Advertisement

Protein metabolism of vegetative storage organs

  • H. S. McKee
Chapter
  • 231 Downloads
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Abstract

The vegetative storage organs of plants are structures of very varied morphological nature. Almost any part of the vegetative plant body can act as a storage organ for reserve materials permitting the plant to survive periods of unfavourable conditions. The majority of highly developed storage organs are derived from stems, which in many cases are plagiotropic and grow underground. Such underground stems or rhizomes vary greatly in the extent to which they are adapted to storage. In such species as Ammophila arenaria or Carex arenaria the rhizome differs from the runners of the strawberry (Fragaria vesca) or of Ranunculus repens only in its underground growth. It is a thin rapidly growing wiry organ which spreads the plant and reproduces it vegetatively, but performs only a subsidiary storage function. The plants of another group, e. g. Aegopodium podagraria, Mercurialis perennis and various species of Mentha, produce long rapidly growing and narrow but rather fleshy rhizomes which are somewhat better adapted to storage than those of the first group. Finally there are short thick fleshy rhizomes whose main function is the storage of food reserves over a season unfavourable for plant growth. Perennial rhizomes of this type are familiar in such species as Iris germanica, Polygonatum multiflorum, Zantedeschia aethiopica and Nymphaea alba; similar annual rhizomes are also known.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Adriaens, E. L., et O. Hestermans-Médard: Remarques à propos de la composition chimique du manioc roui ou cuit à l’eau. Bull. Agricult. Congo Belge 45, 1 (1954).Google Scholar
  2. Ammann, P.: Sur la grande richesse en matières azotées de certains maniocs du Cambodge. C. r. Acad. Sci. Paris 170, 1333 (1920).Google Scholar
  3. Astwood, E. B., M. A. Greer and M. G. Ettlinger: L-5-vinyl-2-thiooxazolidone, an antithyroid compound from yellow turnip and from Brassica seeds. J. of Biol. Chem. 181, 121 (1949).Google Scholar
  4. Barrenscheen, H. K., U. T. v. Valyi-Nagy: Die Methylierung durch pflanzliche und tierische Gewebe. I. Mitt. Methionin als Methylierungsagens bei Synthese des Kreatins- und Betains durch etiolierte Weizenkeimlinge. Z. physiol. Chem. 277, 97 (1942).CrossRefGoogle Scholar
  5. Bennett, E.: Some aspects of the metabolism of the Ebenezer onion. Plant Physiol. 20, 37 (1945a).CrossRefGoogle Scholar
  6. A note on the presence of pyruvic acid in the onion. Plant Physiol. 20, 461 (1945b).Google Scholar
  7. Bigwood, E. J.: Free and combined amino-acids in foodstuffs. In: Experientia-Supplementum 1: Symposium on present problems in nutrition research. 1953.Google Scholar
  8. Big-wood, E. J., E. L. Adriaens et O. Médard: De l’origine de l’ornithine dans la farine de manioc. Arch. internat. Physiol. 60,217 (1952).CrossRefGoogle Scholar
  9. Bigwood, E. J., J. Close et E. L. Adriaens: Les acides aminés de la farine de manioc (variété amère). Arch. internat. Physiol. 60, 198 (1952).PubMedCrossRefGoogle Scholar
  10. Bollard, E. G.: Nitrogen metabolism of apple trees. Nature (Lond.) 171, 571 (1953).CrossRefGoogle Scholar
  11. Braunstein, A. E.: Transamination and the integrative functions of the dicarb-oxylic acids in nitrogen metabolism. Adv. Protein Chem. 3, 1 (1947).PubMedCrossRefGoogle Scholar
  12. Cavallito, C. J., and J. H. Bailey: Allicin, the antibacterial principle of Allium sativum.I. Isolation, physical properties and antibacterial action. J. Amer. Chem. Soc. 66, 1950 (1944).CrossRefGoogle Scholar
  13. Cavallito, C. J., J. H. Bailey and J. S. Buck: The antibacterial principle of Allium sativum. III. Its precursors and essential oil of garlic. J. Amer. Chem. Soc. 67, 1032 (1945).CrossRefGoogle Scholar
  14. Cavallito, C. J., J. S. Buck and C. M. Suter: Allicin, the antibacterial principle of Allium sativum. II. Determination of the chemical structures. J. Amer. Chem. Soc. 66, 1952 (1944).CrossRefGoogle Scholar
  15. Challenger, F., and D. Greenwood: Sulphur compounds of the genus Allium. Detection of n-propylthiol in the onion. The fission and methylation of diallyl disulphide in cultures of Scopulariopsis brevicaulis. Biochemic. J. 44, 87 (1949).Google Scholar
  16. Close, J., E. L. Adriaens, S.Moore et E. J. Bigwood: Composition en acide aminés d’hydrolysates de farine de manioc roui variété amère. Bull. Soc. Chim. biol. 35, 985 (1953).PubMedGoogle Scholar
  17. Consden, R., A. H. Gordon and A. J. P. Martin: Qualitative analysis of proteins: a partition Chromatographie method using paper. Biochemic. J. 38, 224 (1944).Google Scholar
  18. Cromwell, B. T., and S. D. Rennie: Occurrence of choline oxidase in plant tissues. Nature (Lond.) 171, 79 (1953a).CrossRefGoogle Scholar
  19. The biosynthesis and metabolism of betaines in plants. I. The estimation and distribution of glycinebetaine (betaine) in Beta vulgaris L. and other plants. Biochemic. J. 55, 189 (1953b).Google Scholar
  20. The biosynthesis and metabolism of betaines in plants. II. The biosynthesis of glycinebetaine (betaine) in higher plants. Biochemic. J. 58, 318 (1954a).Google Scholar
  21. The biosynthesis and metabolism of betaines in plants. III. Studies on the biosynthesis of precursors of glycinebetaine in seedlings of wheat (Triticum vulgare Vill.). Biochemic. J. 58, 322 (1954b).Google Scholar
  22. Dent, C. E., W. Stepka and F. C. Steward: Detection of the free amino-acids of plant cells by partition chromatography. Nature (Lond.) 160, 682 (1947).CrossRefGoogle Scholar
  23. Du Vigneaud, V., S. Simmonds, J. P. Chandler and M. Cohn: A further investigation of the role of betaine in transmethylation reactions in vivo.J. of Biol. Chem. 165, 639 (1946).Google Scholar
  24. Einhof, H.: Chemische Untersuchung der Kartoffeln. Neues allg. J. Chem. 4, 455 (1805). Quoted from Osborne, T. B.: The vegetable proteins, 2. edit. London 1924.Google Scholar
  25. Goryachenkova, E. V.: Alliinase, the enzyme of the onion which forms alliicin—a phosphopyridoxal protein. C. r. Acad. URSS. 87, 457 (1952).Google Scholar
  26. Gregory, F. G., and P. K. Sen: Physiological studies in plant nutrition. VI. The relation of respiration rate to the carbohydrate and nitrogen metabolism of the barley leaf as determined by nitrogen and potassium deficiency. Ann. of Bot., N. S. 1, 521 (1937).Google Scholar
  27. Grüntuch, R.: Untersuchungen über den Stickstoffstoffwechsel unterirdischer Reservestoffbehälter (unter besonderer Berücksichtigung der Kartoffelknolle). Planta (Berl.) 7, 388 (1929).CrossRefGoogle Scholar
  28. Guggenheim, M.: Die biogenen Amine. Basel 1940.Google Scholar
  29. Hauptfleisch, P.: Untersuchungen über die Strömung des Protoplasmas in behäuteten Zellen. Pringsheims Jb. 24, 175 (1892).Google Scholar
  30. Hettlinger, A.: Influence des blessures sur la formation des matières protéiques dans les plantes. Rev. gén. Bot. 13, 248 (1901).Google Scholar
  31. Jacquot, R., et B. Nataf: Le manioc et son utilisation alimentaire. Paris 1936.Google Scholar
  32. Kiesel, A., A. Belozerski, P. Agatov, N. Bivshikh U. M. Pavlova: Vergleichende Untersuchungen über Organeiweiß von Pflanzen. Z. physiol. Chem. 230, 216 (1934).CrossRefGoogle Scholar
  33. Kovchoff, J.: Influence des blessures sur la formation des matières protéiques non digestibles dans les plantes. Rev. gén. Bot. 14, 462 (1902).Google Scholar
  34. Über den Einfluß von Verwundungen auf Bildung von Nucleoproteiden in den Pflanzen. Ber. dtsch. bot. Ges. 21, 165 (1903).Google Scholar
  35. Levitt, J.: Osmotic pressure determinations with isolated protoplasmic proteins. Plant Physiol. 21, 562 (1946).PubMedCrossRefGoogle Scholar
  36. Mann, P. J. G., and J. H. Quastel: The oxidation of choline by rat liver. Biochemic. J. 31, 869 (1937).Google Scholar
  37. Mc Kee, H. S.: A review of recent work on the nitrogen metabolism of plants. New Phytologist 36, 240 (1937).CrossRefGoogle Scholar
  38. Review of recent work on nitrogen metabolism. New Phytologist 48, 1 (1949).Google Scholar
  39. Mc Rorie, R. A., G. L. Sutherland, M. S. Lewis, A. D. Barton, M. R. Glazener and W. Shive: Isolation and identification of a naturally occurring analog of methionine. J. Amer. Chem. Soc. 76, 116 (1954).CrossRefGoogle Scholar
  40. Mittler, T. E.: Amino-acids in phloem sap and their excretion by aphides. Nature (Lond.) 172, 207 (1953).CrossRefGoogle Scholar
  41. Molle, P.: Recherches de microchimie comparée sur la localisation des alcaloides dans les solanacées. Mém. Acad. roy. Belg. 53, No 2 (1895).Google Scholar
  42. Morgan, E. J.: Pyruvic acid in the juice of onion (Allium cepa). Nature (Lond.) 157, 512 (1946).CrossRefGoogle Scholar
  43. Muntz, J. A.: The inability of choline to transfer a methyl group directly to homocysteine for methionine formation. J. of Biol. Chem. 182, 489 (1950).Google Scholar
  44. Neuberger, A., and F. Sanger: The nitrogen of the potato. Biochemic. J. 36, 662 (1942).Google Scholar
  45. Osborne, T. B., and G. F. Campbell: The proteids of the potato. J. Amer. Chem. Soc. 18, 575 (1896).CrossRefGoogle Scholar
  46. Payne, M. G., J. L. Fults and R. J. Hay: The effect of 2,4-D treatment on free amino acids in potato tubers. Amer. Potato J. 29, 142 (1952).CrossRefGoogle Scholar
  47. Planta, A. v.: Über einige stickstoffhaltige Bestandtheile der Wurzelknollen von Stachys tubifera. Ber. dtsch. chem. Ges. 23, 1699 (1890).CrossRefGoogle Scholar
  48. Pryanishnikov, D.: Eiweißzerfall und Eiweißrückbildung in den Pflanzen. Ber. dtsch. bot. Ges. 17, 151 (1899).Google Scholar
  49. Rahn, H.: Untersuchungen über den N-Stoffwechsel pflanzlicher vegetativer Speicherorgane. Planta (Berl.) 18, 1 (1932).CrossRefGoogle Scholar
  50. Richards, H. M.: The respiration of wounded plants. Arm. of Bot. 10, 531 (1896).Google Scholar
  51. Richardson, G. M.: Critique on the biological estimation of amino nitrogen. Proc. Roy. Soc. Lond., Ser. B 115, 142 (1934).CrossRefGoogle Scholar
  52. Robertson, R. N.: The absorption of ions by plants. School Sci. Rev. 31, 377 (1950).Google Scholar
  53. Rose, M. S., and L. F. Cooper: The biological effect of potato nitrogen. J. of Biol. Chem. 30, 201 (1917).Google Scholar
  54. Said, H., and E. D. H. El Shishiny: The effect of disc thickness on the respiration and the various nitrogen fractions of radish roots immersed in water and in sugar solutions. Plant Physiol. 19, 660 (1944).PubMedCrossRefGoogle Scholar
  55. Scheibler, C: Über das Betain, eine im Safte der Zuckerrüben (Beta vulgaris) vorkommende Pflanzenbase. Ber. dtsch. chem. Ges. 2, 292 (1869).CrossRefGoogle Scholar
  56. Schulze, E.: Über die Verbreitung des Glutamins in den Pflanzen. Ber. dtsch. chem. Ges. 29, 1882 (1896).CrossRefGoogle Scholar
  57. Über die Verbreitung des Glutamins in den Pflanzen. Landw. Versuchsstat. 49, 442 (1898).Google Scholar
  58. Über das Vorkommen von Hexonbasen in den Knollen der Kartoffel und der Dahlie. Landw. Versuchsstat. 59, 331 (1904).Google Scholar
  59. Schulze, E., U. J. Barbieri: Über das Vorkommen von Leucin und Tyrosin in den Kartoffelknollen. Landw. Versuchsstat. 24,167 (1880).Google Scholar
  60. Schulze, E., U. E. Bosshard: Über das Glutamin. Ber. dtsch. chem. Ges. 16, 312 (1883).CrossRefGoogle Scholar
  61. Über das Vorkommen von Glutamin in den Zuckerrüben und über das optische Verhalten desselben. Landw. Versuchsstat. 32, 129 (1886).Google Scholar
  62. Schulze, E., u. E. Eugster: Neue Beiträge zur Kenntniss der stickstoffhaltigen Bestandtheile der Kartoffelknollen. Landw. Versuchsstat. 36, 1 (1882).Google Scholar
  63. Schulze, E., U. A. Urich: Über die stickstoffhaltigen Bestandtheile der Futterrübe. Landw. Versuchsstat. 18, 296 (1875).Google Scholar
  64. Über die stickstoffhaltigen Bestandtheile der Futterrübe. Landw. Versuchsstat. 20, 193 (1877a).Google Scholar
  65. Untersuchung über die stickstoffhaltigen Bestandtheile der Runkelrüben. (In report by R. Gnehm of meetings of Chemische Gesellschaft, Zürich, 20 November and 18 December, 1876.) Ber. dtsch. chem. Ges. 10, 85 (1877b).Google Scholar
  66. Sisakjan, N. M., E. N. Bezinger i N. A. Gumilevskaja: Changes in the amino-acid composition of protein during the life-history of an organism. C. r. Acad. Sci. URSS. 91, 907 (1953).Google Scholar
  67. Sisakjan, N. M., V. I. Biryuzova i A. M. Kobyakova: Changes in the structure and enzymatic activity of plastids in the ontogenetic cycle of plant development. Biokhim. 16, 449 (1951).Google Scholar
  68. Sisakjan, N. M., i A. M. Kobyakova: Activity and condition of enzymes in plastids. Biokhim. 13,88 (1948).Google Scholar
  69. Formation and movement of enzymes in living organisms. Biokhim. 16, 292 (1951).Google Scholar
  70. Sisakjan, N. M., A. M. Zolkover i V. I. Biryuzova: Plastid structure and enzymatic activity. C. r. Acad. Sci. URSS. 60, 1213 (1948).Google Scholar
  71. Sjollema, B., U. I. J. Rinkes: Die Hydrolyse des Kartoffeleiweißes. Z. physiol. Chem. 76, 368 (1912).CrossRefGoogle Scholar
  72. Slack, E. B.: Nitrogenous constituents of the potato. Nature (Lond.) 161, 211 (1948).CrossRefGoogle Scholar
  73. Slyke, D. D. van: A method for quantitative determination of aliphatic amino groups. Applications to the study of proteolysis and proteolytic products. J. of Biol. Chem. 9,185 (1911).Google Scholar
  74. Smirnov, S.: Influence des blessures sur la respiration normale et intramoléculaire (fermentation) des bulbes. Rev. gén. Bot. 15, 26 (1903).Google Scholar
  75. Spoehr, H. A., and J. M. Mc Gee: Studies in plant respiration and photosynthesis. I. The carbohydrate-amino-acid relation in the respiration of leaves. Carnegie Inst. Wash. Publ. 1923, 325.Google Scholar
  76. Sreeramamurthy, V. V.: Investigations on the nutritive value of tapioca (Manihot utilissima). Indian J. Med. Res. 33, 229 (1945).PubMedGoogle Scholar
  77. Steward, F. C, W. E. Berry, C.Preston and T. K. Ramamurti: The absorption and accumulation of solutes by living plant cells. X. Ann. of Bot., N. S. 7, 221 (1943).Google Scholar
  78. Steward, F.C., and C.Preston: Metabolic processes of potato discs under conditions conducive to salt accumulation. Plant Physiol. 15, 23 (1940).PubMedCrossRefGoogle Scholar
  79. The effect of salt concentration upon the metabolism of potato discs and the contrasted effect of potassium and calcium which have a common ion. Plant Physiol. 16, 85 (1941 a).Google Scholar
  80. Effects of pH and the components of bicarbonate and phosphate buffered solutions on the metabolism of potato discs and their ability to absorb ions. Plant Physiol. 16, 481 (1941b).Google Scholar
  81. Steward, F. C., P. R. Stout and C. Preston: The balance sheet of metabolites for potato discs snowing the effect of salts and dissolved oxygen on metabolism at 23° C. Plant Physiol. 15, 409 (1940).PubMedCrossRefGoogle Scholar
  82. Steward, F. C., and H. E. Street: The soluble nitrogen fractions of potato tubers; the amides. Plant Physiol. 21, 155 (1946).PubMedCrossRefGoogle Scholar
  83. The nitrogenous constituents of plants. Annual Rev. Biochem. 16, 471 (1947).Google Scholar
  84. Steward, F. C., and J. F. Thompson: Proteins and protein metabolism in plants. In: The Proteins, Vol.2, Part A; ed. by H. Neurath and K. Bailey. New York 1954.Google Scholar
  85. Steward, F. C., J. F. Thompson and C. E. Dent: γ-amino-butyric acid: a constituent of the potato tuber? Science (Lancaster, Pa.) 110, 439 (1949).Google Scholar
  86. Steward, F. C., R. H. Wetmore, J. F. Thompson and J. P. Nitsch: A quantitative study of nitrogenous compounds of shoot apices. Amer. J. Bot. 41, 123 (1954).CrossRefGoogle Scholar
  87. Stoll, A., u. E. Seebeck: Über Alliin, die genuine Muttersubstanz des Knoblauchöls. Experientia (Basel) 3, 114 (1947).CrossRefGoogle Scholar
  88. Über den enzymatischen Abbau des Alliins und die Eigenschaften der Alliinase. 2. Mitteilung über Allium-Substanzen. Helvet. chim. Acta 32, 197 (1949).Google Scholar
  89. Street, H. E., A. E. Kenyon and G. M. Watson: The nature and distribution of various forms of nitrogen in the potato. Ann. Appl. Biol. 33, 1 (1946).PubMedCrossRefGoogle Scholar
  90. Stuart, N. W., and C. O. Appleman: Nitrogenous metabolism in Irish potatoes during storage. Bull. Md. Agricult. Exper. Stat. 1935, No 372.Google Scholar
  91. Thompson, J. F., and F. C. Steward: The analysis of the alcohol-insoluble nitrogen of plants by quantitative procedures based on paper chromatography. J. of Exper. Bot. 3, 170 (1952).CrossRefGoogle Scholar
  92. Veen, A. G. van, en J. C. Lanzing: Over het koolhydraat en het eiwit van cassave. Geneesk. Tijdschr. Nederl.-Indië 81, 2330 (1941).Google Scholar
  93. Vickery, H. B., G. W. Pucher and H. E. Clark: The preparation of glutamine. J. of Biol. Chem. 109, 39 (1935).Google Scholar
  94. Glutamine metabolism of the beet. Plant Physiol. 11, 413 (1936).Google Scholar
  95. Vickery, H. B., G. W. Pucher and C. S. Leavenworth: Artificial enrichment of beet-root tissue with glutamine. Proc. Soc. Exper. Biol. a. Med. 68, 294 (1948).Google Scholar
  96. Westall, R. G.: Use of ion-exchange resins for the isolation of glutamine and other nitrogenous substances from beet. J. Sci. Food Agricult. 1, 191 (1950).CrossRefGoogle Scholar
  97. Williams, G.: Hydrolysis of the soluble proteins of swede turnips. J. Agricult. Sci. 8, 182 (1917).CrossRefGoogle Scholar
  98. Wolff-gang, H., u. K. Mothes: Papierchromatographische Untersuchungen an pflanzlichen Blutungssäften. Naturwiss. 23, 606 (1953).CrossRefGoogle Scholar
  99. Yoshimura, K.: Vorkommen von organischen Basen besonders von Cadaverin in Kartoffelknollen. Biochem. Z. 274, 408 (1934).Google Scholar
  100. Zacharius, R. M., J.F.Thompson and F.C.Steward: The detection, isolation and identification of (—)-pipecolic acid as a constituent of plants. J. Amer. Chem. Soc. 74, 2949 (1952).CrossRefGoogle Scholar
  101. Zaleski, V.: Zur Keimung der Zwiebel von Allium cepaund Eiweißbildung. Ber. dtsch. bot. Ges. 16, 146 (1898).Google Scholar
  102. Beiträge zur Kenntnis der Eiweißbildung in den Pflanzen. Ber. dtsch. bot. Ges. 19, 331 (1901).Google Scholar
  103. Zaleski, V., U. V. Shatkin: Untersuchungen über den Eiweißabbau in den Pflanzen. I. Über den Eiweißabbau in den Zwiebeln von Allium cepa.Biochem. Z. 55, 72 (1913).Google Scholar
  104. Zöller, P.: Globulinsubstanzen in den Kartoffelknollen. Ber. dtsch. chem. Ges. 13, 1064 (1880).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • H. S. McKee

There are no affiliations available

Personalised recommendations