Skip to main content

Abstract

The green leaf is functionally one of the most remarkable organs known in the whole world of living organisms. It is, in land plants, the typical seat of photosynthesis, the process which above all others distinguishes the green plants from other organisms. Within the leaf there proceeds a highly complex set of interlocking reactions, both synthetic and catabolic. Some of these reactions are common to other organs of the plant, others are directly associated with photosynthesis. Photosynthesis, of course, forms primarily non-nitrogenous compounds, but nitrogen-containing substances are also among the earlier products of photosynthesis. Many other reactions known to occur in leaves involve nitrogenous compounds, either directly or indirectly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Adova, A. N.: Zur Frage nach den Fermenten von Utricularia wlgaris L. I. Biochem. Z. 150, 101.

    Google Scholar 

  • II. Biochem. Z. 153, 506 (1924).

    Google Scholar 

  • Ali-Zade, M.: Assimilation des Stickstoffs der Knöllchen der Leguminosen. C. r. Acad. Sci. URSS. 30, 256 (1941).

    Google Scholar 

  • Alten, F., G. Goeze u. H. Fischer: Kohlensäureassimilation und Stickstoffhaushalt bei gestaffelter Kaligabe. Bodenkde. u. Pflanzenernährg 5, (50), 259 (1937).

    CAS  Google Scholar 

  • Andreyeva, T. F.: Effect of photosynthesis on nitrate reduction and protein synthesis in the leaf. C. r. Acad. Sci. URSS. 78, 1033 (1951).

    Google Scholar 

  • Andreyeva, T. F., i E. G. Plyshevskaya: A study, using N15, of the formation of protein in the process of photosynthesis. C. r. Acad. Sci. URSS. 87, 301 (1952).

    Google Scholar 

  • Auclair, J. L., and J. B. Maltais: Occurrence of gamma-amino-butyric acid in extracts of Pisum sativum (L.) and in the honeydew of Myzus circumflexus (Buck). Nature (Lond.) 170, 1114 (1952).

    CAS  Google Scholar 

  • Axelrod, B., and A. T. Jagendorf: The fate of phosphatase, invertase and peroxidase in autolyzing leaves. Plant Physiol. 26, 406 (1951).

    PubMed  CAS  Google Scholar 

  • Baas Becking, L. G. M., and E. A. Hanson: Note on the mechanism of photosynthesis. Proc. Kon. Ned. Akad. v. Wetensch. 40, 752 (1937).

    CAS  Google Scholar 

  • Behre, K.: Physiologische und zytologische Untersuchungen über Drosera. Planta (Berl.) 7, 208 (1929).

    Google Scholar 

  • Benson, A. A., and M. Calvin: Carbon dioxide fixation by green plant. Annual Rev. Plant Physiol. 1, 25 (1950).

    Google Scholar 

  • Berg, A. M., S. Kari, M. Alfthan U. A. I. Virtanen: Homoserine and a-aminoadipic acid in green plants. Acta chem. scand. (Stockh.) 8, 358 (1954).

    CAS  Google Scholar 

  • Bickel, A. F., and J. P. Wibaut: On the structure of leucaenine (leucaenol) from Leucaena glauca Bentham. Rec. Trav. chim. Pays-Bas (Amsterd.) 65, 65 (1946).

    CAS  Google Scholar 

  • Bidwell, R. G. S., G. Krotkov and G. B. Reed: Synthesis of radioactive glutamine from C14O2 in Swiss chard leaves and its isolation by paper chromatography. Arch. of Biochem. a. Biophysics 48, 73 (1954).

    Google Scholar 

  • Borodin, I.: Physiologische Untersuchungen über die Athmung der beblätterten Sprosse. Bot. Jb. 4, 919 (1876).

    Google Scholar 

  • Über die physiologische Rolle und die Verbreitung des Asparagins im Pflanzenreiche. Bot. Z. 36, 801 (1878).

    Google Scholar 

  • Bot, G. M.: The chemical composition of chloroplast granules (grana) in relation to their structure. Chronica Bot. 7, 66 (1942).

    CAS  Google Scholar 

  • Burnett, G. T.: On the functions and structure of plants, with reference to the adumbrations of a stomach in vegetals. Quart. J. Sci. Lit. and Art., Vol. for Jy.—Dec., 279, 1829.

    Google Scholar 

  • Burström, H.: Photosynthesis and assimilation of nitrate by wheat leaves. K. Lantbrukshögskolans Ann. 11, 1 (1943a).

    Google Scholar 

  • Studies on the products of the photosynthesis. Ark. Bot. (Stockh.) B 30, 1 (1943b).

    Google Scholar 

  • Büsgen, M.: Die Bedeutung des Insektenfanges für Drosera rotundifolia. Bot. Z. 41, 569, 585 (1883).

    Google Scholar 

  • Bush, M. T., O. Touster and J. E. Brockman: The production of β-nitropropionic acid by a strain of Aspergillus flavus. J. of Biol. Chem. 188, 685 (1951).

    CAS  Google Scholar 

  • Butkevich, V.: Die Umwandlung der Eiweißstoffe in verdunkelten grünen Pflanzen. Biochem. Z. 12, 314 (1908).

    Google Scholar 

  • Calvin, M., J. A. Bassham, A. A. Benson, V. H. Lynch, C. Ouellet, L. Schou, W. Stepka and N. E. Tolbert: Carbon dioxide assimilation in plants. Symposia Soc. f. Exper. Biol. 5, 284 (1951).

    CAS  Google Scholar 

  • Carter, C. L., and W. J. Mc Chesney: Hiptagenic acid identified as β-nitropropionic acid. Nature (Lond.) 164, 575 (1949).

    CAS  Google Scholar 

  • Charles, A.: The respiratory fluctuations of starving detached leaves. New Phytologist 53, 81 (1954).

    Google Scholar 

  • Chibnall, A. C.: Investigations on the nitrogenous metabolism of the higher plants. V. Diurnal variations in the protein nitrogen of runner bean leaves. Biochemic. J. 18, 387 (1924a).

    CAS  Google Scholar 

  • The role of asparagine in the metabolism of the mature plant. Biochemic. J. 18, 395 (1924 b).

    Google Scholar 

  • Protein metabolism in the plant. New Haven, Conn. 1939.

    Google Scholar 

  • Protein metabolism in rooted runner-bean leaves. New Phytologist 53, 31 (1954).

    Google Scholar 

  • Chibnall, A. C, and L. S. Nolan: A protein from the leaves of the alfalfa plant. J. of Biol. Chem. 62, 173 (1924).

    CAS  Google Scholar 

  • Chibnall, A. C, and S. B. Schryver: The isolation of proteins from leaves. J. of Physiol. 54, 1 (1920).

    Google Scholar 

  • Chibnall, A. C, and G. H. Wiltshire: A study with isotopic nitrogen of protein metabolism in detached runner-bean leaves. New Phytologist 53, 38 (1954).

    CAS  Google Scholar 

  • Chrapowitski: Über die Synthese der Eiweißstoffe in chlorophyllhaltigen Pflanzen. Bull. Acad. Imp. Sci. St. Petersb. 32, 96 (1887).

    Google Scholar 

  • Ciamcian, G., e C. Ravenna: Richerche sulla genesi degli alcaloidi nelle piante. Rend. Real. Accad. Lincei 20, 614 (1911).

    Google Scholar 

  • Comar, C. L.: Chloroplast substance of spinach leaves. Bot. Gaz. 104, 122 (1942).

    CAS  Google Scholar 

  • Combes, R., et R. Echevin: Vitesse de l’émigration automnale des substances azotées des feuilles vers les tiges chez les plantes ligneuses. C. r. Acad. Sci. Paris 189, 1060 (1927).

    Google Scholar 

  • Cromwell, B. T.: Synthesis of hyoscyamine in Atropa belladonna L. and Datura stramonium L. Biochemic. J. 37, 717 (1944a).

    CAS  Google Scholar 

  • The role of putrescine in the synthesis of hyoscyamine. Biochemic. J. 37, 722 (1944 b).

    Google Scholar 

  • Cruickshank, D. H., and J. G. Wood: The metabolism of starving leaves. 6. Nitrogen balance sheet and changes in organic acid content during starvation of oat leaves. Austral. J. Exper. Biol. a. Med. Sci. 23, 243 (1945).

    CAS  Google Scholar 

  • Culpepper, C. W., and J. S. Caldwell: Relation of age and of seasonal conditions to composition of root, petiole and leaf blade in rhubarb. Plant Physiol. 7, 447 (1932).

    PubMed  CAS  Google Scholar 

  • Dakin, W. J.: The West Australian pitcher plant (Cephalotus follicularis), and its physiology. J. Roy. Soc. W. Austral. 4, 37 (1918).

    CAS  Google Scholar 

  • Dakshinamurti, K.: The aminoacids in the leaf of Azadirecta indica (Melia). Current Sci. 23, 125 (1954).

    CAS  Google Scholar 

  • Dam, H., J. Glavind u. N. Nielsen: Weitere Untersuchungen über die Bildung und Bedeutung des Vitamin K im Pflanzenorganismus. Z. physiol. Chem. 265, 80 (1940).

    CAS  Google Scholar 

  • Darwin, C.: Insectivorous Plants, 2nd ed. 1875.

    Google Scholar 

  • Darwin, F.: Experiments on the nutrition of Droserarotundifolia. J. Linnean Soc. Bot. 17, 17 (1878).

    Google Scholar 

  • Davidson, O. W., and J. W. Shive: The influence of the hydrogen-ion concentration of the culture solution upon the absorption and assimilation of nitrate and ammonium nitrogen by peach trees grown in sand cultures. Soil Sci. 37, 357 (1934).

    CAS  Google Scholar 

  • Davis, E. A.: Nitrate reduction by Chlorella. Carnegie Inst. Wash. Year Book 49, 99 (1950).

    Google Scholar 

  • Deken-Grenson, M. de: Grana formation and synthesis of chloroplastic proteins induced by light in portions of etiolated leaves. Biochim. et Biophysica Acta 14, 203 (1954).

    Google Scholar 

  • Deleano, N. T.: Studien über den Atmungsstoffwechsel abgeschnittener Laubblätter. Jb. wiss. Bot. 51, 541 (1912).

    Google Scholar 

  • Deleano, N. T., u. N. I. Andreesco: Beiträge zum Studium der Rolle und Wirkungsweise der mineralischen und organischen Stoffe im Pflanzenleben. I. Mitt. Der quantitative Stoffwechsel der mineralischen und organischen Substanzen in den Salix fragilis-Blättern während ihrer Entwicklung. Beitr. Biol. Pflanz. 19, 249 (1932).

    Google Scholar 

  • Deleano, N. T., u. C. Bordeianu: Beiträge zum Studium der Rolle und Wirkungsweise der mineral- und organischen Stoffe im Pflanzenleben. II. Mitt. Der quantitative Stoffwechsel der mineral- und organischen Substanzen in den Blättern und geschälten Samen von Aesculus hippocastanum während ihrer Entwicklung. Beitr. Biol. Pflanz. 20, 179 (1933).

    Google Scholar 

  • Deleano, N. T., u. P. Gotterbarm: Beiträge zum Studium der Rolle und Wirkungsweise der mineral- und organischen Stoffe im Pflanzenleben. III. Mitt. Der quantitative Stoffwechsel der mineral- und organischen Substanzen des Roggens und der Gerste. Beitr. Biol. Pflanz. 24, 19 (1936).

    Google Scholar 

  • Delwiche, C. C.: The assimilation of ammonium and nitrate ions by tobacco plants. J. of Biol. Chem. 189, 167 (1951).

    CAS  Google Scholar 

  • Diaper, D. G. M., S. Kirkwood and L. Marion: The biosynthesis of alkaloids. III. A study of hyoscyamine biosynthesis using isotopic putrescine. Canad. J. Chem. 29, 964 (1951).

    CAS  Google Scholar 

  • Dittrich, W.: Zur Physiologie des Nitratumsatzes in höheren Pflanzen (mit besonderer Berücksichtigung der Nitratspeicherung). Planta (Berl.) 12, 69 (1930).

    CAS  Google Scholar 

  • Doman, N. G., A. M. Kuzin, Y. V. Mamul i R. I. Khudyakova: The different primary products of photosynthesis in various plant species. C. r. Acad. Sci. URSS. 86, 369 (1952).

    CAS  Google Scholar 

  • Done, J., and L. Fowden: A new amino-acid amide in the groundnut plant (Arachis hypogaea): evidence of the occurrence of γ-methyleneglutamine and γ-methyleneglutamic acid. Biochemic. J. 51, 451 (1952).

    CAS  Google Scholar 

  • Echevin, R.: L’azote, le phosphore et le soufre chez les plantes ligneuses à feuilles caduques Rev. gén. Bot. 43, 517 (1931).

    CAS  Google Scholar 

  • Echevin, R., A. Brunel et I. Sartorius: SUR l’origine de l’allantoïne. C. r. Acad. Sci. Paris 211, 71 (1940).

    CAS  Google Scholar 

  • Eisenmenger, W. S.: The distribution of nitrogen in tobacco when the supplies of nitrogen and of light are varied during the growing period. J. Agricult. Res. 46, 255 (1933).

    CAS  Google Scholar 

  • Evans, W. C, and M. W. Partridge: Alkaloid biogenesis. Part III. The production of biosynthetic radioactive hyoscine and meteloidine. J. of Pharmacy a. Pharmacol. 6, 702 (1954).

    CAS  Google Scholar 

  • Fagan, T. W., and W. M. Ashton: The effect of partial field-drying and artificial drying on the chemical composition of grass. Welsh J. Agricult. 14, 160 (1938).

    CAS  Google Scholar 

  • Fisher, E. G.: The principles underlying foliage application of urea for nitrogen fertilization of the McIntosh apple. Proc. Amer. Soc. Horticult. Sci. 59, 91 (1952).

    Google Scholar 

  • Fisher, E. G., D. Boynton and K. Skodvin: Nitrogen fertilization of the McIntosh apple with leaf sprays of urea. Proc. Amer. Soc. Horticult. Sci. 51, 23 (1948).

    CAS  Google Scholar 

  • Fisher, E. G., and J. A. Cook: Nitrogen fertilization of the Mclntosh apple with leaf sprays of urea. II. Proc. Amer. Soc. Horticult. Sci. 55, 35 (1950).

    CAS  Google Scholar 

  • Fosse, R.: Formation de l’urée par les végétaux supérieurs. C. r. Acad. Sci. Paris 156, 567 (1913).

    CAS  Google Scholar 

  • Fourcroy, A. F.: Sur l’existence de la matière albumineuse dans les végétaux. Ann. de Chim. 3, 252 (1789).

    Google Scholar 

  • Fowden, L., and J. Done: A third unsaturated amino-acid in groundnut plants: evidence for the occurrence of γ-amino-α-methylenebutyric acid. Biochemic. J. 55, 548 (1953).

    CAS  Google Scholar 

  • Fowden, L., and J. A. Webb: γ-Methylene-α-oxoglutaric acid: a constituent of groundnut plants (Arachis hypogaea). Comm. Biochem. Soc. 330th meeting, 19 June 1954, p. 3.

    Google Scholar 

  • French, S.: The pigment-protein compound in photosynthetic bacteria. I. The extraction and properties of photosynthin. J. Gen. Physiol. 23, 469 (1940).

    PubMed  CAS  Google Scholar 

  • Gale, E. F.: The production of amines by bacteria. III. The production of putrescine from 1 (+)-arginine by Bacterium coli in symbiosis with Streptococcus faecalis. Biochemic. J. 34, 853 (1940).

    CAS  Google Scholar 

  • Galston, A. W.: The isolation, agglutination and nitrogen analysis of intact oat chloroplasts. Amer. J. Bot. 30, 331 (1943).

    CAS  Google Scholar 

  • Giri, K. V., K. S. Gopalkrishnan, A. N. Radhakrishnan and C. S. Vaidyanathan: Proline and hydroxyproline in leaves. Nature (Lond.) 170, 579 (1952).

    CAS  Google Scholar 

  • Godlewski, E.: Zur Kenntnis der Eiweißbildung in den Pflanzen. Krakov 1903. Cited from Doman, Kuzin, Mamul and Khudyakova, 1952.

    Google Scholar 

  • Gordon, S. A.: Auxin-protein complexes of the wheat grain. Amer. J. Bot. 33, 160 (1946).

    CAS  Google Scholar 

  • Gordon, S. A., and S. G. Wildman: The conversion of tryptophane to a plant growth substance by conditions of mild alkalinity. J. of Biol. Chem. 147, 389 (1943).

    CAS  Google Scholar 

  • Gorter, K.: L’hiptagine, glucoside nouveau retiré de l’Hiptage Madablota Gaertn. Bull. Jard. Bot. Buitenzorg, Ser. III 2, 187 (1920).

    CAS  Google Scholar 

  • Gorup-Besanez, E. V., u. H. Will: Fortgesetzte Beobachtungen über peptonbildende Fermente im Pflanzenreich. Sitzgsber. Phys. Med. Soc. Erlangen, S. 152, 1875/76.

    Google Scholar 

  • Gouwentak, C. A.: Untersuchungen über den N-Stoffwechsel bei Helianthus annuus L. Rec. Trav. bot. néerl. 26, 19 (1929).

    Google Scholar 

  • Über die herbstliche Änderung von Stickstoff und Trockengewicht im Laubblatt einer einjährigen Pflanze. Rec. Trav. bot. néerl. 28, 421 (1931).

    Google Scholar 

  • Granick, S.: Chloroplast nitrogen of some higher plants. Amer. J. Bot. 25, 561 (1938).

    CAS  Google Scholar 

  • Gregory, F. G., and P. K. Sen: Physiological studies in plant nutrition. VI. The relation of respiration rate to the carbohydrate and nitrogen metabolism of the barley leaf as determined by nitrogen and potassium deficiency. Ann. of Bot., N. S. 1, 521 (1937).

    CAS  Google Scholar 

  • Griffith, E. B., W. D. Valleau and R. N. Jeffrey: Chlorophyll and carotene content of eighteen tobacco varieties. Plant Physiol. 19, 689 (1944).

    PubMed  CAS  Google Scholar 

  • Hanson, E. A.: A note on the metabolism of chloroplast protein. Austral. J. of Exper. Biol. a. Med. Sci. 19, 157 (1941).

    CAS  Google Scholar 

  • Hanson, E. A., B. S. Barrien and J. G. Wood: Relations between protein-nitrogen, protein-sulphur and chlorophyll in leaves of Sudan grass. Austral. J. of Exper. Biol. a. Med. Sci. 19, 231 (1941).

    CAS  Google Scholar 

  • Hartley, H.: Origin of the word ‘protein’. Nature (Lond.) 168, 244 (1951).

    CAS  Google Scholar 

  • Hartt, C. E.: Some effects of potassium upon the amounts of protein and amino-forms of nitrogen, sugars, and enzyme activity of sugar cane. Plant Physiol. 9, 453 (1934).

    CAS  Google Scholar 

  • Hay, R. E., E. B. Earley and E. E. de Turk: Concentration and translocation of nitrogen compounds in the corn plant (Zea mays) during grain development. Plant Physiol. 28, 606 (1953).

    PubMed  CAS  Google Scholar 

  • Herbst, E. J., and E. E. Snell: Putrescine as a growth factor for Hemophilus parainfluenzae. J. of Biol. Chem. 176, 989 (1948).

    CAS  Google Scholar 

  • The nutritional requirements of Hemophilus parainfluenzae 7901. J. Bacter. 58, 379 (1949a).

    Google Scholar 

  • Putrescine and related compounds as growth factors for Hemophilus parainfluenzae 7901. J. of Biol. Chem. 181, 47 (1949b).

    Google Scholar 

  • Hevesy, G., K. Linderstrøm-Lang, A. S. Keston u. C. Olsen: Exchange of nitrogen atoms in the leaves of the sunflower. C. r. Trav. Labor. Carlsberg 23, 213 (1940).

    CAS  Google Scholar 

  • Hiwatari, Y.: On the nitrogenous components from the fruit of Citrus grandis Osbeck, form. Buntan, Hayat. J. of Biochem. (Tokyo) 7, 169 (1927).

    CAS  Google Scholar 

  • Quoted from Underwood and Rockland, 1953.

    Google Scholar 

  • Hooker, J. D.: Address to the Department of Zoology and Botany. B. A. A. S., Report of the Forty-fourth Meeting, 1874.

    Google Scholar 

  • Hoppe-Seyler, F.: Über das Chlorophyll der Pflanzen. 1. Abhandlung. Z. physiol. Chem. 3, 339 (1879).

    Google Scholar 

  • Physiologische Chemie. Berlin 1881.

    Google Scholar 

  • James, W. O.: The amino-acid precursors of the belladonna alkaloids. New Phytologist 48, 172 (1949).

    CAS  Google Scholar 

  • Plant respiration. Oxford 1953.

    Google Scholar 

  • Karmarkar, D. V.: The seasonal cycles of nitrogenous and carbohydrate materials in fruit trees. I. The seasonal cycles of total nitrogen and of soluble nitrogen compounds in the wood, bark and leaves portions of terminal shoots of apple trees under two cultural systems—grass plus annual spring nitrate and arable without nitrogenous fertilizer. J. Pomol. Horticult. Sci. 12, 177 (1934).

    CAS  Google Scholar 

  • Keirstead, L. G.: Relation of carotene and crude protein content of grasses. J. Amer. Soc. Agron. 37, 239 (1945).

    Google Scholar 

  • Kemble, A. R., and H. T. Macpherson: Monoamino monocarboxylic acid content of preparations of herbage protein. Biochemic. J. 58, 44 (1954a).

    CAS  Google Scholar 

  • Liberation of amino acids in perennial rye grass during wilting. Biochemie. J. 58, 46 (1954b).

    Google Scholar 

  • Kiesel, A.: Ein Beitrag zur Kenntnis der Veränderungen, welche die stickstoffhaltigen Bestandteile grüner Pflanzen infolge von Lichtabschluß erleiden. Z. physiol. Chem. 49, 72 (1906).

    CAS  Google Scholar 

  • Études sur la nutrition de l’Utricularia vulgaris. Ann. Inst. Pasteur 38, 879 (1924).

    Google Scholar 

  • Kiesel, A., A. Belozersky, P. Agatov, N. Bivshikh u. M. Pavlova: Vergleichende Untersuchungen über Organeiweiß von Pflanzen. Z. physiol. Chem. 226, 73 (1934).

    CAS  Google Scholar 

  • Klein, G., u. K. Tauböck: Harnstoff und Ureide bei den höheren Pflanzen. I. Das Vorkommen von Harnstoff im Pflanzenreich und sein Wandel im Laufe der Vegetationsperiode. Jb. wiss. Bot. 74, 429 (1931a).

    CAS  Google Scholar 

  • Harnstoff und Ureide bei den höheren Pflanzen. III. Das Vorkommen von Ureiden. Quantitative Bestimmung von freiem und gebundenem Harnstoff. Biochem. Z. 241, 413 (1931b).

    Google Scholar 

  • Kleipool, R. J. C, U. J. P. Wibaut: Pyridine derivatives. LXXX. Mimosine (leucenine). Rec. Trav. chim. Pays-Bas (Amsterd.) 69, 37 (1950).

    CAS  Google Scholar 

  • Kostytschew, S.: Lehrbuch der Pflanzenphysiologie, Bd. I. Berlin 1926.

    Google Scholar 

  • Kosutany, T.: Untersuchungen über die Entstehung des Pflanzeneiweißes. Landw. Versuchsstat. 48, 13 (1897).

    Google Scholar 

  • Krasheninnikov, T.: Die Aufspeicherung der Sonnenenergie in der Pflanze, 1901. Cited from Kostytschew, 1926.

    Google Scholar 

  • Krotkov, G.: Carbohydrate and respiratory metabolism in the isolated starving leaf of wheat. Plant Physiol. 14, 203 (1939).

    PubMed  CAS  Google Scholar 

  • Lakon, G.: Der Eiweißgehalt panaschierter Blätter geprüft mittels des makroskopischen Verfahrens von Molisch. Biochem. Z. 78, 145 (1916).

    CAS  Google Scholar 

  • Lepeschkin, W. W.: Some aspects of the state of chlorophyll in chloroplasts. Plant Physiol. 24, 175 (1949).

    PubMed  CAS  Google Scholar 

  • Leroux, L.: Presence de l’acide allantoïque dans les feuilles de Corylus avellana. C. r. Acad. Sci. Paris 205, 172 (1937).

    CAS  Google Scholar 

  • Loew, O.: Über das Verhalten niederer Pilze gegen verschiedene Stickstoffverbindungen. Biol. Zbl. 10, 577 (1890).

    Google Scholar 

  • Über Stickstoffassimilation und Eiweißbildung in Pflanzenzellen. Biochem. Z. 41, 224 (1912).

    Google Scholar 

  • Lubimenko, V.: Condition de chlorophylle aux plastides. C. r. Acad. Sci. Paris 173, 365 (1921).

    CAS  Google Scholar 

  • Lugg, J. W. H.: The representativeness of extracted samples and the efficiency of extraction of protein from the fresh leaves of plants; and some partial analyses of the whole proteins in leaves. Biochemic. J. 33, 110 (1939).

    CAS  Google Scholar 

  • Plant proteins. Adv. Protein Chem. 5, 229 (1949).

    Google Scholar 

  • Lugg, J. W. H., and R. A. Weller: Large-scale extraction of protein samples reasonably representative of the whole proteins in the leaves of some plants. The amide, tyrosine, tryptophan, cystine (plus cysteine) and methionine contents of the preparations. Biochemic. J. 38, 408 (1944).

    CAS  Google Scholar 

  • Martin, W. H., M. J. Pelczar and P. A. Hansen: Putrescine as a growth requirement for Neisseria. Science (Lancaster, Pa.) 116, 483 (1952).

    CAS  Google Scholar 

  • Maschke, O.: Pigmentlösung als Reagens bei mikroscopisch-physiologischen Untersuchungen. J. prakt. Chem. 76, 37 (1859).

    Google Scholar 

  • Maskell, E. J., and T. G. Mason: Studies on the transport of nitrogenous substances in the cotton plant. I. Preliminary observations on the downward transport of nitrogen in the stem. Ann. of Bot. 43, 205 (1929).

    Google Scholar 

  • Maximov, N. A.: The plant in relation to water. London 1929.

    Google Scholar 

  • Mc Kee, H. S.: A review of recent work on the nitrogen metabolism of plants. New Phytologist 36, 33, 240 (1937).

    CAS  Google Scholar 

  • Studies on the nitrogen metabolism of the barley plant (Hordeum sativum). Austral. J. Sci. Res. B 3, 474 (1950).

    Google Scholar 

  • Mc Kee, H. S., and G. E. Urbach: The physiology of growth in apple fruits. V. Soluble nitrogen constituents. Austral. J. Biol. Sci. 6, 369 (1953).

    CAS  Google Scholar 

  • Imino-acids in Santalum leaves. Nature (Lond.) 175, 470 (1955).

    Google Scholar 

  • Mc Kee, M. C., and D. E. Lobb: Formation of nitrate in detached green leaves of Swiss chard and tomato. Plant Physiol. 13, 407 (1938).

    PubMed  CAS  Google Scholar 

  • Menke, W.: Untersuchungen über das Protoplasma grüner Pflanzenzellen. I. Isolierung von Chloroplasten aus Spinatblättern. Z. physiol. Chem. 257, 43 (1938).

    CAS  Google Scholar 

  • Mevius, W.: Über das Verhalten belichteter Laubblätter in kohlensäurefreier Luft. Jb. wiss. Bot. 81, 327 (1934/35).

    Google Scholar 

  • Meyer, A.: Eiweißstoffwechsel und Vergilben der Laubblätter von Tropaeolum majus. Flora (Jena) 111/112, 85 (1918).

    Google Scholar 

  • Meyer, A., U. A. Dewèvre: Über Drosophyllum lusitanicum. Bot. Zbl. 60, 33 (1894).

    Google Scholar 

  • Michael, G.: Über die Beziehungen zwischen Chlorophyll — und Eiweißabbau im vergilbenden Laubblatt von Tropaeolum. Z. Bot. 29, 385 (1935).

    CAS  Google Scholar 

  • Miettinen, J. K., S. Kari, T. Moisio, M. Alfthan U. A. I. Vertanen: Homoserin als freie Aminosäure in Erbsenpflanzen (Pisum sativum). Suomen Kemistil., Ser. B 2, 26 (1953).

    Google Scholar 

  • Miller, E. C.: Nitrogen in the leaves of crop plants. 1926. (Unpublished data quoted from “Plant Physiology”, E. C. Miller, 1931, New York.)

    Google Scholar 

  • Molliard, M.: L’azote et la chlorophylle dans les galles et les feuilles panachées. C. r. Acad. Sci. Paris 152, 274 (1911).

    CAS  Google Scholar 

  • Molliard, M., R. Echevin et A. Brunel: Composition azotée des feuilles panachées. C. r. Acad. Sci. Paris 207, 1021 (1938).

    CAS  Google Scholar 

  • Morris, M. P., C. Pagán and H. E. Warmke: Hiptagenic acid, a toxic component of Indigofera endecaphylla. Science (Lancaster, Pa.) 119, 322 (1954).

    CAS  Google Scholar 

  • Mothes, K.: Ein Beitrag zur Kenntnis des N-Stoffwechsels höherer Pflanzen. Planta (Berl.) 1, 472 (1926).

    Google Scholar 

  • Zur Kenntnis des N-Stoffwechsels höherer Pflanzen. 3. Beitrag (unter besonderer Berücksichtigung des Blattalters und des Wasserhaushaltes). Planta (Berl.) 12, 686 (1931).

    Google Scholar 

  • Zur Biosynthese der Säureamide Asparagin und Glutamin. Planta (Berl.) 30, 726 (1940).

    Google Scholar 

  • Moyse, A.: Respiration et metabolisme azoté. Étude de physiologie foliare. Paris 1950.

    Google Scholar 

  • Mulder, G. J.: Zusammensetzung von Fibrin, Albumin, Leimzucker, Leucin usw. Ann. d. Pharm. 28, 73 (1838).

    Google Scholar 

  • Munsche, D.: Gibt es eine Nitrifikation in höheren Pflanzen? Z. Pflanzenernährg 68, 1 (1955).

    CAS  Google Scholar 

  • Murneek, A. E., and J. C. Logan: Autumnal migration of nitrogen and carbohydrates in the apple tree. Missouri Agricult. Exper. Stat. Res. Bull. 1932, 171.

    Google Scholar 

  • Myers, J.: The pattern of photosynthesis in Chlorella. In: Photosynthesis in plants. Ames, Ia. 1949.

    Google Scholar 

  • Neish, A. C.: Studies on chloroplasts. II. Their chemical composition and the distribution of certain metabolites between the chloroplast and the remainder of the leaf. Biochemic. J. 33, 300 (1939).

    CAS  Google Scholar 

  • Nezgovorova, L. A.: A possible role of protein in photosynthesis. C. r. Acad. Sci. URSS. 85, 1387 (1952).

    CAS  Google Scholar 

  • Niel, C. B. van, M. B. Allen and B. E. Wright: On the photochemical reduction of nitrate by algae. Biochem. et biophysica Acta (Amsterd.) 12, 67 (1953).

    Google Scholar 

  • Nightingale, G. T.: Effects of temperature on growth, anatomy, and metabolism of apple and peach roots. Bot. Gaz. 96, 58 (1935).

    Google Scholar 

  • Potassium and calcium in relation to nitrogen metabolism. Bot. Gaz. 98, 725 (1937).

    Google Scholar 

  • Okahara, K.: Physiological studies on Drosera. I. On the proteolytic enzyme of Drosera rotundifolia. Sci. Rep. Tohoku Imp. Univ., Ser. IV Biol. 5, 573 (1930).

    CAS  Google Scholar 

  • Osborne, T. B., and A. J. Wakeman: The proteins of green leaves. I. Spinach leaves. J. of Biol. Chem. 42, 1 (1920).

    CAS  Google Scholar 

  • Otto, R., u. W. D. Kooper: Beiträge zur Abnahme bzw. Rückwanderung der Stickstoffverbindungen aus den Blättern während der Nacht, sowie zur herbstlichen Rückwanderung von Stickstoffverbindungen aus den Blättern. Landw. Jb. 39, 167 (1910).

    CAS  Google Scholar 

  • Oudman, J.: Über Aufnahme und Transport N-haltiger Verbindungen durch die Blätter von Drosera capensis L. Rec. Trav. bot. néerl. 33, 351 (1936).

    CAS  Google Scholar 

  • Ovcharov, K. E.: The production of thiourea by fungi. C. r. Acad. Sci. URSS. 16, 461 (1937).

    CAS  Google Scholar 

  • Pearsall, W. H., and M. C. Billimoria: Losses of nitrogen from green plants. Biochemic. J. 31, 1743 (1937).

    CAS  Google Scholar 

  • The influence of light upon nitrogen metabolism in detached leaves. Ann. of Bot., N. S. 3, 601 (1938).

    Google Scholar 

  • Petrie, J. M.: The role of nitrogen and its compounds in plant-metabolism. Part II. Proc. Linnean Soc. N. S. Wales 33, 835 (1908).

    Google Scholar 

  • Petrov, G. G.: The assimilation of nitrogen by seed plants in the light and in darkness. 1917. Quoted from S. P. Kostychev, Chemical Plant Physiology, p. 102. Philadelphia 1931.

    Google Scholar 

  • Pfeffer, W.: Untersuchungen über die Proteinkörner und die Bedeutung des Asparagins beim Keimen der Samen. Jb. wiss. Bot. 8, 429 (1872).

    Google Scholar 

  • Landw. Jb. 5, 87 (1876). Quoted from Chibnall, 1939.

    Google Scholar 

  • Phillis, E., and T. G. Mason: The partition of the mineral elements in the cotton plant. III. Mainly concerning nitrogen. Ann. of Bot., N. S. 6, 469 (1942).

    CAS  Google Scholar 

  • Pirie, N. W.: The isolation from normal tobacco leaves of nucleoprotein with some similarity to plant viruses. Biochemic. J. 47, 614 (1950).

    CAS  Google Scholar 

  • Postma, W. P.: Einige Bemerkungen über den Einfluß der Nitratreduktion auf die Atmung der Wurzeln. Proc. Kon. Ned. Akad. v. Wetensch. 42, 181 (1939).

    CAS  Google Scholar 

  • Proebsting, E. L., and R. Tate: Seasonal changes in nitrate content of fig leaves. Proc. Amer. Soc. Horticult. Sci. 60, 7 (1952).

    CAS  Google Scholar 

  • Racusen, D. W., and S. Aronoff: Metabolism of soybean leaves. VI. Exploratory studies in protein metabolism. Arch. of Biochem. a. Biophysics 51, 68 (1954).

    CAS  Google Scholar 

  • Radhakrishnan, A. N., and K. V. Giri: The isolation of allohydroxy-L-proline from sandal (Santalum album L.). Biochemic. J. 58, 57 (1954).

    CAS  Google Scholar 

  • Randall, J. T.: An experiment in biophysics. Proc. Roy. Soc. Lond., Ser. B 138, 301 (1951).

    CAS  Google Scholar 

  • Rees, M., u. H. Will: Einige Bemerkungen über fleischfressende Pflanzen. Bot. Z. 33, 713 (1875).

    Google Scholar 

  • Reifer, I., and J. Melville: The source of ammonia in plant tissue extracts. II. The influence of urea. J. of Biol. Chem. 178, 715 (1949).

    CAS  Google Scholar 

  • Reuter, C.: Beiträge zur Kenntnis der stickstoffhaltigen Bestandteile der Pilze. Z. physiol. Chem. 78, 167 (1912).

    Google Scholar 

  • Richards, F. J., and E. Berner: Physiological studies in plant nutrition. XVII. A general survey of the free amino-acids of barley leaves as affected by mineral nutrition, with special reference to potassium supply. Ann. of Bot., N. S. 18, 15 (1954).

    CAS  Google Scholar 

  • Richards, F. J., and R. G. Coleman: Occurrence of putrescine in potassium-deficient barley. Nature (Lond.) 170, 460 (1952).

    CAS  Google Scholar 

  • Richards, F. J., and W. G. Templeman: Physiological studies in plant nutrition. IV. Nitrogen metabolism in relation to nutrient deficiency and age in leaves of barley. Ann. of Bot. 50, 367 (1936).

    CAS  Google Scholar 

  • Rittbnbeeg, D., R. Schoenheimer and A. S. Keston: Studies in protein metabolism. IX. The utilization of ammonium by normal rats on a stock diet. J. of Biol. Chem. 128, 603 (1939).

    Google Scholar 

  • Rodney, D. R.: The entrance of nitrogen compounds through the epidermis of apple leaves. Proc. Amer. Soc. Horticult. Sci. 59, 99 (1952).

    CAS  Google Scholar 

  • Rouelle: Expériences. J. Méd., Chir., Pharmacie, etc. 39, 250 (1773a). Quoted from Osborne, 1924.

    Google Scholar 

  • Obsérvations sur les fécules ou parties vertes des plantes et sur la matière glutineuse ou végéto-animale. J. Méd., Chir., Pharmacie, etc. 40, 59 (1773b).

    Google Scholar 

  • Ruhland, W., u. K. Wetzel: Zur Physiologie der organischen Säuren in grünen Pflanzen. III. Rheum hybridum hort. Planta (Berl.) 3, 765 (1927).

    CAS  Google Scholar 

  • Zur Physiologie der organischen Säuren in grünen Pflanzen. V. Weitere Untersuchungen an Rheum hybridum hort. Planta (Berl.) 7, 503 (1929).

    Google Scholar 

  • Ryzhkov, V. L., i O. S. Gorodskaya: Forms of phosphorus in healthy, mosaic-infected and starved tobacco. C. r. Acad. Sci. URSS. 70, 105 (1950).

    CAS  Google Scholar 

  • Sachs, J.: Übersicht der Ergebnisse der neueren Untersuchungen über das Chlorophyll. Flora (Jena) 45, 129, 209 (1865).

    Google Scholar 

  • Sakato, Y.: The chemical constituents of tea. III. A new amide, theanine. J. Agricult. Sci. Japan 23, 262 (1950). Quoted from Chem. Abstr. 45, 3528 (1952).

    CAS  Google Scholar 

  • Sapozhnikov, V.: Die Stärkebildung aus Zucker in den Laubblättern. Ber. dtsch. bot. Ges. 7, 258 (1889).

    Google Scholar 

  • Bildung und Wanderung der Kohlenhydrate in den Laubblättern. Ber. dtsch. bot. Ges. 8, 233 (1890).

    Google Scholar 

  • Eiweißstoffe und Kohlenhydrate der grünen Blätter als Assimilationsprodukte. Tomsk 1894. Abstr. Bot. Zbl. 16, 246 (1895).

    Google Scholar 

  • Schocken, V.: The genesis of auxin during the decomposition of proteins. Arch. of Biochem. 23, 198 (1949).

    CAS  Google Scholar 

  • Schulze, B., u. J. Schütz: Die Stoffwandlungen in den Laubblättern des Baumes, insbesondere in ihren Beziehungen zum herbstlichen Blattfall. Landw. Versuchsstat. 71, 299 (1909).

    Google Scholar 

  • Schulze, E.: Über den Eiweißumsatz im Pflanzenorganismus. Landw. Jb. 9, 689 (1880).

    Google Scholar 

  • Über das Vorkommen von Glutamin in grünen Pflanzentheilen. Z. physiol. Chem. 20, 327 (1895).

    Google Scholar 

  • Schulze, E., u. E. Bosshard: Zur Kenntnis des Vorkommens von Allantoin, Asparagin, Hypoxanthin und Guanin in den Pflanzen. Z. physiol. Chem. 9, 420 (1885).

    Google Scholar 

  • Schulze, E., u. E. Kisser: Über Zersetzung von Proteinstoffen in verdunkelten grünen Pflanzen. Landw. Versuchsstat. 36, 1 (1889).

    Google Scholar 

  • Schumacher, W.: Ein Beitrag zur Kenntnis des Stoffwechsels panaschierter Pflanzen. Planta (Berl.) 5, 161 (1928).

    CAS  Google Scholar 

  • Scurti, F.: Il fosforo e la formazione degli aminoacidi nei vegetali. Staz. sper. agr. ital. 41, 456 (1908).

    Google Scholar 

  • Shcherbakov, A. P.: Changes of respiration in plants deprived of potassium. Biokhim. 10, 439 (1945).

    CAS  Google Scholar 

  • Shebatt, H. S. A., and W. C. Evans: A crystalline chlorophyll-protein complex from Chlamydomonas. Nature (Lond.) 173, 540 (1954).

    Google Scholar 

  • Sideris, C. P., and H. Y. Young: Effects of nitrogen on chlorophyll, acidity, ascorbic acid, and carbohydrate fractions of Ananas comosus (L.) Merr. Plant Physiol. 22, 97 (1947).

    PubMed  CAS  Google Scholar 

  • Singer, S. J., L. Eggman, J. M. Campbell and S. G. Wildman: The proteins of green leaves. VI. A high molecular weight protein comprising a large part of the cytoplasmic proteins. J. of Biol. Chem. 197, 233 (1952).

    CAS  Google Scholar 

  • Sisakjan, N. M., E. N. Bezinger i E. B. Kuvayeva: Amino-acid composition of plastid proteins. Biokhim. 16, 358 (1951).

    Google Scholar 

  • Smirnow, A. I., P. S. Erygin, M. A. Drboglav U. T. M. Mashkovtsev: Über die biochemischen Eigentümlichkeiten des Alterns der Laubblätter. Planta (Berl.) 6, 687 (1928).

    Google Scholar 

  • Smith, A. M., and W. Robb: The carotene and protein in oats and barley at different stages of growth. J. Agricult. Sci. 33, 119 (1943).

    CAS  Google Scholar 

  • Smith, A. M., and T. Wang: The carotene content of certain species of grassland herbage. J. Agricult. Sci. 31, 370 (1941).

    CAS  Google Scholar 

  • Smith, E. L.: The chlorophyll-protein compound of the green leaf. J. Gen. Physiol. 24, 565 (1941).

    PubMed  CAS  Google Scholar 

  • Spoehr, H. A., and H. W. Milner: The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol. 24, 120 (1949).

    PubMed  CAS  Google Scholar 

  • Stahl, E.: Der Sinn der Mycorhizenbildung. Jb. wiss. Bot. 34, 539 (1900).

    Google Scholar 

  • Steward, F. C, and J. F. Thompson: Proteins and protein metabolism in plants. In: The proteins, Vol.2, Part A; ed. by H. Neurath and K. Bailey. New York 1954.

    Google Scholar 

  • Steward, F. C, J. F. Thompson, F. K. Millar, M. D. Thomas and R. H. Hendricks: The amino acids of alfalfa as revealed by paper chromatography with special reference to compounds labelled with S35. Plant Physiol. 26, 123 (1951).

    PubMed  CAS  Google Scholar 

  • Stock, G.: Ein Beitrag zur Kenntnis der Proteinkrystalle. Beitr. Biol. Pflanz. 6, 213 (1893).

    Google Scholar 

  • Stokes, G. G.: On the supposed identity of biliverdin with chlorophyll, with remarks on the constitution of chlorophyll. Proc. Roy. Soc. Lond. 13, 144 (1864).

    Google Scholar 

  • Stuart, N. W.: Nitrogen and carbohydrate metabolism of young apple trees as affected by excessive applications of sodium nitrate. N. H. Agricult. Exper. Stat. Techn. Bull. 1932, 50.

    Google Scholar 

  • Suzuki, U.: An important function of leaves. Imp. Univ. Coll. Agricult. Tokyo 3, 241 (1897).

    CAS  Google Scholar 

  • Tait, L.: Insectivorous plants. Nature (Lond.) 12, 251 (1875).

    Google Scholar 

  • Takashima, S.: Chlorophyll-lipoprotein obtained in crystals. Nature (Lond.) 169, 182 (1952).

    CAS  Google Scholar 

  • Thomas, W.: The seat of formation of amino acids in Pyrus malus L. Science (Lancaster, Pa.) 66, 115 (1927).

    CAS  Google Scholar 

  • Tiedjens, V. A.: Factors affecting assimilation of ammonium and nitrate nitrogen, particularly in tomato and apple. Plant Physiol. 9, 31 (1934).

    PubMed  CAS  Google Scholar 

  • Tolbert, N. E., and L. P. Zill: Photosynthesis by protoplasm extruded from Chara and Nitella. J. Gen. Physiol. 37, 575 (1954).

    PubMed  CAS  Google Scholar 

  • Towers, G. H. N., and F. C. Steward: The keto acids of the tulip (Tulipa gesneriana) with special reference to the keto analog of γ-methyleneglutamic acid. J. Amer. Chem. Soc. 76, 1959 (1954).

    CAS  Google Scholar 

  • Turchin, F. V., M. A. Guminskaya i E. G. Plyshevskaya: The rate of renewal of protein and chlorophyll in higher plants. Bull. Acad. Sci. URSS. 1953, No 6, 66.

    Google Scholar 

  • Ullrich, H.: Die Rolle der Chloroplasten bei der Eiweißbildung in den grünen Pflanzen. Z. Bot. 16, 513 (1924).

    CAS  Google Scholar 

  • Underwood, J. C, and L. B. Rockland: Nitrogenous constituents in citrus fruits. I. Some free amino-acids in citrus juices determined by small-scale filter-paper chromatography. Food Res. 18, 17 (1953).

    CAS  Google Scholar 

  • Vickery, H. B., and G. W. Pucher: The metabolism of amides in green plants. III. The mechanism of amide synthesis. J. of Biol. Chem. 126, 703 (1939a).

    Google Scholar 

  • The loss of carbon from excised rhubarb leaves during culture. J. of Biol. Chem. 128, 685 (1939b).

    Google Scholar 

  • Vickery, H. B., G. W. Pucher and C. S. Leavenworth: Artificial enrichment of beet root tissue with glutamine. Proc. Soc. Exper. Biol. a. Med. 68, 294 (1948).

    CAS  Google Scholar 

  • Vickery, H. B., G. W. Pucher, C. S. Leavenworth and A. J. Wakeman: The metabolism of amides in green plants. II. The amides of the rhubarb leaf. J. of Biol. Chem. 125, 527 (1938).

    CAS  Google Scholar 

  • Vickery, H. B., G. W. Pucher, A. J. Wakeman and C. S. Leavenworth: Chemical investigations of the tobacco plant. VI. Chemical changes that occur in leaves during culture in light and in darkness. Bull. Conn. Agricult. Exper. Stat. 1937, No 399.

    Google Scholar 

  • Vines, S. H.: On the digestive ferment of Nepenthes. J. of Anat. 11, 124 (1876).

    CAS  Google Scholar 

  • Vertanen, A. I., and J. K. Miettinen: Free amino-acids in the leaves, roots and root nodules of the alder (Alnus). Nature (Lond.) 170, 283 (1952).

    Google Scholar 

  • Walkley, J.: Protein synthesis in mature and senescent leaves of barley. New Phytologist 39, 362 (1940).

    CAS  Google Scholar 

  • Warburg, O., u. E. Negelein: Über die Reduktion der Salpetersäure in grünen Zellen. Biochem. Z. 110, 66 (1920).

    CAS  Google Scholar 

  • White, H. L.: The interaction of factors in the growth of Lemna. XI. The interaction of nitrogen and light intensity in relation to growth and assimilation. Ann. of Bot., N. S. 1, 622 (1937).

    Google Scholar 

  • Wildman, S. G., and J. Bonner: The proteins of green leaves. I. Isolation, enzymatic properties and auxin content of spinach cytoplasmic proteins. Arch. of Biochem. 14, 381 (1947).

    CAS  Google Scholar 

  • Wildman, S. G., J. M. Campbell and J. Bonner: The proteins of green leaves. II. Purine, pentose, total phosphorus and acid—labile phosphorus of the cytoplasmic proteins of spinach leaves. Arch. of Biochem. 24, 9 (1949).

    CAS  Google Scholar 

  • Wildman, S., and A. Jagendorf: Leaf proteins. Annual Rev. Plant Physiol. 3, 131 (1952).

    Google Scholar 

  • Willstätter, R., u. W. Heubner: Über eine neue Solanaceenbase. Ber. dtsch. chem. Ges. 40, 3869 (1907).

    Google Scholar 

  • Winterstein, E.: Über die stickstoffhaltigen Bestandteile grüner Blätter. Ber. dtsch. chem. Ges. 19, 326 (1901).

    Google Scholar 

  • Wood, J. G., and D. H. Cruickshank: The metabolism of starving leaves. 5. Changes in amount of some amino acids during starvation of grass leaves; and their bearing on the nature of the relationship between proteins and amino acids. Austral. J. Exper. Biol. a. Med. Sci. 22, 111 (1944).

    CAS  Google Scholar 

  • Wood, J. G., D. H. Cruickshank and R. H. Kuchel: The metabolism of starving leaves. 1. Presentation of data; the nature of respiration rate/time curves in air and in nitrogen and the relation to carbohydrates. 2. Changes in amounts of total and chloroplast proteins, chlorophyll, ascorbic acid and soluble nitrogen compounds. 3. Changes in malic and citric acid contents and interrelations of these with soluble nitrogen compounds. Austral. J. Exper. Biol. a. Med. Sci. 21, 37 (1943).

    CAS  Google Scholar 

  • Wood, J. G., F. V. Mercer and C. Pedlow: The metabolism of starving leaves. 4. Respiration rate and metabolism of leaves of kikuyu grass during air-nitrogen transfers. Austral. J. Exper. Biol. a. Med. Sci. 22, 37 (1944).

    CAS  Google Scholar 

  • Wood, J. G., and P. M. Sibly: Carbonic anhydrase activity in plants in relation to zinc content. Austral. J. Sci. Res. B 5, 244 (1952).

    CAS  Google Scholar 

  • Wood, J. G., and H. B. S. Womersley: Development and metabolism of copper-deficient oat plants. Austral. J. Exper. Biol. a. Med. Sci. 24, 79 (1946).

    CAS  Google Scholar 

  • Yemm, E. W.: The respiration of barley plants. II. Carbohydrate concentration and carbon dioxide production in starving leaves. Proc. Roy. Soc. Lond., Ser. B 117, 504 (1935).

    CAS  Google Scholar 

  • Respiration of barley plants. III. Protein catabolism in starving leaves. Proc. Roy. Soc. Lond., Ser. B 123, 243 (1937).

    Google Scholar 

  • Respiration of barley plants. IV. Protein catabolism and the formation of amides in starving leaves. Proc. Roy. Soc. Lond., Ser. B 136, 632 (1950).

    Google Scholar 

  • The cytoplasmic and chloroplastic proteins of barley. Biochemic. J. 49, xxvi (1951).

    Google Scholar 

  • Zaleski, V.: Zur Kenntnis der Eiweißbildung in den Pflanzen. Ber. dtsch. bot. Ges. 15, 536 (1897).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

McKee, H.S. (1958). Nitrogen metabolism in leaves. In: Allen, E.K., et al. Der Stickstoffumsatz / Nitrogen Metabolism. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94733-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94733-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94734-6

  • Online ISBN: 978-3-642-94733-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics