Skip to main content

Abstract

Priority of discovery in science has always been difficult to assess, and the field of asymbiotic nitrogen fixation is no exception. Although most textbooks confidently state that Winogradsky discovered the first free-living microorganism able to use molecular nitrogen, others had paved the way for this noteworthy finding. As early as 1862 Jodin (Stephenson 1949)1 had noted that a vigorous growth of “mycoderms” occurred in a solution containing only minerals and a source of carbon. Even more remarkable, he established an actual loss of N2 from the atmosphere—an analytical precaution neglected by many a subsequent investigator. Berthelot in 1885 demonstrated by chemical analysis a rise in the nitrogen content of soil enclosed in pots. In his initial memoir published in 1895 (Winogradsky 1949) as well as in his Avant-Propos to the subject written in 1945, Winogradsky specifically rejects Berthelot’s claims of priority of discovery insofar as bacteria are concerned. He stated that Berthelot did not even establish definitely that a living agent was responsible, and if living, that bacteria were the responsible organisms (Winogradsky 1949, p. 356ff.). A comparable situation exists in the field of symbiotic nitrogen fixation in that Atwater in the U.S.A. anticipated the results of Hellriegel and Wilfarth but not their unequivocal interpretation (see Wilson 1940, p. 35). One certainty remains: the first pure culture of bacteria to fix nitrogen was isolated, described and named by Winogradsky Clostridium pastorianum; to the end he apparently preferred his original spelling of the species name rather than the modern alteration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Alexander, M., and P. W. Wilson: [1] Large-scale production of the Azotobacter for enzymes. Appl. Microbiol. 2, 135–140 (1954).

    PubMed  CAS  Google Scholar 

  2. Enzyme localization in Azotobacter vine-landii. Proc. Nat. Acad. Sci. U.S.A. 41, 843–848 (1955).

    Google Scholar 

  3. Intracellular distribution of tricarboxylic acid cycle enzymes in Azotobacter vinelandii. J. Bacter. 71, 252–253 (1956).

    Google Scholar 

  4. Allison, F. E.: Can nodule bacteria of leguminous plants fix atmospheric nitrogen in the absence of the host? J. Agricult. Res. 39, 893–924 (1929).

    CAS  Google Scholar 

  5. Allison, F. E., S. R. Hoover and H. J. Morris: [1] Nitrogen fixation studies with fungi and actinomyces. J. Agricult. Res. 49, 1115–1123 (1934).

    CAS  Google Scholar 

  6. Physiological studies with the nitrogen-fixing alga, Nostoc muscorum. Bot. Gaz. 98, 433–463 (1937).

    Google Scholar 

  7. Allison, F. E., and H. J. Morris: Nitrogen fixation by blue-green algae. Science (Lancaster, Pa.) 71, 221–223 (1930).

    CAS  Google Scholar 

  8. Allison, R. M.: Kinetic studies on the distribution of isotopic nitrogen Azotobacter vinelandii. Ph. D. thesis, University of Wisconsin 1955.

    Google Scholar 

  9. Anderson, C. R.: Nitrogen fixation by Pseudomonas-like soil bacteria. J. Bacter. 70, 129–133 (1955).

    CAS  Google Scholar 

  10. Aprison, M. H., and R. H. Burris: Time course of fixation of N2 by excised soybean nodules. Science (Lancaster, Pa.) 115, 264–265 (1952).

    CAS  Google Scholar 

  11. Aprison, M. H., W. E. Magee and R. H. Burris: Nitrogen fixation by excised soybean root nodules. J. of Biol. Chem. 208, 29–39 (1954).

    CAS  Google Scholar 

  12. Birch-Hirschfeld, L.: Über den Einfluß von Molybdän und Bodenextraktstoffen auf die N-Bindung von Azotobacter chroococcum. Arch. Mikrobiol. 3, 341–361 (1932).

    Article  CAS  Google Scholar 

  13. Bond, G.: The importance of the oxygen factor in nodule formation and function. Ann. of Bot. 15, 95–108 (1950).

    Google Scholar 

  14. Bond, G., and G. D. Scott: An examination of some symbiotic systems for fixation of nitrogen. Ann. of Bot. 19, 67–77 (1955).

    Google Scholar 

  15. Bortels, H.: [1] Molybdän als Katalysator bei der biologischen Stickstoffbindung. Arch. Mikrobiol. 1, 333–342 (1930).

    Article  CAS  Google Scholar 

  16. Weitere Untersuchungen über die Bedeutung von Molybdän, Vanadium, Wolfram und anderen Erdaschenstoffen für stickstoffbindende und andere Mikroorganismen. Zbl. Bakter. II 95, 193–218 (1936).

    Google Scholar 

  17. Über die Wirkung von Molybdän- und Vanadiumdüngungen auf Leguminosen. Arch. Mikrobiol. 8, 13–26 (1937).

    Google Scholar 

  18. Über die Bedeutung des Molybdäns für stickstoffbindende Nostocaceen. Arch. Mikrobiol. 11, 155–186 (1940).

    Google Scholar 

  19. Burk, D.: [1] The influence of oxygen gas upon the organic catalysis of nitrogen fixation by Azotobacter. J. Physic. Chem. 34, 1195–1209 (1930).

    Article  CAS  Google Scholar 

  20. [2] Azotase and nitrogenase in Azotobacter. Erg. Enzymforsch. 3, 23–56 (1934).

    Google Scholar 

  21. Burk, D., and R. H. Burris: Biochemical nitrogen fixation. Annual Rev. Biochem. 10, 587–618 (1941).

    Article  CAS  Google Scholar 

  22. Burk, D., u. C. K. Horner: [1] Über Hydroxylamine, Hydrazine und Amide als Intermediärprodukte bei der N2-Fixation durch Azotobakter. Naturwiss. 23, 259–260 (1935).

    Article  CAS  Google Scholar 

  23. [2] The origin and significance of ammonia formed by Azotobacter. Soil Sci. 41, 81–122 (1936).

    Google Scholar 

  24. Burk, D., H. Lineweaver and C. K. Horner: Iron in relation to the stimulation of growth by humic acid. Soil Sci. 33, 413–453 (1932).

    Article  CAS  Google Scholar 

  25. Burris, R. H.: Studies on the mechanism of biological nitrogen fixation. In A symposium on inorganic nitrogen metabolism, pp. 316–343. Edited by Mc Elroy, W. D., and B. Glass. Baltimore: Johns Hopkins Press 1956.

    Google Scholar 

  26. Burris, R. H., W. E. Magee and M. K. Bach: The pN2 and the pO2 function for nitrogen fixation by excised soybean nodules. Ann. Acad. Sci. fenn., Ser. A II, Chemica 1955, 190–199.

    Google Scholar 

  27. Burris, R. H., and P. W. Wilson: [1] Biological nitrogen fixation. Annual Rev. Biochem. 14, 685–708 (1945).

    Article  CAS  Google Scholar 

  28. Characteristics of the nitrogen-fixing enzyme system in Nostoc muscorum. Bot. Gaz. 108, 254–262 (1946).

    Google Scholar 

  29. Comparison of the metabolism of ammonia and molecular nitrogen in Azotobacter. J. of Biol. Chem. 165, 595–598 (1946).

    Google Scholar 

  30. Ammonia as an intermediate in nitrogen fixation by Azotobacter. J. Bacter. 52, 505–512 (1946).

    Google Scholar 

  31. Effect of haemoglobin and other nitrogenous compounds on the respiration of the rhizobia. Biochemie. J. 51, 90–96 (1952).

    Google Scholar 

  32. Methods for measurement of nitrogen fixation. In Methods in enzymology, S. P. Colowick and N. O. Kaplan, editors. Vol. IV (in press). New York: Academic Press 1957.

    Google Scholar 

  33. Chance, B.: Spectra and reaction kinetics of respiratory pigments of homogenized and intact cells. Nature (Lond.) 169, 215–230 (1952).

    Article  CAS  Google Scholar 

  34. Spectrophotometry of intracellular respiratory pigments. Science (Lancaster, Pa.) 120, 767–775 (1954).

    Google Scholar 

  35. Chaudhary, M. T., T. G. G. Wilson and E. R. Roberts: Inhibition of Azotobacter vinelandii by hyponitrous acid. Biochim. et Biophysica Acta 14, 507–513 (1954).

    Article  CAS  Google Scholar 

  36. Chibnall, A. C., M. W. Rees and E. F. Williams: The total nitrogen content of egg albumin and other proteins. Biochemic. J. 37, 354–359 (1943).

    CAS  Google Scholar 

  37. Cohen, G. N., et Germaine Cohen-Bazire: Couplage oxydo-réducteur des deux réactions: fumarate→oxaloacétate et hydroxylamine→ammoniac. Synthèse d’acide aspartique à partir de f umarate et d’hydroxylamine par Clostridium saccharobutyricum GR4. C. r. Acad. Sci. Paris 227, 873–875 (1948).

    CAS  Google Scholar 

  38. Colter, J. S., and J. H. Quastel: Catalytic decomposition of hydroxylamine by hemoglobin. Arch. of Biochem. 27, 368–389 (1950).

    CAS  Google Scholar 

  39. De, P. K.: The role of blue-green algae in nitrogen fixation in rice-fields. Proc. Roy. Soc. Lond. Ser. B 127, 121–139 (1939).

    Article  CAS  Google Scholar 

  40. Drewes, K.: Über die Assimilation des Luftstickstoffs durch Blaualgen. Zbl. Bakter. II 76, 88–101 (1928).

    CAS  Google Scholar 

  41. Duchow, Ellen, and H. C. Douglas: Bhodomicrobium vannielii, a new photoheterotrophic bacterium. J. Bacter. 58, 409–416 (1949).

    Google Scholar 

  42. Ebersole, E. R., Claire Guttentag and P. W. Wilson: Nature of carbon monoxide inhibition of biological nitrogen fixation. Arch. of Biochem. 3, 399–418 (1944).

    CAS  Google Scholar 

  43. Ellfolk, N., and A. I. Virtanen: [1] Electrophoresis of leghaemoglobin. Acta chem. scand. (Copenh.) 4, 1014–1019 (1950).

    Article  CAS  Google Scholar 

  44. [2] The molecular weight of leghaemoglobin. Acta chem. scand. (Copenh.) 6, 411–420 (1952).

    Google Scholar 

  45. Endres, G.: [1] Über ein Zwischenprodukt der N2-Assimilation. Naturwiss. 22, 662 (1934).

    Article  CAS  Google Scholar 

  46. [2] Zur Kenntnis der Stickstoff assimilierenden Bakterien. II. Über die Bindung des Luftstickstoffes durch Azotobakter. Liebigs Ann. 518, 109–126 (1935).

    Google Scholar 

  47. Esposito, R. G., and P. W. Wilson: Trace metals in the nutrition of Azotobacter vinelandii O. Biochim. et Biophysics Acta 22, 186–187 (1956).

    Article  CAS  Google Scholar 

  48. Ferguson, T. P., and G. Bond: The growth of the red glover at different oxygen tensions. Ann. of Bot. 18, 385–389 (1954).

    Google Scholar 

  49. Finn, R. K.: Agitation-aeration in the laboratory and in industry. Bacter. Rev. 18, 254–274 (1954).

    CAS  Google Scholar 

  50. Fogg, G. E.: Nitrogen fixation by blue-green algae. Endeavour 6, 172–175 (1947).

    Google Scholar 

  51. Fogg, G. E., and Miriam Wolfe: The nitrogen metabolism of the blue-green algae (Myxophyceae). In Autotrophic microorganisms pp. 99–125. Edited by Fry, B. A., and J. L. Peel, Cambridge: University Press 1954.

    Google Scholar 

  52. Gerloff, G. C., G. P. Fitzgerald and F. Skoog: The isolation, purification, and nutrient solution requirements of blue-green algae. In Plant growth substances, pp. 27–44. Edited by Skoog, F. Madison: University of Wisconsin Press 1951.

    Google Scholar 

  53. Gest, H.: [1] Metabolic patterns in photosynthetic bacteria. Bacter. Rev. 15, 183–210 (1951).

    CAS  Google Scholar 

  54. Molecular hydrogen: oxidation and formation in cell-free systems. In Phosphorus metabolism, vol. II, pp. 522–543. Edited by Mc Elroy, W. D., and B. Glass. Baltimore: Johns Hopkins Press 1952.

    Google Scholar 

  55. [3] Oxidation and evolution of molecular hydrogen by microorganisms. Bacter. Rev. 18, 43–73 (1954).

    Google Scholar 

  56. Gest, H., M. D. Kamen and H. M. Bregoff: Photoproduction of hydrogen and nitrogen fixation by Rhodospirillum rubrum. J. of Biol. Chem. 182, 153–170 (1950).

    CAS  Google Scholar 

  57. Giesberger, G.: Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum-species. Antonie van Leeuwenhoek 13, 135–148 (1947).

    Article  Google Scholar 

  58. Green, Margaret, M. Alexander and P. W. Wilson: Hydrogenase in nitrogenase-deficient Azotobacter mutants. Proc. Soc. Exper. Biol. a. Med. 82, 351–363 (1953).

    Google Scholar 

  59. Green, Margaret, and P. W. Wilson: [1] The utilization of nitrate nitrogen by the Azotobacter. J. Gen. Microbiol. 9, 89–96 1953.

    Google Scholar 

  60. [2] Hydrogenase and nitrogenase in Azotobacter. J. Bacter. 65, 511–517 1953.

    Google Scholar 

  61. Gunsalus, I. C., B. L. Horecker and W. A. Wood: Pathways of carbohydrate metabolism in microorganisms. Bacter. Rev. 19, 79–128 (1955).

    CAS  Google Scholar 

  62. Hamilton, P. B., and P. W. Wilson: Nitrogen fixation by Aerobacter aerogenes. Ann. Acad. Sci. fenn., Ser. A, II. Chemica 1955, 139–150.

    Google Scholar 

  63. Hopeins, E. W.: Studies of nitrogen fixation by root nodule bacteria of the Leguminosae. Soil Sci. 28, 433–447 (1929).

    Article  Google Scholar 

  64. Horner, C. K., and F. E. Allison: Utilization of fixed nitrogen by Azotobacter and influence on nitrogen fixation. J. Bacter. 47, 1–14 (1944).

    CAS  Google Scholar 

  65. Horner, C. K., and D. Burk: Magnesium, calcium, and iron requirements for growth of Azotobacter in free and fixed nitrogen. J. Agricult. Res. 48, 981–995 (1934).

    CAS  Google Scholar 

  66. Horner, C. K., D. Burk, F. E. Allison and Mildred S. Sherman: Nitrogen fixation by Azotobacter as influenced by molybdenum and vanadium. J. Agricult. Res. 65, 173–193 (1942).

    CAS  Google Scholar 

  67. Hutner, S. H.: [1] Organic growth essentials of the aerobic nonsulfur photosynthetic bacteria. J. Bacter. 52, 213–221 (1946).

    CAS  Google Scholar 

  68. [2] Anaerobic and aerobic growth of purple bacteria (Athiorhodaceae) in chemically defined media. J. Gen. Microbiol. 4, 286–293 (1950).

    Google Scholar 

  69. Hyndman, L. A., R. H. Burris and P. W. Wilson: Properties of hydrogenase from Azotobacter vinelandii. J. Bacter. 65, 522–531 (1953).

    CAS  Google Scholar 

  70. Iterson jr., G. van den, L. E. Dooren de Jong and A. J. Kluyver: Martinus Willem Beijerinck. His life and work. The Hague: Martinus Nijhoff 1940.

    Google Scholar 

  71. Jensen, H. L.: [1] Notes on the biology of Azotobacter. Proc. Soc. Appl. Bacter. 14, 89–94 (1951).

    Article  Google Scholar 

  72. [2] The Azotobacteriaceae. Bacter. Rev. 18, 195–213 (1954).

    Google Scholar 

  73. Jensen, H. L., and D. Spenser: The influence of molybdenum and vanadium on nitrogen fixation by Clostridium butyricum and related organisms. Proc. Linnean Soc. N.S. Wales 72, 73–86 (1947).

    CAS  Google Scholar 

  74. Jensen, V.: Nitrogen fixation by strains of Aerobacter aerogenes. Physiol. Plantarem (Copenh.) 9, 130–136 (1956).

    CAS  Google Scholar 

  75. Kamen, M. D., and H. Gest: Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirillum rubrum. Science (Lancaster, Pa.) 109, 560 (1949).

    CAS  Google Scholar 

  76. Karlsson, J. L., and H. A. Barker: Evidence against the occurrence of a tricarboxylic acid cycle in Azotobacter agilis. J. of Biol. Chem. 175, 913–921 (1948).

    CAS  Google Scholar 

  77. Keilin, D., and J. F. Ryley: Haemoglobin in protozoa. Nature (Lond.) 172, 451 (1953).

    Article  CAS  Google Scholar 

  78. Kedlin, D., and J. D. Smith: Haemoglobin and nitrogen fixation in the root nodules of leguminous plants. Nature (Lond.) 159, 692 (1947).

    Article  Google Scholar 

  79. Kedlin, D., and A. Tissières: Haemoglobin in fungi. Nature (Lond.) 172, 390 (1953).

    Article  Google Scholar 

  80. Kedlin, D., and Y. L. Wang: Haemoglobin in the root nodules of leguminous plants. Nature (Lond.) 155, 227 (1945).

    Article  Google Scholar 

  81. Haemoglobin of Gastrophilus larvae. Purification and properties. Biochemie. J. 40, 855–866 (1946).

    Google Scholar 

  82. Kjeldahl, J.: Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. anal. Chem. 22, 366–382 (1883).

    Article  Google Scholar 

  83. Kluyver, A. J.: Some aspects of nitrate reduction. In Symposium on microbial metabolism. Institute Superiore di Sanita. Rome 1953.

    Google Scholar 

  84. Krasna, A. I., and D. Rittenberg: The mechanism of action of the enzyme hydrogenase. J. Amer. Chem. Soc. 76, 3015–3020 (1954).

    Article  CAS  Google Scholar 

  85. Kratz, W. A., and J. Meyers: Nutrition and growth of several blue-green algae. Amer. J. Bot. 42, 282–287 (1955).

    Article  CAS  Google Scholar 

  86. Kubo, H.: Über Hämoprotein aus den Wurzelknöllchen von Leguminosen. Acta phytochim. (Tokyo) 11, 195–200 (1939).

    CAS  Google Scholar 

  87. Kyle, T. S., and A. Eisenstark: The genus Azotobacter. Biol. Sci. Bull. 5, Oklahoma Agric. a. Mech. Coli. 49 pp. (1951).

    Google Scholar 

  88. Larsen, H.: On the microbiology and biochemistry of the photosynthetic green sulphur bacteria. Kgl. norske vid. Selsk. Skr. 1953, Nr 1.

    Google Scholar 

  89. Lee, S. B., and P. W.. Wilson: Hydrogenase and nitrogen fixation by Azotobacter. J. of Biol. Chem. 151, 377–385 (1943).

    CAS  Google Scholar 

  90. Lind, C. J., and P. W. Wilson: [1] Mechanism of biological nitrogen fixation. VIII. Carbon monoxide as an inhibitor for nitrogen fixation by red clover. J. Amer. Chem. Soc. 63, 3511–3514 (1941).

    Article  CAS  Google Scholar 

  91. [2] Nitrogen fixation by Azotobacter in association with other bacteria. Soil Sci. 54, 105–111 (1942).

    Google Scholar 

  92. [3] Carbon monoxide inhibition of nitrogen fixation by Azotobacter. Arch. of Biochem. 1, 59–72 (1942).

    Google Scholar 

  93. Lindstrom, E. S., R. H. Burris and P. W. Wilson: Nitrogen fixation by photosynthetic bacteria. J. Bacter. 58, 313–316 (1949).

    CAS  Google Scholar 

  94. Lindstrom, E. S., S. M. Lewis and M. I. Pinsky: Nitrogen fixation and hydrogenase in various bacterial species. J. Bacter. 61, 481–487 (1951).

    CAS  Google Scholar 

  95. Lindstrom, E. S., J. W. Newton and P. W. Wilson: The relationship between photosynthesis and nitrogen fixation. Proc. Nat. Acad. Sci. U.S.A. 38, 392–396 (1952).

    Article  CAS  Google Scholar 

  96. Lindstrom, E. S., Shirley R. Tove and P. W. Wilson: Nitrogen fixation by the green and purple sulfur bacteria. Science (Lancaster, Pa.) 112, 197–198 (1950).

    CAS  Google Scholar 

  97. Lineweaver, H.: The solubility and chemical and physical absorption of nitrogen gas in Azotobacter cells. J. of Biol. Chem. 122, 549–567 (1938).

    Google Scholar 

  98. Lineweaver, H., D. Burk and W. E. Deming: The dissociation constant of nitrogen -nitrogenase in Azotobacter. J. Amer. chem. Soc. 56, 225–230 (1934).

    Article  CAS  Google Scholar 

  99. Lipman, J. G.: Experiments on the transformation and fixation of nitrogen by bacteria. New Jersey State Agric. Expt. Sta. Rept. 24, 217–285 (1903).

    Google Scholar 

  100. Little, H. N., and R. H. Burris: Activity of the red pigment from leguminous root nodules. J. Amer. Chem. Soc. 69, 383–841 (1947).

    Article  Google Scholar 

  101. Löhnis, Marie P.: Can Bacterium radicicola assimilate nitrogen in the absence of the host plant? Soü Sci. 29, 37–57 (1930).

    Article  Google Scholar 

  102. Magee, W. E., and R. H. Burris: Fixation of N2 15 by excised nodules. Plant physiol. 29, 199–200 (1954).

    Article  PubMed  CAS  Google Scholar 

  103. Mc Coy, Elizabeth, and L. S. Mc Clung: The anaerobic bacteria: a subject bibliography. Vol. I and II. Berkley: University of California Press 1939.

    Google Scholar 

  104. Mc Elroy, W. D., and H. B. Glass: Editors, Symposium on inorganic nitrogen metabolism. Baltimore: Johns Hopkins University Press 1956.

    Google Scholar 

  105. Mc Kee, H. S.: Review of recent work on nitrogen metabolism. New Phytologist 48, 1–83 (1949).

    Article  CAS  Google Scholar 

  106. Metcalfe, G., Sonja Cayen, E. R. Roberts and T. G. G. Wilson: Nitrogen fixation by soil yeasts. Nature (Lond.) 174, 841 (1954).

    Article  CAS  Google Scholar 

  107. Moelwyn-Hughes, E. A.: The kinetics of enzyme reactions. Erg. Enzymforsch. 6, 23–46 (1937).

    CAS  Google Scholar 

  108. Molnar, Dorothy M., R. H. Burris and P. W. Wilson: The effect of various gases on nitrogen fixation by Azotobacter. J. Amer. Chem. Soc. 70, 1713–1716 (1948).

    Article  CAS  Google Scholar 

  109. Mortenson, L. E., P. B. Hamilton and P. W. Wilson: Dissimilation of 6-phosphogiuconate by Azotobacter vinelandii. Biochim. et Biophysica Acta 16, 238–244 (1955).

    Article  CAS  Google Scholar 

  110. Mortenson, L. E., and P. W. Wilson: [1] Effect of molecular nitrogen and hydrogen on hydrogen evolution by Clostridium pasteurianum. J. Bacter. 62, 513–514 (1951).

    CAS  Google Scholar 

  111. Initial stages in the breakdown of carbohydrates by the Azotobacter vinelandii. Arch. of Biochem. a. Biophysics 53, 425–435 (1954).

    Google Scholar 

  112. [3] Metabolism of ribose-5-phosphate by Azotobacter vinelandii. J. of Biol. Chem. 213, 713–721 (1955).

    Google Scholar 

  113. Newton, J. W., and P. W. Wilson: Nitrogen fixation and photoproduction of molecular hydrogen by Thiorhodaceae. Antonie van Leeuwenhoek 19, 71–77 (1953).

    Article  PubMed  CAS  Google Scholar 

  114. Newton, J. W., P. W. Wilson and R. H. Burris: Direct demonstration of ammonia as an intermediate in nitrogen fixation by Azotobacter. J. of Biol. Chem. 204, 445–451 (1953).

    CAS  Google Scholar 

  115. Niel, C. B. van: [1] On the morphology and physiology of the purple and green sulfur bacteria. Arch. Mikrobiol. 3, 1–112 (1931).

    Article  Google Scholar 

  116. The bacterial photosynthèses and their importance for the general problem of photosynthesis. Adv. Enzymol. 1, 263–328 (1941).

    Google Scholar 

  117. The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacter. Rev. 8, 1–118 (1944).

    Google Scholar 

  118. [4] The comparative biochemistry of photosynthesis. In Photosynthesis in plants, pp. 437–495. Ames: Iowa State College Press 1949.

    Google Scholar 

  119. Novak, Ruth, and P. W. Wilson: The utilization of nitrogen in hydroxylamine and oximes by Azotobacter vinelandii. J. Bacter. 55, 517–524 (1948).

    CAS  Google Scholar 

  120. Parker, C. A.: Effect of oxygen on the fixation of nitrogen by Azotobacter. Nature (Lond.) 173, 780–781 (1954).

    Article  CAS  Google Scholar 

  121. Pethica, B. A., E. R. Roberts and E. R. S. Winter: [1] The exchange reaction of hydroxylamine and gaseous nitrogen. J. Chem. Phys. 18, 996 (1950).

    Article  CAS  Google Scholar 

  122. The hydrogenase of Azotobacter. Research (Lond.) 3, 1–3 (1950).

    Google Scholar 

  123. [3] Inhibition in Azotobacter vinelandii by hydroxylamine. Biochim. et Biophysica Acta 14, 85–99 (1954).

    Google Scholar 

  124. Phelps, A. S., and P. W. Wilson: Occurrence of hydrogenase in nitrogen-fixing organisms. Proc. Soc. Exper. Biol. a. Med. 47, 473–476 (1941).

    CAS  Google Scholar 

  125. Pine, M. J., and H. A. Barker: Studies on the methane bacteria. XI. Fixation of atmospheric nitrogen by Methanobacterium omelianskii. J. Bacter. 68, 588–591 (1954).

    Google Scholar 

  126. Repaske, R., and P. W. Wilson: [1] Nitrous oxide inhibition of nitrogen fixation by Azotobacter. J. Amer. Chem. Soc. 74, 3101–3103 (1952).

    Article  CAS  Google Scholar 

  127. [2] Oxidation of intermediates of the tricarboxylic acid cycle by extracts of Azotobacter agile. Proc. Nat. Acad. Sci. U.S.A. 39, 225–232 (1953).

    Google Scholar 

  128. Robbins, W. J.: The assimilation by plants of various forms of nitrogen. Amer. J. Bot. 24, 243–250 (1937).

    Article  CAS  Google Scholar 

  129. Rose, I. A., and S. Ochoa: Phosphorylation by particulate preparations of Azotobacter vineandii. J. of Biol. Chem. 220, 307–314 (1956).

    CAS  Google Scholar 

  130. Rosenblum, E. D., and P. W. Wilson: [1] Fixation of isotopic nitrogen by Clostridium. J. Bacter. 57, 413–414 (1949).

    CAS  Google Scholar 

  131. Molecular hydrogen and nitrogen fixation by Clostridium. J. Bacter. 59, 83–91 (1950).

    Google Scholar 

  132. [3] The utilization of nitrogen in various compounds by Clostridium pasteurianum. J. Bacter. 61, 475–480 (1951).

    Google Scholar 

  133. Schwyzer, R.: Reduktionsversuche mit Hämoglobin an Benzhydroxamsäure und Brenztraubensäureoxim. Acta chem. scand. (Copenh.) 5, 1398–1399 (1951).

    Article  CAS  Google Scholar 

  134. Segal, W., and P. W. Wilson: Hydroxylamine as a source of nitrogen for Azotobacter vinelandii. J. Bacter. 57, 55–60 (1949).

    CAS  Google Scholar 

  135. Shields, Lora M.: Nitrogen sources of seed plants and environmental influences affecting the nitrogen supply. Bot. Review 19, 321–376 (1953).

    Article  CAS  Google Scholar 

  136. Shug, A. L., P. B. Hamilton and P. W. Wilson: Hydrogenase and nitrogen fixation. In A symposium on inorganic nitrogen metabolism, pp. 344–360. Edited by W. D. Mc Elroy and H. B. Glass. Baltimore: Johns Hopkins Press 1956.

    Google Scholar 

  137. Shug, A. L., P. W. Wilson, D. E. Green and H. R. Mahler: The role of molybdenum and flavin in hydrogenase. J. Amer. Chem. Soc. 76, 3355–3356 (1954).

    Article  CAS  Google Scholar 

  138. Sisler, F. D., and C. E. Zo Bell: Nitrogen fixation by sulfate-reducing bacteria indicated by nitrogen/argon ratios. Science (Lancaster, Pa.) 113, 511–512 (1951).

    CAS  Google Scholar 

  139. Smith, J. D.: [1] The concentration and distribution of haemoglobin in the root nodules of leguminous plants. Biochemie. J. 44, 585–591 (1949).

    CAS  Google Scholar 

  140. [2] Haemoglobin and the oxygen uptake of leguminous root nodules. Biochemie. J. 44, 591–598 (1949).

    Google Scholar 

  141. Soriano, S.: The presence of Azotobacter agilis in North and South Americ. Rev. Inst. Bact. Dept. Nacion. Hig. 10, 55–65 (1941). Biol. Abstr. 16, 15107 (1942).

    Google Scholar 

  142. Stanier, R. Y.: Simultaneous adaptation: A new technique for the study of metabolic pathways. J. Bacter. 54, 339–348 (1947).

    CAS  Google Scholar 

  143. Stephenson, Marjory: Bacterial metabolism, 3rd ed. London: Longmans, Green & Co. 1949.

    Google Scholar 

  144. Stiffler, H. J., and H. Gest: Effects of light intensity and nitrogen growth source on hydrogen metabolism in Rhodospirillum rubrum. Science (Lancaster, Pa.) 120, 1024–1026 (1954).

    CAS  Google Scholar 

  145. Stokes, J. L.: The role of algae in the nitrogen cycle of the soil. Soil Sci. 49, 265–275 (1940).

    Article  CAS  Google Scholar 

  146. Stone, R. W., and P. W. Wilson: [1] Respiratory activity of cell-free extracts from Azotobacter. J. Bacter. 63, 605–617 (1952).

    CAS  Google Scholar 

  147. The incorporation of acetate in acids of the citric acid cycle by Azotobacter extracts. J. of Biol. Chem. 196, 221–225 (1952).

    Google Scholar 

  148. Stumpf, P. K.: Phosphate assimilation in higher plants. In A symposium on phosphorus metabolism, Vol. II, pp. 29–67. Edited by W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Press 1952.

    Google Scholar 

  149. Suzuki, B., and Sakaru Suzuki: Hydroxylamine reduction and hydrazine oxidation. Sci. Rep. Tôhoku Univ. (Japan) 20, 195–201 (1954).

    CAS  Google Scholar 

  150. Taniguchi, S., H. Mitsui, K. Nakamura and F. Egami: Hydroxylamine reductase. Ann. Acad. Sci. fenn., Ser. A, II. Chemica 1955, 200–215.

    Google Scholar 

  151. Taniguchi, S., H. Mitsui, J. Tomoda, T. Yamada and F. Egami: The successive reduction from nitrate to ammonia by cell-free bacterial enzyme systems. J. of Biochem. (Tokyo) 40, 175–185 (1953).

    CAS  Google Scholar 

  152. Tissières, A., and E. C.. Slater: Respiratory chain phosphorylation in extracts of Azotobacter vinelandii. Nature (Lond.) 176, 736–737 (1955).

    Article  Google Scholar 

  153. Tôth, L.: [1] The role of nitrogen-active microorganisms in the nitrogen metabolism of insects. Tijdschr. Entomol. 95, 43–59 (1952).

    Google Scholar 

  154. Nitrogen active microorganisms living in symbiosis with animals and their role in the nitrogen metabolism of the host animal. Arch Mikrobiol. 18, 242–244 (1953).

    Google Scholar 

  155. Tove, Shirley R., H. F. Niss and P. W. Willson: Fixation of N215 by excised nodules of leguminous plants. J. of Biol. Chem. 184, 77–82 (1950).

    CAS  Google Scholar 

  156. Tove, Shirley, R., and P. W. Wilson: Isotopic studies of fixation by rhizobia in presence of hemoprotein. Proc. Soc. Exper. Biol. a. Med. 69, 184–186 (1948).

    CAS  Google Scholar 

  157. Virtanen, A. L.: [1] Cattle fodder and human nutrition. Cambridge: The University Press 1938.

    Google Scholar 

  158. Mechanism of symbiotic nitrogen fixation by leguminous plants. Third Comm. Intern. Soc. Soil. Sci. Trans. A, 1939, 4–19.

    Google Scholar 

  159. Symbiotic nitrogen fixation. Nature (Lond.) 155, 747–748 (1945).

    Google Scholar 

  160. [4] The biology and chemistry of nitrogen fixation by legume bacteria. Biol. Rev. Cambridge Philos. Soc. 22, 239–269 (1947).

    Google Scholar 

  161. Biological nitrogen fixation. Annual Rev. Microbiol. 2, 485–506 (1948).

    Google Scholar 

  162. Some aspects of biological nitrogen fixation. Ann. Acad. Sci. fenn., Ser. A, II. Chemica, No 43, 3–19 (1952).

    Google Scholar 

  163. Atmosphärischer Stickstoff als Aufrechterhalter des Lebens auf der Erde. Angew. Chem. 65 (No 1), 1–11 (1953).

    Google Scholar 

  164. Assimilation of molecular and combined nitrogen by microorganisms. In Symposium on microbial metabolism. Institute Superiore di Sanita. Rome 1953.

    Google Scholar 

  165. Virtanen, A. I., J. Erkama and H. Linkola: On the relation between nitrogen fixation and leghaemoglobin content of leguminous root nodules. II. Acta chem. scand. 1 (Copenh.), 861–870 (1947).

    Google Scholar 

  166. Virtanen, A. I., and Maire Hakala: Anaerobic nitrogen fixation and formation of oxime nitrogen. Acta chem. scand. (Copenh.) 3, 1044–1049 (1949).

    Article  Google Scholar 

  167. Virtanen, A. I., J. Jorma, H. Linkola and A. Linnasalmi: On the relation between nitrogen fixation and leghaemoglobin content of leguminous root nodules. Acta chem. scand. (Copenh.) 1, 90–111 (1947).

    Article  CAS  Google Scholar 

  168. Virtanen, A. I., and S. Lundbom: The growth of Clostridium pasteurianum in synthetic nutrient solution. Acta chemica scand. (Copenh.) 8, 870–871 1954.

    Article  CAS  Google Scholar 

  169. Virtanen, A. I., T. Moisio, R. M. Allison and R. H. Burris: Fixation of molecular nitrogen by excised nodules of the alder. Acta chem. scand. (Copenh.) 8, 1730–1731 (1954).

    Article  CAS  Google Scholar 

  170. Waksman, S. A.: [1] Principles of soil microbiology, 2nd ed. Baltimore: Williams & Wilkins 1932.

    Google Scholar 

  171. Soil microbiology. New York: John Wiley & Sons 1952.

    Google Scholar 

  172. Wall, J. S., A. C. Wagenknecht, J. W. Newton and R. H. Burris: Comparison of the metabolism of ammonia and molecular nitrogen in photosynthesizing bacteria. J. Bacter. 63, 563–573 (1952).

    CAS  Google Scholar 

  173. Williams, A. E., and R. H. Burris: Nitrogen fixation by blue-green algae and their nitrogenous composition. Amer. J. Bot. 39, 340–342 (1952).

    Article  CAS  Google Scholar 

  174. Williams, Anna Maria, and P. W. Wilson: [1] Adaptation of Azotobacter cells to tricarboxylic acid substrates. J. Bacter. 67, 353–360 (1954).

    CAS  Google Scholar 

  175. Equilibration of succinate solutions with adapted and unadapted Azotobacter cells. Canad. J. Microbiol. 1, 36–44 (1954).

    Google Scholar 

  176. Wilson, J. B., and P. W. Wilson: Hydrogen in the metabolism of Azotobacter. J. Bacter. 44, 250–251 (1942).

    CAS  Google Scholar 

  177. Wilson, P. W.: [1] Mechanism of symbiotic nitrogen fixation. I. The influence of pN2. J. Amer. Chem. Soc. 58, 1256–1261 (1936).

    Article  CAS  Google Scholar 

  178. The biochemistry of symbiotic nitrogen fixation. Madison: The University of Wisconsin Press 1940.

    Google Scholar 

  179. Biological nitrogen fixation. In Bacterial physiology, chap. 14. New York: Academic Press 1951.

    Google Scholar 

  180. The comparative biochemistry of nitrogen fixation. Adv. Enzymol. 13, 345–375 (1952).

    Google Scholar 

  181. [5] Pathways in biological nitrogen fixation. In Perspectives and horizons in microbiology. Edited by Waksmans, S. A., pp. 110–120. New Brunswick: Rutgers University Press 1955.

    Google Scholar 

  182. Wilson, P. W., and R. H. Burris: [1] The mechanism of biological nitrogen fixation. Bacter. Rev. 11, 41–73 (1947).

    CAS  Google Scholar 

  183. Biological nitrogen fixation a reappraisal. Annual Rev. Microbiol. 7, 415–432 (1953).

    Google Scholar 

  184. Wilson, P. W., R. H. Burris and W. B. Coffee: Hydrogenase and symbiotic nitrogen fixation. J. of Biol. Chem. 147, 475–481 (1943).

    CAS  Google Scholar 

  185. Wilson, P. W., R. H. Burris and C. J. Lind: The dissociation constant in nitrogen fixation by Azotobacter. Proc. Nat. Acad. Sci. U.S.A. 28, 243–250 (1942).

    Article  CAS  Google Scholar 

  186. Wilson, P. W., and E. B. Fred: Mechanism of symbiotic nitrogen fixation. II. The pO2 function. Proc. Nat. Acad. Sci. U.S.A. 23, 503–508 (1937).

    Article  CAS  Google Scholar 

  187. Wilson, P. W., J. F. Hull and R. H. Burris: Competition between free and combined nitrogen in nutrition of Azotobacter. Proc. Nat. Acad. Sci. U.S.A. 29, 289–294 (1943).

    Article  CAS  Google Scholar 

  188. Willson, P. W., S. B. Lee and O. Wyss: Mechanism of symbiotic nitrogen fixation. V. Nature of inhibition by hydrogen. J. of Biol. Chem. 139, 81–101 (1941).

    Google Scholar 

  189. Wilson, P. W., and C. J. Lind: Carbon monoxide inhibition of Azotobacter in microrespiration experiments. J. Bacter. 45, 219–232 (1943).

    CAS  Google Scholar 

  190. Wilson, T. G. G., and E. R. Roberts: [1] Studies in the biological fixation of nitrogen. IV. Inhibition in Azotobacter vinelandii by nitrous oxide. Biochim. et Biophysica Acta 15, 568–577 (1954).

    Article  CAS  Google Scholar 

  191. Attempts at nitrogen fixation in vitro. Nature (Lond.) 174, 795 (1954).

    Google Scholar 

  192. Wilson, P. W., and W. W. Umbreit: Mechanism of symbiotic nitrogen fixation. III. Hydrogen as a specific inhibitor. Arch. Mikrobiol. 8, 440–457 (1937).

    Article  CAS  Google Scholar 

  193. Wilson, P. W., W. W. Umbreit and S. B. Lee: Mechanism of symbiotic nitrogen fixation. IV. Specific inhibition by hydrogen. Biochemie. J. 32, 2084–2095 (1938).

    CAS  Google Scholar 

  194. Winfield, M. E.: Reactions of hydrogen gas in solution. Rev. Pure Appl. Chem. (Roy. Austral. Chem. Inst.) 5, 217–246 (1955).

    CAS  Google Scholar 

  195. Winogradsky, S.: Microbiologie du sol. Problèmes et méthodes. Cinquante Années de recherches. Ceuvres Complètes. Paris: Masson & Cie. 1949.

    Google Scholar 

  196. Wolfe, Miriam: [1] The effect of molybdenum upon the nitrogen metabolism of Anabaena cylindrica. I. A study of the molybdenum requirement for nitrogen fixation and for nitrate and ammonia assimilation. Ann. of Bot. 18, 299–308 (1954).

    CAS  Google Scholar 

  197. The effect of molybdenum upon the nitrogen metabolism of Anabaena cylindrica. II. A more detailed study of the action of molybdenum in nitrate assimilation. Ann. of Bot. 18, 309–325 (1954).

    Google Scholar 

  198. Wood, J. G., M. R. Hone, M. E. Mattner and C. P. Symons: Studies on the nitrogen metabolism of plants. Austral. J. Sci. Res. B 1, 38–49 (1948).

    Google Scholar 

  199. Wyss, O., C. J. Lind, J. B. Wilson and P. W. Wilson: Mechanism of biological nitrogen fixation. 7. Molecular H2 and the pH2 function of Azotobacter. Biochemie. J. 35, 845–854 (1941).

    CAS  Google Scholar 

  200. Wyss, O., and P. W. Wilson: Mechanism of biological nitrogen fixation. VI. Inhibition of Azotobacter by hydrogen. Proc. Nat. Acad. Sci. U.S.A. 27, 162–168 (1941).

    Article  CAS  Google Scholar 

  201. Zelitch, I.: Simultaneous use of molecular nitrogen and ammonia by Clostridium pasteurianum. Proc. Nat. Acad. Sci. U.S.A. 37, 559–565 (1951).

    Article  CAS  Google Scholar 

  202. Zelitch, I., E. D. Rosenblum, R. H. Burris and P. W. Wilson: [1] Comparison of the metabolism of ammonia and molecular nitrogen in Clostridium. J. Bacter. 62, 747–752 (1951).

    CAS  Google Scholar 

  203. Isolation of the key intermediate in biological nitrogen fixation by Clostridium. J. of Biol. Chem. 191, 295–298 (1951).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Wilson, P.W. (1958). Asymbiotic nitrogen fixation. In: Allen, E.K., et al. Der Stickstoffumsatz / Nitrogen Metabolism. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94733-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94733-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94734-6

  • Online ISBN: 978-3-642-94733-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics