Advertisement

Die identische Reproduktion der Proteine

  • Gerhard Schramm
Chapter
  • 228 Downloads
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Zusammenfassung

Die Struktur eines bestimmten Proteins in einer Zelle ist durch den genetischen Charakter der Zelle festgelegt. Es muß also ein Mechanismus bestehen, der dafür sorgt, daß unter dem Einfluß desselben Gens in den aufeinanderfolgenden Generationen immer wieder dasselbe Protein erzeugt wird. Aber auch in der nicht wachsenden Zelle findet ein ständiger Abbau und Aufbau von Protein statt. Auch hier muß also ein Prinzip wirksam sein, das für die genaue Wiederholung des Aufbaus verantwortlich ist. Die Analyse des Reproduktionsvorgangs ist wohl zur Zeit eines der wichtigsten und interessantesten Probleme der Biochemie. Von einer vollständigen Lösung sind wir noch weit entfernt, doch gelang es bereits, gewisse Aufschlüsse über einige der hierbei beteiligten Substanzen und Reaktionen zu erhalten. Bevor wir uns der Frage zuwenden, wie diese Reproduktion der Proteine abläuft, ist zunächst zu prüfen, ob völlige Identität erreicht wird oder nur Übereinstimmung in den wesentlichen Merkmalen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Allfrey, C. G.: Amino acid incorporation by isolated thymus nuclei. I. The role of desoxyribonucleic acid in protein synthesis. Proc. Nat. Acad. Sci. U.S.A. 40, 881 (1954).CrossRefGoogle Scholar
  2. Anfinsen, C. B., and D. Steinberg: Studies on the biosynthesis of ovalbumin. J. of Biol. Chem. 189, 739–744 (1951).Google Scholar
  3. Avery, O. T., C. H. Mc Leod and M. Mc Carty: Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J. of Exper. Med. 79, 137 (1944).CrossRefGoogle Scholar
  4. Askonas, B. A., P. N. Campbell and T. S. Work: The distribution of radioactivity in goat casein after injection of radioactive amino acids and its bearing on theories of protein synthesis. Biochemic. J. 56, IV (1954).Google Scholar
  5. The biosynthesis of proteins. Biochemic. J. 58, 326–331 (1954).Google Scholar
  6. Borsook, H.: The biosynthesis of peptides and proteins. 3. Internat. Biochem. Kongr., Brüssel 1955.Google Scholar
  7. Borsook, H., C. L. Deasy, A. J. Haagen-Smit, G. Keighley and P. H. Lowy: Metabolism of C14 labelled glycine, L-histidine, L-leucine and L-lysine. J. of Biol. Chem. 187, 839–848 (1950).Google Scholar
  8. Brachet, J.: La localisation des acides pentosenucleiques dans les tissus animaux et les œufs d’amphibiens en voie de développement. Archives de Biol. 53, 207 (1941).Google Scholar
  9. Effects of ribonuclease on the metabolism of living root-tip cells. Nature (Lond.) 174, 876–877 (1954).Google Scholar
  10. Brachet, J., and H. Chantrenne: Protein synthesis in nucleated and non-nucleated halves of Acetabularia mediterranea studied with carbon-14 dioxide. Nature (Lond.) 168, 950 (1951).CrossRefGoogle Scholar
  11. Brown, H., F. Sanger and R. Kitai: The structure of pig and sheep insulins. Biochemic. J. 60, 556–565 (1955).Google Scholar
  12. Burton, K.: The relation between the synthesis of desoxyribonucleic acid and the synthesis of protein in the multiplication of bacteriophage T2. Biochemic. J. 61, 473 (1955).Google Scholar
  13. Caldwell, P. C, and Sir C. Hinshelwood: Some considerations on autosynthesis in bacteria. J. Chem. Soc. (Lond.) 1950, 3156–3159.Google Scholar
  14. Caldwell, P. C., E. L. Mackor and C. Hinshelwood: The ribose nucleic acid content and cell growth of Bact. lactis aerogenes. J. Chem. Soc. (Lond.) 1950, 3151–3155.Google Scholar
  15. Caspersson, T., H. Landström-Hydén U. L. Aquilonius: Cytoplasma-nucleotide und Eiweiß produzierende Drüsenzelle. Chromosoma 2, 111 (1941).CrossRefGoogle Scholar
  16. Chantrenne, H.: The requirement for coenzyme A in the enzymatic synthesis of hippuric acid. J. of Biol. Chem. 189, 227–233 (1951).Google Scholar
  17. Chen, S. Y., B. Ephrussi et H. Hottinguer: Nature génétique des mutants à défience respiratoire de la souche B-11 de la levure de boulangerie. Heredity (Lond.) 4, 337 (1950).CrossRefGoogle Scholar
  18. Demoss, J. A., and G. D. Novelli: An amino acid dependent exchange between 32P labeled inorganic pyrophosphate and ATP in microbial extracts. Biochim. et Biophysica Acta 22, 49 (1956).CrossRefGoogle Scholar
  19. Ephrussi, B., and H. Hottinguer: Direct demonstration of the mutagenic action of euflavine on baker’s yeast. Nature (Lond.) 166, 956 (1950).CrossRefGoogle Scholar
  20. Ephrussi, B., et P. P. Slonimski: La synthèse adaptive des cytochromes chez la levure de boulangerie. Biochim. et Biophysica Acta 6, 256–267 (1950).CrossRefGoogle Scholar
  21. Friedrich-Freksa, H., G. Melchers U. G. Schramm: Biologischer, chemischer und serologischer Vergleich zweier Parallelmutanten phytopathogener Viren mit ihren Ausgangsformen. Biol. Zbl. 65, 187–222 (1946).Google Scholar
  22. Gale, E. F., and J. P. Folkes: Effect of nucleic acids on protein synthesis and aminoacid incorporation in disrupted staphylococcal cells. Nature (Lond.) 173, 1223–1224 (1954).CrossRefGoogle Scholar
  23. Gierer, A. u. G. Schramm: Die Infektiosität der Nucleinsäure aus Tabakmosaikvirus. Z. Naturforsch. 11 b 138 (1956). Grunberg-Manago, M., U. S. Ochoa: Enzymatic synthesis and breakdown of polynucleotides; polynucleotide phosphorylase. 3. Internat. Biochem. Kongr., Brüssel 1955.Google Scholar
  24. Heimberg, M., and S. F. Velick: The synthesis of aldolase and phosphorylase in rabbits. J. of Biol. Chem. 208, 725–730 (1954).Google Scholar
  25. Hershey, A. D., and M. Chase: Independent functions of viral protein and nucleic acid in growth of bacteriophage. J. Gen. Physiol. 36 39–56 (1952).PubMedCrossRefGoogle Scholar
  26. Hoagland, M. B., E. B. Keller and P. C. Zamecnik: Enzymatic carboxyl activation of amino acids. J. of Biol. Chem. 218, 345 (1956).Google Scholar
  27. Hotchkiss, R. D.: Transfer of penicillin resistance in pneumococci by the desoxyribonucleate derived from resistant cultures. Cold Spring Harbor Symp. Quant. Biol. 16, 457–461 (1951).PubMedCrossRefGoogle Scholar
  28. Hultln, T.: Incorporation in vivo of 15N-labelled glycine into liver fractions of newly-hatched chicks. Exper. Cell Res. 1, 376 (1950).CrossRefGoogle Scholar
  29. Karlson, P.: Biochemische Wirkungen der Gene. Erg. Enzymforsch. 13, 85–206 (1954).Google Scholar
  30. Keller, E. B.: Turnover of proteins of cell fractions of adult rat liver in vivo. Federat. Proc. 10, 206 (1951).Google Scholar
  31. Koritz, S. B., and H. Chantrenne: The relationship of ribonucleic acid to the in vitro incorporation of radioactive glycine into the proteins of reticulocytes. Biochim. et Biophysica Acta 13, 209–215 (1954).CrossRefGoogle Scholar
  32. Kornberg, A., I. R. Lehman and E. S. Sims: Polydesoxyribonucleotide synthesis by enzymes from Escherichia coli. Federat. Proc. 15, 291 (1956).Google Scholar
  33. Mazia, P., and D. M. Prescott: Protein synthesis in the cell nucleus. Nature (Lond.) 175, 300–301 (1955).CrossRefGoogle Scholar
  34. Muir, H. M., A. Neuberger and J. C. Perrone: Further isotopic studies on haemoglobin formation in the rat and rabbit. Biochemic. J. 52, 87–95 (1952).Google Scholar
  35. Northrop, J. H.: Growth and phage production of B. megatherium. J. Gen. Physiol. 36, 581–599 (1953).PubMedCrossRefGoogle Scholar
  36. Ochoa, S.: Synthesis of ribonucleic acid-like polynucleotides. Federat. Proc. 15, 832 (1956).Google Scholar
  37. Palade, G. E., and P. Siekevitz: Liver microsomes. J. Biophys. Biochem. Cytol. 2, 171 (1956).PubMedCrossRefGoogle Scholar
  38. Pardee, A. B.: Nucleic acid precursors and protein synthesis. Proc. Nat. Acad. Sci. U.S.A. 40, 264–270 (1954).CrossRefGoogle Scholar
  39. Park, J. T.: Uridine-5′-pyrophosphate derivatives. J. of Biol. Chem. 194, 877, 885, 897–904 (1952).Google Scholar
  40. Perutz, M. F., A. M. Liqvori and F. Eirich: X-ray and solubility studies of the haemoglobin of sickle-cell anaemia patients. Nature (Lond.) 167, 929–931 (1951).CrossRefGoogle Scholar
  41. Schachter, D., and J. V. Taggart: Glycine-N-acylase: purification and properties. J. of Biol. Chem. 208, 263–275 (1954).Google Scholar
  42. Schramm, G.: Zur Chemie des Mutationsvorgangs beim Tabakmosaik-Virus. Z. Naturforsch. 3b, 320–327 (1948).Google Scholar
  43. Sher, J. H., and M. F. Malette: The adaptive nature of the formation of lysine decarboxylase in Escherichia coli B. Arch. of Biochem. a. Biophysics 52, 331–339 (1954).CrossRefGoogle Scholar
  44. Simpson, M. V., and S. F. Velick: The synthesis of aldolase and glyceraldehyde-3-phosphate dehydrogenase in the rabbit. J. of Biol. Chem. 208, 61–71 (1954).Google Scholar
  45. Snoke, J. E., and K. Bloch: Formation and utilization of γ-glutamyl cysteine in glutathione synthesis. J. of Biol. Chem. 199, 407–414 (1952).Google Scholar
  46. Spiegelman, S.: Nuclear and cytoplasmic factors controlling enzymatic constitution. Cold Spring Harbor Symp. Quant. Biol. 11, 256 (1946).CrossRefGoogle Scholar
  47. Steinberg, P., and C. B. Anfinsen: Evidence for intermediates in ovalbumin synthesis. J. of Biol. Chem. 199, 25–42 (1952).Google Scholar
  48. Timizawa, J., and S. Sunakawa: The effect of chloramphenicol on deoxyribonucleic acid synthesis and the development of resistance to ultraviolet irradiation in E. coli infected with bacteriophage T2. J. Gen. Physiol. 39, 553 (1956).CrossRefGoogle Scholar
  49. Tuppy, H.: Untersuchungen über das Cytochromc. Angew. Chem. 67, 333 (1955).Google Scholar
  50. Turba, F., u. H. Esser: Zeitlicher Verlauf des Einbaus von C14 in Aminosäuren, Peptide und Proteine von Torulazellen. Biochem. Z. 327, 93–108 (1955).PubMedGoogle Scholar
  51. Du Vigneaud, V., H. C. Lawler and E. A. Popenoe: Enzymatic cleavage of glycine amide from vasopressin and a proposed structure for this pressor-antidiuretic hormone of the posterior pituitary. J. Amer. Chem. Soc. 75, 4880–4881 (1953).CrossRefGoogle Scholar
  52. Watson, J. D., and F. H. C. Crick: Molecular structure of nucleid acids. Nature (Lond.) 171, 737–738 (1953).CrossRefGoogle Scholar
  53. Genetic implications of the structure of deoxyribonucleic acid. Nature (Lond.) 173, 964–967 (1953).Google Scholar
  54. Webster, G. C, and M. P. Johnson: Effects of ribonucleic acid on amino acid incorporation by a particulate preparation from pea seedlings. J. of Biol. Chem. 217, 641 (1955).Google Scholar
  55. Zamecnik, P. C, and E. B. Keller: Relation between phosphate energy donors and incorporation of labelled amino acids into proteins. J. of Biol. Chem. 209, 337–354 (1954).Google Scholar
  56. Zech, H., U. L. Vogt-Köhne: ültraviolettmikroskopische Untersuchungen an Tabakmosaikvirus in situ. Naturwiss. 42, 337–339 (1955).CrossRefGoogle Scholar
  57. Zinder, R. D.: Infective heredity in Bacteria. Cold Spring Harbor Symp. Quant. Biol. 18, 261–268 (1953).PubMedCrossRefGoogle Scholar
  58. Zinder, R. D., and J. Lederberg: Genetic exchange in Salmonella. J. Bacter. 64, 679 (1952).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Gerhard Schramm

There are no affiliations available

Personalised recommendations