Protein metabolism of algae

Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Abstract

Information concerning the general metabolism of algae has been mostly derived from researches on fresh water unicellular algae which can be cultivated in the laboratory under strictly controlled conditions. It has thus been possible to study their growth rate, respiratory activity, photosynthesis, and variations in carbohydrate, fat or total nitrogen content, but a systematic investigation of their nitrogen metabolism only became possible after the method of paper chromatography offered facilities for detecting small quantities of amino-acids. An account of some of the results obtained by such methods are given below.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Algéus, S.: Untersuchungen über die Ernährungsphysiologie der Chlorophyceen. Bot. Not. (Limd) 1946, 129–280.Google Scholar
  2. Utilisation of glycine by Chlorella vulgaris. Physiol. Plantarum (Copenh.) 1, 236–244 (1948).Google Scholar
  3. De-amination of glycine by green algae. Physiol. Plantarum (Copenh.) 1, 382–386 (1948).Google Scholar
  4. Allison, F. E., S. R. Hoover and H. J. Morris: Physiological studies with the nitrogen-fixing alga Nostoc muscorum. Bot. Gaz. 98, 433–463 (1937).CrossRefGoogle Scholar
  5. Archibald, R. M.: Chemical characteristics and physiological rôles of glutamine. Chem. Rev. 37, 161–208 (1945).PubMedCrossRefGoogle Scholar
  6. Bortels, H.: Importance of molybdenum for nitrogen-fixing Nostaceae. Arch. Mikrobiol. 11, 155–186 (1940).CrossRefGoogle Scholar
  7. Boussingault, J. B.: Agronomie chim. agricult. et physiol. 4, 245 (1868).Google Scholar
  8. Braunstein, A. E., u. M. G. Kritzmann: Über den Umsatz der d(l)-Glutaminsäure im Muskelgewebe. Enzymologia(Den Haag) 2, 129–146 (1937).Google Scholar
  9. Burris, R. H.: Distribution of isotopic nitrogen in Azotobacter vinelandii. J. of Biol. Chem. 143, 509 (1942).Google Scholar
  10. Burris, R. H., F. J. Eppling, H. B. Wahlin and P. W. Wilkin: Detection of nitrogen fixation with isotopic nitrogen. J. of Biol. Chem. 148, 349–357 (1943).Google Scholar
  11. Burris, R. H., and P. W. Wilson: Biological nitrogen fixation. Annual Rev. Biochem. 14, 685–708 (1945).CrossRefGoogle Scholar
  12. Comparison of the metabolism of ammonia and molecular nitrogen in Azotobacter. J. of Biol. Chem. 165, 595–598 (1946).Google Scholar
  13. Channing and G. T. Young: Peptides and proteins of brown seaweeds. Chem. a. Ind. 1952, 519.Google Scholar
  14. Nitrogenous constituents of marine algae. J. Chem. Soc. (Lond.) 1953, 2481.Google Scholar
  15. Chibnall, A. C.: Protein metabolism. New Haven: Yale University Press 1939.Google Scholar
  16. Chu, S. P.: Influence of mineral composition of the medium on growth of planktonic algae. J. Ecology 30, 284 (1942).CrossRefGoogle Scholar
  17. Coulson, C. B.: Amino-acids of marine algae. Chem. a. Ind. 1953a, 971–972.Google Scholar
  18. Proteins of marine algae. Chem. a. Ind. 1953b, 997–998.Google Scholar
  19. Cramer, M., and J. Myers: Nitrate reduction and assimilation in Chorella. J. Gen. Physiol. 32, 93–102 (1949).CrossRefGoogle Scholar
  20. Davis, E. A.: Nitrate reduction by Chlorella. Plant Physiol. 28, No 3, 539–544 (1953).PubMedCrossRefGoogle Scholar
  21. De, P. K.: Role of blue-green algae in nitrogen fixation in rice fields. Proc. Roy. Soc. Lond., Ser. B 127, 121–139 (1939).CrossRefGoogle Scholar
  22. Dekker, C. A., D. Stone and J. S. Fruton: A peptide from a marine alga. J. of Biol. Chem. 181, 719–729 (1949).Google Scholar
  23. Eggleton, G. E.: Assimilation of inorganic nitrogenous salts including sodium nitrite, by the grass plant. Biochemic. J. 29, 1389–1397 (1935).Google Scholar
  24. Elliott, W. H.: Studies on the enzymatic synthesis of glutamine. Biochemic. J. 49, 106–112 (1951).Google Scholar
  25. Erkama, J., and A. I. Virtanen: Aspartase. The enzymes, chemistry and mechanism of action, p. 1244–1249. New York: Academic Press 1951.Google Scholar
  26. Fogg, G. E.: Nitrogen fixation by Anabaena cylindricaLemm. J. of Exper. Biol. 19, 78–87 (1942).Google Scholar
  27. The production of extracellular nitrogenous substances by a blue-green alga. Proc. Roy. Soc. Lond., Ser. B 139, 372–397 (1952).Google Scholar
  28. Fogg, E. G., and M. Wolfe: Autotrophic micro-organisms, p. 99–125. Cambridge: University Press 1954.Google Scholar
  29. Fowden, L.: The composition of the bulk proteins of Chlorella. Biochemic. J. 50, 355 (1951).Google Scholar
  30. Amino-acids of certain algae. Nature (Lond.) 167, 1030 (1951).Google Scholar
  31. A comparison of the composition of some algal proteins. Ann. of Bot., ?. S. 18, 257–266 (1954).Google Scholar
  32. Fruton, J. S.: A peptide from a marine alga. J. of Biol. Chem. 181, No 2 (1949).Google Scholar
  33. Fruton, J. S., and S. Simmonds: General biochemistry. New York: Wiley & Co. 1953.Google Scholar
  34. Haas, P.: On certain peptides occurring in marine algae. Biochemic. J. 46, 503–505 (1950).Google Scholar
  35. Haas, P., and T. G. Hill: A preliminary note on the nitrogen metabolism of seaweeds glutamic acid peptide. Biochemic. J. 25, 1472–1475 (1931).Google Scholar
  36. The metabolism of calcareous algae. I. Biochemic. J. 27, 1801–1804 (1933).Google Scholar
  37. Observations on the metabolism of certain seaweeds. Ann. of Bot. 47, 55–67 (1933).Google Scholar
  38. Haas, P., T. G. Hill and W. K. H. Karstens: The metabolism of calcareous algae. II. The seasonal variation in certain metabolic products of Corallina squamataEllis. Ann. of Bot. 49, 609–619 (1935).Google Scholar
  39. Haas, P., T. G. Hill and B. Russell-Wells: On certain simple peptides occurring in marine algae. Biochemic. J. 32, 2129–2133 (1938).Google Scholar
  40. Henriksson, E.: Nitrogen fixation by a symbiotic Nostocstram from Collema. Physiol. Plantarum (Copenh.) 4, 542–545 (1951).CrossRefGoogle Scholar
  41. Hopkins, E. F., and F. B. Wann: Relation of hydrogen ion concentration to growth of Chlorellaand to the availability of iron. Bot. Gaz. 81, 353 (1926).CrossRefGoogle Scholar
  42. Krebs, H. A.: Weitere Untersuchungen über den Abbau der Aminosäuren im Tierkörper. Z. physiol. Chem. 218, 157–159 (1933).CrossRefGoogle Scholar
  43. Metabolism of amino-acids. III. De-amination of amino-acids. Biochemic. J. 29, 1620–1644 (1935).Google Scholar
  44. Metabolism of amino-acids. IV. Synthesis of glutamine from glutamic acid and ammonia. Biochemic. J. 29, 1951–1969 (1935).Google Scholar
  45. Krebs, H. A., and W. A. Johnson: Citric acid in intermediate metabolism in animal tissues. Enzymologia (Den Haag) 4, 148–156 (1937).Google Scholar
  46. Lipmann, F.: Mechanism of peptide-bond formation. Federat. Proc. 8, 597–602 (1949).Google Scholar
  47. Ludwig, C. A.: Availability of different forms of nitrogen to a green alga. Amer. J. Bot. 25, 448–458 (1938).CrossRefGoogle Scholar
  48. Magee, W. E.: Fixation of nitrogen and utilisation of combined nitrogen by Nostoc muscorum. M. Sc. Thesis. University of Wisconsin. Madison 1953.Google Scholar
  49. Mikhlin, D. M.: Role of ascorbic acids in plant. Biokhimya 1, 617–627 (1936).Google Scholar
  50. Mikhlin, D. M., and P. A. Kolesnikov: Enzymic nature of reduction of nitrate in green plants. Biokhimya 2, 402–412 (1937).Google Scholar
  51. Millbank, J. W.: Demonstration of transaminase systems in the alga Chlorella. Nature (Lond.) 171, 476–477 (1953).CrossRefGoogle Scholar
  52. Niel, C. B. van, M. B. Allen and B. E. Wright: Photochemical-reduction of nitrate by algae. Biochim. et Biophysica Acta 12, 67–74 (1953).CrossRefGoogle Scholar
  53. Ohira, T.: On a new polypeptide isolated from Eisenia bicyclis(Part II). A study of the chemical structure of Eisenin. J. Agricult. Chem. Soc. 16, 10–11 (1940) also 15, 370–376 (1939) in Japanese.Google Scholar
  54. Pardo, J. H.: Ammonium in the nutrition of higher green plants. Quart. Rev. Biol. 10, 1 (1935).CrossRefGoogle Scholar
  55. Pearsall, W. H., and M. Billimoria: Nitrogen losses in green plants. Nature (Lond.) 138, 801–802 (1936).CrossRefGoogle Scholar
  56. Pearsall, W. H., and L. Loose: Growth of Chlorella vulgaris in pure culture. Proc. Roy. Soc. Lond., Ser. B 121, 451–501 (1937).CrossRefGoogle Scholar
  57. Pratt, R., and J. Fong: Growth of Chlorellaand changes in the hydrogen-ion and ammonium-ion concentration in solutions containing nitrate and ammonium nitrogen. Amer. J. Bot. 27, 735–743 (1940).CrossRefGoogle Scholar
  58. Quastel, J. H., and B. Woolf: Equilibrium between L-aspartic acid, fumaric acid and ammonia in presence of resting bacteria. Biochemic. J. 20, 545–555 (1926).Google Scholar
  59. Roine, P.: Formation of primary amino-acids in the protein synthesis in yeast. Ann. Acad. Sci. fenn., Ser. II Chem. 1947, Nr 26, 77–79.Google Scholar
  60. Singh, B. N.: Fixation of nitrogen by blue-green algae of paddy field soils. Indian J. Agricult. Sci. 12, 743–756 (1942).Google Scholar
  61. Smith, D. G., and E. G. Young: On the nitrogenous constituents of Fucus vesiculosus. J. of Biol. Chem. 205, 849–858 (1953).Google Scholar
  62. A closer examination of amino-acids free and in hydrolysates in Fucus vesiculosus, Ascophyllum nodosum, Chondrus crispus, Rhodymenia palmata and Ulva lactuca. J. of Biol. Chem. 217, 845–853 (1955).Google Scholar
  63. Syrett, P. J.: Assimilation of ammonia by nitrogen-starved cells of Chlorella vulgaris. Part I. The correlation of assimilation with respiration. Ann, of Bot., N. S. 17, 1–19 (1953a).Google Scholar
  64. Part II. The assimilation of ammonia to other compounds. Ann. of Bot., ?. S. 17, 21–36 (1953b).Google Scholar
  65. Autotrophic micro-organisms, p. 126–151. Cambridge: University Press 1954.Google Scholar
  66. Syrett, P. J., and L. Fowden: Assimilation of ammonia by nitrogen-starved Chlorella vulgaris. III. The effect of the addition of glucose on the products of assimilation. Physiol. Plantarum (Copenh.) 5, 558–666 (1952).CrossRefGoogle Scholar
  67. Vickery, H. B., G. W. Pucher, H. E. Clark, A. C. Chibnall and R. G. Westall: The determination of glutamine in the presence of asparagine. Biochemic. J. 29, 2710–2720 (1935).Google Scholar
  68. Virtanen, A. I.: On nitrogen assimilation and protein synthesis. Ann. Acad. Sci. fenn., Ser. II Chem. 39, 1–25 (1950).Google Scholar
  69. Some aspects of biological nitrogen fixation. Ann. Acad. Sci. fenn., Ser. II Chem. 43, 1–19 (1952).Google Scholar
  70. Atmosphärischer Stickstoff als Aufrechterhalter des Lebens auf der Erde. Angew. Chem. 65, 1–11 (1953).Google Scholar
  71. Biological nitrogen fixation. Proc. 3. Internat. Congr. of Biochemistry, Brussels. New York: Acad. Press 1956.Google Scholar
  72. Virtanen,A. I., and A. A. Arhimo: Oxaloacetic acid in the leguminous plants. (Nature Lond.) 144, 36 (1939).Google Scholar
  73. Virtanen, A. I., and J. Tarnanen: Enzymic hydrolysis and synthesis of aspartic acid. Biochem. Z. 250, 193–211 (1932).Google Scholar
  74. Walp, L.: The effect of nitrate and ammonium assimilation on cell proliferation of Nostoc muscorum. Growth 6, 173–177 (1942).Google Scholar
  75. Warburg, O., u. E. Negelein: Über die Reduktion der Salpetersäure in grünen Zellen. Biochem. Z. 110, 66–115 (1920).Google Scholar
  76. Willis, A. J.: Synthesis of amino acids in young roots of barley. Biochemic. J. 49, Proc. xxvii-xxviii (1951).Google Scholar
  77. Wilson, P. W.: Comparative biochemistry of nitrogen fixation. Adv. Enzymol. 13, 345–375 (1952).Google Scholar
  78. Wilson, P. W., and R. H. Burris: Biological nitrogen-fixation a re-appraisal. Annual Rev. Microbiol. 7 (1953).Google Scholar
  79. Yemm, E. W.: Glutamine in the metabolism of barley plants. New Phytologist 48, 315–331 (1949).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • P. Haas

There are no affiliations available

Personalised recommendations