Protein metabolism of bacteria

  • Kenneth McQuillen
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)


Bacteria are much the same as other organisms so far as proteins are concerned — they contain various kinds including enzymes and can synthesise and degrade proteins. They have, however, certain attributes which make them particularly useful in the study of protein metabolism. Most bacteria grow relatively rapidly — mean generation times of about 30 minutes are common and imply a fourfold increase in protein each hour. Often their nutritional requirements are simple and defined and since bacteria are easy to grow, harvest and fractionate, much isotopic tracer work has been done with them. The study of “biochemical mutants” has also led to a great deal of information notably about synthetic mechanisms in amino acid metabolism. A further, much exploited property is their ability to synthesise adaptive enzymes under the stimulus of an appropriate inducing agent (see symposium edited by Gale and Davies). Recent work on bacteriophage formation and on protein synthesis in sub-cellular bacterial preparations has raised hopes that before long we shall know much more about the way in which living organisms can, from some twenty amino acids, produce a large number (probably hundreds per cell) of uniquely specific proteins. Because of the similarity in the basic patterns of all living organisms it is justifiable to anticipate close parallels in the properties of proteins and mechanisms of protein synthesis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astbury, W. T., and C. Weibull: X-ray diffraction study of the structure of bacterial flagella. Nature (Lond.) 163, 280–282 (1949).CrossRefGoogle Scholar
  2. Austrian, R.: Bacterial transformation reactions. Bacter. Rev. 16, 31–50 (1952).Google Scholar
  3. Barner, H. D., and S. S. Cohen: The induction of thymine synthesis by T 2 infection of a thymine requiring mutant of Escherichia coli. J. Bacter. 68, 80–88 (1954).Google Scholar
  4. Berger, J., M. J. Johnson and W. H. Peterson: The proteolytic enzymes of bacteria. I. The peptidases of Leuconostoc mesenteroides. J. of Biol. Chem. 124, 395–408 (1938).Google Scholar
  5. Bidwell, E., and W. E. van Heyningen: The biochemistry of the gas gangrene toxins. Biochemic. J. 42, 140–151 (1948).Google Scholar
  6. Bricas, E., and C. Fromageot: Naturally occurring peptides. Adv. Protein Chem. 8, 1–125 (1953).PubMedCrossRefGoogle Scholar
  7. Britten, R.: [1] Carnegie Institution of Washington Year Book No 51, p. 92, 1951/52.Google Scholar
  8. [2] A Symposium on Amino Acid Metabolism, edit. W. D. Mc Elroy and H. B. Glass, p. 120. Baltimore: Johns Hopkins Press 1955.Google Scholar
  9. Caldwell, P. C., E. J. Mackor and C. Hinshelwood: The ribose nucleic acid content and cell growth of Bact. lactis aerogenes. J. Chem. Soc. Lond. 1950, 3151–3155.Google Scholar
  10. Carnegie Institution of Washington Year Book No 52, 1952/53.Google Scholar
  11. Elliott, S. D.: [1] A proteolytic enzyme produced by group A Streptococci with special reference to its effect on the type-specific M antigen. J. of Exper. Med. 81, 573–592 (1945).CrossRefGoogle Scholar
  12. [2] The crystallisation and serological differentiation of a streptococcal proteinase and its precursor. J. of Exper. Med. 92, 201–218 (1950).Google Scholar
  13. Evans, D. G.: The production by certain species of Clostridium of enzymes disintegrating hide powder. J. Gen. Microbiol. 1, 378–384 (1947).Google Scholar
  14. Evans, D. G., and A. C. Wardlaw: Gelatinase and collagenase production by certain species of Bacillus. J. Gen. Microbiol. 8, 481–487 (1953).PubMedGoogle Scholar
  15. Evans, E. A.: Bacterial viruses. Annual Rev. Microbiol. 8, 237–256 (1954).CrossRefGoogle Scholar
  16. Gale, E. F.: [1] The bacterial amino acid decarboxylases. Adv. Enzymol. 6, 1–32 (1946).Google Scholar
  17. [2] Organic Nitrogen. In: Bacterial Physiology, edit. C. H. Werkman and P. W. Wilson. New York: Academic Press 1951.Google Scholar
  18. [3] Assimilation of amino acids by Gram-positive bacteria and some actions of antibiotics thereon. Adv. Protein Chem. 8, 285–391 (1953).Google Scholar
  19. [4] From Amino Acids to Proteins. In: A Symposium on Amino Acid Metabolism, edit. W. D. Mc Elroy and H. B. Glass. Baltimore: Johns Hopkins Press 1955.Google Scholar
  20. [5] Promotion of amino acid incorporation by di- and tri-nucleotides. Nature (Lond.) 175, 592 (1955).Google Scholar
  21. Gale, E. F., and R. Davies (eds.): Adaptation in Microorganisms. Cambridge: Cambridge University Press 1953.Google Scholar
  22. Gamow, G.: Possible mathematical relation between deoxyribonucleic acid and proteins. Dan. Biol. Medd. 22, 1–13 (1954).Google Scholar
  23. Gorini, L.: Le rôle du calcium dans l’activité et la stabilité de quelques protéinases bactériennes. Biochim. et Biophysica Acta 6, 237–255 (1950).CrossRefGoogle Scholar
  24. Gorini, L., and L. Audrain: Nécessité du calcium dans la croissance de bactéries lorsque la source d’azote est une protéine pure. Biochim. et Biophysica Acta 6, 477–486 (1951).CrossRefGoogle Scholar
  25. Gorini, L., and M. Crevier: Le comportement de la protéinase endocellulaire de Micrococcus lysodeikticus au cours de la lyse de cet organisme par la lysozyme. Biochim. et Biophysica Acta 7, 291–294 (1951).CrossRefGoogle Scholar
  26. Gorini, L., and C. Fromageot: Les facteurs physiologiques conditionant le présence de protéinase dans les cultures de Micrococcus lysodeikticus. Biochim. et Biophysica Acta 5, 524–534 (1950).CrossRefGoogle Scholar
  27. Gorini, L., and G. Lanzavecchia: Recherches sur le mécanisme de production d’une zymogène précurseur de la protéinase de Coccus P. Biochim. et Biophysica Acta 15, 399–410 (1954).CrossRefGoogle Scholar
  28. Hahn, F. E., C. L. Wisseman and H. E. Hopps: Mode of action of chloramphenicol. II. Inhibition of bacterial d-polypeptide formation by an l-stereoisomer of chloramphenicol. J. Bacter. 67, 674–679 (1954).Google Scholar
  29. Haines, R. B.: Further studies of the effect of the medium on the production of bacterial gelatinase. Biochemic. J. 27, 466–474 (1933).Google Scholar
  30. Hendlin, D.: The nutrition of microorganisms. Annual Rev. Microbiol. 8, 47–70 (1954).CrossRefGoogle Scholar
  31. Herbert, D., and A. J. Pinsent: Crystalline bacterial catalase. Nature (Lond.) 160, 125–126 (1947).CrossRefGoogle Scholar
  32. Heyningen, W. E. van: The proteinases of Clostridium histolyticum. Biochemic, J. 34, 1540–1545 (1940).Google Scholar
  33. Hogness, D. S., M. Cohn and J. Monod: Studies on the induced synthesis of β-galactosidase in Escherichia coli: The kinetics and mechanism of sulfur incorporation. Biochim. et Biophysica Acta 16, 99–116 (1955).CrossRefGoogle Scholar
  34. Holden, J. T., and E. E. Snell: The vitamin B6 group. XVII. The relation of d-alanine and vitamin B6 to growth of lactic acid bacteria. J. of Biol. Chem. 178, 799–809 (1949).Google Scholar
  35. Howie, J. T., and E. J. O’Hea (eds.): Mechanisms of microbial pathogenicity. Cambridge: Cambridge University Press 1955.Google Scholar
  36. Jones, A. S., M. Stagey and M. Webb: Studies on the autolytic systems of Gram-positive micro-organisms. 1. The lytic system of Staphylococci. Biochim. et Biophysica Acta 3, 383–399 (1949).CrossRefGoogle Scholar
  37. Knaysi, G.: Elements of Bacterial Cytology, 2nd edit. New York: Comstock Publishing Company 1951.Google Scholar
  38. Lipmann, F.: On the mechanism of some ATP-linked reactions and certain aspects of protein synthesis. In: A Symposium on the Mechanism of Enzyme Action, edit. W. D. Mc Elroy and H. B. Glass. Baltimore: Johns Hopkins Press 1954.Google Scholar
  39. Lurla., S. E.: General Virology. New York: John Wiley & Sons 1953.Google Scholar
  40. Malmgren, B., u. C.-G. Hedén: Studies on the nucleotide metabolism of bacteria. Acta path. scand. (Københ.) 24, 417–504 (1947).CrossRefGoogle Scholar
  41. Maschmann, E.: Bakterien-Proteasen. Erg. Enzymforsch. 9, 155–192 (1943).Google Scholar
  42. Mc Elroy, W. D., and H. B. Glass (eds.): A Symposium on Amino Acid Metabolism. Baltimore: Johns Hopkins Press 1955.Google Scholar
  43. Mc Quillen, K.: [1] Bacterial protoplasts. I. Protein and nucleic acid metabolism in protoplasts of Bacillus megaterium. Biochim. et Biophysica Acta 17, 382–390 (1955).CrossRefGoogle Scholar
  44. [2] Capabilities of bacterial protoplasts. In: Bacterial Anatomy. Edit. E.T.C. Spooner and B. A. D. Stocker. Cambridge: Cambridge University Press 1956.Google Scholar
  45. Mc Quillen, K., and R. B. Roberts: The utilisation of acetate for synthesis in Escherichia coli. J. of Biol. Chem. 207, 81–95 (1954).Google Scholar
  46. Mitchell, P. D.: Unpublished results.Google Scholar
  47. Mitchell, P. D., and J. Moyle: The glycerophospho-protein complex envelope of Micrococcus pyogenes. J. Gen. Microbiol. 5, 981–992 (1951).PubMedGoogle Scholar
  48. Park, J. T.: Uridine-5′-pyrophosphate derivatives. III. Amino acid derivatives. J. of Biol. Chem. 194, 897–904 (1952).Google Scholar
  49. Roulet, F., u. E. A. Zeller: Über die Enzyme des Mycobacterium tuberculosis und anderer säurefester Bakterien. 3. Über den enzymatischen Abbau von l-Peptiden durch säurefeste Bakterien. Helvet. chim. Acta 31, 1915–1926 (1948).PubMedCrossRefGoogle Scholar
  50. Salton, M. R. J.: Studies of the bacterial cell wall. IV. The composition of the cell walls of some Gram-positive and Gram-negative bacteria. Biochim. et Biophysica Acta 10, 512–523 (1953).CrossRefGoogle Scholar
  51. Salton, M. R. J., and K. Mc Quillen: Bacterial protoplasts. II. Bacteriophage multiplication in protoplasts of sensitive and lysogenic strains of Bacillus megaterium. Biochim. et Biophysica Acta 17, 465–472 (1955).CrossRefGoogle Scholar
  52. Spiegelman, S., H. O. Halvorson and R. Ben-Ishai: Free amino acids and the enzyme-forming mechanism. In: A Symposium on Amino Acid Metabolism, edit. W. D. Mc Elroy and H. B. Glass. Baltimore: Johns Hopkins Press 1955.Google Scholar
  53. Stokes, J. L.: Nutrition of microorganisms. Annual Rev. Microbiol. 6, 29–48 (1952).CrossRefGoogle Scholar
  54. Taylor, E. S.: The assimilation of amino acids by bacteria. 3. Concentration of free amino acids in the internal environment of various bacteria and yeasts. J. Gen. Microbiol. 1, 86–90 (1947).PubMedGoogle Scholar
  55. Weibull, C.: [1] Chemical and physico-chemical properties of the flagella of Proteus vulgaris and Bacillus subtilis: A comparison. Biochim. et Biophysica Acta 3, 378–382 (1949).CrossRefGoogle Scholar
  56. [2] The isolation of protoplasts from Bacillus megaterium by controlled treatment with lysozyme. J. Bacter. 66, 686–695 (1953).Google Scholar
  57. [3] Characterisation of the protoplasmic constituents of Bacillus megaterium. J. Bacter. 66, 696–702 (1953).Google Scholar
  58. Weidel, W.: Further studies on the membrane of Escherichia coli B. Ann. Inst. Pasteur 84, 60–65 (1953).Google Scholar
  59. Werkman, C. h., and P. W. Wilson (eds.): Bacterial Physiology. New York: Academic Press 1951.Google Scholar
  60. Williams, W. J., and C. B. Thorne: Biosynthesis of γ-glutamyl peptides by transfer reactions. In: A Symposium on Amino Acid Metabolism, edit. W. D. Mc Elroy and H. B. Glass. Baltimore: Johns Hopkins Press 1955.Google Scholar
  61. Work, E.: Some comparative aspects of lysine metabolism. In: A Symposium on Amino Acid Metabolism, edit. W. D. Mc Elroy and H. B. Glass. Baltimore: Johns Hopkins Press 1955.Google Scholar
  62. Zeller, E. A.: Enzymes of snake venoms and their biological significance. Adv. Enzymol. 8, 459–495 (1948).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Kenneth McQuillen

There are no affiliations available

Personalised recommendations