Advertisement

The degradation of amino-acids

  • H. E. Street
Chapter
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Abstract

Amino-acids may (1) be utilised in protein synthesis either by being linked together through the synthesis of peptide bonds or, as now seems less likely, by acting as a nitrogen pool for protein synthesis by some alternative pathway (Street 1949, Wood 1953), (2) undergo degradation to organic acids which function as intermediates in the main sequence of respiratory reactions or are involved in the synthesis of carbohydrates and fats; (3) be involved in the synthesis of other organic nitrogenous compounds; this frequently involves amino-acid degradation despite the fact that the nitrogenous cell constituents ultimately synthesised may be of greater complexity and molecular weight than their amino-acid precursors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P. H., and H. J. Vogel: Amino-acid biosynthesis in Troulopsis utilis and Neurospora crassa. J. of Biol. Chem. 213, 355–364 (1955).Google Scholar
  2. Ackermann, D.: Ein Fäulnisversuch mit Arginin. Hoppe-Seylers Z, 56, 305–315 (1908).Google Scholar
  3. Über den bakteriellen Abbau des Histidins. Hoppe-Seylers Z. 65, 504–510 (1910).Google Scholar
  4. Über ein neues, auf bakteriellem Wege gewinnbares Aporrhegma. Hoppe-Seylers Z. 69, 273–281 (1911).Google Scholar
  5. Adelberg, E. A., and H. E. Umbarger: Isoleucine and valine metabolism in Escherichia coli. V. α-keto-isovaleric acid accumulation. J. of Biol. Chem. 205, 475–482 (1953).Google Scholar
  6. Adler, E., N. B. Das, H. v. Euler and U. Heyman: Biological dehydrogenation and synthesis of glutamic acid. C. r. Trav. Labor. Carlsberg, Ser. chim. 22, 15–25 (1938).Google Scholar
  7. Adler, E., G. Günther u. J. E. Everett: Über den enzymatischen Abbau und Aufbau der Glutaminsäure IV in Hefe. Hoppe-Seylers Z. 255, 27–35 (1938).Google Scholar
  8. Adler, E., V. Hellstrom, G. Gunther u. H. v. Euler: Über den enzymatischen Abbau und Aufbau der Glutaminsäure III in Bacterium coli. Hoppe-Seylers Z. 255, 14–26 (1938).Google Scholar
  9. Ahmed, K., and M. A. Karim: Biosynthesis of choline in the seedling of the chick pea (Cicer arietinum). Biochemic. J. 55, 817–820 (1953).Google Scholar
  10. Akamatsu, S., and T. Sekine: Hydrolysis of arginine by Streptococcus faecalis. J. of Biochem. (Tokyo) 38, 349–354 (1951).Google Scholar
  11. Akasi, S.: The action of arginase on octopine and its isomers. J. of Biochem. (Tokyo) 26, 129–135 (1937).Google Scholar
  12. Albaum, H. G., and P. P. Cohen: Transamination and protein synthesis in germinating oat seedlings. J. of Biol. Chem. 149, 19–27 (1943).Google Scholar
  13. Alexander, N., and D. M. Greenberg: Studies in the biosynthesis of serine. J. of Biol. Chem. 214, 821–837 (1955).Google Scholar
  14. Ames, B. N., H. K. Mitchell and M. B. Mitchell: Some new naturally occurring imidazoles related to the biosynthesis of histidine. J. Amer. Chem. Soc. 75, 1015–1018 (1953).Google Scholar
  15. Archibald, R. M.: Chemical characteristics and physiological roles of glutamine. Chem. Rev. 37, 161–208 (1945).PubMedGoogle Scholar
  16. Arnow, P., J. J. Oleson and J. H. Williams: The effect of arginme in the nutrition of Chlorella vulgaris. Amer. J. Bot. 40, 100–104 (1953).Google Scholar
  17. Audus, L. J., and J. H. Quastel: Toxic effects of amino-acids and amines on seedling growth. Nature (Lond.) 160, 222–223 (1947).Google Scholar
  18. Bach, D.: Sur quelques conditions d’action de l’uréase de l’Aspergillus niger. C. r. Soc. Biol. Paris 100, 831–833 (1929).Google Scholar
  19. Baldwin, E.: Dynamic aspects of biochemistry. Cambridge 1953.Google Scholar
  20. Barger, G.: Isolation and synthesis of p-hydroxyphenylethylamine, an active principle of ergot soluble in water. J. Chem. Soc. Lond. 1909, 1123–1128.Google Scholar
  21. The simpler natural bases. London: Longmans, Green & Comp. 1914.Google Scholar
  22. Barrenscheen, H. K., u. J. Parry: The methylation of guanidineacetic acid to creatine by etiolated wheat seedlings. Biochem. Z. 310, 344–349 (1942).Google Scholar
  23. Barrenscheen, H. K., u. T. v. Valyi-Nagy: Die Methylierung durch pflanzliche und tierische Gewebe. L Mitt. Methionin als Methylierungsagens bei der Synthese des Kreatins und Betains durch etiolierte Weizenkeimlinge. Hoppe-Seylers Z. 277, 97–113 (1942).Google Scholar
  24. Beadle, G. W., H. K. Mitchell and J. F. Nyc: Kynurenine as an intermediate in the formation of nicotinic acid from tryptophane in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 33, 155–158 (1947).Google Scholar
  25. Beevers, H., and W. O. James: The behaviour of secondary and tertiary amines in the presence of catechol and belladonna catechol oxidase. Biochemie. J. 43, 636–639 (1948).Google Scholar
  26. Behrens, M.: The distribution of lipase and arginase between nucleus and protoplasm of liver cells. Hoppe-Seylers Z. 258, 27–32 (1939).Google Scholar
  27. Bender, A. E., and H. A. Krebs: The oxidation of various synthetic α-amino acids by mammalian d-amino-acid oxidase, l-amino-acid oxidase of Cobra venom and the l- and d-amino-acid oxidase of Neurospora crassa. Biochemic. J. 46, 210–219 (1950).Google Scholar
  28. Bender, A. E., H. A. Krebs and N. H. Horowitz: Amino-acid oxidase of Neurospora crassa. Biochemic. J. 45, XXI–XXII (1949).Google Scholar
  29. Bennet-Clark, T. A., and N. P. Kefford: Chromatography of the growth substances in plant extracts. Nature (Lond.) 171, 645 (1953).Google Scholar
  30. Bentley, J. A., and S. Housley: Studies on plant growth hormones. I. Biological activities of 3-indolylacetaldehyde and 3-indolylacetonitrile. J. of Exper. Bot. 3, 393–405 (1952).Google Scholar
  31. Berg, A., S. Kari, M. Alfthan and A. I. Virtanen: Homoserine and α-aminoadipic acid in green plants. Acta chem. scand. (Copenh.) 8, 358 (1954).Google Scholar
  32. Berg, C. P.: The physiology of the d-amino acids. Physiologic. Rev. 33, 145 (1953).Google Scholar
  33. Berger, J., and G. S. Avery jr.: Dehydrogenases of the Avena coleoptile. Amer. J. Bot. 30, 290–297 (1943).Google Scholar
  34. Glutamic and isocitric acid dehydrogenases in the Avena coleoptile and effect of auxins on these enzymes. Amer. J. Bot. 31, 11–19 (1944).Google Scholar
  35. Bernhauer, K., u. F. Slanina: Zum Chemismus der durch Aspergillus niger bewirkten Säurebildungsvorgänge. X. Mitt. Über die Bildung von Oxalsäure aus Ameisensäure. Biochem. Z. 264, 109–112 (1943).Google Scholar
  36. Berthelot, A., et D. M. Bertrand: Recherches sur la flore intestinale. Isolement d’un microbe capale de produire de la β-imidazoléthylamine aux depens de l’histidine. C. r. Acad. Sci. Paris 154, 1643–1645 (1912).Google Scholar
  37. Sur quelques propriétés biochimiques du Bazillus aminophilus intestinalis. C. r. Acad. Sci. Paris 154, 1826–1831 (1912).Google Scholar
  38. Binkley, F.: On the nature of serine dehydrase and cysteine desulfurase. J. of Biol. Chem. 150, 261–262 (1943).Google Scholar
  39. Binkley, F., and C. K. Olson: Deamination of homoserine. J. of Biol. Chem. 185, 881–885 (1950).Google Scholar
  40. Blakeley, R. J.: The interconversion of serine and glycine: role of pteroylglutamic acid and other cofactors. Biochemic. J. 58, 448–462 (1954).Google Scholar
  41. Blanchard, M., D. E. Green, V. Nocito and S. Ratner: l-amino acid oxidase of animal tissue. J. of Biol. Chem. 155, 421–440 (1944).Google Scholar
  42. Isolation of l-amino acid oxidase. J. of Biol. Chem. 161, 583–597 (1945).Google Scholar
  43. Blass, J., O. Lecomte et M. Macheboeuf: Recherches sur les aminosaures libres de Vibrio Cholerae par microchromatographie. Bull. Soc. Chim. biol. Paris 33, 1552–1556 (1951).PubMedGoogle Scholar
  44. Bokuchava, M. A.: Changes of different fractions of tanning substances in the tea leaf during growth and processing. Biokhimiya 11, 263–271 (1946).Google Scholar
  45. The rôle of polyphenoloxidases and peroxidases in the transformation of tea tannins. Biokhimiya 13, 173–178 (1948).Google Scholar
  46. Bonner, D.: Production of biochemical mutations in Penicillium. Amer. J. Bot. 33, 788 (1946a).Google Scholar
  47. Further studies of mutant strains of Neurospora requiring isoleucine and valine. J. of Biol. Chem. 166, 545–554 (1946b).Google Scholar
  48. The identification of a natural precursor of nicotinic acid. Proc. Nat. Acad. Sci. U.S.A. 34, 5–9 (1948).Google Scholar
  49. Bonner, D., E. L. Tatum and G. W. Beadle: The genetic control of biochemical reactions in Neurospora. A mutant strain requiring isoleucine and valine. Arch. of Biochem. 3, 71–91 (1943).Google Scholar
  50. Bonner, J.: The production of growth substance by Rhizopus suinus. Biol. Zbl. 52, 565 (1932).Google Scholar
  51. Limiting factors and growth inhibitors in the growth of the Avena coleoptile. Amer. J. Bot. 36, 323–332 (1949).Google Scholar
  52. Bonner, J., and S. G. Wildman: Enzymatic mechanisms in the respiration of spinach leaves. Arch. of Biochem. 10, 497–518 (1946).Google Scholar
  53. Borek, B. A., and H. Waelsch: The enzymatic degradation of histidine. J. of Biol. Chem. 205, 459–474 (1953).Google Scholar
  54. Borsook, H., C. L. Deasy, A. J. Haagen-Smit, G. Keighley and P. H. Lowy: α-aminoadipic acid: A product of lysine metabolism. J. of Biol. Chem. 173, 423–424 (1948).Google Scholar
  55. The degradation of l-lysine in guinea pig liver homogenate: Formation of alpha-amino-adipie acid. J. of Biol. Chem. 176, 1383–1393 (1948).Google Scholar
  56. The degradation of alpha-amino-adipic acid in guinea pig liver homogenate. J. of Biol. Chem. 176, 1395–1400 (1948).Google Scholar
  57. Bortuttau, H., u. H. Cappenberg: The active constituents of Shepherd’s Purse (Capsella bursa-pastoris). Arch. Pharm. 259, 33–52 (1921).Google Scholar
  58. Boswell, J. G.: Oxidation systems in the potato-tuber. Ann. of Bot. 9, 55–76 (1945).Google Scholar
  59. Bowden, K., and L. Marion: Biogenesis of alkaloids. IV. Formation of gramme from tryptophane in barley. Canad. J. Res. 29, 1037 (1951).Google Scholar
  60. Braunstein, A. E., and R. M. Azarkh: The mode of deamination of l-amino acids in surviving tissues. J. of Biol. Chem. 157, 421–422 (1945).Google Scholar
  61. Braunstein, A. E., and S. M. Bychkov: A cell-free enzymatic model of l-amino-acid dehydrogenase (l-deaminase). Nature (Lond.) 144, 751–752 (1939).Google Scholar
  62. Formation and breakdown of amino acids by intermolecular transfer of amino groups. XIV. A cell-free enzymic model of l-amino acid dehydrogenase (l-deaminase). Biokhimiya 5, 261–270 (1940).Google Scholar
  63. Braunstein, A. E., u. M. G. Kritzmann: Über den Ab- und Aufbau von Aminosäuren durch Umaminierung. I. Über den Umsatz der Gleichgewiehtsreaktion zwischen l(+)-Glutaminsäure und Brenztraubensäure bzw. l(+)-Alanin und α-Ketoglutarsäure. Enzymologia (Den Haag) 2, 129–146 (1937).Google Scholar
  64. Braunstein, A. E., i G. T. Vilenkina: The enzymic formation of glycine from serine threonine and other hydroxyamino acids in animal tissues (in Russian). Dokl. Akad. Nauk SSSR. 66, 243–246 (1949).Google Scholar
  65. Broquist, H. P., and E. E. Snell: Mechanism of histidine synthesis in lactic acid bacteria. Federat. Proc. 8, 188 (1949).Google Scholar
  66. Burton, K.: The l-amino-acid oxidase of Neurospora. Biochemic. J. 50, 258–268 (1951).Google Scholar
  67. Busch, G.: Die enzymatische Spaltung von l-β-Asparagin durch Bakterien. Biochem. Z. 312, 308–314 (1948).Google Scholar
  68. Byerrum, R. U., and R. E. Wing: The role of choline in some metabolic reactions of Nicotiana rustica, J. of Biol. Chem. 205, 637–642 (1953).Google Scholar
  69. Cameron, H. S., L. W. Holm and M. E. Meyer: Comparative metabolic studies on the genus Brucella. I. Evidence of a urea cycle from glutamic acid metabolism. J. Bacter. 64, 709–712 (1952).Google Scholar
  70. Cammarata, P. S., and P. P. Cohen: The scope of the transamination reaction in animal tissues. J. of Biol. Chem. 187, 439–452 (1950).Google Scholar
  71. Canellakis, E. S., and H. Tarver: Studies on protein synthesis in vitro. IV. Concerning the apparent uptake of methionine by particulate preparations from liver. Arch. of Biochem. a. Biophysics 42, 387–398 (1953).Google Scholar
  72. Cardon, B. P.: Amino-acid fermentations by anaerobic bacteria. Proc. Soc. Exper. Biol. a. Med. 51, 267 (1942).Google Scholar
  73. Cardon, B. P., and H. A. Barker: Amino-acid fermentations by Clostridium propionicum and Diplococcus glycinophilus. Arch. of Biochem. 12, 165 (1947).Google Scholar
  74. Cedrangolo, F., e G. Carandente: Aspartico- and glutamico-aminopherase in higher plants. Arch. di Sci. biol. 26, 369–383 (1940).Google Scholar
  75. Chapeville, F., et P. Fromageot: La formation de l’acide cysteinesulfinique á partir de la cystine chez le rat. Biochim. et Biophysica Acta 17, 257–276 (1955).Google Scholar
  76. Chargaff, E., and D. B. Sprinson: Mechanism of deamination of serine by Bacterium coli. J. of Biol. Chem. 148, 249 (1943).Google Scholar
  77. Chibnall, A. C.: Protein metabolism in the plant. New Haven 1939.Google Scholar
  78. Clark, I., and D. Rittenberg: The metabolic activity of the α-hydrogen atom of lysine. J. of Biol. Chem. 189, 521–528 (1951).Google Scholar
  79. Cohen, P. P.: Transaminases. In: The Enzymes, edit. J. B. Sumner and K. Myrbäck, Vol. 1, Pt. 2, p. 1040–1067. 1951.Google Scholar
  80. Cohen, P. P., and S. Grisolia: The role of carbamyl-l-glutamic acid in the enzymatic synthesis of citrulline from ornithine. J. of Biol. Chem. 182, 747–761 (1949).Google Scholar
  81. Cook, R. P., and B. Woolf: The deamination and synthesis of l-aspartic acid in the presence of bacteria. Biochemic. J. 22, 474–481 (1928).Google Scholar
  82. Crawfobd, A. C., and W. K. Watanabe: Parahydroxyphenylethylamine, a pressor compound in an American mistletoe. J. of Biol. Chem. 19, 303 (1914).Google Scholar
  83. The occurrence of p-hydroxyphenylethylamine in various mistletoes. J. of Biol. Chem. 24, 169–172 (1916).Google Scholar
  84. Cromwell, B. T.: The role of putrescine in the synthesis of hyoscyamine. Biochemic. J. 37, 722–726 (1943).Google Scholar
  85. The micro-estimation and origin of methylamine in Mercurialis perennis L. Biochemic. J. 45, 84–86 (1949).Google Scholar
  86. Dalgliesh, C. E.: Biological degradation of tryptophan. Quart. Rev. Chem. Soc. Lond. 5, 227–244 (1951).Google Scholar
  87. Dalgliesh, C. E., W. E. Knox and A. Neuberger: Intermediary metabolism of tryptophan. Nature (Lond.) 168, 20–22 (1951).Google Scholar
  88. Damodaran, M.: The isolation of asparagine from an enzymic digest of edestin. Biochemic. J. 26, 235–247 (1932).Google Scholar
  89. Damodaran, M., G. Jaaback and A. C. Chibnall: The isolation of glutamine from an enzymic digest of gliadin. Biochemic. J. 26, 1704–1713 (1932).Google Scholar
  90. Damodaran, M., and K. R. Nair: Glutamic acid dehydrogenase from germinating seeds. Biochemic. J. 32, 1064 to 1074 (1938).Google Scholar
  91. Damodaran, M., and K. G. A. Narayanan: A comparative study of arginase and canavanase. Biochemic. J. 34, 1449 (1940).Google Scholar
  92. Damodaran, M., R. Ramaswamy, T. R. Venkatesan, S. Mahadevan and K. Ramdas: Amide synthesis in plants. II. Amino-acid changes in germinating seedlings. Proc. Indian Acad. Sci., Sect, B 23, 86–99 (1946).Google Scholar
  93. Damodaran, M., and P. M. Sivaramakrishnan: New sources of urease for determination of urea. Biochemic. J. 31, 1041–1046 (1937).Google Scholar
  94. Damodaran, M., and S. S. Subramanian: Amide synthesis in plants. IV. Aspartase in germinating seedlings. Proc. Indian Acad. Sci., Sect. B 27, 47–53 (1948).Google Scholar
  95. Davis, B. D.: Nutritionally deficient bacterial mutants isolated by means of penicillin. Experientia (Basel) 6, 41–50 (1950).Google Scholar
  96. Studies on aromatic synthesis in Escherichia coli, I. Shikimic acid, an early intermediate. J. of Biol. Chem. 191, 315–325 (1951).Google Scholar
  97. Biosynthetie interrelations of lysine, diammopimelic acid and threonine in mutants of Escherichia coli. Nature (Lond.) 169, 534–536 (1952a).Google Scholar
  98. Aromatic biosynthesis. IV. Preferential conversion in incompletely blocked mutants of a common preeurso of several metabolites. J. Bacter. 64, 729–748 (1952b).Google Scholar
  99. Aromatic biosynthesis. V. Antagonism between shikimic acid and its precursor, 5-dehydroshikimic acid. J. Bacter. 64, 749–763 (1952c).Google Scholar
  100. Amer. Chem. Soc. Abstr. Kansas City Meeting, March 26, 1954, p. 18C.Google Scholar
  101. Davison, D. C., and W. H. Elliott: Enzymie reaction between arginine and fumarate in plant and animal tissues. Nature (Lond.) 169, 313 (1952).Google Scholar
  102. Dawson, C. R., and M. F. Mallette: Copper proteins. Adv. Protein Chem. 2, 179–248 (1945).Google Scholar
  103. Dawson, C. R., and W. B. Tarpley: Copper oxidase. In: The Enzymes, edit. J. B. Sumner and K. Myrbäck, Vol. II, Pt. 1, pp. 454–498. 1951.Google Scholar
  104. Denffer, D. v., M. Behrens u. A. Fischer: Papierelektrophoretische Trennung von Indolderivaten aus Pflanzenextrakten. Naturwiss. 39, 258–259 (1952).Google Scholar
  105. Dernby, K. G.: Studien über die proteolytischen Enzyme der Hefe und ihre Beziehung zu der Autolyse. Biochem. Z. 81, 107–208 (1917).Google Scholar
  106. Devi, P., G. Pontecorvo and G. Higginbottom: Requirements of Aerobacter aerogenes induced by irradiation of dried cells. J. Gen. Microbiol. 5, 781–787 (1951).PubMedGoogle Scholar
  107. Dewan, J. G.: The l(+)glutamic dehydrogenase of annual tissues. Biochemic. J. 32, 1378–1385 (1938).Google Scholar
  108. Dewey, D. L., and E. Work: Diaminopimelic acid and lysine. Nature (Lond.) 169, 533–534 (1952).Google Scholar
  109. Done, J., and L. Fowden: A third amino-acid amide in peanut plants (Arachis hypogaea). Biochemic. J. 49, XX-XXI (1951).Google Scholar
  110. A new amino-acid amide in the groundnut plant (Arachis hypogaea): Evidence of the occurrence of γ-methyleneglutamine and γ-methyleneglutamic acid. Biochemic. J. 51, 451–458 (1952).Google Scholar
  111. Dox, A. W.: The intracellular enzymes of lower fungi, especially those of Penicillium camemberti. J. of Biol. Chem. 6, 461–467 (1909).Google Scholar
  112. Dubeck, M., and S. Kirkwood: The origin of the O- and N-methyl groups of the alkaloid ricinine. J. of Biol. Chem. 199, 307–312 (1952).Google Scholar
  113. Edlbacher, S., M. Becker u. A. V. Segesser: Die Einwirkung von Hefe auf Arginin und Histidin. Hoppe-Seylers Z. 255, 53–56 (1938).Google Scholar
  114. Ehrlich, F.: Über den biochemischen Abbau sekundärer und tertiärer Amine durch Hefen und Schimmelpilze. Biochem. Z. 75, 417–430 (1916).Google Scholar
  115. Ehrlich, F., u. P. Pistschimuka: Überführung von Aminen in Alkohole durch Hefe und Schimmelpilze. Ber. dtsch. chem. Ges. 45, 1006–1012 (1912).Google Scholar
  116. Ellfolk, N.: Studies on aspartase. II. On the chemical nature of aspartase. Acta chem. scand. (Copenh.) 7, 1155–1163 (1953).Google Scholar
  117. Studies on aspartase. III. On the specificity of aspartase. Acta chem. scand. (Copenh.) 8, 151–156 (1954).Google Scholar
  118. Elliott, D. F., and A. Neuberger: The irreversibility of the deamination of threonine in the rabbit and rat. Biochemie. J. 46, 207–210 (1950).Google Scholar
  119. Elliott, W. H.: Adenosinetriphosphate in glutamine synthesis. Nature (Lond.) 161, 128 (1948).Google Scholar
  120. Studies in the enzymic synthesis of glutamine. Biochemic. J. 49, 106–112 (1951).Google Scholar
  121. Isolation of glutamine synthetase and glutamotransferase from green peas. J. of Biol. Chem. 201, 661–672 (1953).Google Scholar
  122. Emerson, R. L., M. Puziss and S. G. Knight: The d-amino-acid oxidase of molds. Arch. of Biochem. 25, 299–308 (1950).Google Scholar
  123. Emmelin, N., and W. Feldberg: Distribution of acetylcholine and histamine in nettle plants. New Phytologist 48, 143–148 (1949).Google Scholar
  124. Erspamer, V., u. G. Falconieri: Papierchromatographische Untersuchungen über die Hydroxyphenylalkylamine der Gerstenkeimlinge. Naturwiss. 39, 431–432 (1952).Google Scholar
  125. Euler, H. v., E. Adler, G. Gunther u. N. B. Das: Über den enzymatischen Abbau und Aufbau der Glutaminsäure. II. In tierischen Geweben. Hoppe-Seylers Z. 254, 61–103 (1938).Google Scholar
  126. Euler, H. v., E. Adler, G. Gunther u. L. Elliott: Isocitronensäuredehydrase und Glutaminsäuresynthese in höheren Pflanzen und in Hefe. Enzymologia (Den Haag) 6, 337–341 (1939).Google Scholar
  127. Euler, H. v., E. Adler u. T. Steenhoff-Eriksen: Über die Komponenten der Dehydrasesysteme. XIV. Glutaminsäuredehydrase aus Hefe. Hoppe-Seylers Z. 248, 227–241 (1937).Google Scholar
  128. Feldman, L. I., and I. C. Gunsalus: The occurrence of a wide variety of transaminases in bacteria. J. of Biol. Chem. 187, 821–830 (1950).Google Scholar
  129. Fincham, J. R. S.: Mutant strains of Neurospora deficient in aminating ability. J. of Biol. Chem. 182, 61–73 (1949).Google Scholar
  130. Ornithine transaminase in Neurospoca and its relation to the biosynthesis of proline. Biochemic. J. 53, 313–320 (1953).Google Scholar
  131. Fischer, A., u. M. Behrens: Versuche zur Trennung von Indolderivaten aus wäßrigen Pflanzenextrakten an der aufsteigenden Cellulosesäule. Hoppe-Seylers Z. 291, 243–244 (1952).Google Scholar
  132. Fosse, R.: Origine et distribution de l’urée dans la nature. Ann. Chem., N. S. 6,198 (1916).Google Scholar
  133. Fowden, L.: The enzymic decarboxylation of γ-methelyneglutamic acid by plant extracts. J. of Exper. Bot. 5, 28–36 (1954).Google Scholar
  134. Fowden, L., and J. Done: A new transamination reaction. Nature (Lond.) 171, 1068–1069 (1953a).Google Scholar
  135. The enzymatic decarboxylation of γ-methylene glutamic acid. Biochemic. J. 53, XXXI–XXXII (1953b).Google Scholar
  136. The isolation of tyramine from a West African Criuum species. J. of Exper. Bot. 5, 305–312 (1954).Google Scholar
  137. Fries, N.: Growth factor requirements of some higher fungi. Sv. bot. Tidskr. 44, 380–386 (1950).Google Scholar
  138. Fromageot, C.: Desulfhydrases. In: The Enzymes, Vol. 1, Pt. 2, p. 1237–1243. 1951.Google Scholar
  139. Fürth, O. v., u. M. Friedmann: Über dié Verbreitung asparaginspaltender Organfermente. Bioehem. Z. 26, 435–440 (1910).Google Scholar
  140. Gale, E. F.: Factors influencing bacterial deamination. III. Aspartase. II. Its occurrence in and extraction from Bacterium coli and its activation by adenosine and related compounds. Biochemic. J. 32, 1583–1599 (1938).Google Scholar
  141. The bacterial amino-acid decarboxylases. Adv. Enzymol. 6, 1–32 (1946).Google Scholar
  142. Galston, A. W.: Indoleacetic-nicotinic acid interactions in the etiolated pea plants. Plant Physiol. 24, 577–586 (1949a).Google Scholar
  143. Riboflavin-sensitized photo-oxidation of indoleacetic acid and related compounds. Proc. Nat. Acad. Sci. U.S.A. 35, 10–17 (1949b).Google Scholar
  144. Geddes, W. F., and A. Hunter: Observations on the enzyme asparaginase. J. of Biol. Chem. 77, 197–229 (1928).Google Scholar
  145. Gendre, T., and E. Lederer: Sur la présence de l’acide α,ε-diamino-pimélique dans diverses souches de mycobacteries. Biochim. et Biophysica Acta 8, 49–55 (1952).Google Scholar
  146. Goldsworthy, P. D., T. Winnick and D. M. Greenberg: Distribution of C14 in glycine and serine of liver protein following the administration of labelled glycine. J. of Biol. Chem. 180, 341–343 (1949).Google Scholar
  147. Gordon, M., F. Haskins and H. K. Mitchell: The growth-promoting properties of quinic acid. Proc. Nat. Acad. Sci. U.S.A. 36, 427–430 (1950).Google Scholar
  148. Gordon, S. A.: Occurrence, formation and inactivation of auxins. Annual Rev. Plant Physiol. 5, 341–378 (1954).Google Scholar
  149. Gordon, S. A., and S. F. Nieva: The biosynthesis of auxin in the vegetative pineapple. II. The precursors of indoleacetic acid. Arch. of Biochem. 20, 367–385 (1949).Google Scholar
  150. Gordon, S. A., and R. P. Weber: The effect of X-radiation on indoleacetic acid and auxin levels in the plant. Amer. J. Bot. 37, 678 (1950).Google Scholar
  151. Goris et P. Costy: Uréase et urée chez les champignons. C. r. Acad. Sci. Paris 175, 539–541, 998–999 (1922).Google Scholar
  152. Gorr, G., u. J. Wagner: Ist die carboxylatische Spaltung der Brenztraubensäure in Acetaldehyd und Kohlensäure durch Leberbrei eindeutig erwiesen? Biochem. Z. 254, 5–7 (1932).Google Scholar
  153. Über das Amidspaltungsvermögen der Torula utilis, eine Untersuchung über die Abhängigkeit pflanzlicher Enzymausbildung von der Stickstoffernährung. Biochem. Z. 266, 96–101 (1933).Google Scholar
  154. Grassmann, W., u. O. Mayr: Zur Kenntnis der Hefeasparaginase. Hoppe-Seylers Z. 214, 185–210 (1933).Google Scholar
  155. Green, D. E., L. F. Leloir and V. Nocito: Transaminases. J. of Biol. Chem. 161, 559–582 (1945).Google Scholar
  156. Greenberg, D. M.: Carbon catabolism of amino-acids. In: Chemical Pathways of Metabolism, Vol. II, pp. 47–112. New York: Academic Press 1954.Google Scholar
  157. Greenhill, A. W., and A. C. Chibnall: Exudation of glutamine from perennial rye-grass. Biochemic. J. 28, 1422–1427 (1934).Google Scholar
  158. Greenstein, J. P., and V. E. Price: α-keto acid-activated glutaminase and asparaginase. J. of Biol. Chem. 178, 695–705 (1949).Google Scholar
  159. Grimmer, W., u. B. Wiemann: Beiträge zur Mikrochemie der Mikroorganismen. (Abstract.) Chem. Zbl. (1) 1921, 775.Google Scholar
  160. Grisolia, S., and P. P. Cohen: The catalytic role of carbamylglutamate in citrulline biosynthesis. J. of Biol. Chem. 198, 561–571 (1952).Google Scholar
  161. Catalytic role of glutamate derivatives in citrulline biosynthesis. J. of Biol. Chem. 204, 753–757 (1953).Google Scholar
  162. Grisolia, S., H. J. Grady and D. P. Wallach: Biosynthetic and structural relationship of compound X and carbamyl phosphate. Biochem. et Biophysica Acta 17, 277–278 (1955).Google Scholar
  163. Grobbelaar, N., and F. C. Steward: Pipecolic acid in Phaseolus vulgaris: evidence on its derivation from lysine. J. Amer. Chem. Soc. 75, 4341–4343 (1953).Google Scholar
  164. Grover, C. E., and A. C. Chibnall: The enzymic deamidation of asparagine in the higher plants. Biochemic. J. 21, 857–868 (1927).Google Scholar
  165. Guggenheim, M.: Die biogenen Amine. Basel: S. Karger 1951.Google Scholar
  166. Gustafson, E. G.: Tryptophan as an intermediate in the synthesis of nicotinic acid by green plants. Science (Lancaster, Pa.) 110, 279 (1949).Google Scholar
  167. Haas, F., M. B. Mitchell, B. N. Ames and H. K. Mitchell: A series of histidineless mutants of Neurospora crassa. Genetics 37, 217–226 (1952).PubMedGoogle Scholar
  168. Haddox, C. H.: The accumulation of α-phenylglycine by mutants of Neurospora crassa stimulated by phenylalanine and tyrosine. Proc. Nat. Acad. Sci. U.S.A. 38, 482–489 (1952).Google Scholar
  169. Haehn, H., u. H. Leopold: Aspartase action of yeast. Biochem. Z. 292, 380–387 (1937).Google Scholar
  170. Hall, D. A.: Histidine α-deaminase and the production of urocanic acid in the mammal. Biochemic. J. 51, 499–504 (1952).Google Scholar
  171. Happold, F. C.: Tryptophanase-tryptophan reaction. Adv. Enzymol. 10, 51–82 (1950).Google Scholar
  172. Harley-Mason, J.: Mechanism of tryptophane biogenesis and decomposition. Experientia (Basel) 10, 134 (1954).Google Scholar
  173. Hasse, K., u. H. W. Schumacher: Das Reaktionsprodukt der Decarboxylierung der l-Glutaminsäure mittels pflanzlicher Decarboxylase. Chem. Ber. 83, 68–71 (1950).Google Scholar
  174. Hayaishi, O., H. Tabor and T. Hayaishi: Enzymatic formation of formylaspartic acid from imidazolacetic acid. J. Amer. Chem. Soc. 76, 5570–5571 (1954).Google Scholar
  175. Hemberg, T.: Studies of auxins and growth-inhibiting substances in the potato tuber and their significance with regard to its rest period. Acta Horti berg. (Stockh.) 14, 133–220 (1947).Google Scholar
  176. Henderson, J. H. M., and J. Bonner: A comparison of auxin metabolism in crown-gall and callus tissue of sunflower. Amer. J. Bot. 36, 825 (1949).Google Scholar
  177. Auxin metabolism in normal and crowngall tissue of sunflower. Amer. J. Bot. 39, 444–451 (1952).Google Scholar
  178. Henry, T. A.: The Plant Alkaloids, 4. edit. London: Churchill 1949.Google Scholar
  179. Hevesy, G., K. Linderstrøm-Lang, A. S. Keston u. O. Carsten: Exchange of nitrogen atoms in the leaves of the sunflower. C. r. Trav. Labor. Carlsberg, Ser. Chim. 23, 213–218 (1940). Ref. Chem. Abstr. 35, 1835 (1941).Google Scholar
  180. Hills, G. M.: Ammonia production by pathogenic bacteria. Biochemic. J. 34, 1057–1069 (1940).Google Scholar
  181. Hirai, K.: Über die Bildung von p-Oxyphenylessigsäure und p-Oxyphenylacrylsäure aus l-Tyrosin durch Bakterien. Biochem. Z. 114, 71 (1921).Google Scholar
  182. Hiwatashi, D.: Yeast asparaginase. Tohoku J. Exper. Med. 42, 1–8 (1942). Ref. Chem. Abstr. 42, 5067 (1948).Google Scholar
  183. Hockenhull, D. J. D.: The sulphur metabolism of mould fungi: The use of “biochemical mutant” strains of Aspergillus nidans in elucidating the biosynthesis of cystine. Biochim. et Biophysica Acta 3, 326–335 (1949).Google Scholar
  184. Hoogerheide, J. C., and W. Kocholaty: Metabolism of the strict anaerobes. II. Reduction of amino-acids with gaseous hydrogen by suspensions of Cl. sporogenes. Biochemic. J. 32, 949 (1938).Google Scholar
  185. Horowitz, N. H.: The d-amino acid oxidase of Neurospoca. J. of Biol. Chem. 154, 141–149 (1944).Google Scholar
  186. The isolation and identification of natural precursors of choline. J. of Biol. Chem. 162, 413–419 (1946).Google Scholar
  187. Methionine synthesis in Neurospoca. Isolation of cystathione. J. of Biol. Chem. 171, 255–264 (1947).Google Scholar
  188. Biochemical genetics of Neurospora. Adv. Genet. 3, 33–71 (1950).Google Scholar
  189. Horowitz, N. H., and G. W. Beadle: A microbiological method for the determination of choline by use of a mutant of Neurospora. J. of Biol. Chem. 150, 325–333 (1943).Google Scholar
  190. Horowitz, N. H., and A. M. Srb: Growth inhibition of Neurospora by canavanine and its reversal. J. of Biol. Chem. 174, 371 (1948).Google Scholar
  191. Hughes, D. E.: Acceleration of bacterial decarboxylase and glutaminase by cetyltrimethylammonium bromide (cetavlon). Biochemic. J. 45, 325–331 (1949).Google Scholar
  192. Hughes, D. E., and D. H. Williamson: Some properties of the glutaminase of Clostridium welchii. Biochemic. J. 51, 45–55 (1952).Google Scholar
  193. Hulme, A. C., and W. Arthington: γ-aminobutyric acid and β-alanine in plant tissues. Amino acids of the apple fruit. Nature (Lond.) 165, 716 (1950).Google Scholar
  194. Hulme, A. C., and A. Richardson: The non-volatile organic acids of grass. J. Sci. Food a. Agricult. 5, 221–225 (1954).Google Scholar
  195. Hunter, A., and H. E. Woodward: The specificity or arginase: action upon argininic acid. Biochemic. J. 35, 1298–1306 (1941).Google Scholar
  196. Ishihara, T.: Fukuoka-Ikwadaigaku-Zasshi 24, 1213 (1932). Ref. Chem. Abstr. 26, 3539 (1932).Google Scholar
  197. Jacobsohn, K. P., et M. Soares: The hypothetical existence of the ammoniacase group of enzymes. C. r. Soc. Biol. Paris 125, 554–556 (1937).Google Scholar
  198. Jakoby, W. B.: Kynurenine from Neurospora. J. of Biol. Chem. 207, 657–663 (1954).Google Scholar
  199. James, W. O.: Biosynthesis of the belladonna alkaloids. Nature (Lond.) 158, 654–656 (1946).Google Scholar
  200. The amino-acid precursors of the belladonna alkaloids. New Phytologist 48, 172 (1949).Google Scholar
  201. James, W. O., E. A. H. Roberts, H. Beevers and P. C. De Kock: The secondary oxidation of amino acids by the catechol oxidase of belladonna. Biochemic. J. 43, 626–636 (1948).Google Scholar
  202. Jones, E. R., H. B. Henbest, G. F. Smith and J. A. Bentley: 3-indolylacetonitrile: a naturally occurring plant growth hormone. Nature (Lond.) 169, 485 (1952).Google Scholar
  203. Jones, J. D., B. S. W. Smith and W. C. Evans: Homogentisie acid an intermediate in the metabolism of tyrosine by the aromatic ring-splitting micro-organisms. Biochemic. J. 51, XI–XII (1952).Google Scholar
  204. Jones, M. E., L. Spector and F. Lipmann: Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. Chem. Soc. 77, 819–820 (1955).Google Scholar
  205. Jukes, J. H., A. C. Dornbush and J. J. Oleson: Some observations on nutritional effects of choline and related compounds. Federat. Proc. 4, 157 (1945).Google Scholar
  206. Kaerney, E., and T. P. Singer: Enzymie transformations of l-cysteinesulfinic acid. Biochim. et Biophysica Acta 11, 276–289 (1953).Google Scholar
  207. Kenten, R. H., and P. J. G. Mann: The oxidation of amines by extracts of pea seedlings. Biochemic. J. 50, 360–369 (1952).Google Scholar
  208. Kiesel, A.: Über den fermentativen Abbau des Arginins in Pflanzen. Hoppe-Seylers Z. 75, 169–196 (1911).Google Scholar
  209. Über den fermentativen Abbau des Arginins in Pflanzen. Hoppe-Seylers Z. 118, 267–276 (1922).Google Scholar
  210. Kirkwood, S., and L. Marion: The biogenesis of alkaloids. I. The isolation of N-methyltyramine from barley. J. Amer. Chem. Soc. 72, 2522–2524 (1950).Google Scholar
  211. Kisliuk, R. L., and W. Sakami: A study of the mechanism of serine biosynthesis. J. of Biol. Chem. 214, 47–57 (1955).Google Scholar
  212. Knight, S. G.: The l-amino acid oxidase of moulds. J. Bacter. 55, 401–407 (1948).Google Scholar
  213. Knoop, F.: Über den physiologischen Abbau der Säuren und die Synthese einer Aminosäure im Tierkörper. Hoppe-Seylers Z. 67, 489–502 (1910).Google Scholar
  214. Knox, W. E., and M. le May Knox: The oxidation in liver of l-tyrosme to acetoacetate through p-hydroxyphenylpyruvate and homogentisie acid. Biochemic. J. 49, 686–693 (1951).Google Scholar
  215. Knox, W. E., and A. H. Mehler: The conversion of tryptophane to kynurenine in the liver. I. The coupled tryptophane peroxidase-oxidase system forming formylkynurenine. J. of Biol. Chem. 187, 419 (1950).Google Scholar
  216. Kossel, A., u. H. D. Dakin: Über die Argmase. Hoppe-Seylers Z. 41, 321–331 (1904).Google Scholar
  217. Weitere Untersuchungen über fermentative Harnstoffbildung. Hoppe-Seylers Z. 42, 181–188 (1905).Google Scholar
  218. Krebs, H. A.: The metabolism of amino acids in the animal body. Klin. Wschr. 11, 1744–1748 (1932).Google Scholar
  219. Untersuchungen über den Stoffwechsel der Aminosäuren im Tierkörper. Hoppe-Seylers Z. 217, 191–227 (1933).Google Scholar
  220. Quantitative determination of glutamine and glutamic acid. Biochemie. J. 43, 51–57 (1948).Google Scholar
  221. Oxidation of amino-acids. In: The Enzymes, edit. J. B. Sumner and K. Myrbäck, Vol. II, Pt. 1, p. 499–535. New York 1951.Google Scholar
  222. Krebs, H. A., L. V. Eggleston and V. A. Knivett: Arsenolysis and phosphorolysis of citrulline in mammalian liver. Biochemic. J. 59, 185–193 (1955).Google Scholar
  223. Krebs, H. A., u. K. Henseleit: Untersuchungen über die Harnstoffbildung im Tierkörper. Hoppe-Seylers Z. 210, 33–66 (1932).Google Scholar
  224. Krehl, W. A.: Niacin in amino acid metabolism. Vitamins a. Hormones 7, III (1949).Google Scholar
  225. Kritzman, M. G.: Das Ferment der Glutaminsäureumaminierung. V. Bildung und Zerfall von Aminosäuren durch intermolekulare Umlagerung von Aminogruppen. Biochimija 3, 603–615 (1938).Google Scholar
  226. The enzyme system transferring the amino group of aspartic acid. Nature (Lond.) 143, 603–604 (1939).Google Scholar
  227. Kritzman, M. G., i O. P. Samarina: Aspartico-alanine aminopherase. Dokl. Akad. Nauk SSSR. 63, 171–173 (1948). Ref, Chem. Abstr. 43, 2252 (1949).Google Scholar
  228. Kulescha, Z.: Recherches sur la transformation du tryptophane sous l’action des tissues de Topinambour. C. r. Acad. Sci. Paris 228, 1304 (1949).PubMedGoogle Scholar
  229. Kulescha, Z., et R. J. Gautheret: Recherches sur l’action de la cynurenine sur les tissues de topinambour culturés in vitro. G. r. Soc. Biol. Paris 145, 245 (1951).Google Scholar
  230. Kurona, K.: Über die Bedeutung des Oryzanins für die Ernährung der Gärungsorganismen. J. Coll. Agricult. Univ. Tokyo 5, 305 (1915).Google Scholar
  231. La Du jr., B., and D. M. Greenberg: The tyrosine oxidation system of liver. I. Extracts of rat liver acetone powder. J. of Biol. Chem. 190, 245é255 (1951).Google Scholar
  232. Ascorbic acid and the oxidation of tyrosine. Science (Lancaster, Pa.) 117, 111é112 (1953).Google Scholar
  233. Lampen, J. O., R. R. Roepke and M. J. Jones: Studies in the sulphur metabolism of Escherichia coli. III. Mutant strains of Escherichia coli unable to utilise sulphate for their complete sulphur requirements. Arch. of Biochem. 13, 55–66 (1947).Google Scholar
  234. Larsen, P.: 3-indole acetaldehyde as a growth hormone in higher plants. Dansk bot. Ark. 11, 1–132 (1944).Google Scholar
  235. Conversion of indole acetaldehyde to indoleacetic acid in excised coleoptile and in coleoptile juice. Amer. J. Bot. 36, 32–41 (1949).Google Scholar
  236. Formation, occurrence and inactivation of growth substances. Annual Rev. Plant Physiol. 2, 169–198 (1951).Google Scholar
  237. Larsen, P., and E. K. Bonde: Auxins and auxin precursors in plants. Nature (Lond.) 171, 180 (1953).Google Scholar
  238. Leete, E., and L. Marion: The biogenesis of alkaloids. VII. The formation of hordenine and N-methyltyramine from tyrosine in barley. Canad. J. Chem. 31, 126–133 (1953).Google Scholar
  239. Leonard, M. J. K., and R. H. Burris: A survey of transaminases in plants. J. of Biol. Chem. 170, 701–709 (1947).Google Scholar
  240. Lexander, K.: Growth-regulating substances in roots of wheat. Physiol. Plantarum (Copenh.) 6, 406–411 (1953).Google Scholar
  241. Lichstein, H. C., and J. F. Christman: The role of biotin and adenylic acid in amino deaminases. J. of Biol. Chem. 175, 649–662 (1948).Google Scholar
  242. The nature of the coenzyme of aspartic acid, serine and threonine deaminases. J. Bacter. 58, 565–572 (1949).Google Scholar
  243. Lichstein, H. C., and P. P. Cohen: Transamination in bacteria. J. of Biol. Chem. 157, 85–91 (1945).Google Scholar
  244. Lichstein, H. C., and W. W. Umbreit: Biotin activation of certain deaminases. J. of Biol. Chem. 170, 423–424 (1947).Google Scholar
  245. Lien, J., H. K. Mitchell and M. B. Houlahan: A method for selection of biochemical mutants of Neurospora. Proc. Nat. Acad. Sci. U.S.A. 34, 435–442 (1948).Google Scholar
  246. Lien Jr., O. G., and D. M. Greenberg: Chromatographic studies on the interconversion of amino acids. J. of Biol. Chem. 195, 637–644 (1952).Google Scholar
  247. Magasanik, B., and H. R. Bowser: The degradation of histidine by Aerobacter aerogenes. J. of Biol. Chem. 213, 571–580 (1955).Google Scholar
  248. Marsh, P. B., and D. R. Goddard: Respiration and fermentation in the carrot, Daucus carota. I. Respiration. Amer. J. Bot. 26, 724–728 (1939).Google Scholar
  249. Marshall, R. O., L. M. Hall and P. P. Cohen: On the nature of the carbamyl donor in citrulline biosynthesis. Biochem. et Biophysica Acta 17, 279–281 (1955).Google Scholar
  250. Matchett, T. J., L. Marion and S. Kirkwood: The biogenesis of alkaloids. VIII. The role of methionine in the formation of the N-methyl groups of the alkaloid hordenine. Canad. J. Chem. 31, 488–492 (1953).Google Scholar
  251. Mateer, J. G., and E. K. Marshall jr.: The urease content of certain beans, with special reference to the jack bean. J. of Biol. Chem. 25, 297–305 (1916).Google Scholar
  252. Mc Ilwain, H.: Synthesis and breakdown of glutamine by various micro-organisms. J. Gen. Microbiol. 2, 186–196 (1948).Google Scholar
  253. Mc Meekin, T. L.: A study of the preparation and of the conditions for hydrolytic activity of asparaginase. J. of Biol. Chem. 123, LXXXII (1938).Google Scholar
  254. Mehler, A. H., and W. E. Knox: The conversion of tryptophane to kynurenine in the liver. II. The enzymatic hydrolysis of formylkynurenine. J. of Biol. Chem. 187, 431 (1950).Google Scholar
  255. Mehler, A. H., and H. Tabor: Deamination of histidine to form urocanic acid in liver. J. of Biol. Chem. 201, 775–784 (1953).Google Scholar
  256. Meister, A.: Utilization and transamination of the stereoisomers and keto analogues of isoleucine. J. of Biol. Chem. 195, 813–826 (1952).Google Scholar
  257. Preparation and enzymatic reactions of the keto analogues of asparagine and glutamine. J. of Biol. Chem. 200, 571–589 (1953).Google Scholar
  258. The α-keto analogues of arginine, ornithine and lysine. J. of Biol. Chem. 206, 577–585 (1954).Google Scholar
  259. Enzymatic transamination reactions involving arginine and ornithine. J. of Biol. Chem. 206, 587–596 (1954).Google Scholar
  260. Studies on the mechanism and specificity of the glutamine-α-keto acid transamination-deamidation reaction. J. of Biol. Chem. 210, 17–35 (1954b).Google Scholar
  261. Meister, A., P. E. Fraser and S. V. Tice: Enzymatic desulfuration of β-mercaptopyruvate to pyruvate. J. of Biol. Chem. 206, 561–575 (1954).Google Scholar
  262. Meister, A., H. A. Sober, S. V. Tige and P. E. Fraser: Transamination and associated deamidation of asparagine and glutamine. J. of Biol. Chem. 197, 319–330 (1952).Google Scholar
  263. Meister, A., and S. V. Tice: Transamination from glutamine to α-keto acids. J. of Biol. Chem. 187, 173–187 (1950).Google Scholar
  264. Metzler, D. E., and E. E. Snell: Daemination of serine. I. Catalytic deamination of serine and cysteine by pyridoxal and metal salts. J. of Biol. Chem. 198, 353–361 (1952).Google Scholar
  265. Deamination of serine. II. d-serine dehydrase, a vitamin B6 enzyme from Escherichia coli. J. of Biol. Chem. 198, 363–373 (1952).Google Scholar
  266. Miller, A., and H. Waelsch: α-l-formamidinoglutaric acid an intermediate in histidine metabolism. J. Amer. Chem. Soc. 76, 6195–6196 (1954).Google Scholar
  267. Mitchell, H. K., and M. B. Houlahan: An intermediate in the biosynthesis of lysine by Neurospora. J. of Biol. Chem. 174, 883–887 (1948).Google Scholar
  268. Mitchell, H. K., and J. P. Nyc: Hydroxyanthranilic acid as a precursor of nicotinic acid in Neurospora. Proc. Nat. Acad. Sci. U.S.A. 34, 1 (1948).Google Scholar
  269. Mitchell, K. M.: Vitamins and metabolism in Neurospora. Vitamins a. Hormones 8, 127 (1950).Google Scholar
  270. Mitoma, C., and L. C. Leeper: Enzymatic conversion of phenylalanine to tyrosine. Federat. Proc. 13, 266 (1954).Google Scholar
  271. Miwa, T., and S. Yoshii: The formation of urease by Aspergillus niger. Sci. Rep. Tokyo Bunrika Daigaku B 1, 243–270 (1934).Google Scholar
  272. Morrison, R. I.: The isolation of l-pipecolinic acid from Trifolium repens. Biochemic. J. 53, 474–478 (1953).Google Scholar
  273. Mothes, K.: Die Vakuuminfiltration im Ernährungsversuch. (Dargestellt an Untersuchungen über die Assimilation des Ammoniaks.) Planta (Berl.) 19, 117–138 (1933).Google Scholar
  274. Über den Schwefelstoffwechsel der Pflanzen. II. Planta (Berl.) 29, 67–109 (1938).Google Scholar
  275. Myer, J. W., and E. A. Adelberg: Proc. Nat. Acad. Sei. U.S.A. 1955.Google Scholar
  276. Neubauer, O.: Über den Abbau der Aminosäuren im gesunden und kranken Organismus. Dtsch. Arch. klin. Med. 95, 211–256 (1909).Google Scholar
  277. Nitsch, J. P.: Plant hormones in the development of fruits. Quart. Rev. Biol. 27, 33–57 (1952).PubMedGoogle Scholar
  278. Nitsch, J. P., and R. H. Wetmore: The microdetermination of “free” l-tryptophan in the seedling of Lupinus albus. Science (Lancaster, Pa.) 116, 256–257 (1952).Google Scholar
  279. Nord, F. F.: Biochemische Bildung von Ammoäthylalkohol aus Serin. Biochem. Z. 95, 281–285 (1919).Google Scholar
  280. Oginsky, E. H., and R. F. Gehrig: The arginine dehydrolase system of Streptococcus faecalis. I. Identification of citrulline as an intermediate. J. of Biol. Chem. 198, 791–797 (1952).Google Scholar
  281. Okunuki, K.: Über ein neues Enzym Glutaminocarboxylase. Bot. Mag. (Tokyo) 51, 270–278 (1937).Google Scholar
  282. Über den Gaswechsel der Pollen. III. Weitere Untersuchungen über die Dehydrasen aus den Pollenkömern. Acta phytochim. (Tokyo) 11, 65–80 (1939).Google Scholar
  283. Ostenberg, Z.: Further studies in the occurrence of p-hydroxyphenylethylamine in mistletoes. Proc. Soc. Exper. Biol. a. Med. 12, 174–175 (1915).Google Scholar
  284. Otey, M. C., S. M. Birnbaum and J. P. Greenstein: Solubilized kidney glutaminase. I. Arch. of Biochem. a. Biophysics 49, 245–247 (1954).Google Scholar
  285. Oyamada, Y.: Der enzymatische Abbau des Histidins. J. of Biochem. (Tokyo) 36, 227–242 (1944).Google Scholar
  286. Partridge, C. W. H., D. Bonner and C. Yanofsky: A quantitative study of the relationship between tryptophan and niacin in Neurospora. J. of Biol. Chem. 194, 269 (1952).Google Scholar
  287. Phinney, B. O.: Cysteine mutants in Neurospora. Genetics 33, 624 (1948).PubMedGoogle Scholar
  288. Pimper, S.: Methionine-requiring mutants of Saccharomyces cerevisiae. J. Bacter. 65, 666–670 (1953).Google Scholar
  289. Pontecorvo, G.: Biochemical genetics of Aspergillus nidulans. Heredity (Lond.) 4, 270 (1950).Google Scholar
  290. Proom, H., and A. J. Woiwod: The distribution of glutamic acid decarboxylase in the family Enterobacteriaceae, examined by a simple chromatographic method. J. Gen. Microbiol. 5, 681–686 (1951).PubMedGoogle Scholar
  291. Quastel, J. H., and B. Woolf: The equilibrium between l-aspartie acid, fumarie acid and ammonia in presence of resting bacteria. Biochemic. J. 20, 545–555 (1926).Google Scholar
  292. Raistrick, H.: On a new type of chemical change produced by bacteria. The conversion of histidine into urocanic acid by bacteria of the coli-typhosus group. Biochemic. J. 11. 71 (1917).Google Scholar
  293. Ratner, S., V. Nocito and D. E. Green: Glycine oxidase. J. of Biol. Chem. 152, 119–133 (1944).Google Scholar
  294. Ratner, S., and B. Petrack: The mechanism of arginine synthesis from citrulline in kidney. J. of Biol. Chem. 200, 175–185 (1953).Google Scholar
  295. Biosynthesis of urea. IV. Further studies on condensation in arginine synthesis from citrulline. J. of Biol. Chem. 200, 161–174 (1953).Google Scholar
  296. Rautanen, N.: On the synthesis of the first amino acids in green plants. Ann. Acad. Sci. fenn., Ser. A, II, Chem. 1948, Nr 33.Google Scholar
  297. Ravdin, R. G., and D. I. Crandall: The enzymatic conversion of homogentisie acid to 4-fumarylaeetoaeetic acid. J. of Biol. Chem. 189, 137–149 (1951).Google Scholar
  298. Reed, L. J.: The occurrence of γ-aminobutyric acid in yeast extract; its isolation and identification. J. of Biol. Chem. 183, 451–458 (1950).Google Scholar
  299. Reichard, P., L. H. Smith and G. Hanshoff: Enzymic synthesis of ureidosuceinie acid from citrulline via compound X and carbamyl phosphate. Acta chem. scand. (Copenh.) 9, 1010–1012 (1955).Google Scholar
  300. Reissig, J. L.: Pyridoxal phosphate as a co-factor for serine and threonine deaminase of Neurospora. Arch. of Biochem. a. Biophysics 36, 234–235 (1952).Google Scholar
  301. Richards, F. J., and E. Berner Jr.: Physiological studies in plant nutrition. XVII. A general survey of the free amino-acids of barley leaves as affected by mineral nutrition with special reference to potassium supply. Ann. of Bot. 18, 15–33 (1954).Google Scholar
  302. Richards, F. J., and R. G. Coleman: Occurrence of putrescine in potassium-deficient barley. Nature (Lond.) 170, 460 (1952).Google Scholar
  303. Richardson, A., and A. C. Hulme: Shikimic acid in grass. Nature (Lond.) 175, 43 (1955).Google Scholar
  304. Roberts, E. H., u. H. E. Street: The continuous culture of excised rye roots. Physiol. Plantarum (Copenh.) 8, 238–262 (1955).Google Scholar
  305. Robinson, E., and R. Brown: The development of the enzyme complement in growing root cells. J. of Exper. Bot. 3, 356–374 (1952).Google Scholar
  306. Roine, P.: On the formation of primary amino acids in the protein synthesis in yeast. Ann. Acad. Sci. fenn., Ser. A, II, Chem. 1917, Nr 26.Google Scholar
  307. Rosenberg, A. J., and B. Nisman: Sur l’action l-aminoacide oxydasigne de Cl. sporogenes et de Cl. saccharobutyricum en presence d’oxygene. Biochim. et Biophysica Acta 3, 348–357 (1949).Google Scholar
  308. Rothstein, M., and L. L. Miller: Loss of the α-amino group in lysine metabolism to form pipecolic acid. J. Amer. Chem. Soc. 76, 1459 (1954).Google Scholar
  309. Rudman, D., and A. Meister: Transamination in Escherichia coli. J. of Biol. Chem. 200, 591–604 (1953).Google Scholar
  310. Salamon, I. I., and B. D. Davis: Aromatic biosynthesis. IX. The isolation of a precursor of shikimic acid. J. Amer. Chem. Soc. 75, 5567–5571 (1953).Google Scholar
  311. Schales, O.: Amino acid decarboxylases. In: The Enzymes, Vol. 2, Pt. 1, pp. 216–247. New York: Academic Press 1951.Google Scholar
  312. Schales, O., V. Mims and S. S. Schales: Glutamic acid decarboxylase of higher plants. I. Distribution, preparation of clear solutions, nature of prosthetic group. Arch. of Biochem. 10, 455–465 (1946).Google Scholar
  313. Schales, O., and S. S. Schales: Glutamic acid decarboxylase of higher plants. II. ph-activity curve, reaction kinetics, inhibition by hydroxylamine. Arch. of Biochem. 11, 155–166 (1946).Google Scholar
  314. Schepartz, B.: Transamination as a step in tyrosine metabolism. J. of Biol. Chem. 193, 293–298 (1951).Google Scholar
  315. Schmalfuss, H., u. H. Bumbacher: Darkening of potatoes. Propagation and preparation of nondarkening potatoes. IX. A pro-pigment of the potato. Biochem. Z. 315, 97–103 (1943).Google Scholar
  316. Schmalfuss, K., u. K. Mothes: Über die fermentative Desamidierung durch Aspergillus niger. Biochem. Z. 221, 134–153 (1930).Google Scholar
  317. Schmidt, G. C., M. A. Logan and A. A. Tytell: The degradation of arginine by Clostridium perfringens (BP 6 K). J. of Biol. Chem. 198, 771–783 (1952).Google Scholar
  318. Schoenheimer, R.: The dynamic state of body constituents. Cambridge, Mass.: Harvard Univ. Press 1942.Google Scholar
  319. Schwab, G.: Studien über Verbreitung und Bildung der Säureamide in der höheren Pflanze. Planta (Berl.) 25, 579–606 (1936).Google Scholar
  320. Schweet, R. S., J. T. Holden and P. H. Lowy: Lysine metabolism in Neurospora. Federat. Proc. 13, 293 (1954).Google Scholar
  321. Schweigert, B. S.: The role of vitamin B6 in the synthesis of tryptophane from indole and anthranilic acid by Lactobacillus arabinosus. J. of Biol. Chem. 168, 283 (1947).Google Scholar
  322. Shambaugh, N. F., H. B. Lewis and D. Tourtellote: Comparative studies in the metabolism of amino acids. IV. Phenylalanine and tyrosine. J. of Biol. Chem. 92, 499–511 (1931).Google Scholar
  323. Shemin, D.: The biological conversion of l-serine to glycine. J. of Biol. Chem. 162, 297–307 (1946).Google Scholar
  324. Shibata, K.: Über das Vorkommen von Amide spaltenden Enzymen bei Pilzen. Beitr. chem. Physiol. u. Path. 5, 384–394 (1903).Google Scholar
  325. Singer, T. P., and E. S. G. Barron: Studies on biological oxidations. XIX. Sulfhydryl enzymes in carbohydrate metabolism. J. of Biol. Chem. 157, 221–240 (1945).Google Scholar
  326. Skinner, J. S., and H. E. Street: Studies in the growth of excised roots. II. Observations on the growth of excised groundsel roots. New Phytologist 53, 44–67 (1954).Google Scholar
  327. Skoog, F.: The effect of X-irradiation on auxin and plant growth. J. Cellul. a. Comp. Physiol. 7, 227–270 (1935).Google Scholar
  328. A deseeded Avena test method for small amounts of auxin and auxin precursors. J. Gen. Physiol. 20, 311–334 (1937).Google Scholar
  329. Snell, E. E.: Growth promotion in tryptophane-deficient media of o-aminobenzoic acid and its attempted reversal with orthanilamide. Arch. of Biochem. 2, 389–394 (1943).Google Scholar
  330. Sourkes, T. L.: Transmethylases. In: The Enzymes, edit. J. B. Sumner and K. Myrbäck, Vol. 1, Pt. 2, pp. 1068–1078. New York 1951.Google Scholar
  331. Speck, J. F.: The enzymic synthesis of glutamine. J. of Biol. Chem. 168, 403–404 (1947).Google Scholar
  332. The enzymatic synthesis of glutamine, a reaction utilising adenosine triphosphate. J. of Biol. Chem. 179, 1405–1426 (1949).Google Scholar
  333. Srb, A. M.: Ornithinearginine metabolism in Neurospora and its genetic control. Thesis, Stanford University 1946.Google Scholar
  334. Srb, A. M., J. R. S. Fincham and D. Bonner: Evidence from gene mutations in Neurospora for close metabolic relationships among ornithine, proline and α-amino-δ-hydroxyvaleric acid. Amer. J. Bot. 37, 533 (1950).Google Scholar
  335. Srb, A. M., and N. H. Horowitz: The ornithine cycle in Neurospora and its genetic control. J. of Biol. Chem. 154, 129–139 (1944).Google Scholar
  336. Sreerangachar, H. B.: The nature of the tea-oxidase system. Biochemic. J. 37, 661–667 (1943).Google Scholar
  337. Steensholt, G.: On methylation processes in etiolated wheat germs. Acta physiol. scand. (Stockh.) 11, 136–140 (1946).Google Scholar
  338. Stehsel, M. L., and S. G. Wildman: Interrelations between tryptophane, auxin and nicotinic acid during development of the com kernel. Amer. J. Bot. 37, 682–683 (1950).Google Scholar
  339. Stephenson, M.: Bacterial metabolism, 3rd edit. London: Longmans, Green & Co. 1949.Google Scholar
  340. Stetten, D.: The fate of dietary serine in the body of the rat. J. of Biol. Chem. 144, 501–506 (1942).Google Scholar
  341. Steward, F. C., and H. E. Street: The nitrogenous constituents of plants. Annual Rev. Biochem. 16, 471–502 (1947).Google Scholar
  342. Steward, F. C., and J. F. Thompson: Proteins and protein metabolism in plants in The Proteins, edit. H. Neurath and K. Barley, Vol. IIA, pp. 513-594. Academic Press 1954.Google Scholar
  343. Steward, F. C., J. F. Thompson and C. E. Dent: Aminobutyric acid: A constituent of the potato tuber? Seienee (Lancaster, Pa.) 110, 439–440 (1949).Google Scholar
  344. Stickland, L. H.: Studies in the metabolism of the strict anaerobes (Genus Clostridium). I. The chemical reactions by which Cl. sporogenes obtains its energy. Biochemic. J. 28, 1746–1759 (1934).Google Scholar
  345. Studies in the metabolism of the strict anaerobes (Genus Clostridium). II. The reduction of proline. Biochemic. J. 29, 288–290 (1935).Google Scholar
  346. Studies in the metabolism of the strict anaerobes (Genus Clostridium). III. The oxidation of alanine by Cl. sporogenes. Biochemic. J. 29, 889–896 (1935).Google Scholar
  347. Studies in the metabolism of the strict anaerobes (Genus Clostridium). IV. The reduction of glycine by Cl. sporogenes. Biochemic. J. 29, 896–898 (1935).Google Scholar
  348. Stowe, B. B., and K. V. Thimann: Indolepyruvic acid in maize. Nature (Lond.) 172, 764 (1953).Google Scholar
  349. Street, H. E.: Nitrogen metabolism of higher plants. Adv. Enzymol. 9, 391–454 (1949).Google Scholar
  350. Stumpf, P. K., and D. E. Green: l-amino acid oxidase of Proteus vulgaris. J. of Biol. Chem. 153, 387–399 (1944).Google Scholar
  351. On the mode of action of chlorinating compounds. Federat. Proc. 5, 157–158 (1946).Google Scholar
  352. Suda, M., and T. Takeda: Metabolism of tyrosine. I. Application of successive adaptation of bacteria for the analysis of the enzymatic breakdown of tyrosine. J. of Biochem. (Tokyo) 37, 375–378 (1950).Google Scholar
  353. Metabolism of tyrosine. II. Homogentisicase. J. of Biochem. (Tokyo) 37, 381–384 (1950).Google Scholar
  354. Sumner, J. B.: The isolation and crystallization of the enzyme urease. J. of Biol. Chem. 69, 435–441 (1926).Google Scholar
  355. Synge, R. L. M.: Methods of isolating ω-amino acids: γ-aminobutyric acid from rye grass. Biochemic, J. 48, 429–435 (1951).Google Scholar
  356. Tabor, H., and O. Hayaishi: The enzymatic conversion of histidine to glutamic acid. J. of Biol. Chem. 194, 171–172 (1952).Google Scholar
  357. Tabor, H., A, H. Mehler, D, Hayaishi and J. White: Urocanic acid as an intermediate in the enzymatic conversion of histidine to glutamic and formic acids, J. of Biol. Chem. 196, 121–128 (1952).Google Scholar
  358. Takeuchi, M.: Über den Abbau des Histidins. J. of Biochem. (Tokyo) 34, 1–21 (1941).Google Scholar
  359. Tatum, E, L.: Amino acid metabolism in mutant strains of mirco-organisms, Federat, Proc, 8, 511–517 (1949).Google Scholar
  360. Tatum, E, L., and D. Bonner: Indole and serine in the biosynthesis and breakdown of tryptophane. Proc. Nat. Acad. Sci. U.S.A. 30, 30–37 (1944).Google Scholar
  361. Tatum, E, L., D, Bonner and G.W. Beadle: Anthranilic acid and the biosynthesis of indole and tryptophan by Neurospora. Arch. of Biochem. 3, 477–478 (1943).Google Scholar
  362. Teas, H, J.: The biochemistry and genetics of threonine-requiring mutants of Neurospora crassa. Thesis, Calif. Inst. of Tech. 1947. Via Horowitz 1950,Google Scholar
  363. The genetics of threonine-requiring mutants of Neurospora crassa. Genetics 33, 632 (1948).Google Scholar
  364. Teas, H. J., J. W. Cameron and A. C. Newton: Tryptophan, niacin, indoleacetic acid, and carbohydrates in developing sugary and starchy maize kernels. Agronomy J. 44, 434–438 (1952).Google Scholar
  365. Teas, H, J., N, H. Horowitz and M. Fling: Homoserine as a precursor of threonine and methionine in Neurospora. J. of Biol. Chem. 172, 651–658 (1948).Google Scholar
  366. Teas, H. J., and A. C. Newton: Tryptophan, niacin, and indoleacetic acid in several endosperm mutants and standard lines of maize. Plant Physiol. 26, 494–501 (1951).PubMedGoogle Scholar
  367. Thayer, P, S., and N. H. Horowitz: The l-ammo acid oxidase of Neurospora. J. of Biol. Chem. 192, 755–767 (1951).Google Scholar
  368. Thimann, K. V.: On the plant growth hormone produced by Bhizopus suinus. J. of Biol. Chem. 109, 279 (1935).Google Scholar
  369. Hydrolysis of indoleacetonitrile in plants. Arch. of Biochem. a. Biophysics 44, 242–243 (1953).Google Scholar
  370. Thompson, J. F., J. K. Pollard and F. C. Steward: Investigations of nitrogen compounds and nitrogen metabolism in plants. III. γ-aminobutyric acid in plants, with special reference to the potato-tuber and a new procedure for isolating amino acids other than α-amino acid. Plant Physiol. 28, 401–414 (1953).PubMedGoogle Scholar
  371. Thompson, J. F., and F. C. Steward: The analysis of the alcohol-insoluble nitrogen of plants by quantitative procedures based on paper chromatography. J. of Exper. Bot. 3, 170–187 (1952).Google Scholar
  372. Tolbert, N. E., C. O. Glagett and R. H. Burris: Products of the oxidation of glycolic acid and l-lactic acid by enzymes from tobacco leaves. J. of Biol. Chem. 181, 905–914 (1949).Google Scholar
  373. Tsui, C.: The role of zinc in auxin synthesis in the tomato plant. Amer, J. Bot, 35, 172–179 (1948).Google Scholar
  374. Udenfriend, S., and J. R. Cooper: The enzymatic conversion of phenylalanine to tyrosine. J. of Biol. Chem. 194, 503–511 (1952).Google Scholar
  375. Ullmann, A.: Über Tyramin (p-Oxyphenyläthylamin) als wirksamen Bestandteil der Droge Semina cardui Mariae (Steehdistelkörner). Biochem. Z. 128, 402–406 (1922).Google Scholar
  376. Umbarger, H. E., and E. A. Adelberg: The role of α-keto-β-ethylbutyric acid in the biosynthesis of isoleucine. J. of Biol. Chem. 192, 883–889 (1951).Google Scholar
  377. Umbarger, H. E., and B. Magasanik: Isoleucine and valine metabolism of Escherichia coli. II. The accumulation of keto-acids. J. of Biol. Chem. 189, 287–292 (1951).Google Scholar
  378. Umbreit, W. W., W. A. Wood and I. C. Gunsalus: The activity of pyridoxal phosphate in tryptophane formation by cell-free enzyme preparations. J. of Biol. Chem. 165, 731–732 (1946).Google Scholar
  379. Utzino, S., u. M. Imaizumi: Über die Bakterienasparaginase. Hoppe-Seylers Z. 253, 51–54 (1938).Google Scholar
  380. Vaidyanathan, C. S., and K. V. Giri: Studies in plant arginase. I. Arginase from field bean (Dolichos lablab). General properties and the effect of metallic ions. Enzymologia (Den Haag) 16, 167–168 (1953).Google Scholar
  381. Vickery, H. B., G. W. Pucher, R. Schoenheimer and D. Rittenberg: The metabolism of nitrogen in the leaves of the buckwheat plant. J. of Biol. Chem. 129, 791–792 (1939).Google Scholar
  382. Virtanen, A. I., A. Berg u. S. Kari: Formation of homoserine in germinating pea seeds. Acta chem. scand. (Copenh.) 7, 1423–1424 (1953).Google Scholar
  383. Virtanen, A. I., and J. Erkama: Enzymic deamination of aspartic acid. Nature (Lond.) 142, 954 (1938).Google Scholar
  384. Virtanen, A. I., and T. Laine: Specificity of the enzyme aspartase. Suomen Kemistil., Ser. B 9, 28 (1936).Google Scholar
  385. The decarboxylation of d-lysine and l-aspartic acid. Enzymologia (Den Haag) 3, 266 (1937).Google Scholar
  386. Root nodule bacteria of leguminous plants. XXII. Excretion products of root nodules. Mechanism of fixation. Biochemic. J. 33, 412–427 (1939).Google Scholar
  387. Über die Umaminierung in grünen Pflanzen. Biochem. Z. 308, 213–215 (1941).Google Scholar
  388. Virtanen, A. I., and P. Linko: The occurrence of free ornithine and its N-acetyl derivative in plants. Acta chem. scand. (Copenh.) 9, 531–532 (1955).Google Scholar
  389. Virtanen, A. I., u. J. Tarnanen: Die enzymatische Spaltung und Synthese der Asparaginsäure. Biochem. Z. 250, 193–211 (1932).Google Scholar
  390. Suomen Kemistil., Ser. B 5, 30 (1932).Google Scholar
  391. Vogel, H. J., and D. M. Bonner: On the glutamate-proline-ornithine interrelationship in Neurospora crassa. Proc. Nat. Acad. Sei. U.S.A. 40, 688–694 (1954).Google Scholar
  392. Vogel, H. J., and B. D. Davis: Glutamic γ-semialdehyde and Δ′-pyrroline-5-carboxylic acid intermediates in the biosynthesis of proline. J. Amer. Chem. Soc. 74, 109–112 (1952).Google Scholar
  393. Volcani, B. E., and E. E. Snell: The effects of canavanine, arginine and related compounds in the growth of bacteria. J. of Biol. Chem. 174, 893–902 (1948).Google Scholar
  394. Wachsman, J. T., and H. A. Barker: The accumulation of formamide during the fermentation of histidine by Chstridium tetanomorphum. J. of Bacter. 69, 83–88 (1955).Google Scholar
  395. Walker, A. C., and C. L. A. Schmidt: Studies on histidase. Arch. of Biochem. 5, 445–467 (1944).Google Scholar
  396. Walker, J. B.: Arginosuccinic acid from Chlorella. Proc. Nat. Acad. Sci. U.S.A. 38, 561–566 (1952).Google Scholar
  397. Watanabe, Y., and K. Shimura: Biosynthesis of threonine from homoserine. J. of Biochem. (Tokyo) 42, 181–192 (1955).Google Scholar
  398. Weber, R. P., and S. A. Gordon: Abstr. Meeting Amer. Inst. Biol. Sci. Physiol. Sect. Madison, Wise. 1953. Via S. A. Gordon 1954.Google Scholar
  399. Weintraub, R., J. W. Brown, J. C. Nickeeson and K. N. Taylor: Studies in the relatoon between molecular structure and physiological activity of plant growth-regulators. I. Abcission-inducing activity. Bot. Gaz. 113, 348–362 (1952).Google Scholar
  400. Weiss, U., B. D. Davis and E. S. Mingioli: Aromatic biosynthesis. X. Identification of an early precursor as 5-dehydroquinic acid. J. Amer. Chem. Soc. 75, 5572–5576 (1953).Google Scholar
  401. Went, F. W.., and K. V. Thimann: Phytohormones. New York: McMillan & Co. 1937.Google Scholar
  402. Werle, E.: Über das Vorkommen von Diaminooxydase und Histidin-Decarboxylase in Mikroorganismen. Biochem. Z. 309, 61–76 (1941).Google Scholar
  403. Werle, E., u. S. Brüninghaus: Zur Kenntnis der Cysteinsäure- und der Glutaminsäure-Decarboxylase. Biochem. Z. 321, 492–499 (1951).PubMedGoogle Scholar
  404. Werle, E., u. A. Raub: Occurrence, formation and destruction of biogenous amines in plants with special reference to histamine. Biochem. Z. 318, 538–553 (1948).PubMedGoogle Scholar
  405. Werle, E., u. F. Roewer: Über tierische und pflanzliche Monaminoxydasen. Biochem. Z. 322, 320–326 (1952).PubMedGoogle Scholar
  406. Westall, R. G.: Isolation of γ-ammo-η-butyric acid from beetroot (Beta vulgaris). Nature (Lond.) 165, 717 (1950).Google Scholar
  407. White, E. P.: Alkaloids of the Leguminosae. VIII.-XIII. New Zealand J. Sci. Technol., Sect. B 25, 137–162 (1944).Google Scholar
  408. Wildman, S. G., and J. Bonner: Observations on the chemical nature and formation of auxin in the Avena coleoptile. Amer. J. Bot. 35, 740–746 (1948).Google Scholar
  409. Wildman, S. G., M. G. Ferri and J. Bonner: The enzymatic conversion of tryptophan to auxin by spinach leaves. Arch. of Biochem. 13, 131–144 (1947).Google Scholar
  410. Wildman, S. G., and R. M. Muir: Observations on the mechanism of auxin formation in plant tissues. Plant Physiol. 24, 84–92 (1949).PubMedGoogle Scholar
  411. Wilson, D. G., K. W. King and R. H. Burris: Transamination reactions in plants. J. of Biol. Chem. 208, 863–874 (1954).Google Scholar
  412. Wiltshire, G. H.: Metabolism of tryptophan in plants. Rep. Rothamsted Exper. Stat. 76 (1952).Google Scholar
  413. Oxidation of tryptophan in pea-seedling tissue and extracts. Biochemic. J. 55, 408 (1953).Google Scholar
  414. Metabolism of tryptophane in plants. Rep. Rothamsted Exper. Stat. 79 (1953).Google Scholar
  415. Windsor, E.: α-aminoadipic acid as a constituent of a com protein. J. of Biol. Chem. 192, 595–606 (1951).Google Scholar
  416. α-aminoadipic acid as a precursor to lysine in Neurospora. J. of Biol. Chem. 192, 607–609 (1951).Google Scholar
  417. Wiss, O.: Die Bedeutung des Pyridoxal-5-phosphates für den Kynurenin- und 3-Oxy-kynurenin-Abbau. Z. Naturforsch. 7b, 133–136 (1952).Google Scholar
  418. Wood, J. G.: Nitrogen metabolism of higher plants. Annual Rev. Plant Physiol. 4, 1–22 (1953).Google Scholar
  419. Wood, W. A., and I. C. Gunsalus: Serine and threonine deaminases of Escherichia coli. Activators for a cell-free enzyme. J. of Biol. Chem. 181, 171–182 (1949).Google Scholar
  420. Woods, D. D.: Studies in the metabolism of the strict anaerobes (genus Clostridium). V. Further experiments on the coupled reactions between pans of amino-acids induced by Cl. sporogenes. Biochemic. J. 30, 1934 (1936).Google Scholar
  421. Woods, D. D., and C. E. Clifton: Studies in the metabolism of the strict anaerobes (genus Clostridium). VI. Hydrogen production and amino-acid utilization by Clostridium tetanomorphum. Biochemic. J. 31, 1774 (1937).Google Scholar
  422. Studies in the metabolism of the strict anaerobes (genus Clostridium). VII. The decomposition of pyruvate and l(+)glutamic acid by Clostridium tetanomorphum. Biochemic. J. 32, 345 (1938).Google Scholar
  423. Wright, J. E., and A. M. Srb: Inhibition of growth in marze embryos by canavanine and its reversal, Bot. Gaz. 112, 52 (1950).Google Scholar
  424. Yamada, m., and S. Ishida: J. Agricult. Chem. Soc. Jap. 2 (7), 1 (1926).Google Scholar
  425. Yamaki, T., and K. Nakamura: Formation of indoleacetic acid in maize embryo. Sci. Papers Coll. Gen. Educ. Univ. Tokyo 2, 81–98 (1952).Google Scholar
  426. Yanofsky, C.: Tryptophane desmolase of Neurospora. J. of Biol. Chem. 194, 279 (1952a).Google Scholar
  427. d-serine dehydrase of Neurospora. J. of Biol. Chem. 198, 343–352 (1952b).Google Scholar
  428. Yanofsky, C., and J. L. Reissig: l-serine dehydrase of Neurospora. J. of Biol. Chem. 202, 567–577 (1953).Google Scholar
  429. Zacharius, R. M.: Thesis, University of Rochester, N. Y. 1952, quoted via F. C. Steward and Thompson 1954.Google Scholar
  430. Zacharius, R. M., J. K. Pollard and F. C. Stewabd: γ-methyleneglutamine and γ-methyleneglutamic acid in the tulip (Tulipa gesneriana). J. Amer. Chem. Soc. 76, 1961–1962 (1954).Google Scholar
  431. Zeller, E. A.: Diamin-oxydase. Adv. Enzymol. 2, 93–112 (1942).Google Scholar
  432. Zittle, C. A.: Hydrolysis of acid amides and amino acid amides. In: The Enzymes, edit. J. B. Sumner and K. Myrbäck, Vol. 1, Pt. 2, pp. 922–945. New York 1951.Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • H. E. Street

There are no affiliations available

Personalised recommendations