Protein metabolism in ripening and dormant seeds and fruits

  • H. S. McKee
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)


It is not necessary to consider here the complex question of the morphological definition of a fruit. The structures ordinarily considered as fruits arise from tissues of very diverse origin. In some plants the fruit develops solely from the wall of the ovary, but there are many species in which the mature fruit includes other parts of the flower and of the organs supporting or surrounding it. For physiological purposes we may consider as a fruit any structure within or upon which the fertilized ovules develop into seeds, regardless of whether it derives solely from the ovary wall, as in the tomato, or is formed by the union of the ovary wall with other floral or axial tissues, as in the apple, pineapple or strawberry. The common features of fruits in this broad sense are the support and protection of the developing ovules. The physiological relations between the ovules and their supporting tissues are reciprocal. The ovary and ovules are already formed in the flower, but in general they do not develop further in the absence of pollination. The growth of the fruit sensu lato depends on that of the ovules. Unfertilized ovaries usually drop from the plant; even if they remain attached to the plant their development is arrested. The mechanisms involved in these relations are not well understood and need not concern us here. Our interest in this section will be concentrated on events in fruits developing after pollination or an alternative stimulus has set in motion the processes leading from the ovary of the flower to the mature fruit.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous: Recent work on germination. Nature (Lond.) 149, 658 (1942).Google Scholar
  2. Archbold, H. K.: Chemical studies in the physiology of apples. XII. Ripening processes in the apple and the relation of time of gathering to chemical changes in cold storage. Ann. of Bot. 46, 407 (1932).Google Scholar
  3. Askew, H. O.: Changes in the chemical composition of developing apples. J. Pomol. 13, 232 (1935).Google Scholar
  4. Avery, G. S., J. Berger and B. Schalucha: The total extraction of free auxin and auxin precursors from plant tisue. Amer. J. Bot. 28, 596 (1949).CrossRefGoogle Scholar
  5. Bach, A., A. Oparin U. R. Wähner: Untersuchungen über den Fermentgehalt von reifenden, ruhenden und keimenden Weizensamen. Biochem. Z. 180, 363 (1927).Google Scholar
  6. Bain, J. M., and R.N.Robertson: The physiology of growth in apple fruits. I. Cell size, cell number, and fruit development. Austral. J. Sci. Res. B 4, 75 (1951).Google Scholar
  7. Berg, A. M., S. Kari, M. Alfthan and A. I. Virtanen: Homoserine and α-aminoadipic acid in green plants. Acta chem. scand. (Copenh.) 8, 358 (1954).CrossRefGoogle Scholar
  8. Bigelow, W. D., and H. C. Gore: The ripening of peaches. J. Amer. Chem. Soc. 27, 915 (1905).CrossRefGoogle Scholar
  9. Bishop, L. R.: The proteins of barley during development and storing and in the mature grain. J. Inst. Brew. 36 (27 N. S.), 337 (1930).Google Scholar
  10. Bisset, S. K.: The non-protein nitrogen of extracts of Pisum sativum. Biochemic. J. 58, 225 (1954).Google Scholar
  11. Bisson, C. S., and H. A. Jones: Changes accompanying fruit development in the garden pea. Plant Physiol. 7, 91 (1932).PubMedCrossRefGoogle Scholar
  12. Breakwell, E. J., and E. M. Hutton: A protein ‘survey’ of the South Australian wheat belt. J. Austral. Inst. Agricult. Sci. 5, 103 (1939).Google Scholar
  13. Brunel, A., et R. Echevin: Les uréides glyoxyliques dans l’évolution de la fleur et du fruit d’Acer pseudo-Platanus L. C. r. Acad. Sci. Paris 207, 592 (1938).Google Scholar
  14. Brunel, A., et G. Capelle: Sur l’importance biologique des uréides glyoxyliques chez les êtres vivants. I. L’allantoine et l’acide allantoique chez les végétaux. Bull. Soc. Chim. biol. Paris 29, 427 (1947).PubMedGoogle Scholar
  15. Casimir, J.: Étude des acides aminés dans les fruits en conserve. Bull. Inst. Agron. Gembloux 20, 33 (1952).Google Scholar
  16. Crocker, W.: Life-span of seeds. Bot. Review 4, 235 (1938).CrossRefGoogle Scholar
  17. Danielsson, C. E.: A contribution to the study of the synthesis of the reserve proteins in ripening pea seeds. Acta chem. scand. (Copenh.) 6, 149 (1952).CrossRefGoogle Scholar
  18. Danielsson, C. E., and H. Lis: Differences in the chemical composition of some pea proteins. Acta chem. scand. (Copenh.) 6, 139 (1952).CrossRefGoogle Scholar
  19. Davis, S. G., C. R. Fellers and W. B. Esselen: Composition and nature of apple protein. Food Res. 14, 417 (1949).PubMedGoogle Scholar
  20. Deleano, N. T., u. C. Bordeianu: Beiträge zum Studium der Rolle und Wirkungsweise der mineral- und organischen Stoffe im Pflanzenleben. II. Mitt.: Der quantitative Stoffwechsel der mineral- und organischen Substanzen in den Blättern und geschälten Samen von Aesculus Hippocastanum während ihrer Entwicklung. Beitr. Biol. Pflanz. 20, 179 (1933).Google Scholar
  21. Deleano, N. T., u. P. Gotterbarm: Beiträge zum Studium der Rolle und Wirkungsweise der mineral- und organischen Stoffe im Pflanzenleben. III. Mitt.: Der quantitative Stoffwechsel der mineral- und organischen Substanzen des Roggens und der Gerste. Beitr. Biol. Pflanz. 24, 19 (1936).Google Scholar
  22. Donen, I.: Studies in deciduous fruits. V. Preliminary observations on the relationship between nitrogenous metabolism and internal breakdown of Kelsey plums in cold store. Trans. Roy. Soc. S. Africa 25, 83 (1937).CrossRefGoogle Scholar
  23. N metabolism of the Kelsey plum. Biochemic. J. 32, 366 (1938).Google Scholar
  24. Eggenberger, W.: Biochemische Untersuchungen an Äpfeln während der Entwicklung und Lagerung. Doctoral Thesis, E. T. H., Zürich 1949.Google Scholar
  25. Emmerling, A.: Studien über die Eiweißbildung in der Pflanze. I.Abteilung. Landw. Versuchsstat. 24, 113 (1880).Google Scholar
  26. Studien über die Eiweißbildung in der Pflanze. II. Abteilung. Landw. Versuchsstat. 34, 1 (1887).Google Scholar
  27. Studien über die Eiweißbildung in der Pflanze. III. Abteilung. Landw. Versuchsstat. 54, 215 (1900).Google Scholar
  28. Ewart, A. J.: On the longevity of seeds. Proc. Roy. Soc. Victoria 21, 1 (1908).Google Scholar
  29. Fitting, H.: Die Beeinflussung der Orchideenblüten durch die Bestäubung und durch andere Umstände. Eine entwicklungsphysiologische Studie aus den Tropen. Z. Bot. 1, 1 (1909).Google Scholar
  30. Francis, W. D.: The anatomy of the Australian bush nut (Macadamia ternijolia). Proc. Roy. Soc. Queensland 39, 43 (1927).Google Scholar
  31. Girard, A., et L. Lindet: Ann. Sci. Agron., Sér. II 2, 179 (1899). Quoted from Nitsch, 1953.Google Scholar
  32. Gmelin: Phyto- und Zoochemie, S. 153. 1858.Google Scholar
  33. Good, R.: The coco-de-mer of the Seychelles. Nature (Lond.) 167, 518 (1951).CrossRefGoogle Scholar
  34. Gouwentak, C. A.: Untersuchungen über den N-Stoffwechsel bei Helianihus annuus L. Rec. Trav. bot. néerl. 26, 19 (1929).Google Scholar
  35. Über die herbstliche Änderung von Stickstoff und Trockengewicht im Laubblatt einer einjährigen Pflanze. Rec. Trav. bot. néerl. 28, 421 (1931).Google Scholar
  36. Govindarajan, V. S., and M. Sreenivasaya: A papyrographic study of the non-protein nitrogen of mangoes. Current Sci. 19, 234 (1950).Google Scholar
  37. Greenberg, D. M., and T. Winnick: Enzymes that hydrolyze the carbon-nitrogen bond: Proteinases, peptidases, and amidases. Annual Rev. Biochem. 14, 31 (1945).CrossRefGoogle Scholar
  38. Gustafson, F. G.: Inducement of fruit development by growth-promoting chemicals. Proc. Nat. Acad. Sci. U.S.A. 22, 628 (1936).CrossRefGoogle Scholar
  39. Parthenocarpy induced by pollen extracts. Amer. J. Bot. 24, 102 (1937).Google Scholar
  40. Hammar, H. E., and J. H. Hunter: Some physical and chemical changes in the composition of pecan nuts during kernel filling. Plant Physiol. 21, 476 (1946).PubMedCrossRefGoogle Scholar
  41. Hatcher, E. S. J.: Studies on the vernalization of cereals. IX. Auxin production during development and ripening of the anthers and carpel of spring and winter rye. Ann. of Bot., N. S. 9, 235 (1945).Google Scholar
  42. Hay, R. E., E. B. Earley and E. E. de Turk: Concentration and translocation of nitrogen compounds in the corn plant (Zea mays) during grain development. Plant Physiol. 28, 606 (1953).PubMedCrossRefGoogle Scholar
  43. Helgeson, E. A., and R. H. Harris: Quality of Thatcher wheat grown in soilless culture. Bi-m. Bull. N. Dak. agricult. exper. Stat. 1941, No 5, 3.Google Scholar
  44. Hestrin, S., and S. Avineri-Shapiro: The mechanism of polysaccharide production from sucrose. Biochemic. J. 38, 2 (1944).Google Scholar
  45. Holmes, P.: The amino-acid composition of certain seed proteins. Austral. J. Exper. Biol. a. Med. Sci. 31, 595 (1953).CrossRefGoogle Scholar
  46. Hulme, A. C: Nitrogen metabolism of the apple fruit. II. The course followed by certain nitrogen fractions during development of the fruit on the tree. Biochemic. J. 30, 258 (1936).Google Scholar
  47. Studies in the nitrogen metabolism of the apple fruit. Changes in the nitrogen metabolism of the apple during the normal and ethylene-induced climacteric rise in rate of respiration. Biochemic. J. 43, 343 (1948).Google Scholar
  48. Data for the study of the metabolism of apples during growth and storage. Section II. J. Horticult. Sci. 25, 267 (1950).Google Scholar
  49. The amino-acids present in the protein of the apple fruit. J. Sci. Food Agricult. 2, 160 (1951).Google Scholar
  50. Studies in the nitrogen metabolism of apple fruits. J. of Exper. Bot. 5, 159 (1954).Google Scholar
  51. Hulme, A. C., and W. Arthington: New amino-acids in young apple fruits. Nature (Lond.) 170, 659 (1952).CrossRefGoogle Scholar
  52. Methylproline in young apple fruits. Nature (Lond.) 173, 588 (1954).Google Scholar
  53. Hyde, T. G.: Nitrogen metabolism in Pisum sativum. Biochemic. J. 55, xxi (1953).Google Scholar
  54. Ivanov, N. N.: The influence of geographic factors on the chemical composition of plants. Ann. St. Inst. Exper. Agron. 4, 23 (1926). Quoted from Chem. Abstr. 22, 1380.Google Scholar
  55. Ivanov, N. N., i M. A. Knyaginichev: Biochemistry of cultivated plants. 1. Cereals. Moscow-Leningrad 1936.Google Scholar
  56. Jones, W. W.: The physiology of oil production in the macadamia (Macadamia integrifoliaMaiden et Betche). Proc. Amer. Soc. Horticult. Sci. 35, 239 (1937).Google Scholar
  57. A study of developmental changes in composition of the macadamia. Plant Physiol. 14, 755 (1939).Google Scholar
  58. Jones, W. W., and L. Shaw: The process of oil formation and accumulation in the macadamia. Plant Physiol. 18, 1 (1943).PubMedCrossRefGoogle Scholar
  59. Joslyn, M. A., and W. Stepka: The free amino acids of fruits. Food Res. 14, 459 (1949).PubMedGoogle Scholar
  60. Katunski, V. M.: On the causes of pre- and post-floral movements of peduncles and scapes (of the genera Papaver, Crepis and Tussilago). C. r. Acad. Sci. URSS. 12,343 (1936a).Google Scholar
  61. The development of the female gametophyte and the production of the growth-promoting hormone by flower buds. C. r. Acad. Sci. URSS. 12, 347 (1936b).Google Scholar
  62. Kertesz, Z. I.: The chemical changes in peas after picking. Plant Physiol. 3, 399 (1930).CrossRefGoogle Scholar
  63. Kidd, F., C. West, D. G. Griffiths and N. A. Potter: An investigation of the changes in chemical composition and respiration during the ripening and storage of Conference pears. Ann. of Bot., N. S. 4, 1 (1940).Google Scholar
  64. Kiesel, A.: Über die stickstoffhaltigen Substanzen in reifenden Roggenähren. Z. physiol. Chem. 61,83 (1924).Google Scholar
  65. King, F. E., T. J. King and A. J. Warwick: The chemistry of extractives from hardwoods. Part III. Baikiain, an amino-acid present in Baikiaea plurijuga. J. Chem. Soc. (Lond.) 1950, 3590.Google Scholar
  66. Knyaginichev, M. I.: Protein in Soviet wheats. Bull. Acad. Sci. URSS., Sér. Biol. 1939, 880.Google Scholar
  67. Koblet, R.: Untersuchungen über die stofflichen Veränderungen im wachsenden und reifenden Weizenkorn. Ber. Schweiz. bot. Ges. 50, 99 (1940).Google Scholar
  68. Kretovich, V. L., i Z. G. Yevstigneyeva: Synthesis of glutamine and asparagine in plants. C. r. Acad. Sci. URSS. 66, 429 (1949).Google Scholar
  69. Kurgatnikov, M. M.: Qualitative changes in the protein and starch of pea seeds. Bull. Appl. Bot., Ser. III 15, 83 (1936).Google Scholar
  70. Larsen, P., and S.M.Tung: Growth-promoting and growth-retarding substances in pollen from diploid and triploid apple varieties. Bot. Gaz. 111, 436 (1950).CrossRefGoogle Scholar
  71. Le Clerc, J. A.: Trilocal experiments on the influence of environment on the composition of wheat. Bull. U. S. Bur. Chem. 1910, No 128.Google Scholar
  72. Libby, W. F.: Radiocarbon dates. II. Science (Lancaster, Pa.) 114, 291 (1951).Google Scholar
  73. Luckwill, L. C: The hormone content of the seed in relation to endosperm development and fruit drop in the apple. J. Horticult. Sci. 24, 32 (1948).Google Scholar
  74. Studies of fruit development in relation to plant hormones. I. Hormone production by the developing apple seed in relation to fruit drop. J. Horticult. Sci. 28, 14 (1953).Google Scholar
  75. Mangels, C. E.: Effect of climate and other factors on the protein content of North Dakota wheat. Cereal Chem. 2, 288 (1925).Google Scholar
  76. Martin, D., and T. L. Lewis: The physiology of growth in apple fruits. III. Cell characteristics and respiratory activity of light and heavy crop fruits. Austral. J. Sci. Res. B 5, 317 (1952).Google Scholar
  77. Mc Calla, A. G.: Fractionation of nitrogen in developing wheat kernels. Canad. J. Res. C 16, 263 (1938).CrossRefGoogle Scholar
  78. Mc Ginnis, F. W., and G. S. Taylor: The effect of respiration upon the protein percentage of wheat, oats and barley. J. Agricult. Res. 24, 1041 (1923).Google Scholar
  79. Mc Kee, H. S., R.N.Robertson and J. B. Lee: Physiology of pea fruits. I. The developing fruit. Austral. J. Biol. Sci. 8, 137 (1955).Google Scholar
  80. Mc Kee, H. S., and G. E. Urbach: The physiology of growth in apple fruits. V. Soluble nitrogen constituents. Austral. J. Biol. Sci. 6, 359 (1953).Google Scholar
  81. Miller, C.D., and L. Louis: Chemical analyses and vitamin assays of macadamia nuts. Food Res. 6, 547 (1941).Google Scholar
  82. Mothes, K.: Über den Schwefelstoffwechsel der Pflanzen. II. Planta (Berl.) 29, 67 (1939).CrossRefGoogle Scholar
  83. Nitsch, J. P.: Growth and morphogenesis of the strawberry as related to auxin. Amer. J. Bot. 37, 211 (1950).CrossRefGoogle Scholar
  84. The physiology of fruit growth. Annual Rev. Plant Physiol. 4, 199 (1953).Google Scholar
  85. O’Brien, E. J.: Victorian F.A.Q. wheat. Analysis of sample. J. Dept. Agricult. Vic. 44, 153 (1946).Google Scholar
  86. Ohga, I.: The germination of century-old and recently harvested Indian lotus fruits, with special reference to the effect of oxygen supply. Amer. J. Bot. 13, 754 (1926).CrossRefGoogle Scholar
  87. Oparin, A., U. N. Dyachkov: Über die Fermentbildung in reifenden Samen. Biochem. Z. 196, 289 (1928).Google Scholar
  88. Osborne, T. B., and G. F. Campbell: The proteins of the pea, lentil, horse bean and vetch. J. Amer. Chem. Soc. 20, 410 (1898).CrossRefGoogle Scholar
  89. Paull, A. E., and J. A. Anderson: The effects of amount and distribution of rainfall on the protein content of western Canadian wheat. Canad. J. Res. C 20, 212 (1942).CrossRefGoogle Scholar
  90. Pearson, J. A., and R. N. Robertson: The climacteric rise in respiration of fruit. Austral. J. Sci. 15, 99 (1952).Google Scholar
  91. The physiology of growth in apple fruits. IV. Seasonal variation in cell size, nitrogen metabolism, and respiration in developing Granny Smith apple fruits. Austral. J. Biol. Sci. 6, 1 (1953).Google Scholar
  92. Pereira, A.: Proteinas do trigo. I. Contribuiçao para o estudo da variaçao da proteina e gluten segundo a variedade e a regiao. Agron. Lusitana 6, 367 (1944).Google Scholar
  93. Petrie, J. M.: The role of nitrogen and its compounds in plant-metabolism. Part II. Proc. Linnean Soc. N. S. Wales 33, 842 (1908).Google Scholar
  94. The role of nitrogen in plant-metabolism. Part IV. The nitrogen of ripening seeds. Proc. Linnean Soc. N. S. Wales 36, 127 (1911).Google Scholar
  95. Pfeiffer, O.: Chemische Untersuchungen über das Reifen des Kernobstes. Ann. Oenologie 5, 271 (1876).Google Scholar
  96. Pfenninger, U.: Untersuchungen der Früchte von Phaseolus vulgarisL. in verschiedenen Entwicklungs-Stadien. (Vorläufige Mitteilung.) Ber. dtsch. bot. Ges. 27, 227 (1909).Google Scholar
  97. Reeves, J. T.: Some effects of spraying wheat with urea. J. Austral. Inst. Agricult. Sci. 20, 41 (1954).Google Scholar
  98. Robertson, R. N.. and J. F. Turner: The physiology of growth in apple fruits. II. Respiratory and other metabolic activities as functions of cell number and cell size in fruit development. Austral. J. Sci. Res. B 4, 92 (1951).Google Scholar
  99. Scharnagel, T., u. G. Aufhammer: Zur Beurteilung der Klebermenge des Weizens, insbesondere die Abhängigkeit von äußeren und inneren Faktoren. Forschungsdienst 14, 165 (1942).Google Scholar
  100. Schilling, E. D., and F. M. Strong: Isolation, structure and synthesis of a lathyrus factor from L. odoratus. J. Amer. Chem. Soc. 76, 2848 (1954).CrossRefGoogle Scholar
  101. Schulze, E.: Studien über die Proteinbildung in reifenden Samen. Z. physiol. Chem. 71, 31 (1911).CrossRefGoogle Scholar
  102. Schulze, E., U. E. Winterstein: Studien über die Proteinbildung in reifenden Pflanzensamen. Z. physiol. Chem. 65, 431 (1910).CrossRefGoogle Scholar
  103. Smith, A. H.: A protein in the edible portion of orange. Preliminary paper. J. of Biol. Chem. 63, 71 (1925).Google Scholar
  104. Smith, W. H.: Cell-multiplication and cell-enlargement in the development of the flesh of the apple fruit. Ann. of Bot., N. S. 14, 23 (1950).Google Scholar
  105. Snellman, O., and C. E. Danielsson: An experimental study of the biosynthesis of the reserve globulin in pea seeds. Exper. Cell Res. 5, 436 (1953).CrossRefGoogle Scholar
  106. Sosa-Bourdouil, C, A. Brunel et A. Sosa: Sur la composition des gousses et des graines de Sojaau cours du développement. C. r. Acad. Sci. Paris 212, 1049 (1941).Google Scholar
  107. Stromberg, V. L.: The isolation of bufotenine from Piptadenia peregrina. J. Amer. Chem. Soc. 76, 1707 (1954).CrossRefGoogle Scholar
  108. Tetley, U.: The morphology and cytology of the apple fruit with special reference to the Bramley’s Seedling variety. J. Pomol. Horticult. Sci. 18, 249 (1931).Google Scholar
  109. Thor, J. B., and C. L. Smith: A physiological study of seasonal changes in the composition of the pecan during fruit development. J. Agricult. Res. 50, 97 (1935).Google Scholar
  110. A physiological study of the pre-filling period of fruit development in the pecan. J. Agricult. Res. 58, 905 (1939).Google Scholar
  111. Turner, J. F.: The metabolism of the apple during storage. Austral. J. Sci. Res. B 2, 138 (1949).Google Scholar
  112. Underwood, J. C, and L. B. Rockland: Nitrogenous constituents in citrus fruits. I. Some free amino acids in citrus juices determined by small-scale filter-paper chromatography. Food Res. 18, 17 (1953).Google Scholar
  113. Vasiliev, N.: Eiweißbildung in reifenden Samen. Ber. dtsch. bot. Ges. 26a, 454 (1908).Google Scholar
  114. Vickery, H. B., G. W. Pucher, C. S. Leavenworth and A. J. Wakeman: Chemical investigations of the tobacco plant. V. Chemical changes that occur during growth. Conn. Agricult. Exper. Stat. Bull. 1935, No 374.Google Scholar
  115. VlĂdescu, I.D.: Verteilung der Nährstoffe im Tabak. I. Mitt. Trockensubstanz und Gesamtstickstoff. Z. Unters. Lebensmitt. 75, 167 (1938a).CrossRefGoogle Scholar
  116. Verteilung der Nährstoffe im Tabak. II. Mitt. Eiweißstoffe. Z. Unters. Lebensmitt. 75, 340 (1938b).Google Scholar
  117. Verteilung der Nährstoffe im Tabak. III. Mitt. Nicotin. Z. Unters. Lebensmitt. 75, 450 (1938c).Google Scholar
  118. Woodman, H. E., and F. L. Engledow: A chemical study of the development of the wheat grain. J. Agricult. Sci. 14, 563 (1924).CrossRefGoogle Scholar
  119. Zaleski, V.: Zur Kenntnis der Stoffwechselprozesse in reifenden Samen. I. Über den Umsatz der Stickstoffverbindungen. Bot. Zbl. Beih. 27, 63 (1911).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • H. S. McKee

There are no affiliations available

Personalised recommendations