Advertisement

Asymbiotic nitrogen fixation

  • P. W. Wilson
Chapter
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Abstract

Priority of discovery in science has always been difficult to assess, and the field of asymbiotic nitrogen fixation is no exception. Although most textbooks confidently state that Winogradsky discovered the first free-living microorganism able to use molecular nitrogen, others had paved the way for this noteworthy finding. As early as 1862 Jodin (Stephenson 1949)1 had noted that a vigorous growth of “mycoderms” occurred in a solution containing only minerals and a source of carbon. Even more remarkable, he established an actual loss of N2 from the atmosphere—an analytical precaution neglected by many a subsequent investigator. Berthelot in 1885 demonstrated by chemical analysis a rise in the nitrogen content of soil enclosed in pots. In his initial memoir published in 1895 (Winogradsky 1949) as well as in his Avant-Propos to the subject written in 1945, Winogradsky specifically rejects Berthelot’s claims of priority of discovery insofar as bacteria are concerned. He stated that Berthelot did not even establish definitely that a living agent was responsible, and if living, that bacteria were the responsible organisms (Winogradsky 1949, p. 356ff.). A comparable situation exists in the field of symbiotic nitrogen fixation in that Atwater in the U.S.A. anticipated the results of Hellriegel and Wilfarth but not their unequivocal interpretation (see Wilson 1940, p. 35). One certainty remains: the first pure culture of bacteria to fix nitrogen was isolated, described and named by Winogradsky Clostridium pastorianum; to the end he apparently preferred his original spelling of the species name rather than the modern alteration.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Alexander, M., and P. W. Wilson: [1] Large-scale production of the Azotobacter for enzymes. Appl. Microbiol. 2, 135–140 (1954).PubMedGoogle Scholar
  2. [2]
    Enzyme localization in Azotobacter vine-landii. Proc. Nat. Acad. Sci. U.S.A. 41, 843–848 (1955).Google Scholar
  3. [3]
    Intracellular distribution of tricarboxylic acid cycle enzymes in Azotobacter vinelandii. J. Bacter. 71, 252–253 (1956).Google Scholar
  4. Allison, F. E.: Can nodule bacteria of leguminous plants fix atmospheric nitrogen in the absence of the host? J. Agricult. Res. 39, 893–924 (1929).Google Scholar
  5. Allison, F. E., S. R. Hoover and H. J. Morris: [1] Nitrogen fixation studies with fungi and actinomyces. J. Agricult. Res. 49, 1115–1123 (1934).Google Scholar
  6. [2]
    Physiological studies with the nitrogen-fixing alga, Nostoc muscorum. Bot. Gaz. 98, 433–463 (1937).Google Scholar
  7. Allison, F. E., and H. J. Morris: Nitrogen fixation by blue-green algae. Science (Lancaster, Pa.) 71, 221–223 (1930).Google Scholar
  8. Allison, R. M.: Kinetic studies on the distribution of isotopic nitrogen Azotobacter vinelandii. Ph. D. thesis, University of Wisconsin 1955.Google Scholar
  9. Anderson, C. R.: Nitrogen fixation by Pseudomonas-like soil bacteria. J. Bacter. 70, 129–133 (1955).Google Scholar
  10. Aprison, M. H., and R. H. Burris: Time course of fixation of N2 by excised soybean nodules. Science (Lancaster, Pa.) 115, 264–265 (1952).Google Scholar
  11. Aprison, M. H., W. E. Magee and R. H. Burris: Nitrogen fixation by excised soybean root nodules. J. of Biol. Chem. 208, 29–39 (1954).Google Scholar
  12. Birch-Hirschfeld, L.: Über den Einfluß von Molybdän und Bodenextraktstoffen auf die N-Bindung von Azotobacter chroococcum. Arch. Mikrobiol. 3, 341–361 (1932).CrossRefGoogle Scholar
  13. Bond, G.: The importance of the oxygen factor in nodule formation and function. Ann. of Bot. 15, 95–108 (1950).Google Scholar
  14. Bond, G., and G. D. Scott: An examination of some symbiotic systems for fixation of nitrogen. Ann. of Bot. 19, 67–77 (1955).Google Scholar
  15. Bortels, H.: [1] Molybdän als Katalysator bei der biologischen Stickstoffbindung. Arch. Mikrobiol. 1, 333–342 (1930).CrossRefGoogle Scholar
  16. [2]
    Weitere Untersuchungen über die Bedeutung von Molybdän, Vanadium, Wolfram und anderen Erdaschenstoffen für stickstoffbindende und andere Mikroorganismen. Zbl. Bakter. II 95, 193–218 (1936).Google Scholar
  17. [3]
    Über die Wirkung von Molybdän- und Vanadiumdüngungen auf Leguminosen. Arch. Mikrobiol. 8, 13–26 (1937).Google Scholar
  18. [4]
    Über die Bedeutung des Molybdäns für stickstoffbindende Nostocaceen. Arch. Mikrobiol. 11, 155–186 (1940).Google Scholar
  19. [1]
    Burk, D.: [1] The influence of oxygen gas upon the organic catalysis of nitrogen fixation by Azotobacter. J. Physic. Chem. 34, 1195–1209 (1930).CrossRefGoogle Scholar
  20. [2] Azotase and nitrogenase in Azotobacter. Erg. Enzymforsch. 3, 23–56 (1934).Google Scholar
  21. Burk, D., and R. H. Burris: Biochemical nitrogen fixation. Annual Rev. Biochem. 10, 587–618 (1941).CrossRefGoogle Scholar
  22. [1]
    Burk, D., u. C. K. Horner: [1] Über Hydroxylamine, Hydrazine und Amide als Intermediärprodukte bei der N2-Fixation durch Azotobakter. Naturwiss. 23, 259–260 (1935).CrossRefGoogle Scholar
  23. [2] The origin and significance of ammonia formed by Azotobacter. Soil Sci. 41, 81–122 (1936).Google Scholar
  24. Burk, D., H. Lineweaver and C. K. Horner: Iron in relation to the stimulation of growth by humic acid. Soil Sci. 33, 413–453 (1932).CrossRefGoogle Scholar
  25. Burris, R. H.: Studies on the mechanism of biological nitrogen fixation. In A symposium on inorganic nitrogen metabolism, pp. 316–343. Edited by Mc Elroy, W. D., and B. Glass. Baltimore: Johns Hopkins Press 1956.Google Scholar
  26. Burris, R. H., W. E. Magee and M. K. Bach: The pN2 and the pO2 function for nitrogen fixation by excised soybean nodules. Ann. Acad. Sci. fenn., Ser. A II, Chemica 1955, 190–199.Google Scholar
  27. [1]
    Burris, R. H., and P. W. Wilson: [1] Biological nitrogen fixation. Annual Rev. Biochem. 14, 685–708 (1945).CrossRefGoogle Scholar
  28. [2]
    Characteristics of the nitrogen-fixing enzyme system in Nostoc muscorum. Bot. Gaz. 108, 254–262 (1946).Google Scholar
  29. [3]
    Comparison of the metabolism of ammonia and molecular nitrogen in Azotobacter. J. of Biol. Chem. 165, 595–598 (1946).Google Scholar
  30. [4]
    Ammonia as an intermediate in nitrogen fixation by Azotobacter. J. Bacter. 52, 505–512 (1946).Google Scholar
  31. [5]
    Effect of haemoglobin and other nitrogenous compounds on the respiration of the rhizobia. Biochemie. J. 51, 90–96 (1952).Google Scholar
  32. [6]
    Methods for measurement of nitrogen fixation. In Methods in enzymology, S. P. Colowick and N. O. Kaplan, editors. Vol. IV (in press). New York: Academic Press 1957.Google Scholar
  33. Chance, B.: Spectra and reaction kinetics of respiratory pigments of homogenized and intact cells. Nature (Lond.) 169, 215–230 (1952).CrossRefGoogle Scholar
  34. Spectrophotometry of intracellular respiratory pigments. Science (Lancaster, Pa.) 120, 767–775 (1954).Google Scholar
  35. Chaudhary, M. T., T. G. G. Wilson and E. R. Roberts: Inhibition of Azotobacter vinelandii by hyponitrous acid. Biochim. et Biophysica Acta 14, 507–513 (1954).CrossRefGoogle Scholar
  36. Chibnall, A. C., M. W. Rees and E. F. Williams: The total nitrogen content of egg albumin and other proteins. Biochemic. J. 37, 354–359 (1943).Google Scholar
  37. Cohen, G. N., et Germaine Cohen-Bazire: Couplage oxydo-réducteur des deux réactions: fumarate→oxaloacétate et hydroxylamine→ammoniac. Synthèse d’acide aspartique à partir de f umarate et d’hydroxylamine par Clostridium saccharobutyricum GR4. C. r. Acad. Sci. Paris 227, 873–875 (1948).Google Scholar
  38. Colter, J. S., and J. H. Quastel: Catalytic decomposition of hydroxylamine by hemoglobin. Arch. of Biochem. 27, 368–389 (1950).Google Scholar
  39. De, P. K.: The role of blue-green algae in nitrogen fixation in rice-fields. Proc. Roy. Soc. Lond. Ser. B 127, 121–139 (1939).CrossRefGoogle Scholar
  40. Drewes, K.: Über die Assimilation des Luftstickstoffs durch Blaualgen. Zbl. Bakter. II 76, 88–101 (1928).Google Scholar
  41. Duchow, Ellen, and H. C. Douglas: Bhodomicrobium vannielii, a new photoheterotrophic bacterium. J. Bacter. 58, 409–416 (1949).Google Scholar
  42. Ebersole, E. R., Claire Guttentag and P. W. Wilson: Nature of carbon monoxide inhibition of biological nitrogen fixation. Arch. of Biochem. 3, 399–418 (1944).Google Scholar
  43. [1]
    Ellfolk, N., and A. I. Virtanen: [1] Electrophoresis of leghaemoglobin. Acta chem. scand. (Copenh.) 4, 1014–1019 (1950).CrossRefGoogle Scholar
  44. [2] The molecular weight of leghaemoglobin. Acta chem. scand. (Copenh.) 6, 411–420 (1952).Google Scholar
  45. [1]
    Endres, G.: [1] Über ein Zwischenprodukt der N2-Assimilation. Naturwiss. 22, 662 (1934).CrossRefGoogle Scholar
  46. [2] Zur Kenntnis der Stickstoff assimilierenden Bakterien. II. Über die Bindung des Luftstickstoffes durch Azotobakter. Liebigs Ann. 518, 109–126 (1935).Google Scholar
  47. Esposito, R. G., and P. W. Wilson: Trace metals in the nutrition of Azotobacter vinelandii O. Biochim. et Biophysics Acta 22, 186–187 (1956).CrossRefGoogle Scholar
  48. Ferguson, T. P., and G. Bond: The growth of the red glover at different oxygen tensions. Ann. of Bot. 18, 385–389 (1954).Google Scholar
  49. Finn, R. K.: Agitation-aeration in the laboratory and in industry. Bacter. Rev. 18, 254–274 (1954).Google Scholar
  50. Fogg, G. E.: Nitrogen fixation by blue-green algae. Endeavour 6, 172–175 (1947).Google Scholar
  51. Fogg, G. E., and Miriam Wolfe: The nitrogen metabolism of the blue-green algae (Myxophyceae). In Autotrophic microorganisms pp. 99–125. Edited by Fry, B. A., and J. L. Peel, Cambridge: University Press 1954.Google Scholar
  52. Gerloff, G. C., G. P. Fitzgerald and F. Skoog: The isolation, purification, and nutrient solution requirements of blue-green algae. In Plant growth substances, pp. 27–44. Edited by Skoog, F. Madison: University of Wisconsin Press 1951.Google Scholar
  53. [1]
    Gest, H.: [1] Metabolic patterns in photosynthetic bacteria. Bacter. Rev. 15, 183–210 (1951).Google Scholar
  54. [2]
    Molecular hydrogen: oxidation and formation in cell-free systems. In Phosphorus metabolism, vol. II, pp. 522–543. Edited by Mc Elroy, W. D., and B. Glass. Baltimore: Johns Hopkins Press 1952.Google Scholar
  55. [3] Oxidation and evolution of molecular hydrogen by microorganisms. Bacter. Rev. 18, 43–73 (1954).Google Scholar
  56. Gest, H., M. D. Kamen and H. M. Bregoff: Photoproduction of hydrogen and nitrogen fixation by Rhodospirillum rubrum. J. of Biol. Chem. 182, 153–170 (1950).Google Scholar
  57. Giesberger, G.: Some observations on the culture, physiology and morphology of some brown-red Rhodospirillum-species. Antonie van Leeuwenhoek 13, 135–148 (1947).CrossRefGoogle Scholar
  58. Green, Margaret, M. Alexander and P. W. Wilson: Hydrogenase in nitrogenase-deficient Azotobacter mutants. Proc. Soc. Exper. Biol. a. Med. 82, 351–363 (1953).Google Scholar
  59. Green, Margaret, and P. W. Wilson: [1] The utilization of nitrate nitrogen by the Azotobacter. J. Gen. Microbiol. 9, 89–96 1953.Google Scholar
  60. [2] Hydrogenase and nitrogenase in Azotobacter. J. Bacter. 65, 511–517 1953.Google Scholar
  61. Gunsalus, I. C., B. L. Horecker and W. A. Wood: Pathways of carbohydrate metabolism in microorganisms. Bacter. Rev. 19, 79–128 (1955).Google Scholar
  62. Hamilton, P. B., and P. W. Wilson: Nitrogen fixation by Aerobacter aerogenes. Ann. Acad. Sci. fenn., Ser. A, II. Chemica 1955, 139–150.Google Scholar
  63. Hopeins, E. W.: Studies of nitrogen fixation by root nodule bacteria of the Leguminosae. Soil Sci. 28, 433–447 (1929).CrossRefGoogle Scholar
  64. Horner, C. K., and F. E. Allison: Utilization of fixed nitrogen by Azotobacter and influence on nitrogen fixation. J. Bacter. 47, 1–14 (1944).Google Scholar
  65. Horner, C. K., and D. Burk: Magnesium, calcium, and iron requirements for growth of Azotobacter in free and fixed nitrogen. J. Agricult. Res. 48, 981–995 (1934).Google Scholar
  66. Horner, C. K., D. Burk, F. E. Allison and Mildred S. Sherman: Nitrogen fixation by Azotobacter as influenced by molybdenum and vanadium. J. Agricult. Res. 65, 173–193 (1942).Google Scholar
  67. [1]
    Hutner, S. H.: [1] Organic growth essentials of the aerobic nonsulfur photosynthetic bacteria. J. Bacter. 52, 213–221 (1946).Google Scholar
  68. [2] Anaerobic and aerobic growth of purple bacteria (Athiorhodaceae) in chemically defined media. J. Gen. Microbiol. 4, 286–293 (1950).Google Scholar
  69. Hyndman, L. A., R. H. Burris and P. W. Wilson: Properties of hydrogenase from Azotobacter vinelandii. J. Bacter. 65, 522–531 (1953).Google Scholar
  70. Iterson jr., G. van den, L. E. Dooren de Jong and A. J. Kluyver: Martinus Willem Beijerinck. His life and work. The Hague: Martinus Nijhoff 1940.Google Scholar
  71. [1]
    Jensen, H. L.: [1] Notes on the biology of Azotobacter. Proc. Soc. Appl. Bacter. 14, 89–94 (1951).CrossRefGoogle Scholar
  72. [2] The Azotobacteriaceae. Bacter. Rev. 18, 195–213 (1954).Google Scholar
  73. Jensen, H. L., and D. Spenser: The influence of molybdenum and vanadium on nitrogen fixation by Clostridium butyricum and related organisms. Proc. Linnean Soc. N.S. Wales 72, 73–86 (1947).Google Scholar
  74. Jensen, V.: Nitrogen fixation by strains of Aerobacter aerogenes. Physiol. Plantarem (Copenh.) 9, 130–136 (1956).Google Scholar
  75. Kamen, M. D., and H. Gest: Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirillum rubrum. Science (Lancaster, Pa.) 109, 560 (1949).Google Scholar
  76. Karlsson, J. L., and H. A. Barker: Evidence against the occurrence of a tricarboxylic acid cycle in Azotobacter agilis. J. of Biol. Chem. 175, 913–921 (1948).Google Scholar
  77. Keilin, D., and J. F. Ryley: Haemoglobin in protozoa. Nature (Lond.) 172, 451 (1953).CrossRefGoogle Scholar
  78. Kedlin, D., and J. D. Smith: Haemoglobin and nitrogen fixation in the root nodules of leguminous plants. Nature (Lond.) 159, 692 (1947).CrossRefGoogle Scholar
  79. Kedlin, D., and A. Tissières: Haemoglobin in fungi. Nature (Lond.) 172, 390 (1953).CrossRefGoogle Scholar
  80. Kedlin, D., and Y. L. Wang: Haemoglobin in the root nodules of leguminous plants. Nature (Lond.) 155, 227 (1945).CrossRefGoogle Scholar
  81. Haemoglobin of Gastrophilus larvae. Purification and properties. Biochemie. J. 40, 855–866 (1946).Google Scholar
  82. Kjeldahl, J.: Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. anal. Chem. 22, 366–382 (1883).CrossRefGoogle Scholar
  83. Kluyver, A. J.: Some aspects of nitrate reduction. In Symposium on microbial metabolism. Institute Superiore di Sanita. Rome 1953.Google Scholar
  84. Krasna, A. I., and D. Rittenberg: The mechanism of action of the enzyme hydrogenase. J. Amer. Chem. Soc. 76, 3015–3020 (1954).CrossRefGoogle Scholar
  85. Kratz, W. A., and J. Meyers: Nutrition and growth of several blue-green algae. Amer. J. Bot. 42, 282–287 (1955).CrossRefGoogle Scholar
  86. Kubo, H.: Über Hämoprotein aus den Wurzelknöllchen von Leguminosen. Acta phytochim. (Tokyo) 11, 195–200 (1939).Google Scholar
  87. Kyle, T. S., and A. Eisenstark: The genus Azotobacter. Biol. Sci. Bull. 5, Oklahoma Agric. a. Mech. Coli. 49 pp. (1951).Google Scholar
  88. Larsen, H.: On the microbiology and biochemistry of the photosynthetic green sulphur bacteria. Kgl. norske vid. Selsk. Skr. 1953, Nr 1.Google Scholar
  89. Lee, S. B., and P. W.. Wilson: Hydrogenase and nitrogen fixation by Azotobacter. J. of Biol. Chem. 151, 377–385 (1943).Google Scholar
  90. [1]
    Lind, C. J., and P. W. Wilson: [1] Mechanism of biological nitrogen fixation. VIII. Carbon monoxide as an inhibitor for nitrogen fixation by red clover. J. Amer. Chem. Soc. 63, 3511–3514 (1941).CrossRefGoogle Scholar
  91. [2]
    [2] Nitrogen fixation by Azotobacter in association with other bacteria. Soil Sci. 54, 105–111 (1942).Google Scholar
  92. [3] Carbon monoxide inhibition of nitrogen fixation by Azotobacter. Arch. of Biochem. 1, 59–72 (1942).Google Scholar
  93. Lindstrom, E. S., R. H. Burris and P. W. Wilson: Nitrogen fixation by photosynthetic bacteria. J. Bacter. 58, 313–316 (1949).Google Scholar
  94. Lindstrom, E. S., S. M. Lewis and M. I. Pinsky: Nitrogen fixation and hydrogenase in various bacterial species. J. Bacter. 61, 481–487 (1951).Google Scholar
  95. Lindstrom, E. S., J. W. Newton and P. W. Wilson: The relationship between photosynthesis and nitrogen fixation. Proc. Nat. Acad. Sci. U.S.A. 38, 392–396 (1952).CrossRefGoogle Scholar
  96. Lindstrom, E. S., Shirley R. Tove and P. W. Wilson: Nitrogen fixation by the green and purple sulfur bacteria. Science (Lancaster, Pa.) 112, 197–198 (1950).Google Scholar
  97. Lineweaver, H.: The solubility and chemical and physical absorption of nitrogen gas in Azotobacter cells. J. of Biol. Chem. 122, 549–567 (1938).Google Scholar
  98. Lineweaver, H., D. Burk and W. E. Deming: The dissociation constant of nitrogen -nitrogenase in Azotobacter. J. Amer. chem. Soc. 56, 225–230 (1934).CrossRefGoogle Scholar
  99. Lipman, J. G.: Experiments on the transformation and fixation of nitrogen by bacteria. New Jersey State Agric. Expt. Sta. Rept. 24, 217–285 (1903).Google Scholar
  100. Little, H. N., and R. H. Burris: Activity of the red pigment from leguminous root nodules. J. Amer. Chem. Soc. 69, 383–841 (1947).CrossRefGoogle Scholar
  101. Löhnis, Marie P.: Can Bacterium radicicola assimilate nitrogen in the absence of the host plant? Soü Sci. 29, 37–57 (1930).CrossRefGoogle Scholar
  102. Magee, W. E., and R. H. Burris: Fixation of N2 15 by excised nodules. Plant physiol. 29, 199–200 (1954).PubMedCrossRefGoogle Scholar
  103. Mc Coy, Elizabeth, and L. S. Mc Clung: The anaerobic bacteria: a subject bibliography. Vol. I and II. Berkley: University of California Press 1939.Google Scholar
  104. Mc Elroy, W. D., and H. B. Glass: Editors, Symposium on inorganic nitrogen metabolism. Baltimore: Johns Hopkins University Press 1956.Google Scholar
  105. Mc Kee, H. S.: Review of recent work on nitrogen metabolism. New Phytologist 48, 1–83 (1949).CrossRefGoogle Scholar
  106. Metcalfe, G., Sonja Cayen, E. R. Roberts and T. G. G. Wilson: Nitrogen fixation by soil yeasts. Nature (Lond.) 174, 841 (1954).CrossRefGoogle Scholar
  107. Moelwyn-Hughes, E. A.: The kinetics of enzyme reactions. Erg. Enzymforsch. 6, 23–46 (1937).Google Scholar
  108. Molnar, Dorothy M., R. H. Burris and P. W. Wilson: The effect of various gases on nitrogen fixation by Azotobacter. J. Amer. Chem. Soc. 70, 1713–1716 (1948).CrossRefGoogle Scholar
  109. Mortenson, L. E., P. B. Hamilton and P. W. Wilson: Dissimilation of 6-phosphogiuconate by Azotobacter vinelandii. Biochim. et Biophysica Acta 16, 238–244 (1955).CrossRefGoogle Scholar
  110. [1]
    Mortenson, L. E., and P. W. Wilson: [1] Effect of molecular nitrogen and hydrogen on hydrogen evolution by Clostridium pasteurianum. J. Bacter. 62, 513–514 (1951).Google Scholar
  111. [2]
    Initial stages in the breakdown of carbohydrates by the Azotobacter vinelandii. Arch. of Biochem. a. Biophysics 53, 425–435 (1954).Google Scholar
  112. [3] Metabolism of ribose-5-phosphate by Azotobacter vinelandii. J. of Biol. Chem. 213, 713–721 (1955).Google Scholar
  113. Newton, J. W., and P. W. Wilson: Nitrogen fixation and photoproduction of molecular hydrogen by Thiorhodaceae. Antonie van Leeuwenhoek 19, 71–77 (1953).PubMedCrossRefGoogle Scholar
  114. Newton, J. W., P. W. Wilson and R. H. Burris: Direct demonstration of ammonia as an intermediate in nitrogen fixation by Azotobacter. J. of Biol. Chem. 204, 445–451 (1953).Google Scholar
  115. [1]
    Niel, C. B. van: [1] On the morphology and physiology of the purple and green sulfur bacteria. Arch. Mikrobiol. 3, 1–112 (1931).CrossRefGoogle Scholar
  116. [2]
    The bacterial photosynthèses and their importance for the general problem of photosynthesis. Adv. Enzymol. 1, 263–328 (1941).Google Scholar
  117. [3]
    The culture, general physiology, morphology, and classification of the non-sulfur purple and brown bacteria. Bacter. Rev. 8, 1–118 (1944).Google Scholar
  118. [4] The comparative biochemistry of photosynthesis. In Photosynthesis in plants, pp. 437–495. Ames: Iowa State College Press 1949.Google Scholar
  119. Novak, Ruth, and P. W. Wilson: The utilization of nitrogen in hydroxylamine and oximes by Azotobacter vinelandii. J. Bacter. 55, 517–524 (1948).Google Scholar
  120. Parker, C. A.: Effect of oxygen on the fixation of nitrogen by Azotobacter. Nature (Lond.) 173, 780–781 (1954).CrossRefGoogle Scholar
  121. [1]
    Pethica, B. A., E. R. Roberts and E. R. S. Winter: [1] The exchange reaction of hydroxylamine and gaseous nitrogen. J. Chem. Phys. 18, 996 (1950).CrossRefGoogle Scholar
  122. [2]
    The hydrogenase of Azotobacter. Research (Lond.) 3, 1–3 (1950).Google Scholar
  123. [3] Inhibition in Azotobacter vinelandii by hydroxylamine. Biochim. et Biophysica Acta 14, 85–99 (1954).Google Scholar
  124. Phelps, A. S., and P. W. Wilson: Occurrence of hydrogenase in nitrogen-fixing organisms. Proc. Soc. Exper. Biol. a. Med. 47, 473–476 (1941).Google Scholar
  125. Pine, M. J., and H. A. Barker: Studies on the methane bacteria. XI. Fixation of atmospheric nitrogen by Methanobacterium omelianskii. J. Bacter. 68, 588–591 (1954).Google Scholar
  126. [1]
    Repaske, R., and P. W. Wilson: [1] Nitrous oxide inhibition of nitrogen fixation by Azotobacter. J. Amer. Chem. Soc. 74, 3101–3103 (1952).CrossRefGoogle Scholar
  127. [2] Oxidation of intermediates of the tricarboxylic acid cycle by extracts of Azotobacter agile. Proc. Nat. Acad. Sci. U.S.A. 39, 225–232 (1953).Google Scholar
  128. Robbins, W. J.: The assimilation by plants of various forms of nitrogen. Amer. J. Bot. 24, 243–250 (1937).CrossRefGoogle Scholar
  129. Rose, I. A., and S. Ochoa: Phosphorylation by particulate preparations of Azotobacter vineandii. J. of Biol. Chem. 220, 307–314 (1956).Google Scholar
  130. [1]
    Rosenblum, E. D., and P. W. Wilson: [1] Fixation of isotopic nitrogen by Clostridium. J. Bacter. 57, 413–414 (1949).Google Scholar
  131. [2]
    Molecular hydrogen and nitrogen fixation by Clostridium. J. Bacter. 59, 83–91 (1950).Google Scholar
  132. [3] The utilization of nitrogen in various compounds by Clostridium pasteurianum. J. Bacter. 61, 475–480 (1951).Google Scholar
  133. Schwyzer, R.: Reduktionsversuche mit Hämoglobin an Benzhydroxamsäure und Brenztraubensäureoxim. Acta chem. scand. (Copenh.) 5, 1398–1399 (1951).CrossRefGoogle Scholar
  134. Segal, W., and P. W. Wilson: Hydroxylamine as a source of nitrogen for Azotobacter vinelandii. J. Bacter. 57, 55–60 (1949).Google Scholar
  135. Shields, Lora M.: Nitrogen sources of seed plants and environmental influences affecting the nitrogen supply. Bot. Review 19, 321–376 (1953).CrossRefGoogle Scholar
  136. Shug, A. L., P. B. Hamilton and P. W. Wilson: Hydrogenase and nitrogen fixation. In A symposium on inorganic nitrogen metabolism, pp. 344–360. Edited by W. D. Mc Elroy and H. B. Glass. Baltimore: Johns Hopkins Press 1956.Google Scholar
  137. Shug, A. L., P. W. Wilson, D. E. Green and H. R. Mahler: The role of molybdenum and flavin in hydrogenase. J. Amer. Chem. Soc. 76, 3355–3356 (1954).CrossRefGoogle Scholar
  138. Sisler, F. D., and C. E. Zo Bell: Nitrogen fixation by sulfate-reducing bacteria indicated by nitrogen/argon ratios. Science (Lancaster, Pa.) 113, 511–512 (1951).Google Scholar
  139. [1]
    Smith, J. D.: [1] The concentration and distribution of haemoglobin in the root nodules of leguminous plants. Biochemie. J. 44, 585–591 (1949).Google Scholar
  140. [2] Haemoglobin and the oxygen uptake of leguminous root nodules. Biochemie. J. 44, 591–598 (1949).Google Scholar
  141. Soriano, S.: The presence of Azotobacter agilis in North and South Americ. Rev. Inst. Bact. Dept. Nacion. Hig. 10, 55–65 (1941). Biol. Abstr. 16, 15107 (1942).Google Scholar
  142. Stanier, R. Y.: Simultaneous adaptation: A new technique for the study of metabolic pathways. J. Bacter. 54, 339–348 (1947).Google Scholar
  143. Stephenson, Marjory: Bacterial metabolism, 3rd ed. London: Longmans, Green & Co. 1949.Google Scholar
  144. Stiffler, H. J., and H. Gest: Effects of light intensity and nitrogen growth source on hydrogen metabolism in Rhodospirillum rubrum. Science (Lancaster, Pa.) 120, 1024–1026 (1954).Google Scholar
  145. Stokes, J. L.: The role of algae in the nitrogen cycle of the soil. Soil Sci. 49, 265–275 (1940).CrossRefGoogle Scholar
  146. [1]
    Stone, R. W., and P. W. Wilson: [1] Respiratory activity of cell-free extracts from Azotobacter. J. Bacter. 63, 605–617 (1952).Google Scholar
  147. [2]
    The incorporation of acetate in acids of the citric acid cycle by Azotobacter extracts. J. of Biol. Chem. 196, 221–225 (1952).Google Scholar
  148. Stumpf, P. K.: Phosphate assimilation in higher plants. In A symposium on phosphorus metabolism, Vol. II, pp. 29–67. Edited by W. D. Mc Elroy and B. Glass. Baltimore: Johns Hopkins Press 1952.Google Scholar
  149. Suzuki, B., and Sakaru Suzuki: Hydroxylamine reduction and hydrazine oxidation. Sci. Rep. Tôhoku Univ. (Japan) 20, 195–201 (1954).Google Scholar
  150. Taniguchi, S., H. Mitsui, K. Nakamura and F. Egami: Hydroxylamine reductase. Ann. Acad. Sci. fenn., Ser. A, II. Chemica 1955, 200–215.Google Scholar
  151. Taniguchi, S., H. Mitsui, J. Tomoda, T. Yamada and F. Egami: The successive reduction from nitrate to ammonia by cell-free bacterial enzyme systems. J. of Biochem. (Tokyo) 40, 175–185 (1953).Google Scholar
  152. Tissières, A., and E. C.. Slater: Respiratory chain phosphorylation in extracts of Azotobacter vinelandii. Nature (Lond.) 176, 736–737 (1955).CrossRefGoogle Scholar
  153. [1]
    Tôth, L.: [1] The role of nitrogen-active microorganisms in the nitrogen metabolism of insects. Tijdschr. Entomol. 95, 43–59 (1952).Google Scholar
  154. [2]
    Nitrogen active microorganisms living in symbiosis with animals and their role in the nitrogen metabolism of the host animal. Arch Mikrobiol. 18, 242–244 (1953).Google Scholar
  155. Tove, Shirley R., H. F. Niss and P. W. Willson: Fixation of N215 by excised nodules of leguminous plants. J. of Biol. Chem. 184, 77–82 (1950).Google Scholar
  156. Tove, Shirley, R., and P. W. Wilson: Isotopic studies of fixation by rhizobia in presence of hemoprotein. Proc. Soc. Exper. Biol. a. Med. 69, 184–186 (1948).Google Scholar
  157. [1]
    Virtanen, A. L.: [1] Cattle fodder and human nutrition. Cambridge: The University Press 1938.Google Scholar
  158. [2]
    Mechanism of symbiotic nitrogen fixation by leguminous plants. Third Comm. Intern. Soc. Soil. Sci. Trans. A, 1939, 4–19.Google Scholar
  159. [3]
    Symbiotic nitrogen fixation. Nature (Lond.) 155, 747–748 (1945).Google Scholar
  160. [4]
    [4] The biology and chemistry of nitrogen fixation by legume bacteria. Biol. Rev. Cambridge Philos. Soc. 22, 239–269 (1947).Google Scholar
  161. [5]
    Biological nitrogen fixation. Annual Rev. Microbiol. 2, 485–506 (1948).Google Scholar
  162. [6]
    Some aspects of biological nitrogen fixation. Ann. Acad. Sci. fenn., Ser. A, II. Chemica, No 43, 3–19 (1952).Google Scholar
  163. [7]
    Atmosphärischer Stickstoff als Aufrechterhalter des Lebens auf der Erde. Angew. Chem. 65 (No 1), 1–11 (1953).Google Scholar
  164. [8]
    Assimilation of molecular and combined nitrogen by microorganisms. In Symposium on microbial metabolism. Institute Superiore di Sanita. Rome 1953.Google Scholar
  165. Virtanen, A. I., J. Erkama and H. Linkola: On the relation between nitrogen fixation and leghaemoglobin content of leguminous root nodules. II. Acta chem. scand. 1 (Copenh.), 861–870 (1947).Google Scholar
  166. Virtanen, A. I., and Maire Hakala: Anaerobic nitrogen fixation and formation of oxime nitrogen. Acta chem. scand. (Copenh.) 3, 1044–1049 (1949).CrossRefGoogle Scholar
  167. Virtanen, A. I., J. Jorma, H. Linkola and A. Linnasalmi: On the relation between nitrogen fixation and leghaemoglobin content of leguminous root nodules. Acta chem. scand. (Copenh.) 1, 90–111 (1947).CrossRefGoogle Scholar
  168. Virtanen, A. I., and S. Lundbom: The growth of Clostridium pasteurianum in synthetic nutrient solution. Acta chemica scand. (Copenh.) 8, 870–871 1954.CrossRefGoogle Scholar
  169. Virtanen, A. I., T. Moisio, R. M. Allison and R. H. Burris: Fixation of molecular nitrogen by excised nodules of the alder. Acta chem. scand. (Copenh.) 8, 1730–1731 (1954).CrossRefGoogle Scholar
  170. [1]
    Waksman, S. A.: [1] Principles of soil microbiology, 2nd ed. Baltimore: Williams & Wilkins 1932.Google Scholar
  171. [2]
    Soil microbiology. New York: John Wiley & Sons 1952.Google Scholar
  172. Wall, J. S., A. C. Wagenknecht, J. W. Newton and R. H. Burris: Comparison of the metabolism of ammonia and molecular nitrogen in photosynthesizing bacteria. J. Bacter. 63, 563–573 (1952).Google Scholar
  173. Williams, A. E., and R. H. Burris: Nitrogen fixation by blue-green algae and their nitrogenous composition. Amer. J. Bot. 39, 340–342 (1952).CrossRefGoogle Scholar
  174. [1]
    Williams, Anna Maria, and P. W. Wilson: [1] Adaptation of Azotobacter cells to tricarboxylic acid substrates. J. Bacter. 67, 353–360 (1954).Google Scholar
  175. [2]
    Equilibration of succinate solutions with adapted and unadapted Azotobacter cells. Canad. J. Microbiol. 1, 36–44 (1954).Google Scholar
  176. Wilson, J. B., and P. W. Wilson: Hydrogen in the metabolism of Azotobacter. J. Bacter. 44, 250–251 (1942).Google Scholar
  177. [1]
    Wilson, P. W.: [1] Mechanism of symbiotic nitrogen fixation. I. The influence of pN2. J. Amer. Chem. Soc. 58, 1256–1261 (1936).CrossRefGoogle Scholar
  178. [2]
    The biochemistry of symbiotic nitrogen fixation. Madison: The University of Wisconsin Press 1940.Google Scholar
  179. [3]
    Biological nitrogen fixation. In Bacterial physiology, chap. 14. New York: Academic Press 1951.Google Scholar
  180. [2]
    The comparative biochemistry of nitrogen fixation. Adv. Enzymol. 13, 345–375 (1952).Google Scholar
  181. [5] Pathways in biological nitrogen fixation. In Perspectives and horizons in microbiology. Edited by Waksmans, S. A., pp. 110–120. New Brunswick: Rutgers University Press 1955.Google Scholar
  182. [1]
    Wilson, P. W., and R. H. Burris: [1] The mechanism of biological nitrogen fixation. Bacter. Rev. 11, 41–73 (1947).Google Scholar
  183. [2]
    Biological nitrogen fixation a reappraisal. Annual Rev. Microbiol. 7, 415–432 (1953).Google Scholar
  184. Wilson, P. W., R. H. Burris and W. B. Coffee: Hydrogenase and symbiotic nitrogen fixation. J. of Biol. Chem. 147, 475–481 (1943).Google Scholar
  185. Wilson, P. W., R. H. Burris and C. J. Lind: The dissociation constant in nitrogen fixation by Azotobacter. Proc. Nat. Acad. Sci. U.S.A. 28, 243–250 (1942).CrossRefGoogle Scholar
  186. Wilson, P. W., and E. B. Fred: Mechanism of symbiotic nitrogen fixation. II. The pO2 function. Proc. Nat. Acad. Sci. U.S.A. 23, 503–508 (1937).CrossRefGoogle Scholar
  187. Wilson, P. W., J. F. Hull and R. H. Burris: Competition between free and combined nitrogen in nutrition of Azotobacter. Proc. Nat. Acad. Sci. U.S.A. 29, 289–294 (1943).CrossRefGoogle Scholar
  188. Willson, P. W., S. B. Lee and O. Wyss: Mechanism of symbiotic nitrogen fixation. V. Nature of inhibition by hydrogen. J. of Biol. Chem. 139, 81–101 (1941).Google Scholar
  189. Wilson, P. W., and C. J. Lind: Carbon monoxide inhibition of Azotobacter in microrespiration experiments. J. Bacter. 45, 219–232 (1943).Google Scholar
  190. [1]
    Wilson, T. G. G., and E. R. Roberts: [1] Studies in the biological fixation of nitrogen. IV. Inhibition in Azotobacter vinelandii by nitrous oxide. Biochim. et Biophysica Acta 15, 568–577 (1954).CrossRefGoogle Scholar
  191. [2]
    Attempts at nitrogen fixation in vitro. Nature (Lond.) 174, 795 (1954).Google Scholar
  192. Wilson, P. W., and W. W. Umbreit: Mechanism of symbiotic nitrogen fixation. III. Hydrogen as a specific inhibitor. Arch. Mikrobiol. 8, 440–457 (1937).CrossRefGoogle Scholar
  193. Wilson, P. W., W. W. Umbreit and S. B. Lee: Mechanism of symbiotic nitrogen fixation. IV. Specific inhibition by hydrogen. Biochemie. J. 32, 2084–2095 (1938).Google Scholar
  194. Winfield, M. E.: Reactions of hydrogen gas in solution. Rev. Pure Appl. Chem. (Roy. Austral. Chem. Inst.) 5, 217–246 (1955).Google Scholar
  195. Winogradsky, S.: Microbiologie du sol. Problèmes et méthodes. Cinquante Années de recherches. Ceuvres Complètes. Paris: Masson & Cie. 1949.Google Scholar
  196. [1]
    Wolfe, Miriam: [1] The effect of molybdenum upon the nitrogen metabolism of Anabaena cylindrica. I. A study of the molybdenum requirement for nitrogen fixation and for nitrate and ammonia assimilation. Ann. of Bot. 18, 299–308 (1954).Google Scholar
  197. [2]
    The effect of molybdenum upon the nitrogen metabolism of Anabaena cylindrica. II. A more detailed study of the action of molybdenum in nitrate assimilation. Ann. of Bot. 18, 309–325 (1954).Google Scholar
  198. Wood, J. G., M. R. Hone, M. E. Mattner and C. P. Symons: Studies on the nitrogen metabolism of plants. Austral. J. Sci. Res. B 1, 38–49 (1948).Google Scholar
  199. Wyss, O., C. J. Lind, J. B. Wilson and P. W. Wilson: Mechanism of biological nitrogen fixation. 7. Molecular H2 and the pH2 function of Azotobacter. Biochemie. J. 35, 845–854 (1941).Google Scholar
  200. Wyss, O., and P. W. Wilson: Mechanism of biological nitrogen fixation. VI. Inhibition of Azotobacter by hydrogen. Proc. Nat. Acad. Sci. U.S.A. 27, 162–168 (1941).CrossRefGoogle Scholar
  201. Zelitch, I.: Simultaneous use of molecular nitrogen and ammonia by Clostridium pasteurianum. Proc. Nat. Acad. Sci. U.S.A. 37, 559–565 (1951).CrossRefGoogle Scholar
  202. [1]
    Zelitch, I., E. D. Rosenblum, R. H. Burris and P. W. Wilson: [1] Comparison of the metabolism of ammonia and molecular nitrogen in Clostridium. J. Bacter. 62, 747–752 (1951).Google Scholar
  203. [2]
    Isolation of the key intermediate in biological nitrogen fixation by Clostridium. J. of Biol. Chem. 191, 295–298 (1951).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • P. W. Wilson

There are no affiliations available

Personalised recommendations