Nitrogen metabolism in leaves

  • H. S. McKee
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)


The green leaf is functionally one of the most remarkable organs known in the whole world of living organisms. It is, in land plants, the typical seat of photosynthesis, the process which above all others distinguishes the green plants from other organisms. Within the leaf there proceeds a highly complex set of interlocking reactions, both synthetic and catabolic. Some of these reactions are common to other organs of the plant, others are directly associated with photosynthesis. Photosynthesis, of course, forms primarily non-nitrogenous compounds, but nitrogen-containing substances are also among the earlier products of photosynthesis. Many other reactions known to occur in leaves involve nitrogenous compounds, either directly or indirectly.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adova, A. N.: Zur Frage nach den Fermenten von Utricularia wlgaris L. I. Biochem. Z. 150, 101.Google Scholar
  2. II. Biochem. Z. 153, 506 (1924).Google Scholar
  3. Ali-Zade, M.: Assimilation des Stickstoffs der Knöllchen der Leguminosen. C. r. Acad. Sci. URSS. 30, 256 (1941).Google Scholar
  4. Alten, F., G. Goeze u. H. Fischer: Kohlensäureassimilation und Stickstoffhaushalt bei gestaffelter Kaligabe. Bodenkde. u. Pflanzenernährg 5, (50), 259 (1937).Google Scholar
  5. Andreyeva, T. F.: Effect of photosynthesis on nitrate reduction and protein synthesis in the leaf. C. r. Acad. Sci. URSS. 78, 1033 (1951).Google Scholar
  6. Andreyeva, T. F., i E. G. Plyshevskaya: A study, using N15, of the formation of protein in the process of photosynthesis. C. r. Acad. Sci. URSS. 87, 301 (1952).Google Scholar
  7. Auclair, J. L., and J. B. Maltais: Occurrence of gamma-amino-butyric acid in extracts of Pisum sativum (L.) and in the honeydew of Myzus circumflexus (Buck). Nature (Lond.) 170, 1114 (1952).Google Scholar
  8. Axelrod, B., and A. T. Jagendorf: The fate of phosphatase, invertase and peroxidase in autolyzing leaves. Plant Physiol. 26, 406 (1951).PubMedGoogle Scholar
  9. Baas Becking, L. G. M., and E. A. Hanson: Note on the mechanism of photosynthesis. Proc. Kon. Ned. Akad. v. Wetensch. 40, 752 (1937).Google Scholar
  10. Behre, K.: Physiologische und zytologische Untersuchungen über Drosera. Planta (Berl.) 7, 208 (1929).Google Scholar
  11. Benson, A. A., and M. Calvin: Carbon dioxide fixation by green plant. Annual Rev. Plant Physiol. 1, 25 (1950).Google Scholar
  12. Berg, A. M., S. Kari, M. Alfthan U. A. I. Virtanen: Homoserine and a-aminoadipic acid in green plants. Acta chem. scand. (Stockh.) 8, 358 (1954).Google Scholar
  13. Bickel, A. F., and J. P. Wibaut: On the structure of leucaenine (leucaenol) from Leucaena glauca Bentham. Rec. Trav. chim. Pays-Bas (Amsterd.) 65, 65 (1946).Google Scholar
  14. Bidwell, R. G. S., G. Krotkov and G. B. Reed: Synthesis of radioactive glutamine from C14O2 in Swiss chard leaves and its isolation by paper chromatography. Arch. of Biochem. a. Biophysics 48, 73 (1954).Google Scholar
  15. Borodin, I.: Physiologische Untersuchungen über die Athmung der beblätterten Sprosse. Bot. Jb. 4, 919 (1876).Google Scholar
  16. Über die physiologische Rolle und die Verbreitung des Asparagins im Pflanzenreiche. Bot. Z. 36, 801 (1878).Google Scholar
  17. Bot, G. M.: The chemical composition of chloroplast granules (grana) in relation to their structure. Chronica Bot. 7, 66 (1942).Google Scholar
  18. Burnett, G. T.: On the functions and structure of plants, with reference to the adumbrations of a stomach in vegetals. Quart. J. Sci. Lit. and Art., Vol. for Jy.—Dec., 279, 1829.Google Scholar
  19. Burström, H.: Photosynthesis and assimilation of nitrate by wheat leaves. K. Lantbrukshögskolans Ann. 11, 1 (1943a).Google Scholar
  20. Studies on the products of the photosynthesis. Ark. Bot. (Stockh.) B 30, 1 (1943b).Google Scholar
  21. Büsgen, M.: Die Bedeutung des Insektenfanges für Drosera rotundifolia. Bot. Z. 41, 569, 585 (1883).Google Scholar
  22. Bush, M. T., O. Touster and J. E. Brockman: The production of β-nitropropionic acid by a strain of Aspergillus flavus. J. of Biol. Chem. 188, 685 (1951).Google Scholar
  23. Butkevich, V.: Die Umwandlung der Eiweißstoffe in verdunkelten grünen Pflanzen. Biochem. Z. 12, 314 (1908).Google Scholar
  24. Calvin, M., J. A. Bassham, A. A. Benson, V. H. Lynch, C. Ouellet, L. Schou, W. Stepka and N. E. Tolbert: Carbon dioxide assimilation in plants. Symposia Soc. f. Exper. Biol. 5, 284 (1951).Google Scholar
  25. Carter, C. L., and W. J. Mc Chesney: Hiptagenic acid identified as β-nitropropionic acid. Nature (Lond.) 164, 575 (1949).Google Scholar
  26. Charles, A.: The respiratory fluctuations of starving detached leaves. New Phytologist 53, 81 (1954).Google Scholar
  27. Chibnall, A. C.: Investigations on the nitrogenous metabolism of the higher plants. V. Diurnal variations in the protein nitrogen of runner bean leaves. Biochemic. J. 18, 387 (1924a).Google Scholar
  28. The role of asparagine in the metabolism of the mature plant. Biochemic. J. 18, 395 (1924 b).Google Scholar
  29. Protein metabolism in the plant. New Haven, Conn. 1939.Google Scholar
  30. Protein metabolism in rooted runner-bean leaves. New Phytologist 53, 31 (1954).Google Scholar
  31. Chibnall, A. C, and L. S. Nolan: A protein from the leaves of the alfalfa plant. J. of Biol. Chem. 62, 173 (1924).Google Scholar
  32. Chibnall, A. C, and S. B. Schryver: The isolation of proteins from leaves. J. of Physiol. 54, 1 (1920).Google Scholar
  33. Chibnall, A. C, and G. H. Wiltshire: A study with isotopic nitrogen of protein metabolism in detached runner-bean leaves. New Phytologist 53, 38 (1954).Google Scholar
  34. Chrapowitski: Über die Synthese der Eiweißstoffe in chlorophyllhaltigen Pflanzen. Bull. Acad. Imp. Sci. St. Petersb. 32, 96 (1887).Google Scholar
  35. Ciamcian, G., e C. Ravenna: Richerche sulla genesi degli alcaloidi nelle piante. Rend. Real. Accad. Lincei 20, 614 (1911).Google Scholar
  36. Comar, C. L.: Chloroplast substance of spinach leaves. Bot. Gaz. 104, 122 (1942).Google Scholar
  37. Combes, R., et R. Echevin: Vitesse de l’émigration automnale des substances azotées des feuilles vers les tiges chez les plantes ligneuses. C. r. Acad. Sci. Paris 189, 1060 (1927).Google Scholar
  38. Cromwell, B. T.: Synthesis of hyoscyamine in Atropa belladonna L. and Datura stramonium L. Biochemic. J. 37, 717 (1944a).Google Scholar
  39. The role of putrescine in the synthesis of hyoscyamine. Biochemic. J. 37, 722 (1944 b).Google Scholar
  40. Cruickshank, D. H., and J. G. Wood: The metabolism of starving leaves. 6. Nitrogen balance sheet and changes in organic acid content during starvation of oat leaves. Austral. J. Exper. Biol. a. Med. Sci. 23, 243 (1945).Google Scholar
  41. Culpepper, C. W., and J. S. Caldwell: Relation of age and of seasonal conditions to composition of root, petiole and leaf blade in rhubarb. Plant Physiol. 7, 447 (1932).PubMedGoogle Scholar
  42. Dakin, W. J.: The West Australian pitcher plant (Cephalotus follicularis), and its physiology. J. Roy. Soc. W. Austral. 4, 37 (1918).Google Scholar
  43. Dakshinamurti, K.: The aminoacids in the leaf of Azadirecta indica (Melia). Current Sci. 23, 125 (1954).Google Scholar
  44. Dam, H., J. Glavind u. N. Nielsen: Weitere Untersuchungen über die Bildung und Bedeutung des Vitamin K im Pflanzenorganismus. Z. physiol. Chem. 265, 80 (1940).Google Scholar
  45. Darwin, C.: Insectivorous Plants, 2nd ed. 1875.Google Scholar
  46. Darwin, F.: Experiments on the nutrition of Droserarotundifolia. J. Linnean Soc. Bot. 17, 17 (1878).Google Scholar
  47. Davidson, O. W., and J. W. Shive: The influence of the hydrogen-ion concentration of the culture solution upon the absorption and assimilation of nitrate and ammonium nitrogen by peach trees grown in sand cultures. Soil Sci. 37, 357 (1934).Google Scholar
  48. Davis, E. A.: Nitrate reduction by Chlorella. Carnegie Inst. Wash. Year Book 49, 99 (1950).Google Scholar
  49. Deken-Grenson, M. de: Grana formation and synthesis of chloroplastic proteins induced by light in portions of etiolated leaves. Biochim. et Biophysica Acta 14, 203 (1954).Google Scholar
  50. Deleano, N. T.: Studien über den Atmungsstoffwechsel abgeschnittener Laubblätter. Jb. wiss. Bot. 51, 541 (1912).Google Scholar
  51. Deleano, N. T., u. N. I. Andreesco: Beiträge zum Studium der Rolle und Wirkungsweise der mineralischen und organischen Stoffe im Pflanzenleben. I. Mitt. Der quantitative Stoffwechsel der mineralischen und organischen Substanzen in den Salix fragilis-Blättern während ihrer Entwicklung. Beitr. Biol. Pflanz. 19, 249 (1932).Google Scholar
  52. Deleano, N. T., u. C. Bordeianu: Beiträge zum Studium der Rolle und Wirkungsweise der mineral- und organischen Stoffe im Pflanzenleben. II. Mitt. Der quantitative Stoffwechsel der mineral- und organischen Substanzen in den Blättern und geschälten Samen von Aesculus hippocastanum während ihrer Entwicklung. Beitr. Biol. Pflanz. 20, 179 (1933).Google Scholar
  53. Deleano, N. T., u. P. Gotterbarm: Beiträge zum Studium der Rolle und Wirkungsweise der mineral- und organischen Stoffe im Pflanzenleben. III. Mitt. Der quantitative Stoffwechsel der mineral- und organischen Substanzen des Roggens und der Gerste. Beitr. Biol. Pflanz. 24, 19 (1936).Google Scholar
  54. Delwiche, C. C.: The assimilation of ammonium and nitrate ions by tobacco plants. J. of Biol. Chem. 189, 167 (1951).Google Scholar
  55. Diaper, D. G. M., S. Kirkwood and L. Marion: The biosynthesis of alkaloids. III. A study of hyoscyamine biosynthesis using isotopic putrescine. Canad. J. Chem. 29, 964 (1951).Google Scholar
  56. Dittrich, W.: Zur Physiologie des Nitratumsatzes in höheren Pflanzen (mit besonderer Berücksichtigung der Nitratspeicherung). Planta (Berl.) 12, 69 (1930).Google Scholar
  57. Doman, N. G., A. M. Kuzin, Y. V. Mamul i R. I. Khudyakova: The different primary products of photosynthesis in various plant species. C. r. Acad. Sci. URSS. 86, 369 (1952).Google Scholar
  58. Done, J., and L. Fowden: A new amino-acid amide in the groundnut plant (Arachis hypogaea): evidence of the occurrence of γ-methyleneglutamine and γ-methyleneglutamic acid. Biochemic. J. 51, 451 (1952).Google Scholar
  59. Echevin, R.: L’azote, le phosphore et le soufre chez les plantes ligneuses à feuilles caduques Rev. gén. Bot. 43, 517 (1931).Google Scholar
  60. Echevin, R., A. Brunel et I. Sartorius: SUR l’origine de l’allantoïne. C. r. Acad. Sci. Paris 211, 71 (1940).Google Scholar
  61. Eisenmenger, W. S.: The distribution of nitrogen in tobacco when the supplies of nitrogen and of light are varied during the growing period. J. Agricult. Res. 46, 255 (1933).Google Scholar
  62. Evans, W. C, and M. W. Partridge: Alkaloid biogenesis. Part III. The production of biosynthetic radioactive hyoscine and meteloidine. J. of Pharmacy a. Pharmacol. 6, 702 (1954).Google Scholar
  63. Fagan, T. W., and W. M. Ashton: The effect of partial field-drying and artificial drying on the chemical composition of grass. Welsh J. Agricult. 14, 160 (1938).Google Scholar
  64. Fisher, E. G.: The principles underlying foliage application of urea for nitrogen fertilization of the McIntosh apple. Proc. Amer. Soc. Horticult. Sci. 59, 91 (1952).Google Scholar
  65. Fisher, E. G., D. Boynton and K. Skodvin: Nitrogen fertilization of the McIntosh apple with leaf sprays of urea. Proc. Amer. Soc. Horticult. Sci. 51, 23 (1948).Google Scholar
  66. Fisher, E. G., and J. A. Cook: Nitrogen fertilization of the Mclntosh apple with leaf sprays of urea. II. Proc. Amer. Soc. Horticult. Sci. 55, 35 (1950).Google Scholar
  67. Fosse, R.: Formation de l’urée par les végétaux supérieurs. C. r. Acad. Sci. Paris 156, 567 (1913).Google Scholar
  68. Fourcroy, A. F.: Sur l’existence de la matière albumineuse dans les végétaux. Ann. de Chim. 3, 252 (1789).Google Scholar
  69. Fowden, L., and J. Done: A third unsaturated amino-acid in groundnut plants: evidence for the occurrence of γ-amino-α-methylenebutyric acid. Biochemic. J. 55, 548 (1953).Google Scholar
  70. Fowden, L., and J. A. Webb: γ-Methylene-α-oxoglutaric acid: a constituent of groundnut plants (Arachis hypogaea). Comm. Biochem. Soc. 330th meeting, 19 June 1954, p. 3.Google Scholar
  71. French, S.: The pigment-protein compound in photosynthetic bacteria. I. The extraction and properties of photosynthin. J. Gen. Physiol. 23, 469 (1940).PubMedGoogle Scholar
  72. Gale, E. F.: The production of amines by bacteria. III. The production of putrescine from 1 (+)-arginine by Bacterium coli in symbiosis with Streptococcus faecalis. Biochemic. J. 34, 853 (1940).Google Scholar
  73. Galston, A. W.: The isolation, agglutination and nitrogen analysis of intact oat chloroplasts. Amer. J. Bot. 30, 331 (1943).Google Scholar
  74. Giri, K. V., K. S. Gopalkrishnan, A. N. Radhakrishnan and C. S. Vaidyanathan: Proline and hydroxyproline in leaves. Nature (Lond.) 170, 579 (1952).Google Scholar
  75. Godlewski, E.: Zur Kenntnis der Eiweißbildung in den Pflanzen. Krakov 1903. Cited from Doman, Kuzin, Mamul and Khudyakova, 1952.Google Scholar
  76. Gordon, S. A.: Auxin-protein complexes of the wheat grain. Amer. J. Bot. 33, 160 (1946).Google Scholar
  77. Gordon, S. A., and S. G. Wildman: The conversion of tryptophane to a plant growth substance by conditions of mild alkalinity. J. of Biol. Chem. 147, 389 (1943).Google Scholar
  78. Gorter, K.: L’hiptagine, glucoside nouveau retiré de l’Hiptage Madablota Gaertn. Bull. Jard. Bot. Buitenzorg, Ser. III 2, 187 (1920).Google Scholar
  79. Gorup-Besanez, E. V., u. H. Will: Fortgesetzte Beobachtungen über peptonbildende Fermente im Pflanzenreich. Sitzgsber. Phys. Med. Soc. Erlangen, S. 152, 1875/76.Google Scholar
  80. Gouwentak, C. A.: Untersuchungen über den N-Stoffwechsel bei Helianthus annuus L. Rec. Trav. bot. néerl. 26, 19 (1929).Google Scholar
  81. Über die herbstliche Änderung von Stickstoff und Trockengewicht im Laubblatt einer einjährigen Pflanze. Rec. Trav. bot. néerl. 28, 421 (1931).Google Scholar
  82. Granick, S.: Chloroplast nitrogen of some higher plants. Amer. J. Bot. 25, 561 (1938).Google Scholar
  83. Gregory, F. G., and P. K. Sen: Physiological studies in plant nutrition. VI. The relation of respiration rate to the carbohydrate and nitrogen metabolism of the barley leaf as determined by nitrogen and potassium deficiency. Ann. of Bot., N. S. 1, 521 (1937).Google Scholar
  84. Griffith, E. B., W. D. Valleau and R. N. Jeffrey: Chlorophyll and carotene content of eighteen tobacco varieties. Plant Physiol. 19, 689 (1944).PubMedGoogle Scholar
  85. Hanson, E. A.: A note on the metabolism of chloroplast protein. Austral. J. of Exper. Biol. a. Med. Sci. 19, 157 (1941).Google Scholar
  86. Hanson, E. A., B. S. Barrien and J. G. Wood: Relations between protein-nitrogen, protein-sulphur and chlorophyll in leaves of Sudan grass. Austral. J. of Exper. Biol. a. Med. Sci. 19, 231 (1941).Google Scholar
  87. Hartley, H.: Origin of the word ‘protein’. Nature (Lond.) 168, 244 (1951).Google Scholar
  88. Hartt, C. E.: Some effects of potassium upon the amounts of protein and amino-forms of nitrogen, sugars, and enzyme activity of sugar cane. Plant Physiol. 9, 453 (1934).Google Scholar
  89. Hay, R. E., E. B. Earley and E. E. de Turk: Concentration and translocation of nitrogen compounds in the corn plant (Zea mays) during grain development. Plant Physiol. 28, 606 (1953).PubMedGoogle Scholar
  90. Herbst, E. J., and E. E. Snell: Putrescine as a growth factor for Hemophilus parainfluenzae. J. of Biol. Chem. 176, 989 (1948).Google Scholar
  91. The nutritional requirements of Hemophilus parainfluenzae 7901. J. Bacter. 58, 379 (1949a).Google Scholar
  92. Putrescine and related compounds as growth factors for Hemophilus parainfluenzae 7901. J. of Biol. Chem. 181, 47 (1949b).Google Scholar
  93. Hevesy, G., K. Linderstrøm-Lang, A. S. Keston u. C. Olsen: Exchange of nitrogen atoms in the leaves of the sunflower. C. r. Trav. Labor. Carlsberg 23, 213 (1940).Google Scholar
  94. Hiwatari, Y.: On the nitrogenous components from the fruit of Citrus grandis Osbeck, form. Buntan, Hayat. J. of Biochem. (Tokyo) 7, 169 (1927).Google Scholar
  95. Quoted from Underwood and Rockland, 1953.Google Scholar
  96. Hooker, J. D.: Address to the Department of Zoology and Botany. B. A. A. S., Report of the Forty-fourth Meeting, 1874.Google Scholar
  97. Hoppe-Seyler, F.: Über das Chlorophyll der Pflanzen. 1. Abhandlung. Z. physiol. Chem. 3, 339 (1879).Google Scholar
  98. Physiologische Chemie. Berlin 1881.Google Scholar
  99. James, W. O.: The amino-acid precursors of the belladonna alkaloids. New Phytologist 48, 172 (1949).Google Scholar
  100. Plant respiration. Oxford 1953.Google Scholar
  101. Karmarkar, D. V.: The seasonal cycles of nitrogenous and carbohydrate materials in fruit trees. I. The seasonal cycles of total nitrogen and of soluble nitrogen compounds in the wood, bark and leaves portions of terminal shoots of apple trees under two cultural systems—grass plus annual spring nitrate and arable without nitrogenous fertilizer. J. Pomol. Horticult. Sci. 12, 177 (1934).Google Scholar
  102. Keirstead, L. G.: Relation of carotene and crude protein content of grasses. J. Amer. Soc. Agron. 37, 239 (1945).Google Scholar
  103. Kemble, A. R., and H. T. Macpherson: Monoamino monocarboxylic acid content of preparations of herbage protein. Biochemic. J. 58, 44 (1954a).Google Scholar
  104. Liberation of amino acids in perennial rye grass during wilting. Biochemie. J. 58, 46 (1954b).Google Scholar
  105. Kiesel, A.: Ein Beitrag zur Kenntnis der Veränderungen, welche die stickstoffhaltigen Bestandteile grüner Pflanzen infolge von Lichtabschluß erleiden. Z. physiol. Chem. 49, 72 (1906).Google Scholar
  106. Études sur la nutrition de l’Utricularia vulgaris. Ann. Inst. Pasteur 38, 879 (1924).Google Scholar
  107. Kiesel, A., A. Belozersky, P. Agatov, N. Bivshikh u. M. Pavlova: Vergleichende Untersuchungen über Organeiweiß von Pflanzen. Z. physiol. Chem. 226, 73 (1934).Google Scholar
  108. Klein, G., u. K. Tauböck: Harnstoff und Ureide bei den höheren Pflanzen. I. Das Vorkommen von Harnstoff im Pflanzenreich und sein Wandel im Laufe der Vegetationsperiode. Jb. wiss. Bot. 74, 429 (1931a).Google Scholar
  109. Harnstoff und Ureide bei den höheren Pflanzen. III. Das Vorkommen von Ureiden. Quantitative Bestimmung von freiem und gebundenem Harnstoff. Biochem. Z. 241, 413 (1931b).Google Scholar
  110. Kleipool, R. J. C, U. J. P. Wibaut: Pyridine derivatives. LXXX. Mimosine (leucenine). Rec. Trav. chim. Pays-Bas (Amsterd.) 69, 37 (1950).Google Scholar
  111. Kostytschew, S.: Lehrbuch der Pflanzenphysiologie, Bd. I. Berlin 1926.Google Scholar
  112. Kosutany, T.: Untersuchungen über die Entstehung des Pflanzeneiweißes. Landw. Versuchsstat. 48, 13 (1897).Google Scholar
  113. Krasheninnikov, T.: Die Aufspeicherung der Sonnenenergie in der Pflanze, 1901. Cited from Kostytschew, 1926.Google Scholar
  114. Krotkov, G.: Carbohydrate and respiratory metabolism in the isolated starving leaf of wheat. Plant Physiol. 14, 203 (1939).PubMedGoogle Scholar
  115. Lakon, G.: Der Eiweißgehalt panaschierter Blätter geprüft mittels des makroskopischen Verfahrens von Molisch. Biochem. Z. 78, 145 (1916).Google Scholar
  116. Lepeschkin, W. W.: Some aspects of the state of chlorophyll in chloroplasts. Plant Physiol. 24, 175 (1949).PubMedGoogle Scholar
  117. Leroux, L.: Presence de l’acide allantoïque dans les feuilles de Corylus avellana. C. r. Acad. Sci. Paris 205, 172 (1937).Google Scholar
  118. Loew, O.: Über das Verhalten niederer Pilze gegen verschiedene Stickstoffverbindungen. Biol. Zbl. 10, 577 (1890).Google Scholar
  119. Über Stickstoffassimilation und Eiweißbildung in Pflanzenzellen. Biochem. Z. 41, 224 (1912).Google Scholar
  120. Lubimenko, V.: Condition de chlorophylle aux plastides. C. r. Acad. Sci. Paris 173, 365 (1921).Google Scholar
  121. Lugg, J. W. H.: The representativeness of extracted samples and the efficiency of extraction of protein from the fresh leaves of plants; and some partial analyses of the whole proteins in leaves. Biochemic. J. 33, 110 (1939).Google Scholar
  122. Plant proteins. Adv. Protein Chem. 5, 229 (1949).Google Scholar
  123. Lugg, J. W. H., and R. A. Weller: Large-scale extraction of protein samples reasonably representative of the whole proteins in the leaves of some plants. The amide, tyrosine, tryptophan, cystine (plus cysteine) and methionine contents of the preparations. Biochemic. J. 38, 408 (1944).Google Scholar
  124. Martin, W. H., M. J. Pelczar and P. A. Hansen: Putrescine as a growth requirement for Neisseria. Science (Lancaster, Pa.) 116, 483 (1952).Google Scholar
  125. Maschke, O.: Pigmentlösung als Reagens bei mikroscopisch-physiologischen Untersuchungen. J. prakt. Chem. 76, 37 (1859).Google Scholar
  126. Maskell, E. J., and T. G. Mason: Studies on the transport of nitrogenous substances in the cotton plant. I. Preliminary observations on the downward transport of nitrogen in the stem. Ann. of Bot. 43, 205 (1929).Google Scholar
  127. Maximov, N. A.: The plant in relation to water. London 1929.Google Scholar
  128. Mc Kee, H. S.: A review of recent work on the nitrogen metabolism of plants. New Phytologist 36, 33, 240 (1937).Google Scholar
  129. Studies on the nitrogen metabolism of the barley plant (Hordeum sativum). Austral. J. Sci. Res. B 3, 474 (1950).Google Scholar
  130. Mc Kee, H. S., and G. E. Urbach: The physiology of growth in apple fruits. V. Soluble nitrogen constituents. Austral. J. Biol. Sci. 6, 369 (1953).Google Scholar
  131. Imino-acids in Santalum leaves. Nature (Lond.) 175, 470 (1955).Google Scholar
  132. Mc Kee, M. C., and D. E. Lobb: Formation of nitrate in detached green leaves of Swiss chard and tomato. Plant Physiol. 13, 407 (1938).PubMedGoogle Scholar
  133. Menke, W.: Untersuchungen über das Protoplasma grüner Pflanzenzellen. I. Isolierung von Chloroplasten aus Spinatblättern. Z. physiol. Chem. 257, 43 (1938).Google Scholar
  134. Mevius, W.: Über das Verhalten belichteter Laubblätter in kohlensäurefreier Luft. Jb. wiss. Bot. 81, 327 (1934/35).Google Scholar
  135. Meyer, A.: Eiweißstoffwechsel und Vergilben der Laubblätter von Tropaeolum majus. Flora (Jena) 111/112, 85 (1918).Google Scholar
  136. Meyer, A., U. A. Dewèvre: Über Drosophyllum lusitanicum. Bot. Zbl. 60, 33 (1894).Google Scholar
  137. Michael, G.: Über die Beziehungen zwischen Chlorophyll — und Eiweißabbau im vergilbenden Laubblatt von Tropaeolum. Z. Bot. 29, 385 (1935).Google Scholar
  138. Miettinen, J. K., S. Kari, T. Moisio, M. Alfthan U. A. I. Vertanen: Homoserin als freie Aminosäure in Erbsenpflanzen (Pisum sativum). Suomen Kemistil., Ser. B 2, 26 (1953).Google Scholar
  139. Miller, E. C.: Nitrogen in the leaves of crop plants. 1926. (Unpublished data quoted from “Plant Physiology”, E. C. Miller, 1931, New York.)Google Scholar
  140. Molliard, M.: L’azote et la chlorophylle dans les galles et les feuilles panachées. C. r. Acad. Sci. Paris 152, 274 (1911).Google Scholar
  141. Molliard, M., R. Echevin et A. Brunel: Composition azotée des feuilles panachées. C. r. Acad. Sci. Paris 207, 1021 (1938).Google Scholar
  142. Morris, M. P., C. Pagán and H. E. Warmke: Hiptagenic acid, a toxic component of Indigofera endecaphylla. Science (Lancaster, Pa.) 119, 322 (1954).Google Scholar
  143. Mothes, K.: Ein Beitrag zur Kenntnis des N-Stoffwechsels höherer Pflanzen. Planta (Berl.) 1, 472 (1926).Google Scholar
  144. Zur Kenntnis des N-Stoffwechsels höherer Pflanzen. 3. Beitrag (unter besonderer Berücksichtigung des Blattalters und des Wasserhaushaltes). Planta (Berl.) 12, 686 (1931).Google Scholar
  145. Zur Biosynthese der Säureamide Asparagin und Glutamin. Planta (Berl.) 30, 726 (1940).Google Scholar
  146. Moyse, A.: Respiration et metabolisme azoté. Étude de physiologie foliare. Paris 1950.Google Scholar
  147. Mulder, G. J.: Zusammensetzung von Fibrin, Albumin, Leimzucker, Leucin usw. Ann. d. Pharm. 28, 73 (1838).Google Scholar
  148. Munsche, D.: Gibt es eine Nitrifikation in höheren Pflanzen? Z. Pflanzenernährg 68, 1 (1955).Google Scholar
  149. Murneek, A. E., and J. C. Logan: Autumnal migration of nitrogen and carbohydrates in the apple tree. Missouri Agricult. Exper. Stat. Res. Bull. 1932, 171.Google Scholar
  150. Myers, J.: The pattern of photosynthesis in Chlorella. In: Photosynthesis in plants. Ames, Ia. 1949.Google Scholar
  151. Neish, A. C.: Studies on chloroplasts. II. Their chemical composition and the distribution of certain metabolites between the chloroplast and the remainder of the leaf. Biochemic. J. 33, 300 (1939).Google Scholar
  152. Nezgovorova, L. A.: A possible role of protein in photosynthesis. C. r. Acad. Sci. URSS. 85, 1387 (1952).Google Scholar
  153. Niel, C. B. van, M. B. Allen and B. E. Wright: On the photochemical reduction of nitrate by algae. Biochem. et biophysica Acta (Amsterd.) 12, 67 (1953).Google Scholar
  154. Nightingale, G. T.: Effects of temperature on growth, anatomy, and metabolism of apple and peach roots. Bot. Gaz. 96, 58 (1935).Google Scholar
  155. Potassium and calcium in relation to nitrogen metabolism. Bot. Gaz. 98, 725 (1937).Google Scholar
  156. Okahara, K.: Physiological studies on Drosera. I. On the proteolytic enzyme of Drosera rotundifolia. Sci. Rep. Tohoku Imp. Univ., Ser. IV Biol. 5, 573 (1930).Google Scholar
  157. Osborne, T. B., and A. J. Wakeman: The proteins of green leaves. I. Spinach leaves. J. of Biol. Chem. 42, 1 (1920).Google Scholar
  158. Otto, R., u. W. D. Kooper: Beiträge zur Abnahme bzw. Rückwanderung der Stickstoffverbindungen aus den Blättern während der Nacht, sowie zur herbstlichen Rückwanderung von Stickstoffverbindungen aus den Blättern. Landw. Jb. 39, 167 (1910).Google Scholar
  159. Oudman, J.: Über Aufnahme und Transport N-haltiger Verbindungen durch die Blätter von Drosera capensis L. Rec. Trav. bot. néerl. 33, 351 (1936).Google Scholar
  160. Ovcharov, K. E.: The production of thiourea by fungi. C. r. Acad. Sci. URSS. 16, 461 (1937).Google Scholar
  161. Pearsall, W. H., and M. C. Billimoria: Losses of nitrogen from green plants. Biochemic. J. 31, 1743 (1937).Google Scholar
  162. The influence of light upon nitrogen metabolism in detached leaves. Ann. of Bot., N. S. 3, 601 (1938).Google Scholar
  163. Petrie, J. M.: The role of nitrogen and its compounds in plant-metabolism. Part II. Proc. Linnean Soc. N. S. Wales 33, 835 (1908).Google Scholar
  164. Petrov, G. G.: The assimilation of nitrogen by seed plants in the light and in darkness. 1917. Quoted from S. P. Kostychev, Chemical Plant Physiology, p. 102. Philadelphia 1931.Google Scholar
  165. Pfeffer, W.: Untersuchungen über die Proteinkörner und die Bedeutung des Asparagins beim Keimen der Samen. Jb. wiss. Bot. 8, 429 (1872).Google Scholar
  166. Landw. Jb. 5, 87 (1876). Quoted from Chibnall, 1939.Google Scholar
  167. Phillis, E., and T. G. Mason: The partition of the mineral elements in the cotton plant. III. Mainly concerning nitrogen. Ann. of Bot., N. S. 6, 469 (1942).Google Scholar
  168. Pirie, N. W.: The isolation from normal tobacco leaves of nucleoprotein with some similarity to plant viruses. Biochemic. J. 47, 614 (1950).Google Scholar
  169. Postma, W. P.: Einige Bemerkungen über den Einfluß der Nitratreduktion auf die Atmung der Wurzeln. Proc. Kon. Ned. Akad. v. Wetensch. 42, 181 (1939).Google Scholar
  170. Proebsting, E. L., and R. Tate: Seasonal changes in nitrate content of fig leaves. Proc. Amer. Soc. Horticult. Sci. 60, 7 (1952).Google Scholar
  171. Racusen, D. W., and S. Aronoff: Metabolism of soybean leaves. VI. Exploratory studies in protein metabolism. Arch. of Biochem. a. Biophysics 51, 68 (1954).Google Scholar
  172. Radhakrishnan, A. N., and K. V. Giri: The isolation of allohydroxy-L-proline from sandal (Santalum album L.). Biochemic. J. 58, 57 (1954).Google Scholar
  173. Randall, J. T.: An experiment in biophysics. Proc. Roy. Soc. Lond., Ser. B 138, 301 (1951).Google Scholar
  174. Rees, M., u. H. Will: Einige Bemerkungen über fleischfressende Pflanzen. Bot. Z. 33, 713 (1875).Google Scholar
  175. Reifer, I., and J. Melville: The source of ammonia in plant tissue extracts. II. The influence of urea. J. of Biol. Chem. 178, 715 (1949).Google Scholar
  176. Reuter, C.: Beiträge zur Kenntnis der stickstoffhaltigen Bestandteile der Pilze. Z. physiol. Chem. 78, 167 (1912).Google Scholar
  177. Richards, F. J., and E. Berner: Physiological studies in plant nutrition. XVII. A general survey of the free amino-acids of barley leaves as affected by mineral nutrition, with special reference to potassium supply. Ann. of Bot., N. S. 18, 15 (1954).Google Scholar
  178. Richards, F. J., and R. G. Coleman: Occurrence of putrescine in potassium-deficient barley. Nature (Lond.) 170, 460 (1952).Google Scholar
  179. Richards, F. J., and W. G. Templeman: Physiological studies in plant nutrition. IV. Nitrogen metabolism in relation to nutrient deficiency and age in leaves of barley. Ann. of Bot. 50, 367 (1936).Google Scholar
  180. Rittbnbeeg, D., R. Schoenheimer and A. S. Keston: Studies in protein metabolism. IX. The utilization of ammonium by normal rats on a stock diet. J. of Biol. Chem. 128, 603 (1939).Google Scholar
  181. Rodney, D. R.: The entrance of nitrogen compounds through the epidermis of apple leaves. Proc. Amer. Soc. Horticult. Sci. 59, 99 (1952).Google Scholar
  182. Rouelle: Expériences. J. Méd., Chir., Pharmacie, etc. 39, 250 (1773a). Quoted from Osborne, 1924.Google Scholar
  183. Obsérvations sur les fécules ou parties vertes des plantes et sur la matière glutineuse ou végéto-animale. J. Méd., Chir., Pharmacie, etc. 40, 59 (1773b).Google Scholar
  184. Ruhland, W., u. K. Wetzel: Zur Physiologie der organischen Säuren in grünen Pflanzen. III. Rheum hybridum hort. Planta (Berl.) 3, 765 (1927).Google Scholar
  185. Zur Physiologie der organischen Säuren in grünen Pflanzen. V. Weitere Untersuchungen an Rheum hybridum hort. Planta (Berl.) 7, 503 (1929).Google Scholar
  186. Ryzhkov, V. L., i O. S. Gorodskaya: Forms of phosphorus in healthy, mosaic-infected and starved tobacco. C. r. Acad. Sci. URSS. 70, 105 (1950).Google Scholar
  187. Sachs, J.: Übersicht der Ergebnisse der neueren Untersuchungen über das Chlorophyll. Flora (Jena) 45, 129, 209 (1865).Google Scholar
  188. Sakato, Y.: The chemical constituents of tea. III. A new amide, theanine. J. Agricult. Sci. Japan 23, 262 (1950). Quoted from Chem. Abstr. 45, 3528 (1952).Google Scholar
  189. Sapozhnikov, V.: Die Stärkebildung aus Zucker in den Laubblättern. Ber. dtsch. bot. Ges. 7, 258 (1889).Google Scholar
  190. Bildung und Wanderung der Kohlenhydrate in den Laubblättern. Ber. dtsch. bot. Ges. 8, 233 (1890).Google Scholar
  191. Eiweißstoffe und Kohlenhydrate der grünen Blätter als Assimilationsprodukte. Tomsk 1894. Abstr. Bot. Zbl. 16, 246 (1895).Google Scholar
  192. Schocken, V.: The genesis of auxin during the decomposition of proteins. Arch. of Biochem. 23, 198 (1949).Google Scholar
  193. Schulze, B., u. J. Schütz: Die Stoffwandlungen in den Laubblättern des Baumes, insbesondere in ihren Beziehungen zum herbstlichen Blattfall. Landw. Versuchsstat. 71, 299 (1909).Google Scholar
  194. Schulze, E.: Über den Eiweißumsatz im Pflanzenorganismus. Landw. Jb. 9, 689 (1880).Google Scholar
  195. Über das Vorkommen von Glutamin in grünen Pflanzentheilen. Z. physiol. Chem. 20, 327 (1895).Google Scholar
  196. Schulze, E., u. E. Bosshard: Zur Kenntnis des Vorkommens von Allantoin, Asparagin, Hypoxanthin und Guanin in den Pflanzen. Z. physiol. Chem. 9, 420 (1885).Google Scholar
  197. Schulze, E., u. E. Kisser: Über Zersetzung von Proteinstoffen in verdunkelten grünen Pflanzen. Landw. Versuchsstat. 36, 1 (1889).Google Scholar
  198. Schumacher, W.: Ein Beitrag zur Kenntnis des Stoffwechsels panaschierter Pflanzen. Planta (Berl.) 5, 161 (1928).Google Scholar
  199. Scurti, F.: Il fosforo e la formazione degli aminoacidi nei vegetali. Staz. sper. agr. ital. 41, 456 (1908).Google Scholar
  200. Shcherbakov, A. P.: Changes of respiration in plants deprived of potassium. Biokhim. 10, 439 (1945).Google Scholar
  201. Shebatt, H. S. A., and W. C. Evans: A crystalline chlorophyll-protein complex from Chlamydomonas. Nature (Lond.) 173, 540 (1954).Google Scholar
  202. Sideris, C. P., and H. Y. Young: Effects of nitrogen on chlorophyll, acidity, ascorbic acid, and carbohydrate fractions of Ananas comosus (L.) Merr. Plant Physiol. 22, 97 (1947).PubMedGoogle Scholar
  203. Singer, S. J., L. Eggman, J. M. Campbell and S. G. Wildman: The proteins of green leaves. VI. A high molecular weight protein comprising a large part of the cytoplasmic proteins. J. of Biol. Chem. 197, 233 (1952).Google Scholar
  204. Sisakjan, N. M., E. N. Bezinger i E. B. Kuvayeva: Amino-acid composition of plastid proteins. Biokhim. 16, 358 (1951).Google Scholar
  205. Smirnow, A. I., P. S. Erygin, M. A. Drboglav U. T. M. Mashkovtsev: Über die biochemischen Eigentümlichkeiten des Alterns der Laubblätter. Planta (Berl.) 6, 687 (1928).Google Scholar
  206. Smith, A. M., and W. Robb: The carotene and protein in oats and barley at different stages of growth. J. Agricult. Sci. 33, 119 (1943).Google Scholar
  207. Smith, A. M., and T. Wang: The carotene content of certain species of grassland herbage. J. Agricult. Sci. 31, 370 (1941).Google Scholar
  208. Smith, E. L.: The chlorophyll-protein compound of the green leaf. J. Gen. Physiol. 24, 565 (1941).PubMedGoogle Scholar
  209. Spoehr, H. A., and H. W. Milner: The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol. 24, 120 (1949).PubMedGoogle Scholar
  210. Stahl, E.: Der Sinn der Mycorhizenbildung. Jb. wiss. Bot. 34, 539 (1900).Google Scholar
  211. Steward, F. C, and J. F. Thompson: Proteins and protein metabolism in plants. In: The proteins, Vol.2, Part A; ed. by H. Neurath and K. Bailey. New York 1954.Google Scholar
  212. Steward, F. C, J. F. Thompson, F. K. Millar, M. D. Thomas and R. H. Hendricks: The amino acids of alfalfa as revealed by paper chromatography with special reference to compounds labelled with S35. Plant Physiol. 26, 123 (1951).PubMedGoogle Scholar
  213. Stock, G.: Ein Beitrag zur Kenntnis der Proteinkrystalle. Beitr. Biol. Pflanz. 6, 213 (1893).Google Scholar
  214. Stokes, G. G.: On the supposed identity of biliverdin with chlorophyll, with remarks on the constitution of chlorophyll. Proc. Roy. Soc. Lond. 13, 144 (1864).Google Scholar
  215. Stuart, N. W.: Nitrogen and carbohydrate metabolism of young apple trees as affected by excessive applications of sodium nitrate. N. H. Agricult. Exper. Stat. Techn. Bull. 1932, 50.Google Scholar
  216. Suzuki, U.: An important function of leaves. Imp. Univ. Coll. Agricult. Tokyo 3, 241 (1897).Google Scholar
  217. Tait, L.: Insectivorous plants. Nature (Lond.) 12, 251 (1875).Google Scholar
  218. Takashima, S.: Chlorophyll-lipoprotein obtained in crystals. Nature (Lond.) 169, 182 (1952).Google Scholar
  219. Thomas, W.: The seat of formation of amino acids in Pyrus malus L. Science (Lancaster, Pa.) 66, 115 (1927).Google Scholar
  220. Tiedjens, V. A.: Factors affecting assimilation of ammonium and nitrate nitrogen, particularly in tomato and apple. Plant Physiol. 9, 31 (1934).PubMedGoogle Scholar
  221. Tolbert, N. E., and L. P. Zill: Photosynthesis by protoplasm extruded from Chara and Nitella. J. Gen. Physiol. 37, 575 (1954).PubMedGoogle Scholar
  222. Towers, G. H. N., and F. C. Steward: The keto acids of the tulip (Tulipa gesneriana) with special reference to the keto analog of γ-methyleneglutamic acid. J. Amer. Chem. Soc. 76, 1959 (1954).Google Scholar
  223. Turchin, F. V., M. A. Guminskaya i E. G. Plyshevskaya: The rate of renewal of protein and chlorophyll in higher plants. Bull. Acad. Sci. URSS. 1953, No 6, 66.Google Scholar
  224. Ullrich, H.: Die Rolle der Chloroplasten bei der Eiweißbildung in den grünen Pflanzen. Z. Bot. 16, 513 (1924).Google Scholar
  225. Underwood, J. C, and L. B. Rockland: Nitrogenous constituents in citrus fruits. I. Some free amino-acids in citrus juices determined by small-scale filter-paper chromatography. Food Res. 18, 17 (1953).Google Scholar
  226. Vickery, H. B., and G. W. Pucher: The metabolism of amides in green plants. III. The mechanism of amide synthesis. J. of Biol. Chem. 126, 703 (1939a).Google Scholar
  227. The loss of carbon from excised rhubarb leaves during culture. J. of Biol. Chem. 128, 685 (1939b).Google Scholar
  228. Vickery, H. B., G. W. Pucher and C. S. Leavenworth: Artificial enrichment of beet root tissue with glutamine. Proc. Soc. Exper. Biol. a. Med. 68, 294 (1948).Google Scholar
  229. Vickery, H. B., G. W. Pucher, C. S. Leavenworth and A. J. Wakeman: The metabolism of amides in green plants. II. The amides of the rhubarb leaf. J. of Biol. Chem. 125, 527 (1938).Google Scholar
  230. Vickery, H. B., G. W. Pucher, A. J. Wakeman and C. S. Leavenworth: Chemical investigations of the tobacco plant. VI. Chemical changes that occur in leaves during culture in light and in darkness. Bull. Conn. Agricult. Exper. Stat. 1937, No 399.Google Scholar
  231. Vines, S. H.: On the digestive ferment of Nepenthes. J. of Anat. 11, 124 (1876).Google Scholar
  232. Vertanen, A. I., and J. K. Miettinen: Free amino-acids in the leaves, roots and root nodules of the alder (Alnus). Nature (Lond.) 170, 283 (1952).Google Scholar
  233. Walkley, J.: Protein synthesis in mature and senescent leaves of barley. New Phytologist 39, 362 (1940).Google Scholar
  234. Warburg, O., u. E. Negelein: Über die Reduktion der Salpetersäure in grünen Zellen. Biochem. Z. 110, 66 (1920).Google Scholar
  235. White, H. L.: The interaction of factors in the growth of Lemna. XI. The interaction of nitrogen and light intensity in relation to growth and assimilation. Ann. of Bot., N. S. 1, 622 (1937).Google Scholar
  236. Wildman, S. G., and J. Bonner: The proteins of green leaves. I. Isolation, enzymatic properties and auxin content of spinach cytoplasmic proteins. Arch. of Biochem. 14, 381 (1947).Google Scholar
  237. Wildman, S. G., J. M. Campbell and J. Bonner: The proteins of green leaves. II. Purine, pentose, total phosphorus and acid—labile phosphorus of the cytoplasmic proteins of spinach leaves. Arch. of Biochem. 24, 9 (1949).Google Scholar
  238. Wildman, S., and A. Jagendorf: Leaf proteins. Annual Rev. Plant Physiol. 3, 131 (1952).Google Scholar
  239. Willstätter, R., u. W. Heubner: Über eine neue Solanaceenbase. Ber. dtsch. chem. Ges. 40, 3869 (1907).Google Scholar
  240. Winterstein, E.: Über die stickstoffhaltigen Bestandteile grüner Blätter. Ber. dtsch. chem. Ges. 19, 326 (1901).Google Scholar
  241. Wood, J. G., and D. H. Cruickshank: The metabolism of starving leaves. 5. Changes in amount of some amino acids during starvation of grass leaves; and their bearing on the nature of the relationship between proteins and amino acids. Austral. J. Exper. Biol. a. Med. Sci. 22, 111 (1944).Google Scholar
  242. Wood, J. G., D. H. Cruickshank and R. H. Kuchel: The metabolism of starving leaves. 1. Presentation of data; the nature of respiration rate/time curves in air and in nitrogen and the relation to carbohydrates. 2. Changes in amounts of total and chloroplast proteins, chlorophyll, ascorbic acid and soluble nitrogen compounds. 3. Changes in malic and citric acid contents and interrelations of these with soluble nitrogen compounds. Austral. J. Exper. Biol. a. Med. Sci. 21, 37 (1943).Google Scholar
  243. Wood, J. G., F. V. Mercer and C. Pedlow: The metabolism of starving leaves. 4. Respiration rate and metabolism of leaves of kikuyu grass during air-nitrogen transfers. Austral. J. Exper. Biol. a. Med. Sci. 22, 37 (1944).Google Scholar
  244. Wood, J. G., and P. M. Sibly: Carbonic anhydrase activity in plants in relation to zinc content. Austral. J. Sci. Res. B 5, 244 (1952).Google Scholar
  245. Wood, J. G., and H. B. S. Womersley: Development and metabolism of copper-deficient oat plants. Austral. J. Exper. Biol. a. Med. Sci. 24, 79 (1946).Google Scholar
  246. Yemm, E. W.: The respiration of barley plants. II. Carbohydrate concentration and carbon dioxide production in starving leaves. Proc. Roy. Soc. Lond., Ser. B 117, 504 (1935).Google Scholar
  247. Respiration of barley plants. III. Protein catabolism in starving leaves. Proc. Roy. Soc. Lond., Ser. B 123, 243 (1937).Google Scholar
  248. Respiration of barley plants. IV. Protein catabolism and the formation of amides in starving leaves. Proc. Roy. Soc. Lond., Ser. B 136, 632 (1950).Google Scholar
  249. The cytoplasmic and chloroplastic proteins of barley. Biochemic. J. 49, xxvi (1951).Google Scholar
  250. Zaleski, V.: Zur Kenntnis der Eiweißbildung in den Pflanzen. Ber. dtsch. bot. Ges. 15, 536 (1897).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • H. S. McKee

There are no affiliations available

Personalised recommendations