during the early sea urchin development. Ark. Kemi (Stockh.) 5, 267–275 (1953).
CAS
Google Scholar
Hurlbert, R. B.: Studies on the acid-soluble products of the metabolism of orotic acid-6-C14. Federat. Proc. 11, 234 (1952).
Google Scholar
Uridine-5-phosphate compounds as intermediates in the incorporation of orotic acid into RNS. Federat. Proc. 12, 222 (1953).
Google Scholar
Hurlbert, R. B., and V. R. Potter: A survey of the metabolism of orotic acid in the rat. J. of Biol. Chem. 195, 257–270 (1952).
CAS
Google Scholar
Nucleotide metabolism. I. The conversion of orotic acid-6-C14 to uridine nucleotides. J. of Biol. Chem. 209, 1–21 (1954).
Google Scholar
Hurlbert, R. B., U. P. Reichard: Formation in vitro of uridine phosphates from orotic acid. Acta chem. scand. (Copenh.) 8, 1095–1096 (1954a).
CrossRef
Google Scholar
Conversion of orotic acid to uridine phosphates by soluble enzymes of liver. Acta chem. scand. (Copenh.) 8, 701–702 (1954b).
Google Scholar
The conversion of orotic acid to uridine nucleotides in vitro. Acta chem. scand. (Copenh.) 9, 251–262 (1955).
Google Scholar
Jacob, A.: Rôle de l’hypoxanthine dans la désaturation des acides gras supérieurs. C. r. Acad. Sci. Paris 242, 2180–2182 (1956).
CAS
Google Scholar
Jaenicke, L.: Purine. In Hoppe-Seyler-Thierfelder, Handbuch der physiologischen und pathologischen chemischen Analyse, 10. Aufl., Bd. III, S. 1245–1339. 1955a.
Google Scholar
Occurrence of N10-formyltetrahydrofolic acid and its general involvement in transformylation. Biochim. et Biophysica Acta 17, 588–589 (1955 b).
Google Scholar
Joklik, W. K.: The occurrence of adenine- and adenyl-succinic acid in mamma-lian liver. Biochim. et Biophysica Acta 22, 211–212 (1956).
CAS
CrossRef
Google Scholar
Jones, M. E.: Über die Selbstverdauung von Nucleoproteiden. Z. physiol. Chem. 42, 35–54 (1904).
CAS
CrossRef
Google Scholar
Jones, M. E., L. Spector and F. Lipmann: Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. Chem. Soc. 77, 819–820 (1955a).
CAS
CrossRef
Google Scholar
Carbamyl phosphate. 3. Congrès Internat. de Biochimie, Bruxelles, Rapports S. 67–70. 1955b.
Google Scholar
Carbamyl phosphate. 3. Congrès Internat. de Biochimie, Bruxelles, Conférences et Rapports, S. 278 bis 281. 1955 c.
Google Scholar
Kalckar, H. M.: Biochemical mutants in man and microorganisms. Science (Lancaster, Pa.) 125, 105–108 (1957).
CAS
Google Scholar
Karlsson, J. L., and H. A. Barker: Biosynthesis of uric acid labeled with radioactive carbone. J. of Biol. Chem. 177, 597–599 (1949a).
CAS
Google Scholar
Tracer experiments on the mechanism of uric acid decomposition and acetic acid synthesis by Clostridium acidi-urici. J. of Biol. Chem. 178, 891–902 (1949b).
Google Scholar
Keilin, D., and E. F. Hartree: Uricase, amino acid oxidase, and xanthine oxidase. Proc. Roy. Soc. Lond., Ser. B 119, 114–159 (1936).
CAS
CrossRef
Google Scholar
Keller, E. B., and P. C. Zamecnik: The effect of guanosine diphosphate and triphosphate on the incorporation of labeled amino acids into proteins. J. of Biol. Chem. 221, 45–59 (1956).
CAS
Google Scholar
Kennedy, E. P.: The synthesis of cytidine diphosphate choline, cytidine diphosphate ethanolamine. and related compounds. J. of Biol. Chem. 222, 185–191 (1956).
CAS
Google Scholar
Kennedy, E. P., and S. B. Weiss: Cytidine diphosphate choline: a new intermediate in lecithin biosynthesis. J. Amer. Chem. Soc. 77, 250–251 (1955).
CAS
CrossRef
Google Scholar
The function of cytidine coenzymes in the biosynthesis of phospholipides. J. of Biol. Chem. 222, 193–214 (1956).
Google Scholar
Kerr, S. E., and K. Seraidarian: The pathway of decomposition of hyoadenylic acid during autolysis in various tissues. J. of Biol. Chem. 159, 637–645 (1945).
CAS
Google Scholar
Kerr, S. E., K. Seraidarian and G. B. Brown: On the utilization of purines and their ribose derivatives by yeast. J. of Biol. Chem. 138, 207–216 (1951).
Google Scholar
Kidder, G. W., and V. C. Dewey: Studies on the biochemistry of Tetrahymena. XIV. The activity of natural purines and pyrimidines. Proc. Nat. Acad. Sci. U.S.A. 34, 566–574 (1948).
CAS
CrossRef
Google Scholar
Kidder, G. W., V. C. Dewey, R. E. Parks and J. M. Heinrich: Further studies on the purine and pyrimidine metabolism of Tetrahymena. Proc. Nat. Acad. Sci. U.S.A. 36, 431–439 (1950).
CAS
CrossRef
Google Scholar
Kiesel, A.: Über das Verhalten der Nucleinbasen bei Verdunkelung von Pflanzen. Hoppe-Seylers Z. 67, 241–250 (1910).
CrossRef
Google Scholar
Klemperer, F. W.: Enzymatic oxidation of uric acid. J. of Biol. Chem. 160, 111–121 (1945).
CAS
Google Scholar
Klenow, H.: The enzymic oxidation and assay of adenine. Biochemic. J. 50, 404–407 (1952).
CAS
Google Scholar
Koch, A. L., F. W. Putnam and E. A. Evans: The purine metabolism of E. coli. J. of Biol. Chem. 197, 105–112 (1952).
CAS
Google Scholar
Korn, E. D., F. C. Chara-lampous and J. M. Buchanan: Enzymatic synthesis of 4-amino-5-imidazolecarboxamide riboside from 4-amino-5-imidazolecarboxamide and riboside-1-phosphate. J. Amer. Chem. Soc. 75, 3610–3611 (1953).
CAS
CrossRef
Google Scholar
Kornberg, A., J. Lieberman and E. S. Simms: Enzymatic synthesis of pyrimidine and purine nucleotides. I. Formation of 5-phosphoribosylpyro-phosphate. J. Amer. Chem. Soc. 76, 2027–2028 (1954).
CAS
CrossRef
Google Scholar
Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate. J. of Biol. Chem. 215, 389–402 (1955).
Google Scholar
Lagerkvist, U.: The isolation of nitrogen 1 and 3 as methylamine and ammonia from pyrimidine ribosides. Acta chem. scand. (Copenh.) 4, 543–548 (1950a).
CAS
CrossRef
Google Scholar
The degradation of pyrimidines for tracer work. Bicarbonate as a precursor for ribonucleic acid pyrimidines. Acta chem. scand. (Copenh.) 4, 1151–1152 (1950b).
Google Scholar
The incorporation of ammonia into uric acid in pigeons and ribonucleic acid pyrimidines in rats. Ark. Kemi (Stockh.) 5, 569–580 (1953a).
Google Scholar
The degradation of pyrimidines for tracer work. Acta chem. scand. (Copenh.) 7, 114–118 (1953b).
Google Scholar
Enzymic synthesis of xanthosine- and guanosine-5-phos-phate from inosine-5-phosphate. Acta chem. scand. (Copenh.) 9, 1028–1029 (1955).
Google Scholar
Lagerkvist, U., U. P. Reichard: Uracil, a precursor of polynucleotide pyrimidines in the mouse. Acta chem. scand. (Copenh.) 8, 361 (1954).
CAS
CrossRef
Google Scholar
Lagerkvist, U., P. Reichard U. G. Ehrensvärd: Aspartic acid as a precursor for ribonucleic acid pyrimidines. Acta chem. scand. (Copenh.) 5, 1212 (1951).
CAS
CrossRef
Google Scholar
Lara, E. J. S.: On the decomposition of pyrimidines by bacteria. I. Studies by means of the technique of simultaneous adaption. J. Bacter. 64, 271–277 (1952a).
CAS
Google Scholar
On the decomposition of pyrimidines by bacteria. II. Studies with cell-free enzyme preparations. J. Bacter. 64, 279–285 (1952 b).
Google Scholar
Laskowski, M.: The enzymes. Bd. I, Teil 2. In Sumner U. Myrbäck, S. 976. New York: Academic Press 1951.
Google Scholar
Leloir, L. F.: The uridine coenzymes. 3. Congrès Internat. de Biochimie, Bruxelles, Conférences et Rapports S. 154–162. 1955.
Google Scholar
Leloir, L. F., and C. E. Cardini: The biosynthesis of sucrose phosphate. J. of Biol. Chem. 214, 157–165 (1955).
CAS
Google Scholar
Levenberg, B., and J. M. Buchanan: Formylglycinamidine ribotide and 5-aminoimidazole ribotide-inter-mediates in the biosynthesis of inosinic acid de novo. J. Amer. Chem. Soc. 78, 504–505 (1956).
CAS
CrossRef
Google Scholar
Biosynthesis of the purines. XII. Structure, enzymatic synthesis and metabolism of 5-aminoimidazole ribotide. J. of Biol. Chem. 224, 1005–1018 (1957a).
Google Scholar
Biosynthesis of the purines. XIII. Structure, enzymatic synthesis and metabolism of (α-N-formyl)-glycin-amidine ribotide. J. of Biol. Chem. 224, 1019–1027 (1957b).
Google Scholar
Levenberg, B., S. C. Hartman and J. M. Buchanan: Precursors and intermediates in purine biosynthesis. Federat. Proc. 14, 243–244 (1955).
Google Scholar
Biosynthesis of the purines. X. Further studies in vitro on the metabolic origin of N atoms 1 and 3 of the purine ring. J. of Biol. Chem. 220, 379–390 (1956).
Google Scholar
Levenberg, B., and J. Melnick: Formylglycinamidine ribotide and 5-aminoimidazole ribotide-intermediates in purine biosynthesis. Federat. Proc. 15, 117–118 (1956).
Google Scholar
Levenberg, B., J. Melnick and J. M. Buchanan: Biosynthesis of the purines. XV. The effect of aza-L-serine and 6-diazo-5-oxo-L-norleucine on inosinic acid biosynthesis de novo. J. of Biol. Chem. 225, 163–176 (1957).
CAS
Google Scholar
Lieberman, J.: Enzymatic amination of uridine triphosphate to cytidine triphosphate. J. Amer. Chem. Soc. 77, 2661–2662 (1955a).
CAS
CrossRef
Google Scholar
Identification of adenosine tetraphosphate from horse muscle. J. Amer. Chem. Soc. 77, 3373–3375 (1955 b).
Google Scholar
Guanosine triphosphate in the conversion of inosinic acid to adenylic acid. Federat. Proc. 15, 301 (1956a).
Google Scholar
Involvement of guanosine triphosphate in the synthesis of adenylosuccinate from inosine-5′-phosphate. J. Amer. Chem. Soc. 78, 251 (1956b).
Google Scholar
Enzymatic amination of uridine triphosphate to cytidine triphosphate. J. of Biol. Chem. 222, 765–775 (1956c).
Google Scholar
Enzymatic synthesis of adenosine-5′-phosphate from inosine-5′-phosphate. J. of Biol. Chem. 223, 327–339 (1956d).
Google Scholar
Lieberman, J., L. Berger and W. Th. Gimenez: Crystallization of cytidine diphosphate choline from yeast. Science (Lancaster, Pa.) 124, 81 (1956).
CAS
Google Scholar
Lieberman, J., and A. Kornberg: Enzymic synthesis and breakdown of a pyrimidine, orotic acid. I. Dihydroorotic dehydrogenase. Biochim. et Biophysica Acta 12, 223–234 (1953a).
CAS
CrossRef
Google Scholar
Enzymatic synthesis and breakdown of orotic acid. Federat. Proc. 12, 239–240 (1953b).
Google Scholar
Enzymatic synthesis and breakdown of a pyrimidine, orotic acid. II. Dihydroorotic acid, ureidosuccinic acid, and 5-carboxy-methylhydantoin. J. of Biol. Chem. 207, 911–924 (1954).
Google Scholar
Enzymatic synthesis and breakdown of a pyrimidine, orotic acid. III. Ureidosuccinase. J. of Biol. Chem. 212, 909–920 (1955).
Google Scholar
Lieberman, J., A. Kornberg and E. S. Simms: Enzymatic synthesis of pyrimidine and purine nucleotides. I. Formation of 5-phosphoribosylpyrophosphate. J. Amer. Chem. Soc. 76, 2027–2028 (1954a).
CrossRef
Google Scholar
Enzymatic synthesis of pyrimidine and purine nucleotides. II. Orotidine-5-phosphate pyrophosphorylase and decarboxylase. J. Amer. Chem. Soc. 76, 2844–2845 (1954b).
Google Scholar
Enzymatic synthesis of pyrimidine and purine nucleotides. III. Formation of nucleoside diphosphates and triphosphates. J. Amer. Chem. Soc. 76, 3608–3609 (1954 c).
Google Scholar
Enzymatic synthesis of pyrimidine nucleotides. Orotidine-5′-phos-phate and uridine-5′.phosphate. J. of Biol. Chem. 215, 403–415 (1955).
Google Scholar
Lipton, S. H., S. A. Morell, A. Frieden and R. M. Bock: Uridine-5′-triphosphate. J. Amer. Chem. Soc. 75, 5449–5450 (1953).
CAS
CrossRef
Google Scholar
London, M., and P. B. Hudson: Purification and properties of solu-bilized uricase. Biochim. et Biophysica Acta 21, 290–298 (1956).
CAS
CrossRef
Google Scholar
Loring, H. S., and J. G. Pierce: Pyrimidine nucleosides and nucleotides as growth factors for mutant strains of Neurospora. J. of Biol. Chem. 153, 61–69 (1944).
CAS
Google Scholar
Love, S. H., and J. S. Gots: Accumulation of a new pentose-containing imidazole compound by a purine-requiring mutant of E. coli. Federat. Proc. 13, 503 (1954).
Google Scholar
Purine metabolism in bacteria. III. Accumulation of a new pentose-containing arylamine by a purine-requiring mutant of E. coli. J. of Biol. Chem. 212, 647–654 (1955).
Google Scholar
Lowenstein, J. M., and P. P. Cohen: The formation of carbamyl aspartic acid by rat liver preparations. J. Amer. Chem. Soc. 76, 5571–5572 (1954).
CAS
CrossRef
Google Scholar
Studies on the mechanism of carbamylaspartic acid synthesis. J. of Biol. Chem. 213, 689–696 (1955).
Google Scholar
Studies on the biosynthesis of carbamylaspartic acid. J. of Biol. Chem. 220, 57–70 (1956 a).
Google Scholar
Carbamylphosphate-aspartate transcarbamylase. Biochemic. J. 63, 11 P (1956b).
Google Scholar
Lowy, B. A., G. B. Brown and J. R. Rachele: A study of formaldehyde-C14D. as a one-C metabolite in the rat. J. of Biol. Chem. 220, 325–339 (1956).
CAS
Google Scholar
Lowy, B. A., J. Davoll and G. B. Brown: The utilization of purine nucleosides for nucleic acid synthesis in the rat. J. of Biol. Chem. 197, 591–600 (1952).
CAS
Google Scholar
Lukens, L. N., and J. M. Buchanan: A new intermediate in purine biosynthesis. Federat. Proc. 15, 305 (1956).
Google Scholar
Mac
Laren, J. A.: The effects of certain purines and pyrimidines upon the production of riboflavin by Eremothecium ashbyii. J. Bacter. 63, 233–241 (1952).
CAS
Google Scholar
Magasanik, B., and M. S. Brooke: The accumulation of xanthosine by a guanineless mutant of Aerobacter aerogenes. J. of Biol. Chem. 206, 83–87 (1954).
CAS
Google Scholar
Magasanik, B., U. L. B. Gehring: Enzymatische Umwandlung von Inosin-5′-phosphat in Xanthinphosphat. Angew. Chem. 67, 662 (1955).
Google Scholar
Mahler, H. R., H. M. Baum and G. Hübscher: Enzymatic oxidation of urate. Science (Lancaster, Pa.) 124, 705–708 (1956).
CAS
Google Scholar
Mahler, H. R., G. Hübscher and H. Baum: Studies on uricase. I. Preparation, purification, and properties of a cupro-protein. J. of Biol. Chem. 216, 625–641 (1955).
CAS
Google Scholar
Mandel, H. G., and P.-E. Carĺ: The incorporation of guanine into nucleic acids of tumor-bearing mice. J. of Biol. Chem. 201, 335–341 (1953).
CAS
Google Scholar
Mannell, W. A., and R. J. Rossiter: 14C formate labelling of bases of nucleic acids in respiring slices of rat tissues. Biochemic. J. 61, 418–424 (1955).
CAS
Google Scholar
Markham, R.: Nucleic acids, their components and related compounds. In Paech-Tracey, Modern methods of plant analysis, S. 246–304. Berlin-Göttingen-Heidelberg: Springer 1955.
Google Scholar
Marrian, D. H.: A new adenine nucleotide. Biochim. et Biophysica Acta 12, 492 (1953).
CAS
CrossRef
Google Scholar
A new adenine nucleotide. Biochim. et Biophysica Acta 13, 278–281 (1954).
Google Scholar
Marrian, D. H., V. L. Spicer, M. E. Balis and G. B. Brown: Purine incorporation into pentose nucleotides of the rat. J. of Biol. Chem. 189, 533–541 (1951).
CAS
Google Scholar
Marsh, W. H.: On the biosynthesis of purines in the bird; r̂le of formate. J. of Biol. Chem. 190, 633–641 (1951).
CAS
Google Scholar
Marshall, R. O., L. M. Hall and P. P. Cohen: On the nature of the carbamyl group donor in citrulline biosynthesis. Biochim. et Biophysica Acta 17, 279–281 (1955).
CAS
CrossRef
Google Scholar
Mc
Cluer, R. H., J. van
Eys and O. Touster: The isolation of a uridine diphosphate acylaminosugar peptide from hemolytic streptococcal cells. Abstr. Minneapolis meeting, Amer. Chem. Soc, S. 65c. 1955.
Google Scholar
Mc
Nutt jr. W. S.: The enzymically catalysed transfer of the deoxyribosyl group from one purine or pyrimidine to another. Biochemic. J. 50, 384–397 (1952).
Google Scholar
The direct contribution of adenine to the biogenesis of riboflavin by Eremothecium ashbyii. J. of Biol. Chem. 210, 511–519 (1954).
Google Scholar
Incorporation of the pyrimidine ring of adenine into the isoalloxazine ring of riboflavine. Science (Lancaster, Pa.) 122, 878 (1955).
Google Scholar
The incorporation of the pyrimidine ring of adenine into the isoalloxazine ring of riboflavin. J. of Biol. Chem. 219, 365–373 (1956).
Google Scholar
Melnick, J., and J. M. Buchanan: Biosynthesis of the purines. XIV. Conversion of (α-N-formyl) glycinamide ribotide to (α-N-formyl)-glycinamidine ribotide; purification and requirements of the enzyme system. J. of Biol. Chem. 225, 157–162 (1957).
CAS
Google Scholar
Michelson, A. M., W. Drell and H. K. Mitchell: A new ribose nucleoside from Neurospora “Orotidine”. Proc. Nat. Acad. Sci. U.S.A. 37, 396–399 (1951).
CAS
CrossRef
Google Scholar
Miller, A., and H. Waelsch: The transfer of the formimino group of formamidinoglutaric acid to tetrahydrofolic acid. Arch. of Biochem. a. Biophysics 63, 263–266 (1956).
CAS
CrossRef
Google Scholar
Miller, Z., and L.Warren: Studies on the metabolism of 4-amino-5-imidazolecarboxamide in vitro. I. Utilization by normal tissue preparations. J. of Biol. Chem. 205, 331–343 (1953).
CAS
Google Scholar
Mitchell, H. K., and M. B. Houlahan: Adenine-requiring mutants of Neurospora crassa. Federat. Proc. 5, 370–375 (1946).
CAS
Google Scholar
Investigations on the biosynthesis of pyrimidine nucleosides in Neurospora. Federat. Proc. 6, 506–509 (1947).
Google Scholar
Mitchell, H. K., M. B. Houlahan and J. F. Nyc: The accumulation of orotic acid by a pyrimidineless mutant of Neurospora. J. of Biol. Chem. 172, 525–529 (1948).
CAS
Google Scholar
Moat, A. G., and C. N. Wilkins: Biotin in purine biosynthesis. Federat. Proc. 15, 605 (1956).
Google Scholar
Moat, A. G., Ch. N. Wilkins and H. Friedman: A rôle for biotin in purine biosynthesis. J. of Biol. Chem. 223, 985–991 (1956).
CAS
Google Scholar
Moore, A. M., and J. B. Boylen: Utilization of uracil by a strain of E. coli. Arch. of Biochem. a. Biophysics 54, 312–317 (1955).
CAS
CrossRef
Google Scholar
Moss, J. A. de, S. M. Genuth and G. D. Novelli: The enzymatic activation of amino acids via their acyl-adenylate derivatives. Proc. Nat. Acad. Sci. U.S.A. 42, 325–332 (1956).
CrossRef
Google Scholar
Moyed, H. S., and B. Magasanik: Biosynthesis of nucleic acid guanine: the enzymic conversion of xanthosine-5′-phosphate to guanosine-5′-phosphate. Federat. Proc. 15, 318 (1956).
Google Scholar
Munch-Petersen, A.: Metabolism of uridine triphosphate in yeast. Acta chem. scand. (Copenh.) 8, 1102–1103 (1954).
CrossRef
Google Scholar
Investigations of the properties and mechanism of the uridine diphosphate glucose pyrophosphorylase reaction. Acta chem. scand. (Copenh.) 9, 1523–1536 (1955a).
Google Scholar
Note on the transphosphorylation reaction between uridine monophosphate and adenosine triphosphate. Acta chem. scand. (Copenh). 9, 1537–1539 (1955b).
Google Scholar
Enzymatic synthesis and pyrophosphorolysis of guanosine diphosphate mannose. Arch. of Biochem. a. Biophysics 55, 592–593 (1955 c).
Google Scholar
Park, J. T.: Uridine-5′-pyrophosphate derivatives. III. Amino acid containing derivatives. J. of Biol. Chem. 194, 897–904 (1952).
CAS
Google Scholar
Park, J. T., and J. L. Strominger: Mode of action of penicillin. Biochemical basis for the mechanism of action of penicillin and for its selective toxicity. Science (Lancaster, Pa.) 125, 99–101 (1957).
CAS
Google Scholar
Paul, K. G., U. Y. Avi-Dor: The oxidation of uric acid with horse radish peroxidase. Acta chem. scand. (Copenh.) 8, 637–648 (1954).
Google Scholar
Peabody, R. A.: Activation of formate for purine synthesis. Federat. Proc. 12, 254 (1953).
Google Scholar
Peabody, R. A., D. A. Goldthwait and G. R. Greenberg: The structure of glycinamide ribotide. J. of Biol. Chem. 221, 1071–1081 (1956).
CAS
Google Scholar
Pierce, J. G., and H. S. Loring: Growth requirements of a purine-deficient strain of Neurospora. J. of Biol. Chem. 160, 409–415 (1945).
CAS
Google Scholar
Purine and pyrimidine antagonism in a pyrimidine-deficient mutant of Neurospora. J. of Biol. Chem. 176, 1131–1140 (1948).
Google Scholar
Plentl, A. A., and R. Schoen-heimer: Studies in the metabolism of purines and pyrimidines by means of isotopic nitrogen. J. of Biol. Chem. 153, 203–217 (1944).
CAS
Google Scholar
Pomper, S.: Purine-requiring and pyrimidine-requiring mutants of Saccharomyces cerevisiae. J. Bacter. 63, 707–713 (1952).
CAS
Google Scholar
Pontis, H. G.: Uridine diphosphate acetylgalactosamine in liver. J. of Biol. Chem. 216, 195–202 (1955).
CAS
Google Scholar
Potter, R. L., and S. Schlesinger: The occurrence of deoxy-pyrimidine nucleotides in the acid-soluble extract of thymus. J. Amer. Chem. Soc. 77, 6714–6715 (1955).
CAS
CrossRef
Google Scholar
Praetorius, E.: The enzymatic conversion of uric acid spectrophotometric analysis. Biochim. et Biophysica Acta 2, 602–613 (1948).
CAS
CrossRef
Google Scholar
Prusoff, W. H., and L. G. Lajtha: A new acid-stable component of DNA derived from formate C14. Federat. Proc. 15, 331 (1956).
Google Scholar
Prusoff, W. H., L. G. Lajtha and A. D. Welch: Effect of the deoxyriboside of 6-azathy-mine (azathymidine) on the biosynthesis of deoxyribonucleic acid by bone marrow and neoplastic cells (in vitro). Biochim. et Biophysica Acta 20, 209–214 (1956).
CAS
CrossRef
Google Scholar
Purucker, H.: Untersuchungen über die Entstehung des Allantoins in der Pflanze. Planta (Berl.) 16, 277–331 (1932).
CAS
CrossRef
Google Scholar
Rabinowitz, J. C.: Purine fermentation by Clostridium cylindrosporum. III. 4-Amino-5-imidazolecarboxylic aeid and 4-aminoimidazole. J. of Biol. Chem. 218, 175–187 (1956).
CAS
Google Scholar
Rabinowitz, J. C, and H. A. Barker: Intermediates in purine decomposition by Clostridium cylindrosporum. Federat. Proc. 12, 255–256 (1953).
Google Scholar
Purine fermentation by Clostridium cylindrosporum. I. Tracer experiments on the fermentation of guanine. J. of Biol. Chem. 218, 147–160 (1956a).
Google Scholar
Purine fermentation by Clostridium cylindrosporum. II. Purine transformations. J. of Biol. Chem. 218, 161–173 (1956b).
Google Scholar
Rabinowitz, J. C., and H. A. Pricer: Isolation of an intermediate in xanthine decomposition by Clostridium cylindrosporum. Federat. Proc. 13, 278 (1954).
Google Scholar
Rabinowitz, J. C., and W. E. Pricer: Formation and degradation of 4-amino-imidazole by extracts of Clostridium cylindrosporum. Federat. Proc. 14, 266 (1955).
Google Scholar
Purine fermentation by Clostridium cylindrosporum. IV. 4-Ureido-5-imidazolecarboxylic acid. J. of Biol. Chem. 218, 189–199 (1956a).
Google Scholar
ATP-formation accompanying formimino-glycine utilization. J. Amer. Chem. Soc. 78, 1513–1514 (1956b).
Google Scholar
Purine fermentation by Clostridium cylindrosporum. V. Form-immoglycine. J. of Biol. Chem. 222, 537–554 (1956c).
Google Scholar
The enzymatic synthesis of N10-formyltetrahydrofolic acid and its rôle inATP-formation during formiminoglycine degradation. J. Amer. Chem. Soc. 78, 4176–4178 (1956d).
Google Scholar
Formimino-tetrahydrofolic acid and methe-nyltetrahydrofolic acid as intermediates in the formation of N10-formyltetrahydrofolic acid. J. Amer. Chem. Soc. 78, 5702–5704 (1956e).
Google Scholar
Radin, N. S., and H. A. Barker: Enzymatic reactions in purine decomposition by preparations of Clostridium acidi-urici. Proc. Nat. Acad. Sci. U.S.A. 39, 1196–1204 (1953).
CAS
CrossRef
Google Scholar
Ratner, S., and A. Pappas: Biosynthesis of urea. I. Enzymatic mechanism of arginine synthesis from citrulline. J. of Biol. Chem. 179, 1183–1212 (1949).
CAS
Google Scholar
Ratner, S., B. Petrack and O. Rochovansky: Biosynthesis of urea. V. Isolation and properties of argininosuccinic acid. J. of Biol. Chem. 204, 95–113 (1953).
CAS
Google Scholar
Rege, D. V., and A. Sreenivasan: Influence of folic acid and vitamin B12 on the impairment of nucleic acid synthesis in Lactobacillus casei by aureomycin. Nature (Lond.) 173, 728–729 (1954a).
CAS
CrossRef
Google Scholar
Conversion of uracil to thymine by strains of Bacillus subtilis. J. of Biol. Chem. 208, 471–476 (1954b).
Google Scholar
Reichard, P.: The function of orotic acid in the biogenesis of pyrimidines in slices from regenerating liver. J. of Biol. Chem. 197, 391–398 (1952).
CAS
Google Scholar
Enzymatic synthesis of ureidosuccinic acid in rat liver mitochondria. Acta chem. scand. (Copenh.) 8, 795–805 (1954a).
Google Scholar
Enzymatic synthesis of ureidosuccinic acid. Acta chem. scand. (Copenh.) 8, 1102–1103 (1954b).
Google Scholar
Biosynthesis of purines and pyrimidines. In Chargaff and Davidson: The Nucleic Acids, Bd. II, S. 277–308. New York: Academic Press Inc. 1955.
Google Scholar
Reichard, P., u. S. Bergström: Synthesis of polynucleotides in slices from regenerating liver. Acta chem. scand. (Copenh.) 5, 190–191 (1951).
CAS
CrossRef
Google Scholar
Reichard, P., and B. Estborn: Preparation of desoxyribonucleosides from thymonucleic acid. Acta chem. scand. (Copenh.) 4, 1047–53 (1950).
CAS
CrossRef
Google Scholar
Utilization of desoxyribosides in the synthesis of polynucleotides. J. of Biol. Chem. 188, 839–846 (1951).
Google Scholar
Reichard, P., u. G. Hanshoff: Synthesis of ureidosuccinic acid with soluble enzymes from liver mitochondria and E. coli. Acta chem. scand. (Copenh.) 9, 519–530 (1955).
CAS
CrossRef
Google Scholar
Reichard, P., u. U. Lagerkvist: The biogenesis of orotic acid in liver slices. Acta chem. scand. (Copenh.) 7, 1207–1217 (1953).
CAS
CrossRef
Google Scholar
Reichard, P., L. H. Smith U. G. Hanshoff: Enzymic synthesis of ureidosuccinic acid from citrulline via compound x and carbamyl phosphate. Acta chem. scand. (Copenh.) 9, 1010–1012 (1955).
CAS
CrossRef
Google Scholar
Remy, Ch. N., W. T. Remy and J. M. Buchanan: Biosynthesis of the purines. VIII. Enzymatic synthesis and utilization of α-5-phospho-ribosylpyrophosphate. J. of Biol. Chem. 217, 885–895 (1955).
CAS
Google Scholar
Reynolds, E. S., J. Lieberman and A. Kornberg: The metabolism of orotic acid in aerobic bacteria. J. Bacter. 69, 250–255 (1955).
CAS
Google Scholar
Richert, W. W., and A. W. Westerfeld: Purine metabolism in rat liver homogenates. J. of Biol. Chem. 184, 203–209 (1950).
CAS
Google Scholar
Rogers, H. J.: Importance of pyrimidine derivatives in the growth of group streptococci upon a simplified medium. Nature (Lond.) 153, 251 (1944).
CAS
CrossRef
Google Scholar
Rogers, L. L., and W. Shive: Biochemical transformations as determined by competitive analogue-metabolite growth inhibitions. VII. Relationship of purines and thymine to folic acid. J. of Biol. Chem. 172, 751–758 (1948).
CAS
Google Scholar
Roll, P. M., H. Wetnfeld and E. Carroll: The utilization of nucleotides by the mammal. V. Metabolism of pyrimidine nucleotides. J. of Biol. Chem. 220, 455–465 (1956).
CAS
Google Scholar
Rutman, R. J., A. Cantarow and K. E. Paschkis: The catabolism of uracil in vivo and in vitro. J. of Biol. Chem. 210, 321–329 (1954).
CAS
Google Scholar
Sacks, J.: Adenosine pentaphosphate from commercial ATP. Biochim. et Biophysica Acta 16, 436 (1955).
CAS
CrossRef
Google Scholar
Sagers, R. D., and J. V. Beck: Studies on the formation of formate, glycine, serine, pyruvate and acetate from purines by Clostridium acidi-urici. J. Bacter. 72, 199–208 (1956).
CAS
Google Scholar
Sagers, R. D., and J. V. Beck: Tracer studies on pyruvate formation from purines by Clostridium acidi-urici. Bacter. Proc. 1955, 136 (1955).
Google Scholar
Sagers, R. D., J. V. Beck, W. Gruber and I. C. Gunsalus: A tetrahydro-folic acid linked formimino transfer enzyme. J. Amer. Chem. Soc. 78, 694–695 (1956).
CAS
Google Scholar
Schitten-helm, A.: Über die Fermente des Nucleinstoffwechsels in Lupinenkeimlingen. Hoppe-Seylers Z. 63, 289 (1909).
CrossRef
Google Scholar
Schmitz, H.: Embau von 14C aus Glucose-l-14C in die freien und gebundenen Nucleotide. Angew. Chem. 66, 110 (1954).
CrossRef
Google Scholar
Schmitz, H., R. B. Hurlbert and V. R. Potter: Nucleotide metabolism. III. Mono-, di- and triphosphates of cytidine, guanosine and uridine. J. of Biol. Chem. 209, 41–54 (1954).
CAS
Google Scholar
Schmitz, H., u. J. J. Saukkonen: Vergleichende Untersuchungen über den Bestand an Adenosin-Guanosin-, Cytidin- und Uridin-5′-mono- und Polyphosphorsäureestem ruhender und wachsender Gewebe. 3. Congrès Internat. de Biochimie Bruxelles, Résumés des Communications, S. 72. 1955.
Google Scholar
Schuler, B.: Die Urikolyse. Hoppe-Seylers Z. 208, 237–248 (1932).
CAS
CrossRef
Google Scholar
Schuler, B., U. B. Reindel: Die Urikolyse. III. Mitt. Hoppe-Seylers Z. 215, 258–266 (1933).
CAS
CrossRef
Google Scholar
Schulman, M. P.: Purines and pyrimidines. In Greenberg, Chemical pathways of metabolism, Bd. II, S. 223–261. New York: Academic Press Inc. 1954.
Google Scholar
Schulman, M. P., and S. J. Badger: Pyrimidine biosynthesis from citrulline ureide carbon. Federat. Proc. 13, 292 (1954).
Google Scholar
Schulman, M. P., and J. M. Buchanan: Mechanism of hypoxanthine synthesis from glycine, formate, and 4-amino-5-imidazolecarboxamide. Federat. Proc. 10, 244–245 (1951).
Google Scholar
Biosynthesis of the purines. II. Metabolism of 4-amino-5-imidazolecarboxamide in pigeon liver. J. of Biol. Chem. 196, 513–521 (1952).
Google Scholar
Schulman, M. P., J. M. Buchanan and C. S. Miller: Precursors of purines. Federat. Proc. 9, 225 (1950).
Google Scholar
Schulman, M. P., J. C. Sonne and J. M. Buchanan: Biosynthesis of the purines. I. Hypoxanthine formation in pigeon liver homogenates and extracts. J. of Biol. Chem. 196, 499–512 (1952).
CAS
Google Scholar
Shemin, D., and D. Rittenberg: On the utilization of glycine for uric acid synthesis in man. J. of Biol. Chem. 167, 875–876 (1947).
CAS
Google Scholar
Shive, W.: The utilization of antimetabolites in the study of biochemical processes in living organisms. Ann. New York Acad. Sci. 52, 1212–1234 (1950).
CAS
CrossRef
Google Scholar
B-vitamins involved in single carbon unit metabolism. Federat. Proc. 12, 639–646 (1953).
Google Scholar
Shive, W., W. W. Ackermann, M. Gordon, M. E. Getzendaner and R. E. Eakin: 5(4)-amino-4(5)-imidazolecarboxamide, a precursor of purines. J. Amer. Chem. Soc. 69, 725–726 (1947).
CAS
CrossRef
Google Scholar
Siminovitch, L., and A. F. Graham: Synthesis of nucleic acids in E. coli. Canad. J. Microbiol. 1, 721–732 (1955).
CAS
CrossRef
Google Scholar
Slotnick, I. J.: Dihydrouracil as a growth factor for a mutant strain of E. coli. J. Bacter. 72, 276–277 (1956).
CAS
Google Scholar
Slotnick, I. J., and M. G. Sevag: An investigation of the natural occurrence of 4-amino-5-imidazolecarboxamide in several strains of E. coli. Arch. of Biochem. a. Biophysics 57, 491–495 (1955).
CAS
CrossRef
Google Scholar
Smith, E., and G. T. Mills: Biosynthesis of 14C-labelled UDPG and uridine diphosphateacetylglucosamine (UDPAG). Biochemic. J. 64, 52 P (1956).
Google Scholar
Smith, E. E. B., G. T. Mills and E. M. Harper: The isolation of uridine Pyrophosphogalacturonic acid from a type I pneumococcus. Biochim. et Biophysica Acta 23, 662–663 (1957).
CAS
CrossRef
Google Scholar
Smith, J. D., and O. B. Dunn: The occurrence of 6-methyl-aminopurine in deoxyribonucleic acids and its relation to nucleic acid structure and function. 3. Congrès Internat. de Biochimie Bruxelles. Résumés des Communications, S. 24. 1955.
Google Scholar
Smith jr. L. H., and D. Stetten jr.: Biosynthesis of orotic acid from citrulline. J. Amer. Chem. Soc. 76, 3864–3865 (1954).
CAS
CrossRef
Google Scholar
Sonne, J. C, J. M. Buchanan and A. M. Delluva: Biological precursors of uric acid carbon. J. of Biol. Chem. 166, 395–396 (1946).
CAS
Google Scholar
Biological precursors of uric acid. J. of Biol. Chem. 173, 69–79 (1948).
Google Scholar
Sonne, J. C, and L. Lin: Nitrogen precursors of hypoxanthine. Federat. Proc. 11, 290 (1952).
Google Scholar
Sonne, J. C, J. Lin and J. M. Buchanan: The rôle of N15 glycine, glutamine, aspartate and glutamate in hypoxanthine synthesis. J. Amer. Chem. Soc. 75, 1516–1517 (1953).
CAS
CrossRef
Google Scholar
Spicer, D. S., K. V. Liebert, L. D. Wright and J. W. Huff: Study of ureidosuccinic acid and related compounds in pyrimidine synthesis by Lactobacillus bulgaricus O9. Proc. Soc. Exper. Biol. a. Med. 79, 587–588 (1952).
CAS
Google Scholar
Stegwee, D.: Some aspects of purine metabolism in mutants of Ophiostoma multiannulatum. Amsterdam: North-Holland Publishing Company 1955.
Google Scholar
Betrachtungen über den Purinstoffwechsel in Mutanten von Ophiostoma multiannulatum. Acta bot. néerl. 4, 575–636 (1955).
Google Scholar
Steinert, M.: Incorporation de bases puriques marquées par les embryons de Batraciens. Biochim. et Biophysica Acta 18, 511–515 (1955).
CAS
CrossRef
Google Scholar
Stetten, M. R., and C. L. Fox jr.: An amine formed by bacteria during sulfonamide bacteriostasis. J. of Biol. Chem. 161, 333–349 (1945).
CAS
Google Scholar
Stewart, R. C., and M. G. Sevag: 4-Amino-5-imidazolecarboxamide; rôle of carbohydrates as critical factors for its accumulation. Arch. of Biochem. a. Biophysics 41, 9–13 (1952).
CAS
CrossRef
Google Scholar
Storey, I. D. E., and G. J. Dutton: Uridine compounds in glucuronic acid metabolism. II. The isolation and structure of uridine-diphosphate-glucuronic acid. Biochemic. J. 59, 279–288 (1955a).
CAS
Google Scholar
Uridine diphosphate glucuronic acid. 3. Congrès Internat. de Biochimie, Bruxelles. Conférences et Rapports, S. 162–163. 1955b.
Google Scholar
Strecker, A.: Bildung von Glykokoll aus Harnsäure. Ann. Chem. u. Pharm. 146, 142–144 (1868).
CrossRef
Google Scholar
Strominger, J. L.: Uridine diphosphate acetylglucosamine phosphate and uridine diphosphate acetylgalactosamine sulfate. Biochim. et Biophysica Acta 17, 283–285 (1955).
CAS
CrossRef
Google Scholar
Strominger, J. L., L. A. Heppel and E. S. Maxwell: A new mechanism for dephosphorylation of nucleoside di- and triphosphates. I. Transphosphorylation between nucleoside monophosphates and nucleoside triphosphates. Arch. of Biochem. a. Biophysics 52, 488–491 (1954).
CrossRef
Google Scholar
Sumi, M.: Über die chemischen Bestandteile der Sporen von Aspergillus oryzae. Biochem. Z. 195, 161–174 (1928).
CAS
Google Scholar
Sutton, W. B., F. Schlenk and C. H. Werkman: Glycine as a precursor of bacterial purines. Arch, of Biochem. a. Biophysics 32, 85–88 (1951).
CAS
CrossRef
Google Scholar
Sutton, W. B., and C. H. Werkman: The carbon and nitrogen precursors of bacterial purines. Arch. of Biochem. a. Biophysics 47, 1–7 (1953).
CAS
CrossRef
Google Scholar
Tabor, H., and J. C. Rabinowitz: Intermediate steps in the formylation of tetrahydrofolic acid by formiminoglutamic acid in rabbit liver. J. Amer. Chem. Soc. 78, 5705–5706 (1956).
CAS
CrossRef
Google Scholar
Taha, E. E. M., L. Storck-Krieg U. W. Franke: Purinoxydierende Fermente aus Schimmelpilzen. IV. Arch. Mikrobiol. 23, 67–78 (1955).
CAS
CrossRef
Google Scholar
Totter, J. R.: Incorporation of isotopic formate into the thymine of bone marrow deoxyribonucleic acid in vitro. J. Amer. Chem. Soc. 76, 2196–2197 (1954).
CAS
CrossRef
Google Scholar
Totter, J. R., E. Volkin and C. E. Carter: Incorporation of isotopic formate into the nucleotides of ribo- and desoxyribonucleic acid. J. Amer. Chem. Soc. 73, 1521–1522 (1951).
CAS
CrossRef
Google Scholar
Tracey, M. V.: A. The occurrence of urea and its precursors in plants. I. Intermediates in purine catabolism. In Paech-Tracey, Moderne Methoden der Pflanzenanalyse, Bd. IV: Urea and ureides, S. 119–141. 1955.
Google Scholar
Ushiba, D., and B. Magasanik: Effects of auxotrophic mutations on the adaptation to inositol degradation in Aerobacter aerogenes. Proc. Soc. Exper. Biol. a. Med. 80, 626–632 (1952).
CAS
Google Scholar
Wahba, A. J., J. M. Ravel and W. Sheve: Involvement of aspartic acid in purine biosynthesis. Biochim. et Biophysica Acta 14, 569 (1954).
CAS
CrossRef
Google Scholar
Walker, E. B.: Arginosuccinic acid from Chlorella. Proc. Nat. Acad. Sci. U.S.A. 38, 561–566 (1952).
CAS
CrossRef
Google Scholar
Walker, E. B., and J. Myers: The formation of arginosuccinic acid from arginine and fumarate. J. of Biol. Chem. 203, 143–152 (1953).
CAS
Google Scholar
Wang, T. P., and J. O. Lampen: Metabolism of pyrimidines by a soil Bacterium. J. of Biol. Chem. 194, 775–783 (1952).
CAS
Google Scholar
Uracil oxidase and the isolation of barbituric acid from uracil oxidation. J. of Biol. Chem. 194, 785–791 (1952).
Google Scholar
Warren, L. and J. G. FLAKS: Single- carbon transferreactions and purine biosynthesis. Federat. Proc. 15, 379 (1956).
Google Scholar
Webb, M., and W. J. Nickerson: Differential reversal of inhibitory effects of folic acid analogues on growth, division and deoxyribonucleic acid synthesis of microorganisms. J. Bacter. 71, 140–148 (1956).
CAS
Google Scholar
Weed, L. L.: Incorporation of radioactive orotic acid into the nucleic acid pyrimidines of animal and human tumors. Cancer Res. 11, 470–473 (1951).
CAS
Google Scholar
Weed, L. L., and S. S. Cohen: The utilization of host pyrimidines in the synthesis of bacterial viruses. J. of Biol. Chem. 192, 693–700 (1951).
CAS
Google Scholar
Weed, L. L., M. Edmonds and D. W. Wilson: Conversion of radioactive orotic acid into pyrimidine nucleotides of nucleic acid by slices of rat liver. Proc. Soc. Exper. Biol. a. Med. 75, 192–193 (1950).
CAS
Google Scholar
Weed, L. L., and D. W. Wilson: The incorporation of C14-orotic acid into nucleic acid pyrimidines in vitro. J. of Biol. Chem. 189, 435–442 (1951).
CAS
Google Scholar
Studies of pyrimidine nucleotides with orotic acid-2-C14 and P32. J. of Biol. Chem. 202, 745 (1953).
Google Scholar
Studies on precursors of pyrimidines of nucleic acid. J. of Biol. Chem. 207, 439–442 (1954).
Google Scholar
Weinfeld, H., P. M. Roll and G. B. Brown: The utilization of nucleotides by the mammal. III. Isomeric purine nucleotides labeled with C14. J. of Biol. Chem. 213, 523–531 (1955).
CAS
Google Scholar
Weiss, S. B., S. W. Smith and E. P. Kennedy: Net synthesis of lecithin in an isolated enzyme system. Nature (Lond.) 178, 594–595 (1956).
CAS
CrossRef
Google Scholar
Weygand, F., A. Wacker U. H. Dellweg: Stoff-wechseluntersuchungen bei Mikroorganismen mit Hilfe radioaktiver Isotope. IV. Umwandlung von Guanin in Adenin durch Lactobacillus leichmannii 313, untersucht mit Guanin-(8-14C) und Adenin-(14C). Z. Naturforsch. 7b, 156–161 (1952).
Google Scholar
Weygand, F., A. Wacker, A. Trebst U. P. Swoboda: Über die Biosynthese des Thymins bei Bakterien. Z. Naturforsch. 9b, 764–769 (1954).
Google Scholar
Weygand, F., u. M. Waldschmidt: Über die Biosynthese des Leueopterins, untersucht mit 14C-markierten Verbindungen am Kohlweißling. Angew. Chem. 67, 328 (1955).
CAS
CrossRef
Google Scholar
Wheeler, Gl. P., and H. E. Skipper: Incorporation of 2,6-diaminopurine into the nucleoside phosphates of the mouse. J. of Biol. Chem. 205, 749–754 (1953a).
CAS
Google Scholar
Chromatographic evidence for incorporation of 2,6-diaminopurine into nucleoside phosphates of the mouse. Federat. Proc. 12, 289 (1953b).
Google Scholar
Whiteley, H. R.: The fermentation of purines by Micrococcus aerogenes. J. Bacter. 63, 163–175 (1952).
CAS
Google Scholar
Whiteley, H. R., and H. C. Douglas: The fermentation of purines by Micrococcus lactilyticus. J. Bacter. 61, 605–616 (1951).
CAS
Google Scholar
Whitfeld, P. R.: Accumulation of adenine-succinic acid by an adenine-requiring mutant of Neurospora crassa. Arch. of Biochem. a. Biophysics 65, 585–586 (1956).
CAS
CrossRef
Google Scholar
Wiechowski, W.: Die Produkte der fermentativen Harnsäurezersetzung durch tierische Organe. Beitr. chem. Physiol. u. Path. 9, 295–310 (1907).
CAS
Google Scholar
Wieland, O. P., J. Avener, E. M. Boggiano, N. Bohonos, B. L. Huchings and J. H. Williams: Orotic acid in the nutrition of a strain of Lactobacillus bulgaricus. J. of Biol. Chem. 186, 737–742 (1950).
CAS
Google Scholar
Williams, W. J.: Verwendung von 4-Amino-5-imidazol-carboxamid zur Purinsynthese durch Hefe. Federat. Proc. 10, 270 (1951).
Google Scholar
Williams, W. J., and J. M. Buchanan: Biosynthesis of the purines. IV. The metabolism of 4-amino-5-imidazolecarboxamide in yeast. J. of Biol. Chem. 202, 253–262 (1953).
CAS
Google Scholar
Woods, L., J. M. Ravel and W. Shive: Relationship of aspartic acid to pyrimidine biosynthesis. J. of Biol. Chem. 209, 559–567 (1954).
CAS
Google Scholar
Woolley, D. W., and R. B. Pringle: Formation of 4-amino-5-carboxamideimidazole during growth of E. coli in the presence of 4-amino-pteroylglutamic acid. J. Amer. Chem. Soc. 72, 634–635 (1950).
CAS
CrossRef
Google Scholar
Wright, L. D., Ch. A. Driscoll, Ch. L. Miller and H. R. Skeggs: Dihydroorotic acid in nutrition of lactic acid bacteria. Proc. Soc. Exper. Biol. a. Med. 84, 716–719 (1953).
CAS
Google Scholar
Wright, L. D., J. W. Huff, H. R. Skeggs, K. A. Valentik and D. K. Bosshardt: Orotic acid, a growth factor for Lactobacillus bulgaricus. J. Amer. Chem. Soc. 72, 2312–2313 (1950).
CAS
CrossRef
Google Scholar
Wright, L. D., C. S. Miller, H. R. Skeggs, J. W. Huff, L. L. Weed and D. W. Wilson: Biological precursors of the pyrimidines. J. Amer. Chem. Soc. 73, 1898–1899 (1951).
CAS
CrossRef
Google Scholar
Wright, L. D., K. A. Valentik, D. O. Spicer, J. W. Huff and H. R. Skeggs: Orotic acid and related compounds in the nutrition of Lactobacillus. Proc. Soc. Exper. Biol. a. Med. 75, 293–297 (1950).
CAS
Google Scholar
Wu, R., and W. Wilson: Studies of the biosynthesis of orotic acid. J. of Biol. Chem. 223, 195–205 (1956).
CAS
Google Scholar
Wulff, C: Beiträge zur Kenntnis der Nucleinbasen. Z. physiol. Chem. 17, 468–510 (1893).
Google Scholar
Wyatt, G. R., and S. S. Cohen: A new pyrimidine base from bacteriophage nucleic acids. Nature (Lond.) 170, 1072–1073 (1952).
CAS
CrossRef
Google Scholar
Yates, R. A., and A. B. Pardee: Pyrimidine biosynthesis in E. coli. J. of Biol. Chem. 221, 743–756 (1956a).
CAS
Google Scholar
Control of pyrimidine biosynthesis in E. coli by a feed-back mechanism. J. of Biol. Chem. 221, 757–770 (1956b).
Google Scholar
Ziegler-Günder, I., H. Simon U. A. Wacker: Über den Stoffwechsel von Guanin (2-14C) und Hypoxanthin (8-14C) bei Amphibien. Z. Naturforsch. 11b, 82–85 (1956).
Google Scholar