Nitrogen metabolism of seedlings

  • H. S. McKee
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)


Plant seeds vary widely in size, and in the nature and amount of the reserve materials which they provide for the germinating seedling. The nitrogenous metabolism of seedlings has, for obvious reasons of experimental convenience, been studied in large-seeded species, usually with substantial reserves of nitrogenous compounds. Some gymnosperms, particularly cycads, have very large seeds but except for a few studies with coniferous seedlings, flowering plants have been used in nearly all of the work on the metabolic changes in germination.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abelson, P. H., E. Bolton, R. Britten, D. B. Cowie and R. B. Roberts: Synthesis of the aspartic and glutamic families of amino acids in Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 39, 1020 (1953).CrossRefGoogle Scholar
  2. Albaum, H. G., and P. P. Cohen: Transamination and protein synthesis in germinating oat seedlings. J. of Biol. Chem. 149, 19 (1943).Google Scholar
  3. Algeus, S.: The utilization of aspartic acid, succinamide and asparagine by Scenedesmus obliquus. Physiol. Plantarum (Copenh.) 3, 225 (1950).CrossRefGoogle Scholar
  4. Annett, H. E.: The urease content of certain Indian seeds. Biochemic. J. 8, 449 (1914).Google Scholar
  5. Archibald, R. M.: The enzymatic determination of glutamine. J. of Biol. Chem. 154, 643 (1944).Google Scholar
  6. Balicka-Iwanowska, G.: O rozkladzie i odtwarzaniu materyi bialkowatych u roslin. Rozprawy Akad. Krakow, Ser. III 3, 1 (1903).Google Scholar
  7. Barrien, B. S., and J. G. Wood: Studies on the sulphur metabolism of plants. II. New Phytologist 38, 257 (1939).CrossRefGoogle Scholar
  8. Barry, J. M.: Asparagine in blood plasma. Nature (Lond.) 171, 1123 (1953).CrossRefGoogle Scholar
  9. Berg, A. M., S. Kari, M. Alfthan U. A. I. Virtanen: Homoserine and α-aminoadipic acid in green plants. Acta chem. scand. (Copenh.) 8, 358 (1954).CrossRefGoogle Scholar
  10. Bhagvat, K., and M. Sreenivasaya: The non-protein nitrogen of pulses. Biochemic. J. 29, 909 (1935).Google Scholar
  11. Bishop, L. R.: The changes undergone by the nitrogenous constituents of barley during malting. J. Inst. Brew. 35 (26 N. S.), 323 (1929).Google Scholar
  12. Björkstén, J.: Zur Kenntnis der Synthese von Eiweißstoffen und ihrer Bausteine bei höheren Pflanzen. Biochem. Z. 225, 1 (1930).Google Scholar
  13. Blagoveshchenski, A. V.: On the specific action of plant proteases. Biochemic. J. 18, 795 (1924).Google Scholar
  14. Über die synthetische Wirkung der pflanzlichen Proteasen. Biochem. Z. 168, 1 (1926).Google Scholar
  15. Blagoveshchenske, A. V., and A. N. Bielozerski: The specific action of plant ferments. II. The specific conditions of action of leaf peptases. Biochemic. J. 19, 355 (1925).Google Scholar
  16. Blagoveshchenski, A. V., u. R. M. Melamed: Die proteolytischen Fermente der Samen einiger Pflanzen. Biochem. Z. 273, 435 (1934).Google Scholar
  17. Borodin, I.: Über die physiologische Rolle und die Verbreitung des Asparagins im Pflanzenreiche. Bot. Z. 36, 801 (1878).Google Scholar
  18. Boussingault, J. B. J. D.: De la végétation dans l’obscurité. C. r. Acad. Sci. Paris 58, 917 (1864).Google Scholar
  19. Braunstein, A. E., i M. G. Kritzmann: Amino-acid formation by intermolecular transfer of amino-groups. 1. The metabolism of l-(+)-glutamic acid in muscle tissue. Biokhim. 2, 242 (1937a).Google Scholar
  20. Über den Ab- und Aufbau von Aminosäuren durch Umaminierung. Enzymol. 2, 129 (1937b).Google Scholar
  21. Brown, R.: Studies on germination and seedling growth. III. Early growth in relation to certain aspects of nitrogen metabolism in the seedling of barley. Ann. of Bot., N, S. 10, 73 (1946).Google Scholar
  22. Butkevich, V.: Über das Vorkommen proteolytischer Enzyme in gekeimten Samen und über ihre Wirkung. I. Ber. dtsch. bot. Ges. 18, 185 (1900a).Google Scholar
  23. Über das Vorkommen proteolytischer Enzyme in gekeimten Samen und über ihre Wirkung. II. Ber. dtsch. bot. Ges. 18, 358 (1900b).Google Scholar
  24. Über das Vorkommen eines proteolytischen Enzyms in gekeimten Samen und über ihre Wirkung. Z. physiol. Chem. 32, 1 (1901).Google Scholar
  25. Chibnall, A. C.: Protein metabolism in the plant. New Haven, Conn.: 1939.Google Scholar
  26. Chibnall, A. C., and M. W. Rees: Further observations on the amide and free carboxyl groups of insulin. Biochemic. J. 52, iii (1952).Google Scholar
  27. Chibnall, A. C, and R. G. Westall: Estimation of glutamine in the presence of asparagine. Biochemic. J. 26, 122 (1932).Google Scholar
  28. Christiansen, G. S., and K. V. Thimann: The metabolism of stem tissue during growth and its inhibition. III. Nitrogen metabolism. Arch. of Biochem. 28, 117 (1950).Google Scholar
  29. Collier, H. B.: The problem of plastein formation. II. The chemical changes involved in plastein formation by papain and by pepsin. Canad. J. Res., Sect. B 18, 272 (1940).Google Scholar
  30. Curtis, L. C.: The exudation of glutamine from lawn grass. Plant Physiol. 19, 1 (1944).PubMedCrossRefGoogle Scholar
  31. Damodaran, M.: The isolation of asparagine from an enzymic digest of edestin. Biochemic. J. 26, 235 (1932).Google Scholar
  32. Damodaran, M., G. Jaaback and A. C. Chibnall: The isolation of glutamine from an enzymic digest of gliadin. Biochemic. J. 26, 1704 (1932).Google Scholar
  33. Damodaran, M., and K. G. A. Narayanan: A comparative study of arginase and canavanase. Biochemic. J. 34, 1449 (1940).Google Scholar
  34. Damodaran, M., R. Ramaswamy, T. R. Venkatesan, S. Mahadevan and K. Ramdas: Amide synthesis in plants. II. Amino-acid changes in germinating seedlings. Proc. Indian Acad. Sci., Sect. B 23, 86 (1946).Google Scholar
  35. Damodaran, M., and T. R. Venkatesan: Amide synthesis in plants. III. Urea formation in seedlings. Proc. Indian Acad. Sci., Sect. B 27, 26 (1948).Google Scholar
  36. Danielsson, C. E.: The breakdown of the high-molecular reserve proteins of peas during germination. Acta chem. scand. (Copenh.) 5, 541 (1951).CrossRefGoogle Scholar
  37. Davison, D. C, and W. H. Elliott: Enzymic reaction between arginine and fumarate in plant and animal tissues. Nature (Lond.) 169, 313 (1952).CrossRefGoogle Scholar
  38. Dekker, C. A., D. Stone and J. S. Fruton: A peptide from a marine alga. J. of Biol. Chem. 181, 719 (1949).Google Scholar
  39. Done, J., and L. Fowden: A new amino-acid amide in the groundnut plant (Arachis hypogaea): evidence of the occurrence of γ-methylene glutamine and γ-methylene glutamic acid. Biochemie. J. 51, 451 (1952).Google Scholar
  40. Dumas, J. B., et A. Cahours: Sur les matières azotées neutres de l’organisation. Ann. Chim. Phys., Sér. III 6, 385 (1842).Google Scholar
  41. Elliott, W. H.: Studies on the enzymatic synthesis of glutamine. Biochemic. J. 49, 106 (1951).Google Scholar
  42. Elliott, W. H., and E. F. Gale: Glutamine-synthesizing system of Staphylococcus aureus: its inhibition by crystal violet and methionine sulphoxide. Nature (Lond.) 161, 129 (1948).CrossRefGoogle Scholar
  43. Emmerling, C.: Aminosäuren als Nährstoffe für niedrigere Pflanzen. Ber. dtsch. chem. Ges. 35, 2289 (1902).CrossRefGoogle Scholar
  44. Fincham, J. R. S.: Ornithine transaminase in Neurospora and its relation to the biosynthesis of proline. Biochemic. J. 53, 313 (1953).Google Scholar
  45. Fisher, E. A.: Contributions to a study of the vegetable protease. I. Introductory. Biochemic. J. 13, 124 (1919).Google Scholar
  46. Folkes, B. F.: Amino-acid interconversion during the germination of barley grains. Biochemic. J. 49, xxvii (1951).Google Scholar
  47. Folkes, B. F., A. J. Willis and E. W. Yemm: The respiration of barley plants. VII. The metabolism of nitrogen and respiration in seedlings. New Phytologist 51, 317 (1952).CrossRefGoogle Scholar
  48. Fosse, R.: Uréogenese et metabolisme de l’azote purique chez les végétaux. C. r. Acad. Sci. Paris 208, 865 (1939).Google Scholar
  49. Fowden, L., and J. Done: A third unsaturated amino-acid in groundnut plants: evidence for the occurrence of γ-amino-α-methylenebutyric acid. Biochemic. J. 55, 548 (1953).Google Scholar
  50. Fraser, D., W. O. Kermack, H. Lees and J. D. Wood: Non-protein nitrogen fractions of the flesh of lobsters and crabs. Biochemic. J. 51, xxxii (1952).Google Scholar
  51. Frei, J., u. F. Leuthardt: La synthèse biologique de la glutamine. Helvet. chim. Acta 32, 1137 (1949).PubMedCrossRefGoogle Scholar
  52. Fries, N.: Limiting factors in the growth of the pea seedling root. Physiol. Plantarum (Copenh.) 6, 292 (1953).CrossRefGoogle Scholar
  53. Gäumann, E.: Der Einfluß der Keimungstemperatur auf die chemische Zusammensetzung der Getreidekeimlinge. I. Z. Bot. 25, 385 (1931/32).Google Scholar
  54. Giri, K. V., A. N. Radhakrishnan and C. S. Vaidyanathan: Transaminase activity in plants. J. Indian Inst. Sci. 34, 305 (1952).Google Scholar
  55. Gorup-Besanez, E. v.: Leucin neben Asparagin in dem frischen Safte der Wickenkeime. Ber. dtsch. chem. Ges. 7, 146 (1874a).CrossRefGoogle Scholar
  56. Über das Vorkommen eines diastatischen und peptonbildenden Ferments in den Wickensamen. Ber. dtsch. chem. Ges. 7, 1478 (1874b)Google Scholar
  57. Greenhill, A. W., and A. C. Chibnall: Exudation of glutamine from perennial rye grass. Biochemic. J. 28, 1422 (1934).Google Scholar
  58. Hanes, C. S., F. J. R. Hird and F. A. Isherwood: Enzymic transpeptidation reactions involving γ-glutamyl peptides and γ-amino-acyl peptides. Biochemic. J. 51, 25 (1952).Google Scholar
  59. Harris, J. I.: The use of carboxypeptidase for the identification of terminal carboxyl groups in polypeptides and proteins. Asparagine as a C-terminal residue in insulin. J. Amer. Chem. Soc. 74, 2944 (1952).CrossRefGoogle Scholar
  60. Hartig, T.: Über das Klebermehl. Bot. Z. 13, 881 (1855).Google Scholar
  61. Hlasiwetz, H., u. J. Habermann: Über die Proteinstoffe. Liebigs Ann. 169, 150 (1873).CrossRefGoogle Scholar
  62. Holton, F. A.: An oxido-reduction reaction of α-oxoglutarate coupled with direct transfer of an amino-group. Comm. Biochem. Soc. 330th meeting, 19 June. p. 1. 1954.Google Scholar
  63. Huang, H. T., and C. Niemann: The inertness of crystalline ovalbumin in systems containing α-chymotrypsin and hydrolyzable substrates. J. Amer. Chem. Soc. 72, 4286 (1950).CrossRefGoogle Scholar
  64. James, W. O.: The amino-acid precursors of the belladonna alkaloids. New Phytologist 48, 172 (1949).CrossRefGoogle Scholar
  65. Plant respiration. Oxford 1953.Google Scholar
  66. Jodidi, S. L.: Physiological studies on cereals. II. The occurrence of amino acids and polypeptides in the ungerminated oat kernel. J. Franklin Inst. 198, 201 (1924).CrossRefGoogle Scholar
  67. Physiological studies on cereals. III. The occurrence of amino acids and polypeptides in the ungerminated maize kernel. J. Agricult. Res. 30, 587 (1925).Google Scholar
  68. Jodidi, S. L., and K. S. Markley: The occurrence of polypeptides and free amino acids in the ungerminated wheat kernel. J. Amer. Chem. Soc. 45, 2137 (1923).CrossRefGoogle Scholar
  69. Jodidi, S. L., and J. G. Wangler: Physiological and biochemical studies on cereals. IV. On the presence of amino acids and polypeptides in the ungerminated rye kernel. J. Agricult. Res. 30, 989 (1925).Google Scholar
  70. Kating, H.: Zur Rolle der γ-Aminobuttersäure im Stoffwechsel von Endomycopsis vernalis. Naturwiss. 41, 188 (1954).CrossRefGoogle Scholar
  71. Kiesel, A.: Über den fermentativen Abbau des Arginins in Pflanzen. Z. physiol. Chem. 75, 169 (1911).CrossRefGoogle Scholar
  72. Über den fermentativen Abbau des Arginins in Pflanzen. II. Abhandlung. Z. physiol. Chem. 118, 267 (1922).Google Scholar
  73. Kjeldahl, J.: Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. anal. Çhem. 22, 366 (1883).CrossRefGoogle Scholar
  74. Klein, G., u. K. Tauböck: Harnstoff und Ureide bei den höheren Pflanzen. I. Das Vorkommen von Harnstoff im Pflanzenreich und sein Wandel im Laufe der Vegetationsperiode. Jb. wiss. Bot. 74, 429 (1931a).Google Scholar
  75. Harnstoff und Ureide bei den höheren Pflanzen. III. Das Vorkommen von Ureiden. Quantitative Bestimmung von freiem und gebundenem Harnstoff. Biochem. Z. 241, 413 (1931b).Google Scholar
  76. Kotake, Y., U. F. Knoop: Über einen krystallisierten Eiweißkörper aus dem Milchsafte der Antiaris toxicaria. Z. physiol. Chem. 75, 488 (1911).CrossRefGoogle Scholar
  77. Krebs, H. A.: Metabolism of amino acids. IV. The synthesis of glutamine from glutamic acid and ammonia and the enzymic hydrolysis of glutamine in animal tissues. Biochemic. J. 29, 1951 (1935).Google Scholar
  78. Manometric determination of L-aspartic acid and L-asparagine. Biochemie. J. 47, 605 (1950).Google Scholar
  79. Krebs, H. A., and P. P. Cohen: Metabolism of α-ketoglutaric acid in animal tissues. Biochemic. J. 33, 1895 (1939).Google Scholar
  80. Krebs, H. A., u. H. Henseleit: Untersuchungen über die Harnstoffbildung im Tierkörper. Z. physiol. Chem. 210, 33 (1932).CrossRefGoogle Scholar
  81. Kretovich, V., i A. A. Bundel: Formation of alanine in the plant by direct amination of pyruvic acid. C. r. Acad. Sci. URSS. 74, 107 (1950).Google Scholar
  82. Kretovich, V., i R. R. Tokareva: Interaction of amino-acids and sugars at high temperatures. Biokhim. 13, 508 (1948).Google Scholar
  83. Kretovich, V. L., i Z. G. Yevstigneyeva: Synthesis of glutamine and asparagine in plants. C. r. Acad. Sci. URSS. 66, 429 (1949).Google Scholar
  84. Kritzmann, M. G.: The enzyme system transferring the amino group of aspartic acid. Nature (Lond.) 143, 603 (1939).CrossRefGoogle Scholar
  85. Krotkov, G., E. J. Masoro, C. D. Nelson and G. B. Reed: Utilization of asparagine by rats. Arch. of Biochem. 42, 431 (1953).Google Scholar
  86. Kudryashova, N. A., i E. V. Kolobkova: Content of free amino-acids in dormant seeds. C. r. Acad. Sci. URSS. 91, 1365 (1953).Google Scholar
  87. Kylin, A.: The uptake and metabolism of sulphate by deseeded wheat plants. Physiol. Plantarum (Copenh.) 6, 775 (1953).CrossRefGoogle Scholar
  88. Leach, S. J., and H. Lindley: Structure of asparagine. Nature (Lond.) 171, 1062 (1953).CrossRefGoogle Scholar
  89. Lehmann, E., U. F. Aichele: Keimungsphysiologie der Gräser. Stuttgart 1931.Google Scholar
  90. Leloir, L. F., and C. E. Cardini: The biosynthesis of glucosamine. Biochim. et Biophysica Acta 12, 15 (1953).CrossRefGoogle Scholar
  91. Linderstrøm-Lang, K., R. D. Hotchkiss and G. Johansen: Peptide bonds in globular proteins. Nature (Lond.) 142, 996 (1938).CrossRefGoogle Scholar
  92. Mack, W. R.: Über das Vorkommen von Pepton in Pflanzensamen. Z. physiol. Chem. 42, 259 (1904).CrossRefGoogle Scholar
  93. Mardashev, S. R., i N. N. Lestrovaya: Biological synthesis of asparagine and glutamine by transamidation. C. r. Acad. Sci. URSS. 78, 547 (1951).Google Scholar
  94. Maschke, O.: Krystallisirte Caseinverbindung. J. prakt. Chem. 74, 436 (1858).CrossRefGoogle Scholar
  95. Matsuda, K., and K. Aso: Utilization of apples. VII. By-products of apple-pulp manufacturing. J. Fermentation Technol. (Japan) 30, 23 (1950). Quoted from Chem. Abstr. 47, 2393h (1953).Google Scholar
  96. Mc Kee, H. S.: A review of recent work on the nitrogen metabolism of plants. New Phytologist 36, 33, 240 (1937).CrossRefGoogle Scholar
  97. Review of recent work on nitrogen metabolism. New Phytologist 48, 1 (1949).Google Scholar
  98. Studies on the nitrogen metabolism of the barley plant (Hordeum sativum). Austral. J. Sci. Res., Sect. B 3, 474 (1950).Google Scholar
  99. Mc Kenzie, H. A., and H. S. Wallace: The Kjeldahl determination of nitrogen: a critical study of digestion conditions—temperature, catalyst, and oxidizing agent. Austral. J. Chem. 7, 55 (1954).CrossRefGoogle Scholar
  100. Meiss, A. N.: The formation of asparagine in etiolated seedlings of Lupinus albus L. Conn. Agricult. Exper. Stat. Bull. 1952, 552.Google Scholar
  101. Meister, A., H. A. Sober, S. V. Tice and P. E. Fraser: Transamination and associated deamidation of asparagine and glutamine. J. of Biol. Chem. 197, 319 (1952).Google Scholar
  102. Melville, J.: Labile glutamic peptides and their bearing on the origin of the ammonia set free during the enzymic digestion of proteins. Biochemic. J. 29, 187 (1935).Google Scholar
  103. Miettinen, J. K., u. A. I. Vertanen: Nitrogen metabolism of pea and alder. Transamination of γ-aminobutyric acid and l(+)-citrulline with α-ketoglutaric acid. Acta chem. scand. (Copenh.) 7, 1243 (1953).CrossRefGoogle Scholar
  104. Mothes, K.: Physiologische Untersuchungen über das Asparagin und das Arginin in Coniferen. Planta (Berl.) 7, 585 (1929).CrossRefGoogle Scholar
  105. Die Vakuuminfiltration im Ernährungsversuch (dargestellt an Untersuchungen über die Assimilation des Ammoniaks). Planta (Berl.) 19, 117 (1933).Google Scholar
  106. Nasse, O.: Studien über die Eiweißkörper. Pflügers Arch. 6, 589 (1872).CrossRefGoogle Scholar
  107. Ørstrøm, A.: Über die chemischen Vorgänge, insbesondere den Ammoniakstoffwechsel bei der Entwicklungserregung des Seeigeleies. Z. physiol. Chem. 271, 1 (1941).CrossRefGoogle Scholar
  108. Ory, R. L., D. W. Hood and C. M. Lyman: The role of glutamine in the synthesis of arginine by Lactobacillus arabinosus. J. of Biol. Chem. 207, 267 (1954).Google Scholar
  109. Osborne, T. B.: The Vegetable Proteins, 2nd ed. London 1924.Google Scholar
  110. Pasteur, L.: Nouvelles recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le phenomène de la polarisation rotatoire. Ann. Chim. Phys., Sér. III 31, 67 (1851).Google Scholar
  111. Petrie, J. M.: The role of nitrogen and its compounds in plant-metabolism. Part II. The non-protein nitrogen in seeds. Proc. Linnean Soc. N. S. Wales 33, 835 (1908).Google Scholar
  112. Pfeffer, W.: Untersuchungen über die Proteinkörner und die Bedeutung des Asparagins beim Keimen der Samen. Jb. wiss. Bot. 8, 429 (1872).Google Scholar
  113. Piria, R.: Note sur l’asparagine. C. r. Acad. Sci. Paris 19, 575 (1844).Google Scholar
  114. Recherches sur la constitution chimique de l’asparagine et de l’acide aspartique. Ann. Chim. Phys., Sér. III 22, 160 (1848).Google Scholar
  115. Piutti, A.: Sintesi dell’acido aspartico. Gazz. chim. ital. 17, 519 (1887).Google Scholar
  116. Sintesi e constituzione delle asparagine. Gazz. chim. ital. 18, 457 (1888).Google Scholar
  117. Plisson, A.: Sur l’identité du malate acide d’althéine avec l’asparagine. Ann. Chim. Phys. 36, 175 (1827).Google Scholar
  118. Pryantshntkov, D.: Zur Kenntnis der Keimungsvorgänge bei Vicia sativa. Landw. Ver suchsstat. 45, 247 (1895).Google Scholar
  119. Eiweißzerfall und Atmung an ihren gegenseitigen Verhältnissen. Landw. Versuchsstat. 52, 137 (1899).Google Scholar
  120. Über den Einfluß der Temperatur auf die Energie des Eiweißzerfalls. Ber. dtsch. bot. Ges. 18, 285 (1900).Google Scholar
  121. Über den Aufbau und Abbau des Asparagins in den Pflanzen. Ber. dtsch. bot. Ges. 40, 242 (1922a).Google Scholar
  122. Ammoniak als Alpha und Omega des Stickstoffumsatzes in Pflanzen. Landw. Versuchsstat. 99, 267 (1922 b)Google Scholar
  123. Sur le role de l’asparagine dans les transformations des matières azotées chez les plantes. Rev. gén. Bot. 36, 108, 159 (1924).Google Scholar
  124. Nitrogen in the life of plants. (English translation by S. A. Wilde.) Madison, Wis. 1945.Google Scholar
  125. Pryantshntkov, D. N., U. I. Shulov: Über die synthetische Asparaginbildung in den Pflanzen. Ber. dtsch. bot. Ges. 28, 253 (1910).Google Scholar
  126. Racusen, D. W., and S. Aronoff: Metabolism of soybean leaves. VI. Exploratory studies in protein metabolism. Arch. of Biochem. a. Biophysics 51, 68 (1954).CrossRefGoogle Scholar
  127. Ratner, S., and A. Pappas: Biosynthesis of urea. I. Enzymatic mechanism of arginine synthesis from citrulline. J. of Biol. Chem. 179, 1183 (1949).Google Scholar
  128. Ratner, S., B. Petrack and O. Rochovansky: Biosynthesis of urea. V. Isolation and properties of argininosuccinic acid. J. of Biol. Chem. 204, 95 (1953).Google Scholar
  129. Rautanen, N.: Transamination in green plants. J. of Biol. Chem. 163, 687 (1946).Google Scholar
  130. On the synthesis of the first amino acids of green plants. Ann. Acad. Sci. fenn., Ser. A, II. Chem. 1948, No 33.Google Scholar
  131. Rice, R. G., G. A. Ballou, P. D. Boyer, J. M. Luck and F. G. Lum: The papain digestion of native, denatured, and “stabilized” human serum albumin. J. of Biol. Chem. 158, 609 (1945).Google Scholar
  132. Richardson, C., U. C. A. Crampton: Vorläufige Mittheilung über die Zusammensetzung des Weizenkeimes und über die Anwesenheit von einer neuen Zuckerart und von Allantoin. Ber. dtsch. chem. Ges. 19, 1180 (1886).CrossRefGoogle Scholar
  133. Rijven, A. H. G. C.: Effects of glutamine, asparagine and other related compounds on the growth of embryos of Capsella bursa-pastoris. Proc. Kon. Ned. Akad. v. Wetensch. C 58, 368 (1955).Google Scholar
  134. Ritthausen, H.: Asparaginsäure und Glutaminsäure, Zersetzungsprodukte des Legumins beim Kochen mit Schwefelsäure. J. prakt. Chem. 106, 445 (1869).CrossRefGoogle Scholar
  135. Die Eiweißkörper der Getreidearten, Hülsenfrüchte und Ölsamen. BonnGoogle Scholar
  136. Handbuch d. Pflanzenphysiologie, Bd. VIII 33 1872.Google Scholar
  137. Roberts, E., P. Ayengar and I. Posner: Transamination of γ-aminobutyric acid and β-alanine in microorganisms. J. of Biol. Chem. 203, 195 (1953).Google Scholar
  138. Roine, P.: On the synthesis of nitrogenous compounds by yeast. II. The soluble compounds formed during the uptake of ammonium nitrogen by low-nitrogen yeast. Suomen Kemistil., Ser. B 19, 73 (1946a).Google Scholar
  139. On the role of glutamine in the protein synthesis by yeast. Suomen Kemistil., Ser. B 19, 113 (1946b).Google Scholar
  140. Ruhland, W., U. K. Wetzel: Zur Physiologie der organischen Säuren in grünen Pflanzen. III. Rheum hybridum hort. Planta (Berl.) 3, 765 (1927).CrossRefGoogle Scholar
  141. Säverborn, S., K. E. Danielsson U. T. Svedberg: The globulins of cereals and malt. Sv. kern. Tidskr. 56, 75 (1944).Google Scholar
  142. Saidel, L. J.: Contribution of the ultra-violet spectrum of asparagine to the problem of its structure. Nature (Lond.) 172, 955 (1953).CrossRefGoogle Scholar
  143. Sakato, Y.: The chemical constituents of tea. III. A new amide, theanine. J. Agricult. Chem. Soc. Japan 23, 262 (1950). Quoted from Chem. Abstr. 45, 3528 (1952).CrossRefGoogle Scholar
  144. Sanger, F., and E. O. P. Thompson: The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochemic. J. 53, 353 (1953a).Google Scholar
  145. The aminoacid sequence in the glycyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochmic. J. 53, 366 (1953 b).Google Scholar
  146. Schjerning, H.: On the proteid substances of barley, in the grain itself and during the brewing process. C. r. Trav. Labor. Carlsberg 11, 45 (1914). Quoted from E. Lehmann and H. Aichele, 1931.Google Scholar
  147. Schmid,H., u. M. Serrano: Untersuchungen über die Nicotinbildung des Tabaks. I. Die Nicotinbildung im Keimling von Nicotiana rustica L. Experientia (Basel) 4, 311 (1948).CrossRefGoogle Scholar
  148. Schulze, B., U. E. Flechsig: Vergleichende Untersuchungen an verschiedenen Pflanzensamen über die Größe der Amidbildung bei der Keimung im Dunkeln. Landw. Versuchsstat. 32, 137 (1886).Google Scholar
  149. Schulze, E.: Landw. Jb. 7, 411 (1878). Quoted from Chibnall, 1939).Google Scholar
  150. Über die beim Umsatz der Proteinstoffe in den Keimpflanzen einiger Coniferen-Arten entstehenden Stickstoffverbindungen. Z. physiol. Chem. 22, 435 (1896/97).Google Scholar
  151. Schulze, E., U. J. Barbieri: Über das Vorkommen eines Glutaminsäure-Amides in den Kürbiskeimlingen. Ber. dtsch. chem. Ges. 10, 199 (1877).CrossRefGoogle Scholar
  152. Schulze, E., U. E. Bosshard: Über das Glutamin. Landw. Versuchsstat. 29, 295 (1883).Google Scholar
  153. Über das Glutamin. Ber. dtsch. chem. Ges. 16, 312 (1883).Google Scholar
  154. Schulze, E., U. N. Castoro: Beiträge zur Kenntnis der Zusammensetzung und des Stoffwechsels der Keimpflanzen. Z. physiol. Chem. 38, 199 (1903).CrossRefGoogle Scholar
  155. Beiträge zur Kenntnis der Zusammensetzung und des Stoffwechsels der Keimpflanzen. Z. physiol. Chem. 43, 170 (1904).Google Scholar
  156. Schulze, E., U. A. Likiernik: Über die Bildung von Harnstoff bei der Spaltung des Arginins. Ber. dtsch. chem. Ges. 24, 2701 (1801).CrossRefGoogle Scholar
  157. Schulze, E., u. W. Umlauft: Landw. Jb. 5, 819 (1876). Quoted from Chibnall, 1939.Google Scholar
  158. Schulze, E., U. A. Urich: Untersuchung über die stickstoffhaltigen Bestandtheile der Runkelrüben. (In reports by R. Gnehm of meetings of Chemische Gesellschaft Zürich 20 November and 18 December, 1876.) Ber. dtsch. chem. Ges. 10, 85 (1877).CrossRefGoogle Scholar
  159. Schulze, E., U. E. Winterstein: Über die Bildung von Ornithin bei der Spaltung des Arginins und über die Constitution dieser beiden Basen. Z. physiol. Chem. 26, 1 (1898).CrossRefGoogle Scholar
  160. Schwab, G.: Studien über Verbreitung und Bildung der Säureamide in der höheren Pflanze. Planta (Berl.) 25, 579 (1936).CrossRefGoogle Scholar
  161. Skinner, J. C., and H. E. Street: Studies on the growth of excised roots. II. Observations on the growth of excised groundsel roots. New Phytologist 53, 44 (1954).CrossRefGoogle Scholar
  162. Smirnov, A. I.: Über die Synthese der Säureamide in den Pflanzen bei Ernährung mit Ammoniaksalzen. Biochem. Z. 137, 1 (1923).Google Scholar
  163. Snoke, J. E.: On the mechanism of the enzymatic synthesis of glutathione. J. Amer. Chem. Soc. 75, 4872 (1953).CrossRefGoogle Scholar
  164. Sondheimer, E., and R. W. Holley: Synthesis of L-amino-succinimide. Nature (Lond.) 173, 773 (1954).CrossRefGoogle Scholar
  165. Speck, J. F.: The enzymatic synthesis of glutamine. J. of Biol. Chem. 168, 403 (1947).Google Scholar
  166. Spragg, S. P., and E. W. Yemm: Glutathione and ascorbic acid in the metabolism of germinating peas. Comm. 330th Meeting Biochem. Soc, 19th June, 1954.Google Scholar
  167. Srb, A. M., and N. H. Horowitz: The ornithine cycle in Neurospora and its genetic control. J. of Biol. Chem. 154, 129 (1944).Google Scholar
  168. Stein, W. H., A. C. Paladini, C. H. W. Hirs and S. Moore: Phenylacetylglutamine as a constituent of normal human urine. J. Amer. Chem. Soc. 76, 2848 (1954).CrossRefGoogle Scholar
  169. Steinhardt, J., and C. H. Fugitt: Catalysed hydrolysis of amide and peptide bonds in proteins. Bur. Stand. J. Res. Wash. 29, 315 (1942).Google Scholar
  170. Steward, F. C, and J. F. Thompson: Properties and physiological role of asparagine and glutamine, with a new interpretation of the structure of asparagine. Nature (Lond.) 169, 739 (1952).CrossRefGoogle Scholar
  171. Stokes, P.: The effect of temperature on metabolism. Ann. of Bot., N. S. 17, 157 (1953a).Google Scholar
  172. The stimulation of growth by low temperature in embryos of Heracleum sphondylium L. J. of Exper. Bot. 4, 222 (1953 b).Google Scholar
  173. Strachitski, K. I., i M. P. Chernikov: Enzymatic hydrolysis of native and denatured crystalline albumin from horse serum. Biokhim. 12, 277 (1947).Google Scholar
  174. Strassman, M., and S. Weinhouse: The biosynthesis of arginine by Torulopsis utilis. J. Amer. Chem. Soc. 74, 1726 (1952).CrossRefGoogle Scholar
  175. Stumpf, P. K.: Transaminases in higher plants. Federat. Proc. 10, 256 (1951).Google Scholar
  176. Sullivan, W. K.: Sur la presence de l’ammoniaque et de l’acide azotique dans la sève des végétaux. Ann. des Sci. natur. Bot., Sér. IV 9, 281 (1858).Google Scholar
  177. Sutulov, A. N.: La dégradation des protéines. C. r. Acad. Sci. URSS. 53, 331 (1946).Google Scholar
  178. Suzuki, U.: On the formation of asparagine in plants under different conditions. Bull. Coll. Agricult. Tokyo 2, 408 (1897).Google Scholar
  179. On the formation of arginin in coniferous plants. Bull. Coll. Agricult. Tokyo 4, 25 (1900–1902).Google Scholar
  180. Syrett, P. J.: The assimilation of ammonia by nitrogen-starved cells of Chlorella vulgaris. Part I. The correlation of assimilation with respiration. Ann. of Bot., N. S. 17, 1 (1953a).Google Scholar
  181. The assimilation of ammonia by nitrogen-starved cells of Chlorella vulgaris. Part II. The assimilation of ammonia to other compounds. Ann. of Bot., N. S. 17, 21 (1953b).Google Scholar
  182. Taggart, J. V., and R. B. Krakaur: Studies on the cyclophorase system. V. The oxidation of proline and hydroxyproline. J. of Biol. Chem. 177, 641 (1949).Google Scholar
  183. Thierfelder, H., u. C. P. Sherwin: Phenylacetyl-glutamin, ein Stoffwechsel-Produkt des menschlichen Körpers nach Eingabe von Phenyl-essigsäure. Ber. dtsch. chem. Ges. 47, 2630 (1914).CrossRefGoogle Scholar
  184. Thimann, K. V., R. R. Slater and G. S. Christiansen: The metabolism of stem tissue during growth and its inhibition. IV. Growth inhibition without enzyme poisoning. Arch. of Biochem. 28, 130 (1950).Google Scholar
  185. Ussing, H. H.: Isolation of asparagine from the haemolymph of Melolontha larvae. Nature (Lond.) 155, 481 (1945).CrossRefGoogle Scholar
  186. Vauquelin et Robiquet: Découverte d’un nouveau principe végétal dans les asperges (Asparagus sativus Linn.). Ann. de Chim. 57, 88 (1808).Google Scholar
  187. Vickery, H. B., and G. W. Pucher: Amide metabolism in etiolated seedlings. I. Asparagine and glutamine formation in Lupinus angustifolius, Vicia atropurpurea, and Cucurbita pepo. J. of Biol. Chem. 150, 197 (1943).Google Scholar
  188. Vickery, H. B., G. W. Pucher and H. E. Clark: Glutamine metabolism of the beet. Plant Physiol. 11, 413 (1936).PubMedCrossRefGoogle Scholar
  189. Vertanen, A. I., and T. Laine: Investigations on the root nodule bacteria of leguminous plants. Biochemic. J. 33, 412 (1938).Google Scholar
  190. Über die Umaminierung in grünen Pflanzen. Biochem. Z. 308, 213 (1941).Google Scholar
  191. Virtanen, A. I., and J. K. Miettinen: Free amino-acids in the leaves, roots and root nodules of the alder (Alnus). Nature (Lond.) 170, 283 (1952).CrossRefGoogle Scholar
  192. Vogel, H. J., and B. D. Davis: Glutamic γ-semialdehyde and ⊿′-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. J. Amer. Chem. Soc. 74, 109 (1952).CrossRefGoogle Scholar
  193. Wada, M.: Über Citrullin, eine neue Aminosäure im Preßsaft der Wassermelone, Citrullus vulgaris Schrad. Biochem. Z. 224, 420 (1930).Google Scholar
  194. Waelsch, H., P. Owades, E. Borek, N. Grossowicz and M. Schott: The enzyme-catalysed exchange of ammonia with the amide group of glutamine and asparagine. Arch. of Biochem. 27, 237 (1950).Google Scholar
  195. Waelsch, H., P. Owades, H. K. Miller and E. Borek: Glutamic acid antimetabolites: the sulfoxide derived from methionine. J. of Biol. Chem. 166, 273 (1946).Google Scholar
  196. Walker, J. B.: An enzymatic reaction between canavanine and fumarate. J. of Biol. Chem. 204, 139 (1953).Google Scholar
  197. Walker, J. B., and J. Myers: The formation of arginosuccinic acid from arginine and fumarate. J. of Biol. Chem. 203, 143 (1953).Google Scholar
  198. Webster, G. C.: Enzymatic synthesis of γ-glutamylcysteine in higher plants. Plant Physiol. 28, 728 (1953a).CrossRefGoogle Scholar
  199. Peptide-bond synthesis in higher plants. I. The synthesis of glutathione. Arch. of Biochem. a. Biophysics 47, 241 (1953b).Google Scholar
  200. Webster, G. C, and J. E. Varner: On the mechanism of the enzymatic synthesis of glutamine. J. Amer. Chem. Soc. 76, 633 (1954).CrossRefGoogle Scholar
  201. Willis, A. J.: Synthesis of amino-acids in young roots of barley. Biochemic. J. 49, xxvii (1951).Google Scholar
  202. Wilson, D. G., K. W. King and R. H. Burris: Transamination reactions in plants. J. of Biol. Chem. 208, 863 (1954).Google Scholar
  203. Wood, J. G., D. H. Cruickshank and R. H. Kuchel: The metabolism of starving leaves. 1. Presentation of data; the nature of respiration rate/time curves in air and in nitrogen and the relation to carbohydrates. 2. Changes in amounts of total and chloroplast proteins, chlorophyll, ascorbic acid and soluble nitrogen compounds. 3. Changes in malic and citric acid contents and interrelations of these with soluble nitrogen compounds. Austral. J. Exper. Biol. a. Med. Sci. 21, 37 (1943).CrossRefGoogle Scholar
  204. Yemm, E. W.: Respiration of barley plants. III. Protein catabolism in starving leaves. Proc. Roy. Soc. Lond., Ser. B 123, 243 (1937).CrossRefGoogle Scholar
  205. Glutamine in the metabolism of barley plants. New Phytologist 48, 315 (1949).Google Scholar
  206. Yemm, E. W., and B. F. Folkes: The regulation of respiration during the assimilation of nitrogen in Torulopsis utilis. Biochemic. J. 57, 495 (1954).Google Scholar
  207. Yevstigneyeva, Z. G., i V. L. Kretovich: The difference in structure and chemical properties of asparagine and glutamine. C. r. Acad. Sci. URSS. 93, 1069 (1953).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • H. S. McKee

There are no affiliations available

Personalised recommendations