Advertisement

Stoffwechsel der Purine und Pyrimidine

  • Ilse Böttger
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Zusammenfassung

Purin, Pyrimidin

Purine und Pyrimidine sind Bestandteile physiologisch wichtiger Verbindungen und Stoffklassen. Darum ist die Klärung ihres Stoffwechsels von weittragender Bedeutung.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abrams, R.: Purine synthesis in a purine-requiring yeast mutant. J. Amer. Chem. Soc. 73, 1888–1889 (1951a).CrossRefGoogle Scholar
  2. Some factors influencing nucleic acid purine reneval in the rat. Arch. of Biochem. a. Biophysics 33, 436–447 (1951b).Google Scholar
  3. Observations on pentose nucleic acid composition in sea urchin embryos and in mammalian cell fractions. Phosphorus Metabolism, ed. by Mc Elroy and Glass, Bd. II, S. 335. Baltimore: John Hopkins Press 1952.Google Scholar
  4. Stability of the adenine ring structure in the rat. Biochim. et Biophysica Acta 21, 439–440 (1956).Google Scholar
  5. Abrams, R., and M. Bentley: Transformation of inosinic acid to adenylic and guanylic acids in a soluble enzyme system. J. Amer. Chem. Soc. 77, 4179–4180 (1955a).CrossRefGoogle Scholar
  6. Biosynthesis of nucleic acid purines. II. Rôle of hypoxanthine and xanthine compounds. Arch. of Biochem. a. Biophysics 58, 109–118 (1955b).Google Scholar
  7. Biosynthesis of adenine and guanine nucleotides from inosinic acid in a soluble enzyme system. III. Congrès internat. de Biochimie Bruxelles, résumés des communications, 40. 1955 c.Google Scholar
  8. Biosynthesis of nucleic acid purines. I. Formation of guanine from adenine compounds in bone marrow extracts. Arch, of Biochem. a. Biophysics 56, 184–195 (1955d).Google Scholar
  9. Abrams, R., and J. M.Goldinger: Utilization of purines for nucleic acid synthesis in bone marrow slices. Arch. of Biochem. 30, 261–268 (1951).Google Scholar
  10. Formation of nucleic acid purines from hypoxanthine and formate in bone marrow slices. Arch. of Biochem. a. Biophysics 35, 243–247 (1952).Google Scholar
  11. Abrams, R., E. Hammarsten and D. Shemin: Glycine as a precursor of purines in yeast. J. of Biol. Chem. 173, 429–430 (1948).Google Scholar
  12. Albert, A.: The transformation of purines into pteridines. Biochemic. J. 65, 124–127 (1957).Google Scholar
  13. Alivisatos, S. G. A., and D. W. Woolley: Formation of a new dinucleotid from cozymase by enzymic destruction of the “onium linkage”. J. Amer. Chem. Soc. 77, 1065–1066 (1955).CrossRefGoogle Scholar
  14. Enzymic synthesis of a new dinucleotide from cozymase by a new method of biosynthesis. J. of Biol. Chem. 221, 651–663 (1956).Google Scholar
  15. Anderson, E. P., C. Y. Yen, H. G. Mandel and P. K. Smith: Ureidosuccinic acid as a precursor of nucleic acid pyrimidines in normal and tumor-bearing mice. J. of Biol. Chem. 213, 625–633 (1955).Google Scholar
  16. Arvidson, H., N. A. Eliasson, E. Hammarsten, P. Reichard, H. V. Ubisch and S. Bergström: Orotic acid as a precursor of pyrimidines in the rat. J. of Biol. Chem. 179, 169–173 (1949).Google Scholar
  17. Back, K. J. C, and D. D. Woods: Studies with a strain of Bacterium coli requiring citrulline and a pyrimidine for growth. Biochemic. J. 55, xii (1953).Google Scholar
  18. Baddiley, J., J. G. Buchanan, B. Carss and A. P. Mathias: Cytidine diphosphate ribitol. Biochim. et Biophysica Acta 21, 191–192 (1956).CrossRefGoogle Scholar
  19. Baddiley, J., J. G. Buchanan, B. Carss, A. P. Mathias and A. R. Sanderson: The isolation of cytidine diphosphate glycerol, cytidine diphosphate ribitol and mannitol 1-phosphate from Lactobacillus arabinosus. Biochemic. J. 64, 599–603 (1956a).Google Scholar
  20. Cytidine diphosphate glycerol and related compounds from Lactobacillus arabinosus. Biochemic. J. 63, 15 P. (1956b).Google Scholar
  21. Baer, B., u. K.Lang: Lokalisation des Stoffwechsels der Orotsäure in der Zelle. Biochem. Z. 328, 581–590 (1957).PubMedGoogle Scholar
  22. Balis, M. E., M. S. Brocke, G. B. Brown and B. Magasanik: The utilization of purines by purineless mutants of Aerobacter aerogenes. J. of Biol. Chem. 219, 917–926 (1956).Google Scholar
  23. Balis, M. E., G. B. Brown, G. B. Elion, G. H. Hitchings and H. van der Werff: On the interconversion of purines by Lactobacillus casei. J. of Biol. Chem. 188, 217–219 (1951).Google Scholar
  24. Balis, M. E., and G. B. Elion: Utilization of some purine ribose derivatives by Lactobacillus casei. Federat. Proc. 11, 183 (1952).Google Scholar
  25. Balis, M. E., D. H. Levin, G. B. Brown, G. B. Elion, H. van der Werff and G. H. Hitchings: The incorporation of exogenous purines into pentose nucleic acid by Lactobacillus casei. J. of Biol. Chem. 196, 729–747 (1952a).Google Scholar
  26. Utilization of some purine riboside derivatives by Lactobacillus casei. J. of Biol. Chem. 199, 227–232 (1952b).Google Scholar
  27. Balis, M. E., D. H. Marrian and G. B. Brown: On the utilization of guanine by the rat. J. Amer. Chem. Soc. 73, 3319–3320 (1951).CrossRefGoogle Scholar
  28. Ball, E. G.: Xanthine oxidase: Purification and properties. J. of Biol. Chem. 128, 51–67 (1939).Google Scholar
  29. Ballio, A., and G. Serlupi-Crescenzi: Isolation of adenylosuccinic acid from Penicillium chrysogenum. Nature (Lond.) 179, 154 (1957).CrossRefGoogle Scholar
  30. Barker, H. A., and J. V. Beck: The fermentative decomposition of purines by Clostridium Handbuch d. Pflanzenphysiologie, Bd. VIII. 51 acidi-urici and Clostridium cylindrosporum. J. of Biol. Chem. 141, 3–27 (1941).Google Scholar
  31. Barker, H. A., and S. R. Elsden: Carbon dioxide utilization in the formation of glycine and acetic acid. J. of Biol. Chem. 167, 619–620 (1947).Google Scholar
  32. Barnes jr. F, W., and R. Schoenheimer: On the biological synthesis of purines and pyrimidines. J. of Biol. Chem. 151, 123–139 (1943).Google Scholar
  33. Batt, R. D., and J. H. Exton: The catabolism of dihydro-pyrimidines by rat tissue preparations. Arch. of Biochem. a. Biophysics 63, 368–375 (1956).CrossRefGoogle Scholar
  34. Batt, R. D., and D. D. Woods; The oxidation of thymine by an unidentified bacterium. Biochemic. J. 49, Ixx–Ixxi (1951).Google Scholar
  35. Behrend, R.: Über die Oxydation der Harnsäure in alkalischer Lösung. Liebigs Ann. 333,141–160 (1904).CrossRefGoogle Scholar
  36. Bendich, A., and G. B. Brown: 2,6-Diamino-purine, a precursor of nucleic acid guanine. J. of Biol. Chem. 176, 1471–1472 (1948).Google Scholar
  37. Bendich, A., G. B. Brown, F. S. Philips and J. B. Thiersch: The direct oxidation of adenine in vivo. J. of Biol. Chem. 183, 267–277 (1950).Google Scholar
  38. Bendich, A., S. S. Furst and G. B. Brown: On the rôle of 2,6-diamino-purine in the biosynthesis of nucleic acid guanine. J. of Biol. Chem. 185, 423–433 (1950).Google Scholar
  39. Ben-Ishai, R., E. D. Bergmann and B. Volcani: Ribosidation of AICA by E. coli. Nature (Lond.) 168, 1124 (1951).CrossRefGoogle Scholar
  40. Ben-Ishai, R., B. Volcani u. E. D. Bergmann: The synthesis of the purine nucleus by E. coli, a study on the mode of action of sulfa-drugs. Experientia (Basel) 7, 63–64 (1951).CrossRefGoogle Scholar
  41. Bennett jr. L. L., and H. E. Skipper: In vivo utilization of hypoxanthine and other precursors for synthesis of nucleic acid purines. Arch. of Biochem. a. Biophysics 54, No 2, 566–569 (1955).CrossRefGoogle Scholar
  42. Bentley, M., and R. Abrams: Formation of 8-oxyadenine from adenine in bone marrow extracts. Arch. of Biochem. a. Biophysics 53, 314–315 (1954).CrossRefGoogle Scholar
  43. Amide-N of glutamine as source of guanine amino group. Federat. Proc. 15, 218 (1956).Google Scholar
  44. Bentley, M., and A. Neuberger: The mechanism of the action of uricase. Biochemic. J. 52,694–699 (1952).Google Scholar
  45. Berg, P.: A study of formate utilization in pigeon liver extract. J. of Biol. Chem. 205, 145–162 (1953).Google Scholar
  46. Berg, P., and W. K. Joklik: Transphosphorylation between nucleosid-polyphosphates. Nature (Lond.) 172, 1008–1009 (1953).CrossRefGoogle Scholar
  47. Enzymatic phosphorylation of nucleoside diphosphates. J. of Biol. Chem. 210, 657–672 (1954).Google Scholar
  48. Bergkvist, R., u. A. Deutsch: Guanosine triphosphate and uridine triphosphate from muscle. Acta chem. scand. (Copenh.) 7, 1307–1308 (1953).CrossRefGoogle Scholar
  49. Bergmann, E. D., R. Ben-Ishai and B. E. Volcani: Rôle of 4-amino-imidazole-5-carboxamide in purine synthesis by E. coli. J. of Biol. Chem. 194, 531–537 (1952).Google Scholar
  50. Bergmann, E. D., B. E. Volcani and R. Ben-Ishai: Effect of methyl donors on 4-aminoimidazole-5-carboxamide in E. coli. J. of Biol. Chem. 194, 521–529 (1952).Google Scholar
  51. Bergmann, P., and S. Dikstein: Studies on uric acid and related compounds. III. Observations on the specificity of mammalian xanthine oxidases. J. of Biol. Chem. 223, 765–780 (1956).Google Scholar
  52. Bergström, S., H. Arvidson, E. Hammarsten, A. Eliasson, P. Reichard and H. v. Ubisch: Orotic acid, a precursor of pyrimidines in the rat. J. of Biol. Chem. 177, 495 (1949).Google Scholar
  53. Biesele, I. I., R. E. Berger and G. H. Hitchings: Tissue culture studies with 2,6-diaminopurine and related substances. Cancer Res. 10, 204 (1950).Google Scholar
  54. Bolton, E. T., P. H. Abelson and E. Aldous: Utilization of carbon dioxide in the synthesis of nucleic acid by E. coli. J. of Biol. Chem. 198, 179–185 (1952).Google Scholar
  55. Bolton, E. T., and A. M. Reynard: Utilization of purine and pyrimidine compounds in nucleic acid synthesis by E. coli. Biochim. et Biophysica Acta 13, 381–385 (1954).CrossRefGoogle Scholar
  56. Boné, G. J., and M. Steinert: Isotopes incorporated in the nucleic acids of Trypanosoma mega. Nature (Lond.) 178, 308–309 (1956).CrossRefGoogle Scholar
  57. Bradshaw, W., and J. V. Beck: The degradation of xanthine by cell-free extracts of Clostridium acidi-urici. Bacter. Proc. 1953, 86.Google Scholar
  58. Brandenberger, H.: Eine weitere Isotopenstudie über den Abbau der Harnsäure. Chimia 7, 233 (1953).Google Scholar
  59. The oxidation of uric acid to oxonic acid (allan-toxanic acid) and its application in tracer studies of uric acid biosynthesis. Biochim. et Biophysica Acta 15, 108–116 (1954 a).Google Scholar
  60. Über den Abbau der Harnsäure zur Oxon-säure (Allantoxansäure). Helvet. chim. Acta 37, 641–644 (1954b).Google Scholar
  61. Determination of the isotope distribution in carbon labeled uric acids. Biochim. et Biophysica Acta 18, 519–522 (1955).Google Scholar
  62. Brooke, M. S., D. Ushiba and B. Magasanik: Some factors affecting the excretion of orotic acid by mutants of Aerobacter aerogenes. J. Bacter. 68, 534–540 (1954).Google Scholar
  63. Brown, E. G., T. W. Goodwin and O. T. G. Jones: Purine metabolism and riboflavin synthesis in Eremothecium ashbyii. Biochemic. J. 64, 37 P (1956).Google Scholar
  64. Brown, G. B.: Biosynthesis of nucleic acids in the mammalian. Federat. Proc. 9, 517–523 (1950).Google Scholar
  65. Brown, G. B., A. Bendich, P. M. Roll and K. Sugiura: Utilization of guanine by the C57 black mouse bearing adenocarcinoma-E 0771. Proc. Soc. Exper. Biol. a. Med. 72, 501–502 (1949).Google Scholar
  66. Brown, G. B., M. L. Peterman and S. S. Furst: The incorporation of adenine into pentose and desoxypentose nucleic acids. J. of Biol. Chem. 174, 1043–1044 (1948).Google Scholar
  67. Brown, G. B., P. M. Roll and L. Cavalieri: The in vivo oxidation of uric acid. J. of Biol. Chem. 171, 635 (1947).Google Scholar
  68. Brown, G. B., P. M. Roll, A. A. Plentl and L. Cavalieri: The utilization of adenine for nucleic acid synthesis and as a precursor of guanine. J. of Biol. Chem. 172, 469–484 (1948).Google Scholar
  69. Brunel, M. A.: Le métabolisme de l’azote d’origine purique chez les champignons. I. Répartition des ases allantoinase et uricase chez les Basidiomycetes. Bull. Soc. Chim. biol. Paris 19, 747–756 (1937).Google Scholar
  70. Evolution de l’allantoicase dans les mycéliums du Sterigmatocystis nigra et du Sterigmatocystis phoenicis. Bull. Soc. Chim. biol. Paris 21, 380–387 (1939).Google Scholar
  71. Buchanan, J. G.: The path of carbon in photosynthesis. XIX. The identification of sucrose phosphate in sugar beet leaves. Arch. of Bio-chem. a Biophysics 44, 140–149 (1953).CrossRefGoogle Scholar
  72. Buchanan, J.G., J.A.Bassham, A.A.Benson, D. F. Bradley, M. Calvin, L. L. Daus, M. Goodman, P. M. Hayes, V. H. Lynch, L. T Norris and A. T. Wilson: The rôle of phosphate in the metabolism of photosynthetic and chemoautotrophic organisms. In: Phosphorus Metabolism, Bd. II. Baltimore: John Hopkins Press 1952.Google Scholar
  73. Buchanan, J. G., V. H. Lynch, A. A. Benson, D. F. Bradley and M. Calvin: The path of carbon in photosynthesis. XVIII. The identification of nucleotide coenzymes. J. of Biol. Chem. 203, 935–945 (1953).Google Scholar
  74. Buchanan, J. M.: Biosynthesis of the purines. J. Cellul. a. Comp. Physiol. 38, Suppl. 1, 143–171 (1951).CrossRefGoogle Scholar
  75. Some reactions involved in biosynthesis of the purines. Science (Lancaster, Pa.) 118, 568 (1953).Google Scholar
  76. Buchanan, J. M., and M. P. Schulman: Biosynthesis of the purines. III. Reactions of formate and inosinic acid and an effect of the citrovorum factor. J. of Biol. Chem. 202, 241–252 (1953).Google Scholar
  77. Buchanan, J. M. and J. C. Sonne: The utilization of formate in uric acid synthesis. J. of Biol. Chem. 166, 781 (1946).Google Scholar
  78. Buchanan, J. M., J. C. Sonne and A. M. Delluva: Biological precursors of uric acid. II. The rôle of lactate, glycine, and carbon dioxide as precursors of the carbon chain and nitrogen atom 7 of uric acid. J. of Biol. Chem. 173, 81–98 (1948).Google Scholar
  79. Buchanan, J. M., and D. W. Wilson: Biosynthesis of purines and pyrimidines. Federat. Proc. 12, 646–650 (1953).Google Scholar
  80. Burma, D. P., and D. C. Mortimer: The biosynthesis of UDP-glucose and sucrose in sugar beet leaf. Arch. of Biochem. a. Biophysics 62, 16–28 (1956).CrossRefGoogle Scholar
  81. Cabib, E., and L. F. Leloir: Guanosine diphosphate mannose. J. of Biol. Chem. 206, 779–790 (1954).Google Scholar
  82. Cabib, E., L. F. Leloir and C. E. Cardini: Uridine diphosphate acetyl-glucosamine. J. of Biol. Chem. 203, 1055–1070 (1953).Google Scholar
  83. Campbell jr. L. L.: The mechanism of allantoin degradation by a Pseudomonas. J. Bacter. 68, 598–603 (1954).Google Scholar
  84. Oxidative degradation of uric acid by cell extracts of a Pseudomonas. Biochim. et Biophysica Acta 18, 160–161 (1955).Google Scholar
  85. Canellakis, E. S.: Pyrimidine metabolism. I. Enzymatic pathways of uracil and thymine degradation. J. of Biol. Chem. 221, 315–322 (1956).Google Scholar
  86. Canellakis, E. S., and P. P. Cohen: On the nature of oxonic acid and allantoxaidin as oxidation products of uric acid and allantoin. J. of Biol. Chem. 213, 379–384 (1955a).Google Scholar
  87. The endproducts and intermediates of uric acid oxidation by uricase. J. of Biol. Chem. 213, 385–395 (1955 b).Google Scholar
  88. Canellakis, E. S., A. L. Tuttle and P. P. Cohen: A comparative study of the endproducts of uric acid oxidation by peroxidases. J. of Biol. Chem. 213, 397–404 (1955).Google Scholar
  89. Caputto, R., L. F. Leloir, C. E. Cardini and A. C. Paladine: Isolation of the coenzyme of the galactose phosphate-glucose phosphate transformation. J. of Biol. Chem. 184, 333–350 (1950).Google Scholar
  90. Cardini, C. E., L. F. Leloir and I. Chiriboga: The biosynthesis of sucrose. J. of Biol. Chem. 214, 149–155 (1955).Google Scholar
  91. Carter, C. E.: Metabolism of purines and pyrimidines. Annual Rev. Biochem. 25, 123–146 (1956a).CrossRefGoogle Scholar
  92. Synthesis of 6-succino-amino-purine. J. of Biol. Chem. 223, 139–146 (1956b).Google Scholar
  93. Carter, C. E., and L. H. Cohen: Enzymatic synthesis of adenylo-succinic acid. J. Amer. Chem. Soc. 77, 499–500 (1955).CrossRefGoogle Scholar
  94. The preparation and properties of adenylo-succinase and adenylo-succinic acid. J. of Biol. Chem. 222, 17–30 (1956).Google Scholar
  95. Cerecedo, L. R.: The chemistry and metabolism of the nucleic acids, purines and pyrimidines. Annual Rev. Biochem. 2, 109–128 (1933).CrossRefGoogle Scholar
  96. Chamberlain, N., N. S. Cutts and C. Rainbow: The formation of pigment and arylamine by yeasts. J. Gen. Microbiol. 7, 54–60 (1952).PubMedGoogle Scholar
  97. Chamberlain, N., and C. Rainbow: The formation of diazotizable amine and hypoxanthine by a yeast: possible implications in the biosynthesis of purines. J. Gen. Microbiol. 11, 180–190 (1954).PubMedGoogle Scholar
  98. Chattaway, F. W.: Growth stimulation of L. casei E. by pyrimidines. Nature (Lond.) 153, 250–251 (1944).CrossRefGoogle Scholar
  99. Christman, A. A.: Der Purin- und Pyrimidinstoffwechsel. Physiologic. Rev. 32, 303–348 (1952).Google Scholar
  100. Cohen, S. S., M. Green and H. D. Barner: Thymine and thymidine synthesis. Biochim. et Biophysica Acta 22, 210–211 (1956).CrossRefGoogle Scholar
  101. Cooper, C, and D. W. Wilson: Biosynthesis of pyrimidines. Federat. Proc. 13, 194 (1954).Google Scholar
  102. Cooper, C, R. WU and D. W. Wilson: Studies of some precursors of pyrimidines. J. of Biol. Chem. 216, 37–49 (1955).Google Scholar
  103. Dalgliesh, C. E., and A. Neuberger: The mechanism for the conversions of uric acid into allantoin and glycin. J. Chem. Soc. (Lond.) 1954, 3407–3414.Google Scholar
  104. Debow, S. S.: Methylierung von Uracil in homogenisiertem Gewebe. Ber. Akad. Wiss. USSR., N. S. 99, 589–592 (1954).Google Scholar
  105. Dimroth, K., L. Jaenicke U. E. W. Becker: Serin als Partner bei der Biosynthese der Purine von Nucleinsäuren. Naturwiss. 39, 134 (1952).CrossRefGoogle Scholar
  106. Drysdale, G. R., G. W. E. Plaut and A. H. Lardy: The relationship of folic acid to formate metabolism in the rat. Formate incorporation into purines. J. of Biol. Chem. 193, 533–538 (1951).Google Scholar
  107. Dunn, D. B., and J. D. Smith: Occurrence of a new base in the deoxyribonucleic acid of a strain of Bacterium coli. Nature (Lond.) 175, 336–337 (1955a).CrossRefGoogle Scholar
  108. The occurrence of 6-methyl-aminopurine in microbial deoxyribonucleic acids. Biochemic. J. 60, XVII (1955b).Google Scholar
  109. Dutton, G. J.: Uridine diphosphate glucuronic acid as glucuronyl donor in the synthesis of “ester” aliphatic and steroid glucuronides. Biochemic. J. 64, 693–701 (1956).Google Scholar
  110. Dutton, G. J., and J. H. Spencer: Further observations on the specificity of uridine-diphosphate-glucuronic acid as glucuronyl donor. Biochemic. J. 63, 8 P. (1956).Google Scholar
  111. Dutton, G. J., and I. D. E. Storey: Uridine compounds in glucuronic acid metabolism. I. The formation of glucuronides in liver suspensions. Biochemic. J. 57, 275–283 (1954).Google Scholar
  112. Edmonds, M., A. M. Delluva and D. W. Wilson: The metabolism of purines and pyrimidines by growing yeast. J. of Biol. Chem. 197, 251–259 (1952).Google Scholar
  113. Elion, G. B., and M. E. Balis: Purine metabolism of diaminopurine resistant L. casei. Federat. Proc. 11, 207 (1952).Google Scholar
  114. Effect of 6-mercaptopurine on the interconversion of purine moieties in L. casei. Federat. Proc. 14, 207 (1955).Google Scholar
  115. Elion, G. B., and G. H. Hitchings: Antagonists of nucleic acid derivatives. III. The specificity of the purine requirement of L. casei. J. of Biol. Chem. 185, 651–655 (1950).Google Scholar
  116. Antagonists of nucleic acid derivatives. IV. Reversal studies with 2-aminopurine and 2,6-diaminopurine. J. of Biol. Chem. 187, 511–522 (1952).Google Scholar
  117. Elion, G. B., S. Singer and G. H. Hitchings: The purine metabolism of a 6-mercaptopurine-resistant L. casei. J. of Biol. Chem. 204, 35–41 (1953).Google Scholar
  118. Elion, G. B., S. Singer, G. H. Hitchings, M. Balis and B. Brown: Effects of purine antagonists on a diaminopurine resistant stram of L. casei. J. of Biol. Chem. 202, 647–654 (1953).Google Scholar
  119. Elion, G. B., H. Van Der Werfe, G. H. Hitchings, E. M. Balis, D. H. Levin and G. B. Brown: Purine metabolism of a diaminopurine-resistant strain of L. casei. J. of Biol. Chem. 200, 7–16 (1953).Google Scholar
  120. Elwyn, D., and D. B. Sprinson: The rôle of serine and acetate in uric acid formation. J. of Biol. Chem. 184, 465–474 (1950a).Google Scholar
  121. The relation of folic acid to the metabolism of serine. J. of Biol. Chem. 184, 475–478 (1950b).Google Scholar
  122. The synthesis of thymine and purines from serine and glycine in the rat. J. of Biol. Chem. 207, 467–476 (1954).Google Scholar
  123. Felix, K., F. Scheel U. W. Schuler: Die Urikolyse. Hoppe-Seylers Z. 180, 90–106 (1929).CrossRefGoogle Scholar
  124. Fink, K.: Excretion of pyrimidine reduction products by the rat. J. of Biol. Chem. 218, 9–14 (1956).Google Scholar
  125. Fink, K., R. E. Cline, R. B. Henderson and R. M. Fink: Metabolism of thymine (methyl-C14 or -2 C14)by rat liver in vitro. J. of Biol. Chem. 221, 425–433 (1956).Google Scholar
  126. Fink, K., R. B. Henderson and R. M. Fink: β-Aminoisobutyric acid in rat urine following administration of pyrimidines. J. of Biol. Chem. 197, 441–452 (1952).Google Scholar
  127. Fink, K., and C. Mc Gaughey: Reductive pathway for pyrimidine metabolism in rat. Federat. Proc. 13, 207 (1954).Google Scholar
  128. Fink, K., C. Mc Gaughey, R. B. Henderson and R. M. Fink: Isotopic and enzymatic studies of thymine metabolites. Federat. Proc. 15, 251 (1956).Google Scholar
  129. Fink, K. K., R. B. Henderson and R. M. Fink: β-Aminoisobutyric acid a possible factor in pyrimidine metabolism. Proc. Soc. Exper. Biol. a. Med. 78, 135–141 (1951).Google Scholar
  130. Fink, R. M., R. E. Cline and H. M. G. Koch: Chromatographic detection of pyrimidine reduction products: microbiological application. Federat. Ptoc. 13, 207 (1954).Google Scholar
  131. Fink, R. M., K. K. FINK and R. B. Henderson: β-Amino acid formation by tissue slices incubated with pyrimidines. J. of Biol. Chem. 201, 349–355 (1953).Google Scholar
  132. Fink, R. M., R. B. Henderson and K. Fink: Thymine synthesized with C14 in the methyl group. Federat. Proc. 14, 210 (1955).Google Scholar
  133. Fink, R. M., Ch. Mc Gaughey, R. E. Cline and K. Fink: Metabolism of intermediate pyrimidine reduction products in vitro. J. of Biol. Chem. 218, 1–9 (1956).Google Scholar
  134. Fischer, E., U. F. Ach: Über die Isomerie der Methylhamsäuren. Ber. dtsch. chem. Ges. 32, 2721–2749 (1899).CrossRefGoogle Scholar
  135. Flaks, J. G., and J. M. Buchanan: The enzymatic formation of 4-amino-5-imidazole-carboxamide ribotide from inosinic acid. J. Amer. Chem. Soc. 76, 2275–2276 (1954).CrossRefGoogle Scholar
  136. Flavin, M.: Effect of 8-azaguanine on purine utilization by Tetra-hymena geleii. Cancer Res. 12, 261–262 (1952).Google Scholar
  137. Flavin, M., and M. Engelman: Amino-purine interconversion in Tetrahymena geleii: rôle of 8-azaguanine and hypoxanthine. J. of Biol. Chem. 200, 59–68 (1953).Google Scholar
  138. Flavin, M., and S. Graff: Utilization of guanine for nucleic acid biosynthesis by Tetrahymena geleii. J. of Biol. Chem. 191, 55–61 (1951).Google Scholar
  139. Fosse, R., A. Brunel et P. de Graeve: Sur I’allantoinase et l’origine de l’acide allantoique chez les vegetaux. C. r. Acad. Sci. Paris 189, 716–717 (1929).Google Scholar
  140. Nouvelle fermentation de l’acide urique provoquée par la foie de divers animaux. C. r. Acad. Sci. Paris 190, 79–84 (1930).Google Scholar
  141. Fosse, R., A. Brunel, P. de Graeve, P. E. Thomas et J. Savazin: Présence dans de nombreux végétaux alimentaires de l’allantoine, accompagnée ou non d’acide allantoique d’allantoinase et d’uricase. C. r. Acad. Sci. Paris 191, 1153–1155 (1930).Google Scholar
  142. Fosse, R., P. de Graeve et P.Thomas: Un nouveau principe des végétaux: l’acide urique. C. r. Acad. Sci. Paris 194, 1408–1413 (1932a).Google Scholar
  143. Un nouveau principe des végétaux: l’acide urique. C. r. Acad. Sci. Paris 195, 1198–1200 (1932b).Google Scholar
  144. Fox jr. C. L,: Production of a diazotizable substance by E. coli during sulfonamide bacteriostasis. Proc. Soc. Exper. Biol. a. Med. 51, 102–104 (1942).Google Scholar
  145. Franke, W.: Zum Stoffwechsel der Purine und Pyrimidine. Z. Vitamin-, Hormon- u. Fermentforsch. (Wien) 5, 279–314 (1953).Google Scholar
  146. Franke, W., U. G. E. Hahn: Untersuchungen zum bakteriellen Purinabbau. I. Über den Harnsäureabbau durch Pseudomonas aeruginosa. Hoppe-Seylers Z. 299, 15–38 (1955a).CrossRefGoogle Scholar
  147. Untersuchungen zum bakteriellen Purinabbau. II. Über den Abbau von Amino-, Oxy- und Methylpurinen durch Pseudomonas aeruginosa. Hoppe-Seylers Z. 301,90–106 (1955b).Google Scholar
  148. Zum oxydativen Purinabbau durch Bakterien. Zbl. Bakter. 109, 343–346 (1956).Google Scholar
  149. Franke, W., U. E. M. Taha: Purinoxydierende Fermente aus Schimmelpilzen. III. Mitt. Zur Kenntnis der Altemaria-Uricasen. Chem. Ber. 85, 913–921 (1952).CrossRefGoogle Scholar
  150. Franke, W., E. M. Taha U. L.Krieg: Purinoxydierende Fermente aus Schimmelpilzen. I. Mitt. Über die Uricase der Schimmelpilze. Arch. Mikrobiol. 17, 255–291 (1952).CrossRefGoogle Scholar
  151. Friedkin, M., and W. Roberts: Conversion of uracil deoxyriboside to thymidine of desoxynucleic acid. J. of Biol. Chem. 220, 653–660 (1956).Google Scholar
  152. Fridovich, J., and P. Handler: Hypoxanthine as a cofactor for the enzymatic oxidation of sulfite. J. of Biol. Chem. 221, 323–331 (1956a).Google Scholar
  153. Hypoxanthine, cofactor for cysteine oxidation by liver preparations. Biochim. et Biophysica Acta 21, 173–174 (1956b).Google Scholar
  154. Fries, N.: Über röntgen-induzierte physiologische Mutationen bei Ophiostoma multiannulatum. Ark. Bot. (Stockh.) A 32, No 8 (1945).Google Scholar
  155. Mutant strains of Ophiostoma multiannulatum requiring components of different nucleotides. Ark. Bot. (Stockh.) A 33, No 7 (1946).Google Scholar
  156. Experiment with different methods of isolating physiological mutations of filamentous fungi. Nature (Lond.)159, 199 (1947).Google Scholar
  157. Effects of different purine compounds on the growth of guanine-deficient Ophiostoma. Physiol. Plantarum (Copenh.) 2, 78–102 (1949).Google Scholar
  158. Further studies on mutant strains of Ophiostoma which require guanine. J. of Biol. Chem. 200, 325–333 (1953).Google Scholar
  159. The inhibitory effect of diamino-purine riboside on the growth of Ophiostoma. Acta chem. scand. (Copenh.) 9, 1020 (1955).Google Scholar
  160. Fries, N., S. Bergström and M. Rottenberg: The effect of various imidazole compounds on the growth of purine-deficient mutants of Ophiostoma. Physiol. Plantarum (Copenh.) 2, 210–211 (1949).CrossRefGoogle Scholar
  161. Funk, C., A. J. Merritt and A. Ehrlich: The isolation of hydro-uracil from beef spleen. Arch. of Biochem. 35, 468–469 (1952).CrossRefGoogle Scholar
  162. Gehring, L. B., and B. Magasanik: Biosynthesis of nucleic acid guanine: the enzymic conversion of inosine-5′-phosphate to xanthosine-5-phosphate. J. Amer. Chem. Soc. 77, 4685–4686 (1955).CrossRefGoogle Scholar
  163. Getler, H., P. M. Roll, J. F. Tinker and G. B. Brown: A study of the metabolism of dietary hypoxanthine and xanthine in the rat. J. of Biol. Chem. 178, 259–264 (1949).Google Scholar
  164. Ginsburg, V., E. F. Neufeld and W. Z. Hassid: Enzymatic synthesis of uridine diphosphate xylose and uridine phosphate arabinose. Proc. Nat. Acad. Sci. U.S.A. 42, 333–335 (1956).CrossRefGoogle Scholar
  165. Ginsburg, V., P. K. Stumpf and W. Z. Hassid: The isolation of uridine diphosphate derivatives of D-glucose, D-galactose, D-xylose, and L-arabinose from mung bean seedlings. J. of Biol. Chem. 223, 977–983 (1956).Google Scholar
  166. Glasziou, K. T.: The metabolism of arginine in Serratia marcescens. II. Carbamyladenosine diphosphate phos-phoferase. Austral. J. Biol. Sci. 9, 253–262 (1956).Google Scholar
  167. Goldthwait, D. A.: 5-Phospho-ribosylamine, a precursor of glycinamide ribotide. Federat. Proc. 15, 263 (1956a).Google Scholar
  168. 5-Phos-phoribosylamine, a precursor of glycinamide ribotide. J. of Biol. Chem. 222, 1051–1068 (1956b).Google Scholar
  169. Goldthwait, D. A., and A. Bendich: Effect of aminopterin on nucleic acid metabolism in the rat. Federat. Proc. 10, 190 (1951).Google Scholar
  170. Effects of a folic acid antagonist on nucleic acid metabolism. J. of Biol. Chem. 196, 841–852 (1952).Google Scholar
  171. Goldthwait, D. A., G. R. Greenberg and R. A. Peabody: The involvement of 5-phosphoribosylamine in the biosynthesis of glycinamide ribotide. Biochim. et Biophysica Acta 18, 148–149 (1955).CrossRefGoogle Scholar
  172. Goldthwait, D. A., and R. A. Peabody: Glycine ribotide precursors of inosinic acid. Federat. Proc. 13, 218 (1954).Google Scholar
  173. Goldthwait, D. A., R. A. Peabody and G. R. Greenberg: Glycine ribotide intermediates in the de novo synthesis of inosinic acid. J. Amer. Chem. Soc. 76, 5258–5259 (1954).CrossRefGoogle Scholar
  174. On the occurrence of glycinamide ribotide and its formyl derivative. J. of Biol. Chem. 221, 555–567 (1956a).Google Scholar
  175. On the mechanism of synthesis of glycinamide ribotide and its formyl derivative. J. of Biol. Chem. 221, 569–577 (1956b).Google Scholar
  176. Goodwin, T. W., and S. Pendlington: Studies on the biosynthesis of riboflavin. Nitrogen metabolism and flavinogenesis in Eremothecium Ashbyii. Biochemic. J. 57, 631–641 (1954).Google Scholar
  177. Gordon, M. P., and G. B. Brown: A study of the metabolism of purine riboside. J. of Biol. Chem. 220, 927–937 (1956).Google Scholar
  178. Gots, J. S.: The accumulation of 4-amino-5-imidazolecarboxamide by a purine-requiring mutant of E. coli. Arch. of Biochem. 29, 222–224 (1950a).Google Scholar
  179. Accumulation of 5(4)-amino-4(5)-imidazolecarboxamide in relation to sulfonamide bacteriostasis and purine metabolism in E. coli. Federat. Proc. 9, 178–179 (1950b).Google Scholar
  180. Occurrence of 4-amino-5-imidazolecarboxamide as a pentose derivative. Nature (Lond.) 172, 256–257 (1953).Google Scholar
  181. Inhibition of the biosynthesis of 5-amino-4-imidazolecarboxamide by purines. Federat. Proc. 14, 220 (1955).Google Scholar
  182. Gots, J. S., and E. G. Chu: Studies on purine metabolism in bacteria. I. The rôle of p-aminobenzoic acid. J. Bacter. 64, 537–546 (1952).Google Scholar
  183. Gots, J. S., and S. H. Love: Purine metabolism in bacteria. II. Factors influencing biosynthesis of 4-amino-5-imidazolecarboxamide by E. coli. J. of Biol. Chem. 210, 395–405 (1954).Google Scholar
  184. Gray, C., and E. Tatum: x-ray induced growth factor requirements in bacteria. Proc. Nat. Acad. Sci. U.S.A. 30, 404–410 (1944).CrossRefGoogle Scholar
  185. Green, M., J. Lichtenstein, H. Barner and S. S. Cohen: Synthesis and metabolic properties of dihydropyrimidine nucleosides. Federat. Proc. 15, 265 (1956).Google Scholar
  186. Greenberg, G. R.: Incorporation of carbon-labeled formic acid and carbon dioxide into hypoxanthine in pigeon liver homogenates. Arch. of Biochem. 19, 337–339 (1948).Google Scholar
  187. Mechanism of biosynthesis of purine. Federat. Proc. 9, 179 (1950).Google Scholar
  188. De novo synthesis of hypoxanthine via inosine-5-phosphate and inosine. J. of Biol. Chem. 190, 611–631 (1951a).Google Scholar
  189. Synthesis of purine in dialyzed liver extracts. Federat. Proc. 10, 192 (1951b).Google Scholar
  190. Isolation of 4-amino-5-imidazolecarboxamide riboside from the culture medium of sulfonamide-inhibited E. coli. J. Amer. Chem. Soc. 74, 6307–6308 (1952).Google Scholar
  191. Conversion of 5-amino-4-imidazolecarboxamide riboside to its phosphoribotide and to inosinic acid. Federat. Proc. 12, 211–212 (1953a).Google Scholar
  192. Mechanisms involved in the biosynthesis of purines. Federat. Proc. 12, 651–659 (1953b).Google Scholar
  193. Chemical pathways of metabolism, Bd. II, S. 383. New York: Academic Press 1954a.Google Scholar
  194. A formylation cofactor. J. Amer. Chem. Soc. 76,1458–1459 (1954b).Google Scholar
  195. Transformylation cofactor and mechanism of activation of formate. Federat. Proc. 13, 221 (1954 c).Google Scholar
  196. Rôle of folic acid derivatives in purine biosynthesis. Federat. Proc. 13, 745–759 (1954d).Google Scholar
  197. Preparation of 5′-phosphoribosyl-5-amino-4-imidazolecarboxamide. J. of Biol. Chem. 219, 423–433 (1956).Google Scholar
  198. Greenberg, G. R., and L. Jaenicke: The rôle of N10-formyltetrahydrofolic acid in transformylation reactions. 3. Congrès Internat, de Biochimic Bruxelles. Résumés des Communications, S. 49–50. 1955.Google Scholar
  199. Greenberg, G. R., L. Jaenicke and M. Silverman: On the occurrence of N10-formyltetrahydrofolic acid by enzymic formylation of tetrahydrofolic acid and on the mechanism of this reaction. Biochim. et Biophysica Acta 17, 589–591 (1955).CrossRefGoogle Scholar
  200. Greenberg, G. R., and E. L. Spilman: Isolation of 5-amino-4-imidazolecarboxamide riboside. J. of Biol. Chem. 219, 411–422 (1956).Google Scholar
  201. Grisolia, S.: Rôle of L-formylglutamic acid in biosynthesis of citrulline. Federat. Proc. 12, 212 (1953).Google Scholar
  202. Grisolia, S., and Ph. P. Cohen: The catalytic rôle of carbamyl glutamate in citrulline biosynthesis. J. of Biol. Chem. 198, 561–571 (1952).Google Scholar
  203. Catalytic rôle of glutamate derivatives in citrulline biosynthesis. J. of Biol. Chem. 204, 753–757 (1953).Google Scholar
  204. Grisolia, S., H. S. Grady and D. P. Wallach: Biosynthetic and structural relationships of compound x and carbamyl phosphate. Biochim. et Biophysica Acta 17, 277–278 (1955).CrossRefGoogle Scholar
  205. Grisolia, S., and D. P. Wallach: Enzymic interconversion of hydrouracil and β-ureidopropionic acid. Biochim. et Biophysica Acta 18, 449 (1955).CrossRefGoogle Scholar
  206. Grossman, L., and D. W. Visser: The incorporation of 4-C14-cytidine in rat liver slices. J. of Biol. Chem. 209, 447–452 (1954).Google Scholar
  207. The isolation of 5,6-dihydro-cytidylic acid from the acid-soluble fraction of rat liver slices. J. of Biol. Chem. 216, 775–781 (1955).Google Scholar
  208. Hall, L. M., R. L. Metzenberg and P. P. Cohen: Isolation and characterization of a naturally occurring stimulator of citrulline biosynthesis. Nature (Lond.) 178, 1468–1469 (1956).CrossRefGoogle Scholar
  209. Hamill, R. L., R. L. Herrmann, R. U. Byerrum and J. L. Fairley: The synthesis of purines and thymine from formaldehyde in the rat. Biochim. et Biophysica Acta 21, 394–395 (1956).CrossRefGoogle Scholar
  210. Hamilton, L.: Utilization of purines for nucleic acid synthesis in man. Nature (Lond.) 172, 457 (1953).CrossRefGoogle Scholar
  211. Hamilton, L., G. B. Brown and C. C. Stock: Biosynthesis of nucleic acids studied in unicellular systems. J. Clin. Invest. 31, 636 (1952).Google Scholar
  212. Hamilton, L. D.: Nucleic acid turnover studies in human leukaemic cells and the function of lymphocytes. Nature (Lond.) 178, 597–599 (1956).CrossRefGoogle Scholar
  213. Hammarsten, E., P. Reichard u. E. Saluste: Pyrimidine nucleosides as precursors of ribonucleic acid (RNA) pyrimidines. Acta chem. scand. (Copenh.) 3, 432–433 (1949).CrossRefGoogle Scholar
  214. Pyrimidine nucleosides as precursors of pyrimidines in polynucleotides. J. of Biol. Chem. 183, 105–109 (1950).Google Scholar
  215. Hansen, R. G., and E. Hagemann: The isolation of glutamic and aspartic acid derivatives of ADP. Arch. of Biochem. a. Biophysics 62, 511–513 (1956).CrossRefGoogle Scholar
  216. Hartman, ST. C: Phosphorolysis of glycinamide ribotide. Federat. Proc. 15, 269 (1956).Google Scholar
  217. Hartman, St. C., B. Levenberg and J. M. Buchanan: Involvement of ATP, 5-phosphoribosyl-pyrophosphate and L-azaserine in the enzymatic formation of glycinamide ribotide intermediates in inosinic acid biosynthesis. J. Amer. Chem. Soc. 77, 501–503 (1955).CrossRefGoogle Scholar
  218. Biosynthesis of the purines. XI. Structure, enzymatic synthesis and metabolism of glycinamide ribotide and (α-N-formyl)-glycin-amide ribotide. J. of Biol. Chem. 221, 1057–1070 (1956).Google Scholar
  219. Hayaishi, O., and A. Kornberg: Enzymatic formation of barbituric acid from uracil and of 5-methylbarbituric acid from thymine. J. Amer. Chem. Soc. 73, 2975–2976 (1951).CrossRefGoogle Scholar
  220. Metabolism of cytosine, thymine, uracil, and barbituric acid by bacterial enzymes. J. of Biol. Chem. 197, 717–732 (1952).Google Scholar
  221. Heidelberger, C, and E. Harbers: Metabolism of uracil in normal and neoplastic tissues. Federat. Proc. 15, 271 (1956).Google Scholar
  222. Heinrich, M. R., V. C. Dewey and G. W. Kidder: Citrulline as a precursor of pyrimidines. J. Amer. Chem. Soc. 76, 3102–3103 (1954).CrossRefGoogle Scholar
  223. Heinrich, M. R., and D. W. Wilson: The biosynthesis of nucleic acid components studied with C14. I. Purines and pyrimidines in the rat. J. of Biol. Chem. 186, 447–460 (1950).Google Scholar
  224. Heinrich, M. R., D. W. Wilson and S. Gurin: Isotopic studies of the biosynthesis of nucleic acid components. Federat. Proc. 8, 205 (1949).Google Scholar
  225. Herrmann, R. L., J. L. Fairley and R. U. Byerrum: The synthesis of purines and thymine from methionine in the rat. J. Amer. Chem. Soc. 77, 1902–1903 (1955).CrossRefGoogle Scholar
  226. Hinton, T., J. Ellis and D. T. Noyes: An adenine requirement in a strain of Drosophila. Proc. Nat. Acad. Sci. U.S.A. 37, 293–299 (1951).CrossRefGoogle Scholar
  227. Hitchings, G. H., and G. B. Elion: Chemistry and biochemistry of antimetabolites related to the purines. 3. Congrès Internat. de Biochimie Bruxelles, Rapports S. 185–191. 1955.Google Scholar
  228. Hitchings, G. H., G. B. Elion, E. A. Falco, P. B. Russell, M. B. Sherwood and H. Van der Werff: Antagonists of nucleic acid derivatives. I. The Lactobacillus casei model. J. of Biol. Chem. 183, 1–9 (1950).Google Scholar
  229. Hitchings, G. H., G. B. Elion and H. Van der Werff: The limitations of inhibition analysis. J. of Biol. Chem. 174, 1037–1038 (1948a).Google Scholar
  230. 2-aminopurine as a purine antagonist. Federat. Proc. 7, 160 (1948 b).Google Scholar
  231. Hoagland, M. B.: An enzymic mechanism for amino acid activation in animal tissues. Biochim. et Biophysica Acta 16, 288–289 (1955).CrossRefGoogle Scholar
  232. Hoagland, M. B., E. B. Keller and P. C. Zamecnik: Enzymatic carboxyl activation of amino acids. J. of Biol. Chem. 218, 345–358 (1956).Google Scholar
  233. Hoffmann-Ostenhof, O.: Enzymologie, S. 531–533. Wien: Springer 1954.Google Scholar
  234. Holmes, W. L., and W. H. Prusoff: Synthesis and biochemical investigation of thymine-6-carboxylic acid-2-C14. J. of Biol. Chem. 206, 817–823 (1954).Google Scholar
  235. Holmes, W. L., W. H. Prusoff and A. D. Welch: Studies on the metabolism of thymine-2-C14 by the rat. J. of Biol. Chem. 209, 503–509 (1954).Google Scholar
  236. Hübscher, G., H. Baum and H. R. Mahler: Studies on uricase. IV. The nature and composition of some stable reaction products. Biochim. et Biophysica Acta 23, 43–53 (1957).CrossRefGoogle Scholar
  237. Huff, J. W., D. K. Bosshardt, L. D. Wright, D. S. Spicer, K. A. Valentik and H. R. Skeggs: A growth-promoting substance for L. bulgaricus 09 in whey: isolation and identification as orotic acid. Proc. Soc. Exper. Biol. a. Med. 75, 297–301 (1950).Google Scholar
  238. Hultin, T.: Incorporation of N15-labelled ammonium chloride into pyrimidins and purines during the early sea urchin development. Ark. Kemi (Stockh.) 5, 267–275 (1953).Google Scholar
  239. Hurlbert, R. B.: Studies on the acid-soluble products of the metabolism of orotic acid-6-C14. Federat. Proc. 11, 234 (1952).Google Scholar
  240. Uridine-5-phosphate compounds as intermediates in the incorporation of orotic acid into RNS. Federat. Proc. 12, 222 (1953).Google Scholar
  241. Hurlbert, R. B., and V. R. Potter: A survey of the metabolism of orotic acid in the rat. J. of Biol. Chem. 195, 257–270 (1952).Google Scholar
  242. Nucleotide metabolism. I. The conversion of orotic acid-6-C14 to uridine nucleotides. J. of Biol. Chem. 209, 1–21 (1954).Google Scholar
  243. Hurlbert, R. B., U. P. Reichard: Formation in vitro of uridine phosphates from orotic acid. Acta chem. scand. (Copenh.) 8, 1095–1096 (1954a).CrossRefGoogle Scholar
  244. Conversion of orotic acid to uridine phosphates by soluble enzymes of liver. Acta chem. scand. (Copenh.) 8, 701–702 (1954b).Google Scholar
  245. The conversion of orotic acid to uridine nucleotides in vitro. Acta chem. scand. (Copenh.) 9, 251–262 (1955).Google Scholar
  246. Jacob, A.: Rôle de l’hypoxanthine dans la désaturation des acides gras supérieurs. C. r. Acad. Sci. Paris 242, 2180–2182 (1956).Google Scholar
  247. Jaenicke, L.: Purine. In Hoppe-Seyler-Thierfelder, Handbuch der physiologischen und pathologischen chemischen Analyse, 10. Aufl., Bd. III, S. 1245–1339. 1955a.Google Scholar
  248. Occurrence of N10-formyltetrahydrofolic acid and its general involvement in transformylation. Biochim. et Biophysica Acta 17, 588–589 (1955 b).Google Scholar
  249. Joklik, W. K.: The occurrence of adenine- and adenyl-succinic acid in mamma-lian liver. Biochim. et Biophysica Acta 22, 211–212 (1956).CrossRefGoogle Scholar
  250. Jones, M. E.: Über die Selbstverdauung von Nucleoproteiden. Z. physiol. Chem. 42, 35–54 (1904).CrossRefGoogle Scholar
  251. Jones, M. E., L. Spector and F. Lipmann: Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. Chem. Soc. 77, 819–820 (1955a).CrossRefGoogle Scholar
  252. Carbamyl phosphate. 3. Congrès Internat. de Biochimie, Bruxelles, Rapports S. 67–70. 1955b.Google Scholar
  253. Carbamyl phosphate. 3. Congrès Internat. de Biochimie, Bruxelles, Conférences et Rapports, S. 278 bis 281. 1955 c.Google Scholar
  254. Kalckar, H. M.: Biochemical mutants in man and microorganisms. Science (Lancaster, Pa.) 125, 105–108 (1957).Google Scholar
  255. Karlsson, J. L., and H. A. Barker: Biosynthesis of uric acid labeled with radioactive carbone. J. of Biol. Chem. 177, 597–599 (1949a).Google Scholar
  256. Tracer experiments on the mechanism of uric acid decomposition and acetic acid synthesis by Clostridium acidi-urici. J. of Biol. Chem. 178, 891–902 (1949b).Google Scholar
  257. Keilin, D., and E. F. Hartree: Uricase, amino acid oxidase, and xanthine oxidase. Proc. Roy. Soc. Lond., Ser. B 119, 114–159 (1936).CrossRefGoogle Scholar
  258. Keller, E. B., and P. C. Zamecnik: The effect of guanosine diphosphate and triphosphate on the incorporation of labeled amino acids into proteins. J. of Biol. Chem. 221, 45–59 (1956).Google Scholar
  259. Kennedy, E. P.: The synthesis of cytidine diphosphate choline, cytidine diphosphate ethanolamine. and related compounds. J. of Biol. Chem. 222, 185–191 (1956).Google Scholar
  260. Kennedy, E. P., and S. B. Weiss: Cytidine diphosphate choline: a new intermediate in lecithin biosynthesis. J. Amer. Chem. Soc. 77, 250–251 (1955).CrossRefGoogle Scholar
  261. The function of cytidine coenzymes in the biosynthesis of phospholipides. J. of Biol. Chem. 222, 193–214 (1956).Google Scholar
  262. Kerr, S. E., and K. Seraidarian: The pathway of decomposition of hyoadenylic acid during autolysis in various tissues. J. of Biol. Chem. 159, 637–645 (1945).Google Scholar
  263. Kerr, S. E., K. Seraidarian and G. B. Brown: On the utilization of purines and their ribose derivatives by yeast. J. of Biol. Chem. 138, 207–216 (1951).Google Scholar
  264. Kidder, G. W., and V. C. Dewey: Studies on the biochemistry of Tetrahymena. XIV. The activity of natural purines and pyrimidines. Proc. Nat. Acad. Sci. U.S.A. 34, 566–574 (1948).CrossRefGoogle Scholar
  265. Kidder, G. W., V. C. Dewey, R. E. Parks and J. M. Heinrich: Further studies on the purine and pyrimidine metabolism of Tetrahymena. Proc. Nat. Acad. Sci. U.S.A. 36, 431–439 (1950).CrossRefGoogle Scholar
  266. Kiesel, A.: Über das Verhalten der Nucleinbasen bei Verdunkelung von Pflanzen. Hoppe-Seylers Z. 67, 241–250 (1910).CrossRefGoogle Scholar
  267. Klemperer, F. W.: Enzymatic oxidation of uric acid. J. of Biol. Chem. 160, 111–121 (1945).Google Scholar
  268. Klenow, H.: The enzymic oxidation and assay of adenine. Biochemic. J. 50, 404–407 (1952).Google Scholar
  269. Koch, A. L., F. W. Putnam and E. A. Evans: The purine metabolism of E. coli. J. of Biol. Chem. 197, 105–112 (1952).Google Scholar
  270. Korn, E. D., F. C. Chara-lampous and J. M. Buchanan: Enzymatic synthesis of 4-amino-5-imidazolecarboxamide riboside from 4-amino-5-imidazolecarboxamide and riboside-1-phosphate. J. Amer. Chem. Soc. 75, 3610–3611 (1953).CrossRefGoogle Scholar
  271. Kornberg, A., J. Lieberman and E. S. Simms: Enzymatic synthesis of pyrimidine and purine nucleotides. I. Formation of 5-phosphoribosylpyro-phosphate. J. Amer. Chem. Soc. 76, 2027–2028 (1954).CrossRefGoogle Scholar
  272. Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate. J. of Biol. Chem. 215, 389–402 (1955).Google Scholar
  273. Lagerkvist, U.: The isolation of nitrogen 1 and 3 as methylamine and ammonia from pyrimidine ribosides. Acta chem. scand. (Copenh.) 4, 543–548 (1950a).CrossRefGoogle Scholar
  274. The degradation of pyrimidines for tracer work. Bicarbonate as a precursor for ribonucleic acid pyrimidines. Acta chem. scand. (Copenh.) 4, 1151–1152 (1950b).Google Scholar
  275. The incorporation of ammonia into uric acid in pigeons and ribonucleic acid pyrimidines in rats. Ark. Kemi (Stockh.) 5, 569–580 (1953a).Google Scholar
  276. The degradation of pyrimidines for tracer work. Acta chem. scand. (Copenh.) 7, 114–118 (1953b).Google Scholar
  277. Enzymic synthesis of xanthosine- and guanosine-5-phos-phate from inosine-5-phosphate. Acta chem. scand. (Copenh.) 9, 1028–1029 (1955).Google Scholar
  278. Lagerkvist, U., U. P. Reichard: Uracil, a precursor of polynucleotide pyrimidines in the mouse. Acta chem. scand. (Copenh.) 8, 361 (1954).CrossRefGoogle Scholar
  279. Lagerkvist, U., P. Reichard U. G. Ehrensvärd: Aspartic acid as a precursor for ribonucleic acid pyrimidines. Acta chem. scand. (Copenh.) 5, 1212 (1951).CrossRefGoogle Scholar
  280. Lara, E. J. S.: On the decomposition of pyrimidines by bacteria. I. Studies by means of the technique of simultaneous adaption. J. Bacter. 64, 271–277 (1952a).Google Scholar
  281. On the decomposition of pyrimidines by bacteria. II. Studies with cell-free enzyme preparations. J. Bacter. 64, 279–285 (1952 b).Google Scholar
  282. Laskowski, M.: The enzymes. Bd. I, Teil 2. In Sumner U. Myrbäck, S. 976. New York: Academic Press 1951.Google Scholar
  283. Leloir, L. F.: The uridine coenzymes. 3. Congrès Internat. de Biochimie, Bruxelles, Conférences et Rapports S. 154–162. 1955.Google Scholar
  284. Leloir, L. F., and C. E. Cardini: The biosynthesis of sucrose phosphate. J. of Biol. Chem. 214, 157–165 (1955).Google Scholar
  285. Levenberg, B., and J. M. Buchanan: Formylglycinamidine ribotide and 5-aminoimidazole ribotide-inter-mediates in the biosynthesis of inosinic acid de novo. J. Amer. Chem. Soc. 78, 504–505 (1956).CrossRefGoogle Scholar
  286. Biosynthesis of the purines. XII. Structure, enzymatic synthesis and metabolism of 5-aminoimidazole ribotide. J. of Biol. Chem. 224, 1005–1018 (1957a).Google Scholar
  287. Biosynthesis of the purines. XIII. Structure, enzymatic synthesis and metabolism of (α-N-formyl)-glycin-amidine ribotide. J. of Biol. Chem. 224, 1019–1027 (1957b).Google Scholar
  288. Levenberg, B., S. C. Hartman and J. M. Buchanan: Precursors and intermediates in purine biosynthesis. Federat. Proc. 14, 243–244 (1955).Google Scholar
  289. Biosynthesis of the purines. X. Further studies in vitro on the metabolic origin of N atoms 1 and 3 of the purine ring. J. of Biol. Chem. 220, 379–390 (1956).Google Scholar
  290. Levenberg, B., and J. Melnick: Formylglycinamidine ribotide and 5-aminoimidazole ribotide-intermediates in purine biosynthesis. Federat. Proc. 15, 117–118 (1956).Google Scholar
  291. Levenberg, B., J. Melnick and J. M. Buchanan: Biosynthesis of the purines. XV. The effect of aza-L-serine and 6-diazo-5-oxo-L-norleucine on inosinic acid biosynthesis de novo. J. of Biol. Chem. 225, 163–176 (1957).Google Scholar
  292. Lieberman, J.: Enzymatic amination of uridine triphosphate to cytidine triphosphate. J. Amer. Chem. Soc. 77, 2661–2662 (1955a).CrossRefGoogle Scholar
  293. Identification of adenosine tetraphosphate from horse muscle. J. Amer. Chem. Soc. 77, 3373–3375 (1955 b).Google Scholar
  294. Guanosine triphosphate in the conversion of inosinic acid to adenylic acid. Federat. Proc. 15, 301 (1956a).Google Scholar
  295. Involvement of guanosine triphosphate in the synthesis of adenylosuccinate from inosine-5′-phosphate. J. Amer. Chem. Soc. 78, 251 (1956b).Google Scholar
  296. Enzymatic amination of uridine triphosphate to cytidine triphosphate. J. of Biol. Chem. 222, 765–775 (1956c).Google Scholar
  297. Enzymatic synthesis of adenosine-5′-phosphate from inosine-5′-phosphate. J. of Biol. Chem. 223, 327–339 (1956d).Google Scholar
  298. Lieberman, J., L. Berger and W. Th. Gimenez: Crystallization of cytidine diphosphate choline from yeast. Science (Lancaster, Pa.) 124, 81 (1956).Google Scholar
  299. Lieberman, J., and A. Kornberg: Enzymic synthesis and breakdown of a pyrimidine, orotic acid. I. Dihydroorotic dehydrogenase. Biochim. et Biophysica Acta 12, 223–234 (1953a).CrossRefGoogle Scholar
  300. Enzymatic synthesis and breakdown of orotic acid. Federat. Proc. 12, 239–240 (1953b).Google Scholar
  301. Enzymatic synthesis and breakdown of a pyrimidine, orotic acid. II. Dihydroorotic acid, ureidosuccinic acid, and 5-carboxy-methylhydantoin. J. of Biol. Chem. 207, 911–924 (1954).Google Scholar
  302. Enzymatic synthesis and breakdown of a pyrimidine, orotic acid. III. Ureidosuccinase. J. of Biol. Chem. 212, 909–920 (1955).Google Scholar
  303. Lieberman, J., A. Kornberg and E. S. Simms: Enzymatic synthesis of pyrimidine and purine nucleotides. I. Formation of 5-phosphoribosylpyrophosphate. J. Amer. Chem. Soc. 76, 2027–2028 (1954a).CrossRefGoogle Scholar
  304. Enzymatic synthesis of pyrimidine and purine nucleotides. II. Orotidine-5-phosphate pyrophosphorylase and decarboxylase. J. Amer. Chem. Soc. 76, 2844–2845 (1954b).Google Scholar
  305. Enzymatic synthesis of pyrimidine and purine nucleotides. III. Formation of nucleoside diphosphates and triphosphates. J. Amer. Chem. Soc. 76, 3608–3609 (1954 c).Google Scholar
  306. Enzymatic synthesis of pyrimidine nucleotides. Orotidine-5′-phos-phate and uridine-5′.phosphate. J. of Biol. Chem. 215, 403–415 (1955).Google Scholar
  307. Lipton, S. H., S. A. Morell, A. Frieden and R. M. Bock: Uridine-5′-triphosphate. J. Amer. Chem. Soc. 75, 5449–5450 (1953).CrossRefGoogle Scholar
  308. London, M., and P. B. Hudson: Purification and properties of solu-bilized uricase. Biochim. et Biophysica Acta 21, 290–298 (1956).CrossRefGoogle Scholar
  309. Loring, H. S., and J. G. Pierce: Pyrimidine nucleosides and nucleotides as growth factors for mutant strains of Neurospora. J. of Biol. Chem. 153, 61–69 (1944).Google Scholar
  310. Love, S. H., and J. S. Gots: Accumulation of a new pentose-containing imidazole compound by a purine-requiring mutant of E. coli. Federat. Proc. 13, 503 (1954).Google Scholar
  311. Purine metabolism in bacteria. III. Accumulation of a new pentose-containing arylamine by a purine-requiring mutant of E. coli. J. of Biol. Chem. 212, 647–654 (1955).Google Scholar
  312. Lowenstein, J. M., and P. P. Cohen: The formation of carbamyl aspartic acid by rat liver preparations. J. Amer. Chem. Soc. 76, 5571–5572 (1954).CrossRefGoogle Scholar
  313. Studies on the mechanism of carbamylaspartic acid synthesis. J. of Biol. Chem. 213, 689–696 (1955).Google Scholar
  314. Studies on the biosynthesis of carbamylaspartic acid. J. of Biol. Chem. 220, 57–70 (1956 a).Google Scholar
  315. Carbamylphosphate-aspartate transcarbamylase. Biochemic. J. 63, 11 P (1956b).Google Scholar
  316. Lowy, B. A., G. B. Brown and J. R. Rachele: A study of formaldehyde-C14D. as a one-C metabolite in the rat. J. of Biol. Chem. 220, 325–339 (1956).Google Scholar
  317. Lowy, B. A., J. Davoll and G. B. Brown: The utilization of purine nucleosides for nucleic acid synthesis in the rat. J. of Biol. Chem. 197, 591–600 (1952).Google Scholar
  318. Lukens, L. N., and J. M. Buchanan: A new intermediate in purine biosynthesis. Federat. Proc. 15, 305 (1956).Google Scholar
  319. Mac Laren, J. A.: The effects of certain purines and pyrimidines upon the production of riboflavin by Eremothecium ashbyii. J. Bacter. 63, 233–241 (1952).Google Scholar
  320. Magasanik, B., and M. S. Brooke: The accumulation of xanthosine by a guanineless mutant of Aerobacter aerogenes. J. of Biol. Chem. 206, 83–87 (1954).Google Scholar
  321. Magasanik, B., U. L. B. Gehring: Enzymatische Umwandlung von Inosin-5′-phosphat in Xanthinphosphat. Angew. Chem. 67, 662 (1955).Google Scholar
  322. Mahler, H. R., H. M. Baum and G. Hübscher: Enzymatic oxidation of urate. Science (Lancaster, Pa.) 124, 705–708 (1956).Google Scholar
  323. Mahler, H. R., G. Hübscher and H. Baum: Studies on uricase. I. Preparation, purification, and properties of a cupro-protein. J. of Biol. Chem. 216, 625–641 (1955).Google Scholar
  324. Mandel, H. G., and P.-E. Carĺ: The incorporation of guanine into nucleic acids of tumor-bearing mice. J. of Biol. Chem. 201, 335–341 (1953).Google Scholar
  325. Mannell, W. A., and R. J. Rossiter: 14C formate labelling of bases of nucleic acids in respiring slices of rat tissues. Biochemic. J. 61, 418–424 (1955).Google Scholar
  326. Markham, R.: Nucleic acids, their components and related compounds. In Paech-Tracey, Modern methods of plant analysis, S. 246–304. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  327. Marrian, D. H.: A new adenine nucleotide. Biochim. et Biophysica Acta 12, 492 (1953).CrossRefGoogle Scholar
  328. A new adenine nucleotide. Biochim. et Biophysica Acta 13, 278–281 (1954).Google Scholar
  329. Marrian, D. H., V. L. Spicer, M. E. Balis and G. B. Brown: Purine incorporation into pentose nucleotides of the rat. J. of Biol. Chem. 189, 533–541 (1951).Google Scholar
  330. Marsh, W. H.: On the biosynthesis of purines in the bird; r̂le of formate. J. of Biol. Chem. 190, 633–641 (1951).Google Scholar
  331. Marshall, R. O., L. M. Hall and P. P. Cohen: On the nature of the carbamyl group donor in citrulline biosynthesis. Biochim. et Biophysica Acta 17, 279–281 (1955).CrossRefGoogle Scholar
  332. Mc Cluer, R. H., J. van Eys and O. Touster: The isolation of a uridine diphosphate acylaminosugar peptide from hemolytic streptococcal cells. Abstr. Minneapolis meeting, Amer. Chem. Soc, S. 65c. 1955.Google Scholar
  333. Mc Nutt jr. W. S.: The enzymically catalysed transfer of the deoxyribosyl group from one purine or pyrimidine to another. Biochemic. J. 50, 384–397 (1952).Google Scholar
  334. The direct contribution of adenine to the biogenesis of riboflavin by Eremothecium ashbyii. J. of Biol. Chem. 210, 511–519 (1954).Google Scholar
  335. Incorporation of the pyrimidine ring of adenine into the isoalloxazine ring of riboflavine. Science (Lancaster, Pa.) 122, 878 (1955).Google Scholar
  336. The incorporation of the pyrimidine ring of adenine into the isoalloxazine ring of riboflavin. J. of Biol. Chem. 219, 365–373 (1956).Google Scholar
  337. Melnick, J., and J. M. Buchanan: Biosynthesis of the purines. XIV. Conversion of (α-N-formyl) glycinamide ribotide to (α-N-formyl)-glycinamidine ribotide; purification and requirements of the enzyme system. J. of Biol. Chem. 225, 157–162 (1957).Google Scholar
  338. Michelson, A. M., W. Drell and H. K. Mitchell: A new ribose nucleoside from Neurospora “Orotidine”. Proc. Nat. Acad. Sci. U.S.A. 37, 396–399 (1951).CrossRefGoogle Scholar
  339. Miller, A., and H. Waelsch: The transfer of the formimino group of formamidinoglutaric acid to tetrahydrofolic acid. Arch. of Biochem. a. Biophysics 63, 263–266 (1956).CrossRefGoogle Scholar
  340. Miller, Z., and L.Warren: Studies on the metabolism of 4-amino-5-imidazolecarboxamide in vitro. I. Utilization by normal tissue preparations. J. of Biol. Chem. 205, 331–343 (1953).Google Scholar
  341. Mitchell, H. K., and M. B. Houlahan: Adenine-requiring mutants of Neurospora crassa. Federat. Proc. 5, 370–375 (1946).Google Scholar
  342. Investigations on the biosynthesis of pyrimidine nucleosides in Neurospora. Federat. Proc. 6, 506–509 (1947).Google Scholar
  343. Mitchell, H. K., M. B. Houlahan and J. F. Nyc: The accumulation of orotic acid by a pyrimidineless mutant of Neurospora. J. of Biol. Chem. 172, 525–529 (1948).Google Scholar
  344. Moat, A. G., and C. N. Wilkins: Biotin in purine biosynthesis. Federat. Proc. 15, 605 (1956).Google Scholar
  345. Moat, A. G., Ch. N. Wilkins and H. Friedman: A rôle for biotin in purine biosynthesis. J. of Biol. Chem. 223, 985–991 (1956).Google Scholar
  346. Moore, A. M., and J. B. Boylen: Utilization of uracil by a strain of E. coli. Arch. of Biochem. a. Biophysics 54, 312–317 (1955).CrossRefGoogle Scholar
  347. Moss, J. A. de, S. M. Genuth and G. D. Novelli: The enzymatic activation of amino acids via their acyl-adenylate derivatives. Proc. Nat. Acad. Sci. U.S.A. 42, 325–332 (1956).CrossRefGoogle Scholar
  348. Moyed, H. S., and B. Magasanik: Biosynthesis of nucleic acid guanine: the enzymic conversion of xanthosine-5′-phosphate to guanosine-5′-phosphate. Federat. Proc. 15, 318 (1956).Google Scholar
  349. Munch-Petersen, A.: Metabolism of uridine triphosphate in yeast. Acta chem. scand. (Copenh.) 8, 1102–1103 (1954).CrossRefGoogle Scholar
  350. Investigations of the properties and mechanism of the uridine diphosphate glucose pyrophosphorylase reaction. Acta chem. scand. (Copenh.) 9, 1523–1536 (1955a).Google Scholar
  351. Note on the transphosphorylation reaction between uridine monophosphate and adenosine triphosphate. Acta chem. scand. (Copenh). 9, 1537–1539 (1955b).Google Scholar
  352. Enzymatic synthesis and pyrophosphorolysis of guanosine diphosphate mannose. Arch. of Biochem. a. Biophysics 55, 592–593 (1955 c).Google Scholar
  353. Park, J. T.: Uridine-5′-pyrophosphate derivatives. III. Amino acid containing derivatives. J. of Biol. Chem. 194, 897–904 (1952).Google Scholar
  354. Park, J. T., and J. L. Strominger: Mode of action of penicillin. Biochemical basis for the mechanism of action of penicillin and for its selective toxicity. Science (Lancaster, Pa.) 125, 99–101 (1957).Google Scholar
  355. Paul, K. G., U. Y. Avi-Dor: The oxidation of uric acid with horse radish peroxidase. Acta chem. scand. (Copenh.) 8, 637–648 (1954).Google Scholar
  356. Peabody, R. A.: Activation of formate for purine synthesis. Federat. Proc. 12, 254 (1953).Google Scholar
  357. Peabody, R. A., D. A. Goldthwait and G. R. Greenberg: The structure of glycinamide ribotide. J. of Biol. Chem. 221, 1071–1081 (1956).Google Scholar
  358. Pierce, J. G., and H. S. Loring: Growth requirements of a purine-deficient strain of Neurospora. J. of Biol. Chem. 160, 409–415 (1945).Google Scholar
  359. Purine and pyrimidine antagonism in a pyrimidine-deficient mutant of Neurospora. J. of Biol. Chem. 176, 1131–1140 (1948).Google Scholar
  360. Plentl, A. A., and R. Schoen-heimer: Studies in the metabolism of purines and pyrimidines by means of isotopic nitrogen. J. of Biol. Chem. 153, 203–217 (1944).Google Scholar
  361. Pomper, S.: Purine-requiring and pyrimidine-requiring mutants of Saccharomyces cerevisiae. J. Bacter. 63, 707–713 (1952).Google Scholar
  362. Pontis, H. G.: Uridine diphosphate acetylgalactosamine in liver. J. of Biol. Chem. 216, 195–202 (1955).Google Scholar
  363. Potter, R. L., and S. Schlesinger: The occurrence of deoxy-pyrimidine nucleotides in the acid-soluble extract of thymus. J. Amer. Chem. Soc. 77, 6714–6715 (1955).CrossRefGoogle Scholar
  364. Praetorius, E.: The enzymatic conversion of uric acid spectrophotometric analysis. Biochim. et Biophysica Acta 2, 602–613 (1948).CrossRefGoogle Scholar
  365. Prusoff, W. H., and L. G. Lajtha: A new acid-stable component of DNA derived from formate C14. Federat. Proc. 15, 331 (1956).Google Scholar
  366. Prusoff, W. H., L. G. Lajtha and A. D. Welch: Effect of the deoxyriboside of 6-azathy-mine (azathymidine) on the biosynthesis of deoxyribonucleic acid by bone marrow and neoplastic cells (in vitro). Biochim. et Biophysica Acta 20, 209–214 (1956).CrossRefGoogle Scholar
  367. Purucker, H.: Untersuchungen über die Entstehung des Allantoins in der Pflanze. Planta (Berl.) 16, 277–331 (1932).CrossRefGoogle Scholar
  368. Rabinowitz, J. C.: Purine fermentation by Clostridium cylindrosporum. III. 4-Amino-5-imidazolecarboxylic aeid and 4-aminoimidazole. J. of Biol. Chem. 218, 175–187 (1956).Google Scholar
  369. Rabinowitz, J. C, and H. A. Barker: Intermediates in purine decomposition by Clostridium cylindrosporum. Federat. Proc. 12, 255–256 (1953).Google Scholar
  370. Purine fermentation by Clostridium cylindrosporum. I. Tracer experiments on the fermentation of guanine. J. of Biol. Chem. 218, 147–160 (1956a).Google Scholar
  371. Purine fermentation by Clostridium cylindrosporum. II. Purine transformations. J. of Biol. Chem. 218, 161–173 (1956b).Google Scholar
  372. Rabinowitz, J. C., and H. A. Pricer: Isolation of an intermediate in xanthine decomposition by Clostridium cylindrosporum. Federat. Proc. 13, 278 (1954).Google Scholar
  373. Rabinowitz, J. C., and W. E. Pricer: Formation and degradation of 4-amino-imidazole by extracts of Clostridium cylindrosporum. Federat. Proc. 14, 266 (1955).Google Scholar
  374. Purine fermentation by Clostridium cylindrosporum. IV. 4-Ureido-5-imidazolecarboxylic acid. J. of Biol. Chem. 218, 189–199 (1956a).Google Scholar
  375. ATP-formation accompanying formimino-glycine utilization. J. Amer. Chem. Soc. 78, 1513–1514 (1956b).Google Scholar
  376. Purine fermentation by Clostridium cylindrosporum. V. Form-immoglycine. J. of Biol. Chem. 222, 537–554 (1956c).Google Scholar
  377. The enzymatic synthesis of N10-formyltetrahydrofolic acid and its rôle inATP-formation during formiminoglycine degradation. J. Amer. Chem. Soc. 78, 4176–4178 (1956d).Google Scholar
  378. Formimino-tetrahydrofolic acid and methe-nyltetrahydrofolic acid as intermediates in the formation of N10-formyltetrahydrofolic acid. J. Amer. Chem. Soc. 78, 5702–5704 (1956e).Google Scholar
  379. Radin, N. S., and H. A. Barker: Enzymatic reactions in purine decomposition by preparations of Clostridium acidi-urici. Proc. Nat. Acad. Sci. U.S.A. 39, 1196–1204 (1953).CrossRefGoogle Scholar
  380. Ratner, S., and A. Pappas: Biosynthesis of urea. I. Enzymatic mechanism of arginine synthesis from citrulline. J. of Biol. Chem. 179, 1183–1212 (1949).Google Scholar
  381. Ratner, S., B. Petrack and O. Rochovansky: Biosynthesis of urea. V. Isolation and properties of argininosuccinic acid. J. of Biol. Chem. 204, 95–113 (1953).Google Scholar
  382. Rege, D. V., and A. Sreenivasan: Influence of folic acid and vitamin B12 on the impairment of nucleic acid synthesis in Lactobacillus casei by aureomycin. Nature (Lond.) 173, 728–729 (1954a).CrossRefGoogle Scholar
  383. Conversion of uracil to thymine by strains of Bacillus subtilis. J. of Biol. Chem. 208, 471–476 (1954b).Google Scholar
  384. Reichard, P.: The function of orotic acid in the biogenesis of pyrimidines in slices from regenerating liver. J. of Biol. Chem. 197, 391–398 (1952).Google Scholar
  385. Enzymatic synthesis of ureidosuccinic acid in rat liver mitochondria. Acta chem. scand. (Copenh.) 8, 795–805 (1954a).Google Scholar
  386. Enzymatic synthesis of ureidosuccinic acid. Acta chem. scand. (Copenh.) 8, 1102–1103 (1954b).Google Scholar
  387. Biosynthesis of purines and pyrimidines. In Chargaff and Davidson: The Nucleic Acids, Bd. II, S. 277–308. New York: Academic Press Inc. 1955.Google Scholar
  388. Reichard, P., u. S. Bergström: Synthesis of polynucleotides in slices from regenerating liver. Acta chem. scand. (Copenh.) 5, 190–191 (1951).CrossRefGoogle Scholar
  389. Reichard, P., and B. Estborn: Preparation of desoxyribonucleosides from thymonucleic acid. Acta chem. scand. (Copenh.) 4, 1047–53 (1950).CrossRefGoogle Scholar
  390. Utilization of desoxyribosides in the synthesis of polynucleotides. J. of Biol. Chem. 188, 839–846 (1951).Google Scholar
  391. Reichard, P., u. G. Hanshoff: Synthesis of ureidosuccinic acid with soluble enzymes from liver mitochondria and E. coli. Acta chem. scand. (Copenh.) 9, 519–530 (1955).CrossRefGoogle Scholar
  392. Reichard, P., u. U. Lagerkvist: The biogenesis of orotic acid in liver slices. Acta chem. scand. (Copenh.) 7, 1207–1217 (1953).CrossRefGoogle Scholar
  393. Reichard, P., L. H. Smith U. G. Hanshoff: Enzymic synthesis of ureidosuccinic acid from citrulline via compound x and carbamyl phosphate. Acta chem. scand. (Copenh.) 9, 1010–1012 (1955).CrossRefGoogle Scholar
  394. Remy, Ch. N., W. T. Remy and J. M. Buchanan: Biosynthesis of the purines. VIII. Enzymatic synthesis and utilization of α-5-phospho-ribosylpyrophosphate. J. of Biol. Chem. 217, 885–895 (1955).Google Scholar
  395. Reynolds, E. S., J. Lieberman and A. Kornberg: The metabolism of orotic acid in aerobic bacteria. J. Bacter. 69, 250–255 (1955).Google Scholar
  396. Richert, W. W., and A. W. Westerfeld: Purine metabolism in rat liver homogenates. J. of Biol. Chem. 184, 203–209 (1950).Google Scholar
  397. Rogers, H. J.: Importance of pyrimidine derivatives in the growth of group streptococci upon a simplified medium. Nature (Lond.) 153, 251 (1944).CrossRefGoogle Scholar
  398. Rogers, L. L., and W. Shive: Biochemical transformations as determined by competitive analogue-metabolite growth inhibitions. VII. Relationship of purines and thymine to folic acid. J. of Biol. Chem. 172, 751–758 (1948).Google Scholar
  399. Roll, P. M., H. Wetnfeld and E. Carroll: The utilization of nucleotides by the mammal. V. Metabolism of pyrimidine nucleotides. J. of Biol. Chem. 220, 455–465 (1956).Google Scholar
  400. Rutman, R. J., A. Cantarow and K. E. Paschkis: The catabolism of uracil in vivo and in vitro. J. of Biol. Chem. 210, 321–329 (1954).Google Scholar
  401. Sacks, J.: Adenosine pentaphosphate from commercial ATP. Biochim. et Biophysica Acta 16, 436 (1955).CrossRefGoogle Scholar
  402. Sagers, R. D., and J. V. Beck: Studies on the formation of formate, glycine, serine, pyruvate and acetate from purines by Clostridium acidi-urici. J. Bacter. 72, 199–208 (1956).Google Scholar
  403. Sagers, R. D., and J. V. Beck: Tracer studies on pyruvate formation from purines by Clostridium acidi-urici. Bacter. Proc. 1955, 136 (1955).Google Scholar
  404. Sagers, R. D., J. V. Beck, W. Gruber and I. C. Gunsalus: A tetrahydro-folic acid linked formimino transfer enzyme. J. Amer. Chem. Soc. 78, 694–695 (1956).Google Scholar
  405. Schitten-helm, A.: Über die Fermente des Nucleinstoffwechsels in Lupinenkeimlingen. Hoppe-Seylers Z. 63, 289 (1909).CrossRefGoogle Scholar
  406. Schmitz, H.: Embau von 14C aus Glucose-l-14C in die freien und gebundenen Nucleotide. Angew. Chem. 66, 110 (1954).CrossRefGoogle Scholar
  407. Schmitz, H., R. B. Hurlbert and V. R. Potter: Nucleotide metabolism. III. Mono-, di- and triphosphates of cytidine, guanosine and uridine. J. of Biol. Chem. 209, 41–54 (1954).Google Scholar
  408. Schmitz, H., u. J. J. Saukkonen: Vergleichende Untersuchungen über den Bestand an Adenosin-Guanosin-, Cytidin- und Uridin-5′-mono- und Polyphosphorsäureestem ruhender und wachsender Gewebe. 3. Congrès Internat. de Biochimie Bruxelles, Résumés des Communications, S. 72. 1955.Google Scholar
  409. Schuler, B.: Die Urikolyse. Hoppe-Seylers Z. 208, 237–248 (1932).CrossRefGoogle Scholar
  410. Schuler, B., U. B. Reindel: Die Urikolyse. III. Mitt. Hoppe-Seylers Z. 215, 258–266 (1933).CrossRefGoogle Scholar
  411. Schulman, M. P.: Purines and pyrimidines. In Greenberg, Chemical pathways of metabolism, Bd. II, S. 223–261. New York: Academic Press Inc. 1954.Google Scholar
  412. Schulman, M. P., and S. J. Badger: Pyrimidine biosynthesis from citrulline ureide carbon. Federat. Proc. 13, 292 (1954).Google Scholar
  413. Schulman, M. P., and J. M. Buchanan: Mechanism of hypoxanthine synthesis from glycine, formate, and 4-amino-5-imidazolecarboxamide. Federat. Proc. 10, 244–245 (1951).Google Scholar
  414. Biosynthesis of the purines. II. Metabolism of 4-amino-5-imidazolecarboxamide in pigeon liver. J. of Biol. Chem. 196, 513–521 (1952).Google Scholar
  415. Schulman, M. P., J. M. Buchanan and C. S. Miller: Precursors of purines. Federat. Proc. 9, 225 (1950).Google Scholar
  416. Schulman, M. P., J. C. Sonne and J. M. Buchanan: Biosynthesis of the purines. I. Hypoxanthine formation in pigeon liver homogenates and extracts. J. of Biol. Chem. 196, 499–512 (1952).Google Scholar
  417. Shemin, D., and D. Rittenberg: On the utilization of glycine for uric acid synthesis in man. J. of Biol. Chem. 167, 875–876 (1947).Google Scholar
  418. Shive, W.: The utilization of antimetabolites in the study of biochemical processes in living organisms. Ann. New York Acad. Sci. 52, 1212–1234 (1950).CrossRefGoogle Scholar
  419. B-vitamins involved in single carbon unit metabolism. Federat. Proc. 12, 639–646 (1953).Google Scholar
  420. Shive, W., W. W. Ackermann, M. Gordon, M. E. Getzendaner and R. E. Eakin: 5(4)-amino-4(5)-imidazolecarboxamide, a precursor of purines. J. Amer. Chem. Soc. 69, 725–726 (1947).CrossRefGoogle Scholar
  421. Siminovitch, L., and A. F. Graham: Synthesis of nucleic acids in E. coli. Canad. J. Microbiol. 1, 721–732 (1955).CrossRefGoogle Scholar
  422. Slotnick, I. J.: Dihydrouracil as a growth factor for a mutant strain of E. coli. J. Bacter. 72, 276–277 (1956).Google Scholar
  423. Slotnick, I. J., and M. G. Sevag: An investigation of the natural occurrence of 4-amino-5-imidazolecarboxamide in several strains of E. coli. Arch. of Biochem. a. Biophysics 57, 491–495 (1955).CrossRefGoogle Scholar
  424. Smith, E., and G. T. Mills: Biosynthesis of 14C-labelled UDPG and uridine diphosphateacetylglucosamine (UDPAG). Biochemic. J. 64, 52 P (1956).Google Scholar
  425. Smith, E. E. B., G. T. Mills and E. M. Harper: The isolation of uridine Pyrophosphogalacturonic acid from a type I pneumococcus. Biochim. et Biophysica Acta 23, 662–663 (1957).CrossRefGoogle Scholar
  426. Smith, J. D., and O. B. Dunn: The occurrence of 6-methyl-aminopurine in deoxyribonucleic acids and its relation to nucleic acid structure and function. 3. Congrès Internat. de Biochimie Bruxelles. Résumés des Communications, S. 24. 1955.Google Scholar
  427. Smith jr. L. H., and D. Stetten jr.: Biosynthesis of orotic acid from citrulline. J. Amer. Chem. Soc. 76, 3864–3865 (1954).CrossRefGoogle Scholar
  428. Sonne, J. C, J. M. Buchanan and A. M. Delluva: Biological precursors of uric acid carbon. J. of Biol. Chem. 166, 395–396 (1946).Google Scholar
  429. Biological precursors of uric acid. J. of Biol. Chem. 173, 69–79 (1948).Google Scholar
  430. Sonne, J. C, and L. Lin: Nitrogen precursors of hypoxanthine. Federat. Proc. 11, 290 (1952).Google Scholar
  431. Sonne, J. C, J. Lin and J. M. Buchanan: The rôle of N15 glycine, glutamine, aspartate and glutamate in hypoxanthine synthesis. J. Amer. Chem. Soc. 75, 1516–1517 (1953).CrossRefGoogle Scholar
  432. Spicer, D. S., K. V. Liebert, L. D. Wright and J. W. Huff: Study of ureidosuccinic acid and related compounds in pyrimidine synthesis by Lactobacillus bulgaricus O9. Proc. Soc. Exper. Biol. a. Med. 79, 587–588 (1952).Google Scholar
  433. Stegwee, D.: Some aspects of purine metabolism in mutants of Ophiostoma multiannulatum. Amsterdam: North-Holland Publishing Company 1955.Google Scholar
  434. Betrachtungen über den Purinstoffwechsel in Mutanten von Ophiostoma multiannulatum. Acta bot. néerl. 4, 575–636 (1955).Google Scholar
  435. Steinert, M.: Incorporation de bases puriques marquées par les embryons de Batraciens. Biochim. et Biophysica Acta 18, 511–515 (1955).CrossRefGoogle Scholar
  436. Stetten, M. R., and C. L. Fox jr.: An amine formed by bacteria during sulfonamide bacteriostasis. J. of Biol. Chem. 161, 333–349 (1945).Google Scholar
  437. Stewart, R. C., and M. G. Sevag: 4-Amino-5-imidazolecarboxamide; rôle of carbohydrates as critical factors for its accumulation. Arch. of Biochem. a. Biophysics 41, 9–13 (1952).CrossRefGoogle Scholar
  438. Storey, I. D. E., and G. J. Dutton: Uridine compounds in glucuronic acid metabolism. II. The isolation and structure of uridine-diphosphate-glucuronic acid. Biochemic. J. 59, 279–288 (1955a).Google Scholar
  439. Uridine diphosphate glucuronic acid. 3. Congrès Internat. de Biochimie, Bruxelles. Conférences et Rapports, S. 162–163. 1955b.Google Scholar
  440. Strecker, A.: Bildung von Glykokoll aus Harnsäure. Ann. Chem. u. Pharm. 146, 142–144 (1868).CrossRefGoogle Scholar
  441. Strominger, J. L.: Uridine diphosphate acetylglucosamine phosphate and uridine diphosphate acetylgalactosamine sulfate. Biochim. et Biophysica Acta 17, 283–285 (1955).CrossRefGoogle Scholar
  442. Strominger, J. L., L. A. Heppel and E. S. Maxwell: A new mechanism for dephosphorylation of nucleoside di- and triphosphates. I. Transphosphorylation between nucleoside monophosphates and nucleoside triphosphates. Arch. of Biochem. a. Biophysics 52, 488–491 (1954).CrossRefGoogle Scholar
  443. Sumi, M.: Über die chemischen Bestandteile der Sporen von Aspergillus oryzae. Biochem. Z. 195, 161–174 (1928).Google Scholar
  444. Sutton, W. B., F. Schlenk and C. H. Werkman: Glycine as a precursor of bacterial purines. Arch, of Biochem. a. Biophysics 32, 85–88 (1951).CrossRefGoogle Scholar
  445. Sutton, W. B., and C. H. Werkman: The carbon and nitrogen precursors of bacterial purines. Arch. of Biochem. a. Biophysics 47, 1–7 (1953).CrossRefGoogle Scholar
  446. Tabor, H., and J. C. Rabinowitz: Intermediate steps in the formylation of tetrahydrofolic acid by formiminoglutamic acid in rabbit liver. J. Amer. Chem. Soc. 78, 5705–5706 (1956).CrossRefGoogle Scholar
  447. Taha, E. E. M., L. Storck-Krieg U. W. Franke: Purinoxydierende Fermente aus Schimmelpilzen. IV. Arch. Mikrobiol. 23, 67–78 (1955).CrossRefGoogle Scholar
  448. Totter, J. R.: Incorporation of isotopic formate into the thymine of bone marrow deoxyribonucleic acid in vitro. J. Amer. Chem. Soc. 76, 2196–2197 (1954).CrossRefGoogle Scholar
  449. Totter, J. R., E. Volkin and C. E. Carter: Incorporation of isotopic formate into the nucleotides of ribo- and desoxyribonucleic acid. J. Amer. Chem. Soc. 73, 1521–1522 (1951).CrossRefGoogle Scholar
  450. Tracey, M. V.: A. The occurrence of urea and its precursors in plants. I. Intermediates in purine catabolism. In Paech-Tracey, Moderne Methoden der Pflanzenanalyse, Bd. IV: Urea and ureides, S. 119–141. 1955.Google Scholar
  451. Ushiba, D., and B. Magasanik: Effects of auxotrophic mutations on the adaptation to inositol degradation in Aerobacter aerogenes. Proc. Soc. Exper. Biol. a. Med. 80, 626–632 (1952).Google Scholar
  452. Wahba, A. J., J. M. Ravel and W. Sheve: Involvement of aspartic acid in purine biosynthesis. Biochim. et Biophysica Acta 14, 569 (1954).CrossRefGoogle Scholar
  453. Walker, E. B.: Arginosuccinic acid from Chlorella. Proc. Nat. Acad. Sci. U.S.A. 38, 561–566 (1952).CrossRefGoogle Scholar
  454. Walker, E. B., and J. Myers: The formation of arginosuccinic acid from arginine and fumarate. J. of Biol. Chem. 203, 143–152 (1953).Google Scholar
  455. Wang, T. P., and J. O. Lampen: Metabolism of pyrimidines by a soil Bacterium. J. of Biol. Chem. 194, 775–783 (1952).Google Scholar
  456. Uracil oxidase and the isolation of barbituric acid from uracil oxidation. J. of Biol. Chem. 194, 785–791 (1952).Google Scholar
  457. Warren, L. and J. G. FLAKS: Single- carbon transferreactions and purine biosynthesis. Federat. Proc. 15, 379 (1956).Google Scholar
  458. Webb, M., and W. J. Nickerson: Differential reversal of inhibitory effects of folic acid analogues on growth, division and deoxyribonucleic acid synthesis of microorganisms. J. Bacter. 71, 140–148 (1956).Google Scholar
  459. Weed, L. L.: Incorporation of radioactive orotic acid into the nucleic acid pyrimidines of animal and human tumors. Cancer Res. 11, 470–473 (1951).Google Scholar
  460. Weed, L. L., and S. S. Cohen: The utilization of host pyrimidines in the synthesis of bacterial viruses. J. of Biol. Chem. 192, 693–700 (1951).Google Scholar
  461. Weed, L. L., M. Edmonds and D. W. Wilson: Conversion of radioactive orotic acid into pyrimidine nucleotides of nucleic acid by slices of rat liver. Proc. Soc. Exper. Biol. a. Med. 75, 192–193 (1950).Google Scholar
  462. Weed, L. L., and D. W. Wilson: The incorporation of C14-orotic acid into nucleic acid pyrimidines in vitro. J. of Biol. Chem. 189, 435–442 (1951).Google Scholar
  463. Studies of pyrimidine nucleotides with orotic acid-2-C14 and P32. J. of Biol. Chem. 202, 745 (1953).Google Scholar
  464. Studies on precursors of pyrimidines of nucleic acid. J. of Biol. Chem. 207, 439–442 (1954).Google Scholar
  465. Weinfeld, H., P. M. Roll and G. B. Brown: The utilization of nucleotides by the mammal. III. Isomeric purine nucleotides labeled with C14. J. of Biol. Chem. 213, 523–531 (1955).Google Scholar
  466. Weiss, S. B., S. W. Smith and E. P. Kennedy: Net synthesis of lecithin in an isolated enzyme system. Nature (Lond.) 178, 594–595 (1956).CrossRefGoogle Scholar
  467. Weygand, F., A. Wacker U. H. Dellweg: Stoff-wechseluntersuchungen bei Mikroorganismen mit Hilfe radioaktiver Isotope. IV. Umwandlung von Guanin in Adenin durch Lactobacillus leichmannii 313, untersucht mit Guanin-(8-14C) und Adenin-(14C). Z. Naturforsch. 7b, 156–161 (1952).Google Scholar
  468. Weygand, F., A. Wacker, A. Trebst U. P. Swoboda: Über die Biosynthese des Thymins bei Bakterien. Z. Naturforsch. 9b, 764–769 (1954).Google Scholar
  469. Weygand, F., u. M. Waldschmidt: Über die Biosynthese des Leueopterins, untersucht mit 14C-markierten Verbindungen am Kohlweißling. Angew. Chem. 67, 328 (1955).CrossRefGoogle Scholar
  470. Wheeler, Gl. P., and H. E. Skipper: Incorporation of 2,6-diaminopurine into the nucleoside phosphates of the mouse. J. of Biol. Chem. 205, 749–754 (1953a).Google Scholar
  471. Chromatographic evidence for incorporation of 2,6-diaminopurine into nucleoside phosphates of the mouse. Federat. Proc. 12, 289 (1953b).Google Scholar
  472. Whiteley, H. R.: The fermentation of purines by Micrococcus aerogenes. J. Bacter. 63, 163–175 (1952).Google Scholar
  473. Whiteley, H. R., and H. C. Douglas: The fermentation of purines by Micrococcus lactilyticus. J. Bacter. 61, 605–616 (1951).Google Scholar
  474. Whitfeld, P. R.: Accumulation of adenine-succinic acid by an adenine-requiring mutant of Neurospora crassa. Arch. of Biochem. a. Biophysics 65, 585–586 (1956).CrossRefGoogle Scholar
  475. Wiechowski, W.: Die Produkte der fermentativen Harnsäurezersetzung durch tierische Organe. Beitr. chem. Physiol. u. Path. 9, 295–310 (1907).Google Scholar
  476. Wieland, O. P., J. Avener, E. M. Boggiano, N. Bohonos, B. L. Huchings and J. H. Williams: Orotic acid in the nutrition of a strain of Lactobacillus bulgaricus. J. of Biol. Chem. 186, 737–742 (1950).Google Scholar
  477. Williams, W. J.: Verwendung von 4-Amino-5-imidazol-carboxamid zur Purinsynthese durch Hefe. Federat. Proc. 10, 270 (1951).Google Scholar
  478. Williams, W. J., and J. M. Buchanan: Biosynthesis of the purines. IV. The metabolism of 4-amino-5-imidazolecarboxamide in yeast. J. of Biol. Chem. 202, 253–262 (1953).Google Scholar
  479. Woods, L., J. M. Ravel and W. Shive: Relationship of aspartic acid to pyrimidine biosynthesis. J. of Biol. Chem. 209, 559–567 (1954).Google Scholar
  480. Woolley, D. W., and R. B. Pringle: Formation of 4-amino-5-carboxamideimidazole during growth of E. coli in the presence of 4-amino-pteroylglutamic acid. J. Amer. Chem. Soc. 72, 634–635 (1950).CrossRefGoogle Scholar
  481. Wright, L. D., Ch. A. Driscoll, Ch. L. Miller and H. R. Skeggs: Dihydroorotic acid in nutrition of lactic acid bacteria. Proc. Soc. Exper. Biol. a. Med. 84, 716–719 (1953).Google Scholar
  482. Wright, L. D., J. W. Huff, H. R. Skeggs, K. A. Valentik and D. K. Bosshardt: Orotic acid, a growth factor for Lactobacillus bulgaricus. J. Amer. Chem. Soc. 72, 2312–2313 (1950).CrossRefGoogle Scholar
  483. Wright, L. D., C. S. Miller, H. R. Skeggs, J. W. Huff, L. L. Weed and D. W. Wilson: Biological precursors of the pyrimidines. J. Amer. Chem. Soc. 73, 1898–1899 (1951).CrossRefGoogle Scholar
  484. Wright, L. D., K. A. Valentik, D. O. Spicer, J. W. Huff and H. R. Skeggs: Orotic acid and related compounds in the nutrition of Lactobacillus. Proc. Soc. Exper. Biol. a. Med. 75, 293–297 (1950).Google Scholar
  485. Wu, R., and W. Wilson: Studies of the biosynthesis of orotic acid. J. of Biol. Chem. 223, 195–205 (1956).Google Scholar
  486. Wulff, C: Beiträge zur Kenntnis der Nucleinbasen. Z. physiol. Chem. 17, 468–510 (1893).Google Scholar
  487. Wyatt, G. R., and S. S. Cohen: A new pyrimidine base from bacteriophage nucleic acids. Nature (Lond.) 170, 1072–1073 (1952).CrossRefGoogle Scholar
  488. Yates, R. A., and A. B. Pardee: Pyrimidine biosynthesis in E. coli. J. of Biol. Chem. 221, 743–756 (1956a).Google Scholar
  489. Control of pyrimidine biosynthesis in E. coli by a feed-back mechanism. J. of Biol. Chem. 221, 757–770 (1956b).Google Scholar
  490. Ziegler-Günder, I., H. Simon U. A. Wacker: Über den Stoffwechsel von Guanin (2-14C) und Hypoxanthin (8-14C) bei Amphibien. Z. Naturforsch. 11b, 82–85 (1956).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Ilse Böttger

There are no affiliations available

Personalised recommendations