Advertisement

Special peptides

  • S. G. Waley
Chapter
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Abstract

The study of peptides in plants has been dominated by two aims. Most of the work described here has been carried out in order to identify some “active principle”, which has turned out to contain peptide bonds. Such “principles” may be active towards bacteria (e.g. gramicidin, penicillin, etc.), plants (e.g. lycomarasmin) or animals (e.g. the ergot alkaloids). The primary interest in much of this work has been to determine the structure of these physiologically active peptides; it is not generally known why they are active, nor the part they play in the metabolism of the organisms whence they originated. Chemically, these peptides are interesting in the variety of structures displayed and in the methods used to purify them and determine their structure; the use of these methods is a guide to the methods likely to be of promise in the purification and structure determination of proteins. Biologically, too, these physiologically active peptides serve as a reminder of the many possible complexities latent in the protein molecule. The second aim in the study of peptides is a more general one. Living cells commonly contain a score or so of amino-acids and many proteins, and the proteins themselves usually have at least 100 amino-acid residues in their molecules. Whether molecules of intermediate size are present (and if so, the part they play in protein metabolism) is an important, but largely unanswered, question. This section is written from the point of view that the main interest in the “active principle” type of work lies in the structure of the products, whereas the main interest at the moment in the second type of work lies in the analytical techniques. One of the most frequently used techniques is paper chromatography; its application to the study of the nitrogenous constituents of plants is described in a review by Steward and Thomson (1950).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Bathurst, N. O.: Free amino-acids and peptides of plant tissues. J. Sci. Food a. Agricult. 4, 221–226 (1953).CrossRefGoogle Scholar
  2. Battersby, A. R., and L. C. Craig: The chemistry of tyrocidine. Molecular weight studies. J. Amer. Chem. Soc. 74, 4023–4027 (1952).CrossRefGoogle Scholar
  3. Benedict, R. G.: Antibiotics produced by actinomycetes. Bot. Rev. 19, 229–320 (1953).CrossRefGoogle Scholar
  4. Biserte, G., et R. Scriban: Les protides de l’orge. Bull. Soc. Chim. biol. Paris 32, 959–967 (1950).PubMedGoogle Scholar
  5. Les protides du mout. Bull. Soc. Chim. biol. Paris 34, 350–365 (1952).Google Scholar
  6. Bovarnick, M., F. Eisenberg, D. O’Connell, J. C. Victor and P. Owades: Preparation, determination and excretion of glutamyl polypeptide and its polymers. J. of Biol. Chem. 207, 593–603 (1954).Google Scholar
  7. Bricas, E., and Cl. Fromageot: Naturally occurring peptides. Adv. Protein Chem. 8, 4–125 (1953).Google Scholar
  8. Brockmann, H., G. Bohnsack, B. Franck, H. Grone, H. Muxfeldt u. C. Süling: The structure of actinomycins. Angew. Chem. 68, 70–71 (1956).Google Scholar
  9. Brockmann, H., u. H. Gröne: Pure actinomycins. Naturwiss. 41, 65 (1954).CrossRefGoogle Scholar
  10. Brockman, J. A. et al.: Synthesis and isolation of a crystalline substance with the properties of a new B vitamin. J. Amer. Chem. Soc. 72, 4325–4326 (1950).CrossRefGoogle Scholar
  11. Bruckner, V., J. Kovacs and G. Denes: Structure of poly-d-glutamic acid isolated from capsulated strains of B. anthracis. Nature (Lond.) 172, 508 (1953).CrossRefGoogle Scholar
  12. Bruckner, V., J. Kovacs and K. Kovacs: The structure of native poly-d-glutamic acid. J. Chem. Soc. Lond. 1953, 1512–1514.Google Scholar
  13. Bruckner, V., J. Kovacs and H. Nagy: The structure of native poly-d-glutamic acid. J. Chem. Soc. Lond. 1953, 148–150.Google Scholar
  14. Callow, R. K., and T. S. Work: Antibiotic peptides from Bacillus licheniformis. Biochemic. J. 51, 558–569 (1952).Google Scholar
  15. Channing, D. M., and G. T. Young: Peptides and proteins of brown seaweed. Chem. a. Ind. 1952, 519.Google Scholar
  16. The nitrogenous constituents of some marine algae. J. Chem. Soc. Lond. 1953, 2481–2491.Google Scholar
  17. Chibnall, A. C.: Protein metabolism in the plant. New Haven: Yale University Press 1939.Google Scholar
  18. Clarke, H. T., J. R. Johnson and R. Robinson: The chemistry of penicillin. Princeton: University Press 1949.Google Scholar
  19. Conn, E. E., and B. Vennesland: Glutathione reductase of wheat germ. J. of Biol. Chem. 192, 17–28 (1951).Google Scholar
  20. Consden, R., A. H. Gordon, A. J. P. Martin and R. L. M. Synge: Gramicidin S.: the sequence of the amino-acid residues. Biochemic. J. 41, 596–602 (1947).Google Scholar
  21. Cornforth, J. W., C. Dalgliesh and A. Neuberger: ß-3-Oxindolylalanine (hydroxy-tryptophan). Biochemic. J. 48, 598–603 (1951).Google Scholar
  22. Cosulich, D. B., B. Roth, J. M. Smith, M. E. Hultquist and R. P. Parker: Chemistry of leucovorin. J. Amer. Chem. Soc. 74, 3252–3263 (1952).CrossRefGoogle Scholar
  23. Cosulich, D. B., J. M. Smith and H. P. Broquist: Diastereoisomers of leucovorin. J. Amer. Chem. Soc. 74, 4215–4216 (1952).CrossRefGoogle Scholar
  24. Coulson, C. B.: Amino-acids of marine algae. Chem. a. Ind. 1953, 971–972.Google Scholar
  25. Craig, L. C., W. Hausmann and J. R. Weisiger: The molecular weight of bacitracin A. J. of Biol. Chem. 200, 765–773 (1952).Google Scholar
  26. Structural studies with bacitracin A. J. Amer. Chem, Soc. 76, 2839–2840 (1954).Google Scholar
  27. Dekker, C. A., D. Stone and J. S. Fruton: A peptide from marine algae. J. of Biol. Chem. 181, 719–729 (1949).Google Scholar
  28. Dickman, S. R., and W. L. Westcott: Reactions of xanthydrol. J. of Biol. Chem. 210, 481–489 (1954).Google Scholar
  29. Du Vigneaud, V., and G. L. Miller: A synthesis of glutathione. J. of Biol. Chem. 116, 469–476 (1936).Google Scholar
  30. Ericson, L. E., and B. Carlson: Studies on the occurrence of amino-acids niacin and pantothenic acid in marine algae. Ark. Kemi (Stockh.) 6, 511–522 (1953).Google Scholar
  31. Ericson, L. E., E. Widoff and Z. G. Banhidi: Studies of growth factors for Streptococcus faecalis occurring in marine algae. Acta chem. scand. (Copenh.) 7, 974–979 (1953).CrossRefGoogle Scholar
  32. Erlanger, B. F., H. Sachs and E. Brand: The synthesis of peptides related to gramicidin S. J. Amer. Chem. Soc. 76, 1806–1810 (1954).CrossRefGoogle Scholar
  33. Ferguson, W. S., and R. A. Terry: The fractionation of the non-protein nitrogen of grassland herbage. J. Sci. Food a. Agricult. 5, 515–524 (1954).CrossRefGoogle Scholar
  34. Flynn, E. H., T. J. Bond, T. J. Bardis and W. Shrive: A synthetic compound with folinic acid activity. J. Amer. Chem. Soc. 73, 1979–1982 (1951).CrossRefGoogle Scholar
  35. Gregory, R., and G. T. Young: Unpublished work.Google Scholar
  36. Haas, P.: On certain peptides occurring in marine algae. Biochemic. J. 46, 503–505 (1950).Google Scholar
  37. Haas, P., and T. G. Hill: A preliminary note on the nitrogen metabolism of seaweeds. Biochemic. J. 25, 1472–1475 (1931).Google Scholar
  38. The metabolism of calcareous algae. Biochemic. J. 27, 1801–1804 (1933).Google Scholar
  39. Haas, P., T. G. Hill and B. Russell-Wells: On certain simple peptides occurring in marine algae. Biochemic. J. 32, 2129–2133 (1938).Google Scholar
  40. anes, C. S., G. E. Connell and G. H. Dixon: Transpeptidation and transamidation reactions. In: Phosphorus Metabolism, vol. II, pp. 95–108. Baltimore: Johns Hopkins Press 1952.Google Scholar
  41. Harrington, C. R.,and T. H. Mead: The synthesis of glutathione. Biochemic. J. 29, 1602–1611 (1935).Google Scholar
  42. Harris, J. L, and T. S. Work: The synthesis of peptides related to Gramidin S and the significance of optical configuration in antibiotic peptides. Biochemic. J. 46, 582–589 (1950).Google Scholar
  43. Hassall, C. H., K. Reyle and P. Feng: Hypoglycin A, B.: Biologically active peptides from Blighia sapida. Nature (Lond.) 173, 356–357 (1954),CrossRefGoogle Scholar
  44. Hegedus, B.: A new synthesis of glutathione. Helvet. chim. Acta 31, 737–748 (1948).PubMedCrossRefGoogle Scholar
  45. Hopkins, F. G.: On an autoxidisable constituent of the cell. Biochemic. J. 15, 286–305 (1921).Google Scholar
  46. On glutathione: A reinvestigation. J. of Biol. Chem. 84, 269–320 (1929).Google Scholar
  47. Hopkins, F. G., and E. J. Morgan: Some relations between ascorbic acid and glutathione. Biochemic. J. 30, 1446–1462 (1936).Google Scholar
  48. Appearance of glutathione during the early stages of the germination of seeds. Nature (Lond.) 152, 288–290 (1943).Google Scholar
  49. On the distribution of glyoxalase and glutathione. Biochemic. J. 39, 320–324 (1945).Google Scholar
  50. Hunter, G., and B. A. Eagles: Glutathione: a critical study. J. of Biol. Chem. 72, 147–166 (1927).Google Scholar
  51. Hutchings, B. L., and J. H. Mowat: The chemistry and biological action of pteroylglutamic acid and related compounds. Vitamins a. Hormones 6, 1–25 (1948).CrossRefGoogle Scholar
  52. James, A. T., and R. L. M. Synge: Non-peptide linkages in gramicidin. Biochemic. J. 50, 109–118 (1951).Google Scholar
  53. Kendall, E. C., H. L. Mason and B. F. Mc Kenzie: The structure of glutathione. J. of Biol. Chem. 87, 55–79; 88, 409–423 (1930).Google Scholar
  54. Kovacs, J., and V. Bruckner: The structure of native polyglutamic acid. J. Chem. Soc. Lond. 1952, 4255–4259.Google Scholar
  55. Kovacs, J., V. Bruckner and K. Kovacs: The structure of native polyglutamic acid. J. Chem. Soc. Lond. 1953, 145–147.Google Scholar
  56. Krimsky, I., and E. Racker: Glutathione, a prosthetic group of glyceraldehyde-3-phosphate dehydrogenase. J. of biol. Chem. 198, 721–729 (1952).Google Scholar
  57. Lawrence, J. M.: Th formation of reducing substances in pea seeds. Arch. of Biochem. 27, 1–5 (1950).Google Scholar
  58. Lewis, J. C., and N. S. Snell: The amino-acid composition of subtilin. J. Amer. Chem. Soc. 73, 4812–4815 (1951).CrossRefGoogle Scholar
  59. Lockhart, I. M., and E. P. Abraham: The amino-acid sequence in bacitracin A. Biochemic. J. 58, 633–647 (1954).Google Scholar
  60. Observations on the structure of bacitracin A. Biochemic. J. 58, xlvii (1954).Google Scholar
  61. Mapson, L. W., and D. R. Goddard: Reduction of glutathione by plant tissues. Biochemic. J. 49, 592–601 (1951),Google Scholar
  62. Meloun, B., B. Keil and F. Sorm: The constitution of phalloidin. Coll. českoslov. chem. Commun. 19, 153–160 (1954).Google Scholar
  63. Newton, G. C. F., and E. P. Abraham: Synthesis of D-8-amino-δ-carboxyvaleryl-glycine (a degradation product of cephalosporin N) and DL-δ-amino-δ-carboxyvaleramide. Biochemic. J. 58, 266–268 (1954).Google Scholar
  64. Nichol, C. A.: The effect of ascorbic acid on the enzymatic formation of the citrovorum factor. J. of Biol. Chem. 204, 469–475 (1953).Google Scholar
  65. Paladini, A., and L. C. Craig: The structure of tyrocidine A. J. Amer. Chem. Soc. 76, 688–692 (1954).CrossRefGoogle Scholar
  66. Plattner, P. A., u. N. Clauson-Kaas: Über Lycomarasmin, den Welkstoff aus Fusarium lycopersici. Experientia (Basel) 1, 195–196 (1945).CrossRefGoogle Scholar
  67. Über ein welkeerzeugendes Stoffwechselprodukt von Fusarium lycopersici. Helvet. chim. Acta 28, 188–195 (1945).Google Scholar
  68. Plattner, P. A., N. Clauson-Kaas, A. Boller u. U. Nager: Der hydrolytische Abbau des Lycomarasmins. Helvet. chim. Acta 31, 860–869 (1948).PubMedCrossRefGoogle Scholar
  69. Plattner, P. A., H. H. Günthard u. A. Boller: Röntgenographische Bestimmung des Molekulargewichts von Lycomarasmin. Helvet. chim. Acta 35, 999–1002 (1952).CrossRefGoogle Scholar
  70. Ratner, S., M. Blanchard and D. E. Green: Isolation of a peptide of p-aminobenzoic acid from yeast. J. of Biol. Chem. 164, 691–701 (1946).Google Scholar
  71. Record, B. R., and K. H. Grinstead: Physico-chemical properties and molecular weight of spore peptides from Bacillus megatherium. Biochemic. J. 58, 85–87 (1954).Google Scholar
  72. Reindel, F., u. W. Hoppe: Über eine Färbemethode zum Anfärben von aminosauren Peptiden und Proteinen auf Papierchromato-grammen und Papierelektropherogrammen. Ber. dtsch. chem. Ges. 87, 1103–1107 (1954).Google Scholar
  73. Rudinger, J., and F. Sŏrm: A new synthesis of glutathione. Coll. českoslov. chem. Commun. 16, 214–219 (1951).Google Scholar
  74. Samuels, P. J.: Synthesis of glutathione by extracts of Escherichia coli. Biochemic. J, 55, 441–444 (1953).Google Scholar
  75. Sanger, F.: The free amino group of Gramicidin S. Biochemic. J. 40, 261–262 (1946).Google Scholar
  76. Sanger, F., and H. Tuppy: The amino-acid sequence in the phenyl-alanyl chain of insulin. Biochemic. J. 49, 463–481 (1951).Google Scholar
  77. Schroeder, E. F., and G. P. Woodward: A titrimetric modification of the glyoxalase method for the estimation of reduced glutathione. J. of Biol. Chem. 129, 283–294 (1939).Google Scholar
  78. Schumann, I., and R. A. Boissonnas: Synthèse de la L-valyl-L (δ5-carbobenzoxy)-ornithyl-L-leucyl-D-phénylalanyl-L-proline. Helvet. chim. Acta 35, 2237–2241 (1952).CrossRefGoogle Scholar
  79. Smith, D. G., and E. G. Young: On the nitrogenous constituents of Fucus vesiculosus. J. of Biol. Chem. 205, 849–858 (1953).Google Scholar
  80. Sŏrm, F., and B. Keil: Über die Konstitution des Peptides Phalloidin. Coll. českoslov. chem. Commun. 16, 366–379 (1951).Google Scholar
  81. Spragg, S. P., and E. W. Yemm: Glutathione and ascorbic acid in the metabolism of germinating peas. Biochemic. J. 58, xi–xii (1954).Google Scholar
  82. Steward, F. C., and J. F. Thompson: The nitrogenous constituents of plants, with special reference to chromatographic methods. Annual Rev. Plant Physiol. 1, 233–264 (1950).CrossRefGoogle Scholar
  83. Stoll, A.: Recent investigation on the ergot alkaloids. Fortschr. Chem. organ. Naturstoffe 9, 114–174 (1952).Google Scholar
  84. Strange, R. E., and J. F. Powell: Hexosamine-containing peptides in spores of Bacillus suhtilis, B. megatherium and B. cereus. Biochemic. J. 58, 80–85 (1954).Google Scholar
  85. Synge, R. L. M.: Naturally occurring peptides. Quart. Rev. Chem. Soc. Lond. 3, 245–262 (1939).CrossRefGoogle Scholar
  86. Non-protein nitrogenous constituents of rye-grass; ionophoretic fractionation and isolation of a bound amino-acid fraction. Biochemic. J. 49, 642–650 (1951).Google Scholar
  87. Peptides of ordinary tissues. In: The Chemical Structure of Proteins. London: Churchill 1953.Google Scholar
  88. Synge, R. L. M., and J. C. Wood: Diffusible peptide-like and glycosidic constituents of Italian rye-grass. Biochemic. J. 56, xix (1954).Google Scholar
  89. Talalay, P. S.: Glutathione breakdown and transpeptidation reactions in Proteus vulgaris. Nature (Lond.) 174, 516 (1954).CrossRefGoogle Scholar
  90. Thorne, C. B., C. G. Gomez, H. E. Noyes and R. D. Housewright: Production of glutamyl polypeptide by Bacillus suhtilis. J. Bacter. 68, 307–315 (1954).Google Scholar
  91. Turner, R. A., and G. Schmerzler: Chemical studies on bacillomycin, a peptide fungistatic agent. Federat. Proc. 13, 312 (1954).Google Scholar
  92. Virtanen, A. I., and A. M. Berg: γ-Glutamynlalanine in pea seedlings. Acta chem. scand. (Copenh.) 8, 1089 (1954).CrossRefGoogle Scholar
  93. Waelsch, H.: Glutamine, asparagine and glutathione in biosynthetic processes. 2nd Int. Congr. Biochem., Symposium sur la biogenese des proteines, 1952, p. 26–31.Google Scholar
  94. Waley, S. G.: The structure of bacterial polyglutamic acid. J. Chem. Soc. Lond. 1955, 517–522.Google Scholar
  95. Waller, C. W. et al.: Synthesis of pteroylglutamic acid and pteroic acid. J. Amer. Chem. Soc. 70, 19–22 (1948).CrossRefGoogle Scholar
  96. Webster, G. C.: The synthesis of glutathione. Arch. of Biochem. 47, 241–250 (1953).CrossRefGoogle Scholar
  97. Webster, G. C., and J. E. Varner: Studies on the mechanism of synthesis of γ-glutamylcysteine. Arch. of Biochem. 52, 22–32 (1954).CrossRefGoogle Scholar
  98. Weisblat, D. L, B. J. Magerlein, A. R. Hanze, D. R. Meyers and S. T. Rolfson: Synthesis of pteroic and pteroylglutamic acids. J. Amer. Chem. Soc. 75, 3625–3629 (1953).CrossRefGoogle Scholar
  99. Wieland, Th., u. G. Schmidt: Über die Giftstoffe des Knollenblätterpilzes. Liebigs Ann. 577, 215–233 (1952).CrossRefGoogle Scholar
  100. Williams, W. J., J. Litwin and C. B. Thorne: Further studies on the biosynthesis of γ-glutamyl peptides by transfer reactions. J. of Biol. Chem. 212, 427–438 (1955).Google Scholar
  101. Winterfeld, K., u. L. H. Bijl: Viscotoxin, ein neuer Inhaltstoff der Mistel. Liebigs Ann. 561, 107–115 (1948).Google Scholar
  102. Winterfeld, K., u. M. Rink: Über die Konstitution des Viscotoxins. Liebigs Ann. 561, 186–193 (1948).Google Scholar
  103. Woodward, G. E.: Glyoxalase as a reagent for the quantitative micro-estimation of glutathione. J. of Biol. Chem. 109, 1–10 (1935).Google Scholar
  104. Woolley, D. W.: Studies on the structure of lycomarasmin. J. of Biol. Chem. 176, 1291–1298 (1948).Google Scholar
  105. Wrinch, D. M.: The pattern of proteins. Nature (Lond.) 137, 411–412 (1936).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • S. G. Waley

There are no affiliations available

Personalised recommendations