Skip to main content
  • 304 Accesses

Abstract

Information concerning the general metabolism of algae has been mostly derived from researches on fresh water unicellular algae which can be cultivated in the laboratory under strictly controlled conditions. It has thus been possible to study their growth rate, respiratory activity, photosynthesis, and variations in carbohydrate, fat or total nitrogen content, but a systematic investigation of their nitrogen metabolism only became possible after the method of paper chromatography offered facilities for detecting small quantities of amino-acids. An account of some of the results obtained by such methods are given below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Algéus, S.: Untersuchungen über die Ernährungsphysiologie der Chlorophyceen. Bot. Not. (Limd) 1946, 129–280.

    Google Scholar 

  • Utilisation of glycine by Chlorella vulgaris. Physiol. Plantarum (Copenh.) 1, 236–244 (1948).

    Google Scholar 

  • De-amination of glycine by green algae. Physiol. Plantarum (Copenh.) 1, 382–386 (1948).

    Google Scholar 

  • Allison, F. E., S. R. Hoover and H. J. Morris: Physiological studies with the nitrogen-fixing alga Nostoc muscorum. Bot. Gaz. 98, 433–463 (1937).

    Article  CAS  Google Scholar 

  • Archibald, R. M.: Chemical characteristics and physiological rôles of glutamine. Chem. Rev. 37, 161–208 (1945).

    Article  PubMed  CAS  Google Scholar 

  • Bortels, H.: Importance of molybdenum for nitrogen-fixing Nostaceae. Arch. Mikrobiol. 11, 155–186 (1940).

    Article  CAS  Google Scholar 

  • Boussingault, J. B.: Agronomie chim. agricult. et physiol. 4, 245 (1868).

    Google Scholar 

  • Braunstein, A. E., u. M. G. Kritzmann: Ãœber den Umsatz der d(l)-Glutaminsäure im Muskelgewebe. Enzymologia(Den Haag) 2, 129–146 (1937).

    Google Scholar 

  • Burris, R. H.: Distribution of isotopic nitrogen in Azotobacter vinelandii. J. of Biol. Chem. 143, 509 (1942).

    CAS  Google Scholar 

  • Burris, R. H., F. J. Eppling, H. B. Wahlin and P. W. Wilkin: Detection of nitrogen fixation with isotopic nitrogen. J. of Biol. Chem. 148, 349–357 (1943).

    CAS  Google Scholar 

  • Burris, R. H., and P. W. Wilson: Biological nitrogen fixation. Annual Rev. Biochem. 14, 685–708 (1945).

    Article  CAS  Google Scholar 

  • Comparison of the metabolism of ammonia and molecular nitrogen in Azotobacter. J. of Biol. Chem. 165, 595–598 (1946).

    Google Scholar 

  • Channing and G. T. Young: Peptides and proteins of brown seaweeds. Chem. a. Ind. 1952, 519.

    Google Scholar 

  • Nitrogenous constituents of marine algae. J. Chem. Soc. (Lond.) 1953, 2481.

    Google Scholar 

  • Chibnall, A. C.: Protein metabolism. New Haven: Yale University Press 1939.

    Google Scholar 

  • Chu, S. P.: Influence of mineral composition of the medium on growth of planktonic algae. J. Ecology 30, 284 (1942).

    Article  CAS  Google Scholar 

  • Coulson, C. B.: Amino-acids of marine algae. Chem. a. Ind. 1953a, 971–972.

    Google Scholar 

  • Proteins of marine algae. Chem. a. Ind. 1953b, 997–998.

    Google Scholar 

  • Cramer, M., and J. Myers: Nitrate reduction and assimilation in Chorella. J. Gen. Physiol. 32, 93–102 (1949).

    Article  Google Scholar 

  • Davis, E. A.: Nitrate reduction by Chlorella. Plant Physiol. 28, No 3, 539–544 (1953).

    Article  PubMed  CAS  Google Scholar 

  • De, P. K.: Role of blue-green algae in nitrogen fixation in rice fields. Proc. Roy. Soc. Lond., Ser. B 127, 121–139 (1939).

    Article  CAS  Google Scholar 

  • Dekker, C. A., D. Stone and J. S. Fruton: A peptide from a marine alga. J. of Biol. Chem. 181, 719–729 (1949).

    CAS  Google Scholar 

  • Eggleton, G. E.: Assimilation of inorganic nitrogenous salts including sodium nitrite, by the grass plant. Biochemic. J. 29, 1389–1397 (1935).

    CAS  Google Scholar 

  • Elliott, W. H.: Studies on the enzymatic synthesis of glutamine. Biochemic. J. 49, 106–112 (1951).

    CAS  Google Scholar 

  • Erkama, J., and A. I. Virtanen: Aspartase. The enzymes, chemistry and mechanism of action, p. 1244–1249. New York: Academic Press 1951.

    Google Scholar 

  • Fogg, G. E.: Nitrogen fixation by Anabaena cylindricaLemm. J. of Exper. Biol. 19, 78–87 (1942).

    CAS  Google Scholar 

  • The production of extracellular nitrogenous substances by a blue-green alga. Proc. Roy. Soc. Lond., Ser. B 139, 372–397 (1952).

    Google Scholar 

  • Fogg, E. G., and M. Wolfe: Autotrophic micro-organisms, p. 99–125. Cambridge: University Press 1954.

    Google Scholar 

  • Fowden, L.: The composition of the bulk proteins of Chlorella. Biochemic. J. 50, 355 (1951).

    Google Scholar 

  • Amino-acids of certain algae. Nature (Lond.) 167, 1030 (1951).

    Google Scholar 

  • A comparison of the composition of some algal proteins. Ann. of Bot., ?. S. 18, 257–266 (1954).

    Google Scholar 

  • Fruton, J. S.: A peptide from a marine alga. J. of Biol. Chem. 181, No 2 (1949).

    Google Scholar 

  • Fruton, J. S., and S. Simmonds: General biochemistry. New York: Wiley & Co. 1953.

    Google Scholar 

  • Haas, P.: On certain peptides occurring in marine algae. Biochemic. J. 46, 503–505 (1950).

    CAS  Google Scholar 

  • Haas, P., and T. G. Hill: A preliminary note on the nitrogen metabolism of seaweeds glutamic acid peptide. Biochemic. J. 25, 1472–1475 (1931).

    CAS  Google Scholar 

  • The metabolism of calcareous algae. I. Biochemic. J. 27, 1801–1804 (1933).

    Google Scholar 

  • Observations on the metabolism of certain seaweeds. Ann. of Bot. 47, 55–67 (1933).

    Google Scholar 

  • Haas, P., T. G. Hill and W. K. H. Karstens: The metabolism of calcareous algae. II. The seasonal variation in certain metabolic products of Corallina squamataEllis. Ann. of Bot. 49, 609–619 (1935).

    CAS  Google Scholar 

  • Haas, P., T. G. Hill and B. Russell-Wells: On certain simple peptides occurring in marine algae. Biochemic. J. 32, 2129–2133 (1938).

    CAS  Google Scholar 

  • Henriksson, E.: Nitrogen fixation by a symbiotic Nostocstram from Collema. Physiol. Plantarum (Copenh.) 4, 542–545 (1951).

    Article  CAS  Google Scholar 

  • Hopkins, E. F., and F. B. Wann: Relation of hydrogen ion concentration to growth of Chlorellaand to the availability of iron. Bot. Gaz. 81, 353 (1926).

    Article  CAS  Google Scholar 

  • Krebs, H. A.: Weitere Untersuchungen über den Abbau der Aminosäuren im Tierkörper. Z. physiol. Chem. 218, 157–159 (1933).

    Article  CAS  Google Scholar 

  • Metabolism of amino-acids. III. De-amination of amino-acids. Biochemic. J. 29, 1620–1644 (1935).

    Google Scholar 

  • Metabolism of amino-acids. IV. Synthesis of glutamine from glutamic acid and ammonia. Biochemic. J. 29, 1951–1969 (1935).

    Google Scholar 

  • Krebs, H. A., and W. A. Johnson: Citric acid in intermediate metabolism in animal tissues. Enzymologia (Den Haag) 4, 148–156 (1937).

    CAS  Google Scholar 

  • Lipmann, F.: Mechanism of peptide-bond formation. Federat. Proc. 8, 597–602 (1949).

    CAS  Google Scholar 

  • Ludwig, C. A.: Availability of different forms of nitrogen to a green alga. Amer. J. Bot. 25, 448–458 (1938).

    Article  CAS  Google Scholar 

  • Magee, W. E.: Fixation of nitrogen and utilisation of combined nitrogen by Nostoc muscorum. M. Sc. Thesis. University of Wisconsin. Madison 1953.

    Google Scholar 

  • Mikhlin, D. M.: Role of ascorbic acids in plant. Biokhimya 1, 617–627 (1936).

    CAS  Google Scholar 

  • Mikhlin, D. M., and P. A. Kolesnikov: Enzymic nature of reduction of nitrate in green plants. Biokhimya 2, 402–412 (1937).

    CAS  Google Scholar 

  • Millbank, J. W.: Demonstration of transaminase systems in the alga Chlorella. Nature (Lond.) 171, 476–477 (1953).

    Article  CAS  Google Scholar 

  • Niel, C. B. van, M. B. Allen and B. E. Wright: Photochemical-reduction of nitrate by algae. Biochim. et Biophysica Acta 12, 67–74 (1953).

    Article  Google Scholar 

  • Ohira, T.: On a new polypeptide isolated from Eisenia bicyclis(Part II). A study of the chemical structure of Eisenin. J. Agricult. Chem. Soc. 16, 10–11 (1940) also 15, 370–376 (1939) in Japanese.

    Google Scholar 

  • Pardo, J. H.: Ammonium in the nutrition of higher green plants. Quart. Rev. Biol. 10, 1 (1935).

    Article  Google Scholar 

  • Pearsall, W. H., and M. Billimoria: Nitrogen losses in green plants. Nature (Lond.) 138, 801–802 (1936).

    Article  CAS  Google Scholar 

  • Pearsall, W. H., and L. Loose: Growth of Chlorella vulgaris in pure culture. Proc. Roy. Soc. Lond., Ser. B 121, 451–501 (1937).

    Article  CAS  Google Scholar 

  • Pratt, R., and J. Fong: Growth of Chlorellaand changes in the hydrogen-ion and ammonium-ion concentration in solutions containing nitrate and ammonium nitrogen. Amer. J. Bot. 27, 735–743 (1940).

    Article  CAS  Google Scholar 

  • Quastel, J. H., and B. Woolf: Equilibrium between L-aspartic acid, fumaric acid and ammonia in presence of resting bacteria. Biochemic. J. 20, 545–555 (1926).

    CAS  Google Scholar 

  • Roine, P.: Formation of primary amino-acids in the protein synthesis in yeast. Ann. Acad. Sci. fenn., Ser. II Chem. 1947, Nr 26, 77–79.

    Google Scholar 

  • Singh, B. N.: Fixation of nitrogen by blue-green algae of paddy field soils. Indian J. Agricult. Sci. 12, 743–756 (1942).

    CAS  Google Scholar 

  • Smith, D. G., and E. G. Young: On the nitrogenous constituents of Fucus vesiculosus. J. of Biol. Chem. 205, 849–858 (1953).

    CAS  Google Scholar 

  • A closer examination of amino-acids free and in hydrolysates in Fucus vesiculosus, Ascophyllum nodosum, Chondrus crispus, Rhodymenia palmata and Ulva lactuca. J. of Biol. Chem. 217, 845–853 (1955).

    Google Scholar 

  • Syrett, P. J.: Assimilation of ammonia by nitrogen-starved cells of Chlorella vulgaris. Part I. The correlation of assimilation with respiration. Ann, of Bot., N. S. 17, 1–19 (1953a).

    CAS  Google Scholar 

  • Part II. The assimilation of ammonia to other compounds. Ann. of Bot., ?. S. 17, 21–36 (1953b).

    Google Scholar 

  • Autotrophic micro-organisms, p. 126–151. Cambridge: University Press 1954.

    Google Scholar 

  • Syrett, P. J., and L. Fowden: Assimilation of ammonia by nitrogen-starved Chlorella vulgaris. III. The effect of the addition of glucose on the products of assimilation. Physiol. Plantarum (Copenh.) 5, 558–666 (1952).

    Article  CAS  Google Scholar 

  • Vickery, H. B., G. W. Pucher, H. E. Clark, A. C. Chibnall and R. G. Westall: The determination of glutamine in the presence of asparagine. Biochemic. J. 29, 2710–2720 (1935).

    CAS  Google Scholar 

  • Virtanen, A. I.: On nitrogen assimilation and protein synthesis. Ann. Acad. Sci. fenn., Ser. II Chem. 39, 1–25 (1950).

    Google Scholar 

  • Some aspects of biological nitrogen fixation. Ann. Acad. Sci. fenn., Ser. II Chem. 43, 1–19 (1952).

    Google Scholar 

  • Atmosphärischer Stickstoff als Aufrechterhalter des Lebens auf der Erde. Angew. Chem. 65, 1–11 (1953).

    Google Scholar 

  • Biological nitrogen fixation. Proc. 3. Internat. Congr. of Biochemistry, Brussels. New York: Acad. Press 1956.

    Google Scholar 

  • Virtanen,A. I., and A. A. Arhimo: Oxaloacetic acid in the leguminous plants. (Nature Lond.) 144, 36 (1939).

    CAS  Google Scholar 

  • Virtanen, A. I., and J. Tarnanen: Enzymic hydrolysis and synthesis of aspartic acid. Biochem. Z. 250, 193–211 (1932).

    CAS  Google Scholar 

  • Walp, L.: The effect of nitrate and ammonium assimilation on cell proliferation of Nostoc muscorum. Growth 6, 173–177 (1942).

    CAS  Google Scholar 

  • Warburg, O., u. E. Negelein: Ãœber die Reduktion der Salpetersäure in grünen Zellen. Biochem. Z. 110, 66–115 (1920).

    CAS  Google Scholar 

  • Willis, A. J.: Synthesis of amino acids in young roots of barley. Biochemic. J. 49, Proc. xxvii-xxviii (1951).

    CAS  Google Scholar 

  • Wilson, P. W.: Comparative biochemistry of nitrogen fixation. Adv. Enzymol. 13, 345–375 (1952).

    CAS  Google Scholar 

  • Wilson, P. W., and R. H. Burris: Biological nitrogen-fixation a re-appraisal. Annual Rev. Microbiol. 7 (1953).

    Google Scholar 

  • Yemm, E. W.: Glutamine in the metabolism of barley plants. New Phytologist 48, 315–331 (1949).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Haas, P. (1958). Protein metabolism of algae. In: Allen, E.K., et al. Der Stickstoffumsatz / Nitrogen Metabolism. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94733-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94733-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94734-6

  • Online ISBN: 978-3-642-94733-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics