Advertisement

Biochemical mechanisms in the synthesis and breakdown of proteins

  • E. W. Yemm
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Abstract

The cellular mechanisms underlying the synthesis and breakdown of highly specific protein structures are of basic interest in many branches of biological study. But, despite the varied attacks which have been made on the problems of protein metabolism, many of the biochemical mechanisms, and especially those concerned in protein synthesis, remain uncertain or obscure. With particular regard to the metabolism of higher plants, valuable reviews have been given by Petrie (1943), McKee (1949), Street (1949), Wood (1953), Steward and Thompson (1954) and Webster (1955).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Alcock, R. S.: The synthesis of proteins in vivo. Physiologic. Rev. 16, 1–18 (1936).Google Scholar
  2. Balls, A. K., and H. Lineweaver: Isolation and properties of crystalline papain. J. of Biol. Chem. 130, 669–686 (1939).Google Scholar
  3. Berger, J., and M. J. Johnson: The leucylpeptidase of malt, cabbage, and spinach. J. of Biol. Chem. 130, 655–667 (1939).Google Scholar
  4. Occurence of leucylpeptidase in yeast and fungi. J. of Biol. Chem. 133, 157–172 (1940).Google Scholar
  5. Bergmann, M.: A classification of proteolytic enzymes. Adv. Enzymol. 2, 49–68 (1942).Google Scholar
  6. Bergmann, M., and H. Fraenkel-Conrat: The rôle of specificity in the enzymatic synthesis of proteins. J. of Biol. Chem. 119, 707–720 (1937).Google Scholar
  7. The enzymatic synthesis of peptide bonds. J. of Biol. Chem. 124, 1–6 (1938).Google Scholar
  8. Bergmann, M., and J. S. Fruton: The specificity of proteinases. Adv. Enzymol. 1, 63–98 (1941).Google Scholar
  9. The significance of coupled reactions for the enzymic hydrolysis and synthesis of proteins. Ann. New York Acad. Sci. 45, 409–423 (1944).Google Scholar
  10. Binkley, F.: Evidence for the polynucleotide nature of cysteinylglycinase. Exper. Cell Res., Suppl. 2, 145–157 (1952).Google Scholar
  11. Block, K.: The synthesis of glutathione in isolated liver. J. of Biol. Chem. 179, 1245–1254 (1949).Google Scholar
  12. Block, K., and H. S. Anker: Synthesis of glutathione in isolated liver. J. of Biol. Chem. 169, 765–766 (1947).Google Scholar
  13. Borsook, H.: Peptide bond formation. Adv. Protein Chem. 8, 127–174 (1953).PubMedCrossRefGoogle Scholar
  14. Brachet, J.: La localisation des acides pentosenucléiques dans les tissus animaux et dans les œufs d’Amphibiens en voie de développement. Archives de Biol. 53, 207–257 (1941).Google Scholar
  15. Nuclear control of enzymatic activities. Proceedings of the Seventh Symposium of the Colston Research Society. London: Butterworth Scientific Publications 1954.Google Scholar
  16. Caspersson, T.: Studien über den Eiweißumsatz der Zelle. Naturwiss. 29, 33–43 (1941).CrossRefGoogle Scholar
  17. Cell growth and cell function. New York: W. W. Norton & Company, Inc. 1950.Google Scholar
  18. Chayen, R., S. Chayen and E. R. Roberts: Observations on nucleic acid and polyphosphates in Torulopsis utilis. Biochim. et Biophysica Acta 16, 117–126 (1955).CrossRefGoogle Scholar
  19. Chibnall, A. C.: Protein metabolism in the plant. New Haven: Yale University Press 1939.Google Scholar
  20. Chibnall, A. C., and G. H. Wiltshire: A study with isotopic nitrogen of protein metabolism in detached runner bean leaves. New Phytologist 53, 38–43 (1954).CrossRefGoogle Scholar
  21. Collier, H. B.: The problem of plastein formation. I. The formation of a plastein by papain. Canad. J. Res., Sect. B 18, 255–263 (1940).CrossRefGoogle Scholar
  22. Danielsson, C. E.: Studies on a proteolytic enzyme from seeds of peas. Acta chem. scand. (Copenh.) 6, 791–804 (1951).CrossRefGoogle Scholar
  23. Dekker, C. A., S. P. Taylor and J. S. Fruton: The synthesis of peptides of methionine and their cleavage by proteolytic enzymes. J. of Biol. Chem. 180, 155–173 (1949).Google Scholar
  24. Dounce, A. L.: Duplicating mechanism for peptide chain and nucleic acid synthesis. Enzymologia (Den Haag) 15, 251–258 (1952).Google Scholar
  25. Durrel, J., and J. S. Fruton: Proteinase catalysed transamidation and its efficiency. J. of Biol. Chem. 207, 487–500 (1954).Google Scholar
  26. Elliott, W. H.: Adenosine triphosphate in glutamine synthesis. Nature (Lond.) 161, 128–129 (1948).CrossRefGoogle Scholar
  27. Studies in the synthesis of glutamine. Biochemic. J. 49, 106–112 (1951).Google Scholar
  28. Isolation of glutamine synthetase and glutamotransferase from green peas. J. of Biol. Chem. 201, 661–672 (1953).Google Scholar
  29. Fruton, J. S.: The rôle of proteolytic enzymes in the biosynthesis of peptide bonds. Yale J. Biol. a. Med. 22, 263–271 (1950).Google Scholar
  30. The enzymatic synthesis of peptide bonds. Symposium sur la biogénèse des proteines. II. Congr. internat. de Biochimie, Paris 1952.Google Scholar
  31. Fruton, J. S., W. R. Hearn, V. M. Ingram, D. S. Wiggans and M. Winitz: Synthesis of polymeric peptides in proteinase-catalysed transamidation reactions. J. of Biol. Chem. 204, 891–902 (1953).Google Scholar
  32. Fruton, J. S., R. B. Johnston and M. Fried: Elongation of peptide chains in enzyme-catalysed transamidation reactions. J. of Biol. Chem. 190, 39–53 (1951).Google Scholar
  33. Gale, E. F., and J. P. Folkes: Amino acid incorporation by fragmented staphylococcal cells. Biochemic. J. 55, XI (1953).Google Scholar
  34. The assimilation of amino acids by bacteria. 20. The incorporation of labelled amino acids by disrupted staphylococcal cells. Biochemic. J. 59, 661–675 (1955 a).Google Scholar
  35. The assimilation of amino acids by bacteria. 21. The effect of nucleic acids on the development of certain enzymic activities in disrupted staphylococcal cells. Biochemic. J. 59, 675–684 (1955b).Google Scholar
  36. Greenberg, D. M., and T. Winnick: Plant proteases. I. Activation-inhibition reactions. J. of Biol. Chem. 135, 761–773 (1940).Google Scholar
  37. Enzymes that hydrolyze in carbon-nitrogen bond: proteinases, peptidases and amidases. Annual Rev. Biochem. 14, 31–68 (1945).CrossRefGoogle Scholar
  38. Gregory, E. G., and P. K. Sen: Physiological studies in plant nutrition. VI. The relation of respiration rate to carbohydrate and nitrogen metabolism of the barley leaf as determined by nitrogen and potassium deficiency. Ann. of Bot., N. S. 1, 521–561 (1937).Google Scholar
  39. Hanes, C. S., F. J. R. Hird and F. A. Isherwood: Synthesis of peptides in enzymic reactions involving glutathione. Nature (Lond.) 166, 288–292 (1950).CrossRefGoogle Scholar
  40. Enzymic transpeptidation reactions involving γ-glutamyl peptides and α-amino acyl peptides. Biochemic. J. 51, 25–35 (1952).Google Scholar
  41. Hites, B. D., R. M. Sandstedt and L. Schaumburg: Proteolytic enzymes of wheat flour, doughs and suspensions. III. The misclassification of the proteases of flour as papainases. Cereal Chem. 30, 404–412 (1953).Google Scholar
  42. Hopkins, F. G., and E. J. Morgan: Appearance of glutathione during the early stages of the germination of seeds. Nature (Lond.) 152, 288–290 (1943).CrossRefGoogle Scholar
  43. Hultin, T.: Incorporation in vivo of 15N-labelled glycine into liver fractions of newly hatched chicks. Exper. Cell Res. 1, 376–381 (1950a).CrossRefGoogle Scholar
  44. The protein metabolism of sea-urchin during early development studies by means of 15-Nlabelled ammonia. Exper. Cell Res. 1, 599–602 (1950b).Google Scholar
  45. Jansen, E. F., and A. K. Balls: Chymopapain: a new crystalline proteinase from papain. J. of Biol. Chem. 137, 459–460 (1941).Google Scholar
  46. Johnston, R. B., M. J. Mycek and J. S. Fruton: Catalysis of transamidation by proteolytic enzymes. J. of Biol. Chem. 185, 629–641 (1950).Google Scholar
  47. Jones, M. E., W. R. Hearn, M. Fried and J. S. Fruton: Transamidation reactions catalyzed by cathepsin C. J. of Biol. Chem. 195, 645–656 (1952).Google Scholar
  48. Lindberg, O., and L. Ernster: Chemistry and physiology of mitochondria and microsomes. Protoplasmatologia, Bd. III, A 4. 1954.Google Scholar
  49. Linderstrøm-Lang, K.: Proteolytic enzymes. Annual Rev. Biochem. 8, 37–58 (1939).CrossRefGoogle Scholar
  50. Structure and enzymatic breakdown of proteins. Cold Spring Harbor Symp. Quant. Biol. 14, 117–126 (1949).Google Scholar
  51. Lipmann, F.: Metabolic generation and utilization of phosphate bond energy. Adv. Enzymol. 1, 99–162 (1941).Google Scholar
  52. Mechanism of peptide bond formation. Federat. Proc. 8, 597–602 (1949).Google Scholar
  53. Mac Vicar, R., and R. H. Burris: Studies on nitrogen metabolism in tomato with use of isotopically labelled ammonium sulphate. J. of Biol. Chem. 176, 511–516 (1948).Google Scholar
  54. Mc Kee, H. S.: Review of recent work on nitrogen metabolism. New Phytologist 48, 1–83 (1949).CrossRefGoogle Scholar
  55. Mounfield, J. D.: The proteolytic enzymes of sprouted wheat. Biochemic. J. 30, 1778–1786 (1936).Google Scholar
  56. The proteolytic enzymes of sprouted wheat. Biochemic. J. 32, 1675–1684 (1938).Google Scholar
  57. Pauling, L.: Configuration of polypeptide chains in proteins. Record Chem. Progr. 12, 155–161 (1951).Google Scholar
  58. Petrie, A. H. K.: Protein synthesis in plants. Biol. Rev. Cambridge Philos. Soc. 18, 105–118 (1943).CrossRefGoogle Scholar
  59. Rautanen, N.: On the formation of amino-acids and amides in green plants. Acta chem. scand. (Copenh.) 2, 127–139 (1948).CrossRefGoogle Scholar
  60. Richards, F. J.: Physiological studies in plant nutrition. VIII. The relation of respiration rate to the carbohydrate and nitrogen metabolism of the barley leaf as determined by phosphorus and potassium supply. Ann. of Bot., N. S. 2, 491–534 (1938).Google Scholar
  61. Roine, P.: On the formation of primary amino-acids in the protein synthesis in yeast. Ann. Acad. Sci. fenn., Ser. A, II. Chem. 1947, No 26.Google Scholar
  62. Siekevitz, P.: Uptake of radioactive alanine in vitro into proteins of rat liver fractions. J. of Biol. Chem. 195, 549–565 (1952).Google Scholar
  63. Smith, E. L.: Proteolytic enzymes. In Enzymes, Vol. 1, Part 2 (Ed. J. B. Sumner and K. Myrbäck). New York: Academic Press Inc. 1951.Google Scholar
  64. Snoke, J. E.: On the mechanism of enzymic synthesis of glutathione. J. Amer. Chem. Soc. 75, 4872–4873 (1953).CrossRefGoogle Scholar
  65. Speck, J. F.: The enzyme synthesis of glutamine. J. of Biol. Chem. 168, 403 (1947).Google Scholar
  66. The enzymic synthesis of glutamine, a reaction utilizing adenosine triphosphate. J. of Biol. Chem. 179, 1405–1426 (1949).Google Scholar
  67. Spragg, S. P., and E. W. Yemm: Glutathione and ascorbic acid in the metabolism of germinating peas. Biochemic. J. 58, XI (1954).Google Scholar
  68. Stern, H., V. Allfrey, A. E. Mirsky and H. Saetren: Some enzymes of isolated nuclei. J. Gen. Physiol. 35, 559–578 (1952).PubMedCrossRefGoogle Scholar
  69. Stern,. H., and A. E. Mirsky: The isolation of wheat germ nuclei and some aspects of their glycolytic metabolism. J. Gen. Physiol. 36, 181–200 (1952).PubMedCrossRefGoogle Scholar
  70. Steward, F. C., and H. E. Street: The soluble nitrogen fractions of potato tuber, the amides. Plant Physiol. 21, 155–193 (1946).PubMedCrossRefGoogle Scholar
  71. Steward, F. C., and J. F. Thompson: Proteins and protein metabolism in plants. In The Proteins, Vol. II, Part A (Ed. H. Neurath and K. Bailey). New York: Academic Press Inc. 1954.Google Scholar
  72. Street, H. E.: Nitrogen metabolism of higher plants. Adv. Enzymol. 9, 391–454 (1949).Google Scholar
  73. Stumpf, P. K., and W. D. Loomis: Observations on plant amide enzyme system requiring manganese and phosphate. Arch. of Biochem. 25, 451 (1950).Google Scholar
  74. Stumpf, P. K., W. D. Loomis and C. Michelson: Amide metabolism in higher plants. I. Preparation and properties of a glutamyl transphorase from pumpkin seedlings. Arch. of Biochem. 30, 126 (1951).Google Scholar
  75. Synge, R. L. M.: Peptides of ordinary tissues. The Chemical Structure of Proteins: Ciba Foundation Symposium. London: J. A. Churchill Ltd. 1953.Google Scholar
  76. Szafarz, D., and J. Brachet: Le rôle du noyau dans le métabolisme de l’acide ribonucléique chez Acetabularia mediterranea. Arch. internat. Physiol. 62, 154 (1954).PubMedCrossRefGoogle Scholar
  77. Tauber, H.: Synthesis of protein-like substances by chymotrypsin. J. Amer. Chem. Soc. 73, 1288–1290 (1951a).CrossRefGoogle Scholar
  78. Synthesis of protein-like substances by chymotrypsin from dilute peptide digests and their electrophoretic patterns. J. Amer. Chem. Soc. 73, 4965–4966 (1951b).Google Scholar
  79. Vickery, H. B., G. W. Pucher, R. Schoenheimer and D. Rittenberg: The assimilation of ammonia nitrogen by tobacco plants: a preliminary study with isotopic nitrogen. J. of Biol. Chem. 135, 531–539 (1940).Google Scholar
  80. Vickery, H. B., G. W. Pucher, A. J. Wakman and C. S. Leavenworth: Chemical investigations of the tobacco plant. VI. Chemical changes that occur in leaves during culture in light and in darkness. Bull. Conn. Agricult. Exper. Stat. 1937, No 399, 757–832.Google Scholar
  81. Virtanen, A. L, and H. K. Kekkonen: Structure of plasteins. Nature (Lond.) 161, 888–889 (1948).CrossRefGoogle Scholar
  82. Virtanen, A. L, H. K. Kekkonen, T. Laaksonen and M. Hakala: Plastein, a mixture of higher-molecular polypeptides synthesised by proteolytic enzymes. Acta chem. scand. (Copenh.) 3, 520–524 (1949).CrossRefGoogle Scholar
  83. Wablsch, H.: Certain aspects of intermediary metabolism of glutamine, asparagine and glutathione. Adv. Enzymol. 13, 237–319 (1952).Google Scholar
  84. Walti, A.: Crystalline ficin. J. Amer. Chem. Soc. 60, 493 (1938).CrossRefGoogle Scholar
  85. Watson, J. D., and F. H. C. Crick: The structure of DNA. Cold Spring Harbor Symp. Quant. Biol. 18, 123–131 (1952).CrossRefGoogle Scholar
  86. Webster, G. C.: Enzymatic synthesis of glutamine in higher plants. Plant Physiol. 28, 724–727 (1953a).CrossRefGoogle Scholar
  87. Enzymatic synthesis of γ-glutamylcysteine in higher plants. Plant Physiol. 28, 728–738 (1953b).Google Scholar
  88. Peptide bond synthesis in higher plants. I. Synthesis of glutathione. Arch. of Biochem. a. Biophysics 47, 241–250 (1953c).Google Scholar
  89. Nitrogen metabolism of plants. Annual Rev. Plant Physiol. 6, 43–59 (1955).Google Scholar
  90. Webster, G. C., and J. E. Varner: On the mechanism of the enzymatic synthesis of glutamine. J. Amer. Chem. Soc. 76, 633 (1954a).CrossRefGoogle Scholar
  91. Peptide bond synthesis in higher plants. II. Studies in the mechanism of synthesis of γ-glutamylcysteine. Arch. of Biochem. a. Biophysics 52, 22–32 (1954b).Google Scholar
  92. Peptide bond synthesis in higher plants. III. The formation of glutathione from γ-glutamylcysteine. Arch. of Biochem. a. Biophysics 55, 95–103 (1955a).Google Scholar
  93. Enzymatic synthesis of asparagine. Federat. Proc. 14, 301 (1955b).Google Scholar
  94. Willis, A. J.: Nitrogen assimilation and respiration in barley. Ph. D. Thesis: University of Bristol 1950.Google Scholar
  95. Synthesis of amino-acids in young roots of barley. Biochemic. J. 49, XXVII (1951).Google Scholar
  96. Winnick, T., W. H. Cone and D. M. Greenberg: Experiments on the activation of ficin. J. of Biol. Chem. 153, 465–470 (1944).Google Scholar
  97. Wood, J. G.: Nitrogen metabolism of higher plants. Annual Rev. Plant Physiol. 4, 1–22 (1953).CrossRefGoogle Scholar
  98. Wood, J. G., and D. H. Cruickshank: Metabolism of starving leaves. 5. Austral. J. Exper. Biol. a. Med. Sci. 22, 111–123 (1944).CrossRefGoogle Scholar
  99. Wood, J. G., D. H. Cruckshank and R. H. Kuchel: The metabolism of starving leaves. 1, 2 and 3. Austral. J. Exper. Biol. a. Med. Sci. 21, 37–53 (1943).CrossRefGoogle Scholar
  100. Wood, J. G., F. V. Mercer and C. Pedlow: The metabolism of starving leaves. 4. Austral. J, Exper. Biol. a. Med. Sci. 22, 38–43 (1944).Google Scholar
  101. Yemm, E. W.: Respiration of barley plants. III. Protein catabolism in starving leaves. Proc. Roy. Soc. Lond., Ser. B 123, 243–273 (1937).CrossRefGoogle Scholar
  102. Glutamine in the metabolism of barley plants. New Phytologist 48, 315–331 (1949).Google Scholar
  103. Respiration of barley plants. IV. Protein catabolism and the formation of amides in starving leaves. Proc. Roy. Soc. Lond., Ser. B 136, 632–649 (1950).Google Scholar
  104. Cellular oxidations and the synthesis of amino-acids and amides in plants. Proceedings of the Seventh Symposium of the Colston Research Society. London: Butterworth Scientific Publications 1954.Google Scholar
  105. The metabolism of senescent leaves. Colloquium in ageing transient tissues. The Ciba Foundation 1955.Google Scholar
  106. Yemm, E. W., and B. F. Folkes: The regulation of respiration during the assimilation of nitrogen in Torulopsis utilis. Biochemic. J. 57, 495–508 (1954).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • E. W. Yemm

There are no affiliations available

Personalised recommendations