Protein symplexes (Conjugated proteins)

  • Felix Haurowitz
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)


Although we know that proteins combine with various non-proteins substances, very little is known about the products formed. Even if a “conjugated protein” can be isolated, we are not always sure whether it is present as such in the living cell or whether it is an artifact produced by the methods of isolation and purification. It is customary to classify conjugated proteins according to the nature of the “prosthetic group”. Accordingly, the following types of conjugated proteins will be discussed in this chapter: (A) glycoproteins, (B) nucleoproteins, (C) lipoproteins, (D) chloroplastin, (E) ironporphyrin complexes (cytochromes, cytochrome oxidase, catalase, peroxidase, leghemoglobin), (F) metal proteins, (G) flavoproteins, and (H) tetrapyrryl-proteins (phycoerythrin, phycocyanin). This classification has merely practical purposes; it must not give the impression that the different classes of “conjugated proteins” are equally well established. Some of the “conjugated proteins” are certainly stoichiometric compounds of a protein with a definite prosthetic group; others seem to be artifacts, the composition of which depends on the isolation procedure. Most of the conjugated proteins were discovered in animal tissues. Until recently, hardly anything was known on protein symplexes occurring in plants. Indeed, only animal products were discussed in the section on conjugated proteins of the „Handbuch der Pflanzenanalyse“ (Bergmann and Zervas 1933).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, D. R., J. D. Spikes and R. Lumry: Studies on a reported crystalline chlorophyll-lipoprotein. Biochim. et Biophysica Acta 15, 298 (1954).CrossRefGoogle Scholar
  2. Appleby, C. A., and R. K. Morton: Crystalline cytochrome and lactic dehydrogenase of yeast. Nature (Lond.) 173, 749–752 (1954).CrossRefGoogle Scholar
  3. Arnon, D. I.: Copper enzymes in isolated chloroplasts. Plant Physiol. 24, 1–15 (1949).PubMedCrossRefGoogle Scholar
  4. Balls, A. K., W. S. Hale and T. H. Harris: A crystalline protein obtained from a lipoprotein of wheat flour. Cereal Chem. 19, 279–287 (1942).Google Scholar
  5. Bergmann, M., u. L. Zervas: Proteins. G. Klein, Handbuch der Pflanzenanalyse, Bd. 4, S. 299–360. 1944.Google Scholar
  6. Bertrand, G.: Correlations between the chemical constitution of organic compounds and their oxidiza-bility by laccase. C. r. Acad. Sci. Paris 122, 1132–1134 (1896).Google Scholar
  7. Boeri, E., E. Cutolo, M. Lussati and L. Tosi: Preparation and properties of cytochrome b2 from yeast. Arch. of Biochem. a. Biophysics 56, 487–499 (1955).CrossRefGoogle Scholar
  8. Bonner, J., and S. G. Wildman: Enzymic mechanisms in the respiration of spinach leaves. Arch. of Biochem. 10, 497 (1946).Google Scholar
  9. Chargaff, E.: Lipoproteins. Adv. Protein Chem. 1, 1–24 (1946).CrossRefGoogle Scholar
  10. Recent work on lipoproteins as cellular constituents. Exper. Cell Res., Suppl. 1, 24–31 (1949).Google Scholar
  11. The problem of Nucleoproteins. In: Some Conjugated Proteins, pp. 36–42. New Brunswick: Rutgers University Press 1953.Google Scholar
  12. Studies on the fractionation and composition of desoxyribonucleic acids. Trans. Faraday Soc. 50, 293–294 (1954).Google Scholar
  13. Chargaff, E., and J. N. Davidson: The nucleic acids, chemistry and biology. New York: Academic Press 1955.Google Scholar
  14. Chargaff, E.. and E. Vischer: Nucleoproteins, nucleic acids and related substances. Annual Rev. Biochem. 17, 201–226 (1948).CrossRefGoogle Scholar
  15. Chiba, Y.: TWO components in crystalline chlorophyll-lipoprotein. Arch. of Biochem. a. Biophysics 54, 83–92 (1955).CrossRefGoogle Scholar
  16. Comar, C. L.: Chloroplast substance of spinach leaves. Bot. Gaz. 104, 122 (1942).CrossRefGoogle Scholar
  17. Cook, A. H.: Algal pigments and their significance. Biol. Rev. Cambridge Philos. Soc. 20, 115–132 (1945).CrossRefGoogle Scholar
  18. Davenport, H. E., and R. Hill: Preparation and some properties of cytochrome f. Proc. Roy. Soc. Lond., Ser. B 139, 327–345 (1952).CrossRefGoogle Scholar
  19. Eggman, L., S. J. Singer and S. G. Wildman: The proteins of green leaves. J. of Biol. Chem. 205, 969–983 (1953).Google Scholar
  20. Ellfolk, N., and A. I. Virtanen: The molecular weight of leghemoglobin. Acta chem. scand. (Copenh.) 6, 411–420 (1952).CrossRefGoogle Scholar
  21. Elsden, S. R., M. O. Kamen and L. P. Vernon: A new soluble cytochrome. J. Amer. Chem. Soc. 75, 6347–6348 (1953).CrossRefGoogle Scholar
  22. Emerson, R., and C. M. Lewis: The photosynthetic efficiency of phycocyanin in Chroococcus and the problem of carotenoid participation in photosynthesis. J. Gen. Physiol. 25, 579–595 (1942).PubMedCrossRefGoogle Scholar
  23. Euler, H. V., L. Heller and K. Högberg: Nucleoproteins from birch pollen. Ark. Kemi (Stockh.) A 26, No 15 (1948).Google Scholar
  24. Fishman, M. M., and L. S. Moyer: Electrophoresis of the protein-chlorophyll complex. Science (Lancaster, Pa.) 95, 128–129 (1942).Google Scholar
  25. Galston, A. W., R. K. Bonnichsen and D, I. Arnon: Preparation of highly purified spinach leaf catalase. Acta chem. scand. (Copenh.) 5, 781–790 (1951).CrossRefGoogle Scholar
  26. Goddard, D. R.: Cytochrome c and cytochrome oxidase from wheat sperm. Amer. J. Bot. 31, 270–276 (1944).CrossRefGoogle Scholar
  27. Gunar, I. I., E. E. Krastina i K. A. Bryushkova: Effect of 2,4-dichloro-phenoxyacetic acid on metabolism in the sunflower. Dokl. Akad. Nauk SSSR. 84, 173–176 (1952).PubMedGoogle Scholar
  28. Haas, E., C. Harrer and T. Hogness: Cytochrome reductase. J. of Biol. Chem. 143, 341–349 (1942).Google Scholar
  29. Haglund, H., and A. Tiselius: Zone electrophoresis in a glass powder column. Acta chem. scand. (Copenh.) 4, 957–962 (1950).CrossRefGoogle Scholar
  30. Hammarsten, E.: Biological importance of nucleic acid compounds. Biochem. Z. 144, 383–466 (1924).Google Scholar
  31. Haxo, F. T., C. O. O’Heocha and P. Norris: Comparative studies of chromatographically separated phycoerythrins and phycocyanins. Arch. of Biochem. a. Biophysics 54, 162–167 (1955).CrossRefGoogle Scholar
  32. Haxo, F. T., and L. R. Blinks: Photosynthetic action spectra of marine algae. J. Gen. Physiol. 33, 389–422 (1950).PubMedCrossRefGoogle Scholar
  33. Hill, R., and K. Bhagvat: Cytochrome oxidase in flowering plants. Nature (Lond.) 143, 726 (1939).CrossRefGoogle Scholar
  34. Hill, R., and E. F. Hartree: Hematin compounds in plants. Annual Rev. Plant Physiol. 4, 115 (1953).CrossRefGoogle Scholar
  35. Holzach, C., and H. Flück: Experiments on the composition and synthesis of the mucins of Tamus communis. Pharmacol. Acta Helvet. 25, 299–336 (1950).Google Scholar
  36. Physicochemical studies concerning the molecular size and form and uniformity of the mucins of Tamus communis. Pharmacol. Acta Helvet. 26, 153–176 (1951).Google Scholar
  37. Horowitz, N. H.: The D-aminooxidase of Neurospora. J. of Biol. Chem. 154, 141–149 (1944).Google Scholar
  38. Horvath, A. A.: Proc. of the 6th Pacific Scientific Conf., p. 449, 1939.Google Scholar
  39. James, W. O.: Terminal oxidases in the respiration of the embryos and young rats of barley. Proc. Roy. Soc, Lond., Ser. B 141, 289–299 (1953).CrossRefGoogle Scholar
  40. Keilin, D.: Cytochrome, a respiratory pigment, common to animals, yeast and higher plants. Proc. Roy. Soc. Lond., Ser. B 98, 312–339 (1925).CrossRefGoogle Scholar
  41. Keilin, D., and E. F. Hartree: Purification of horse radish peroxidase and comparison of its properties with those of catalase and methemoglobin. Biochemic. J. 49, 88–106 (1951).Google Scholar
  42. Keilin, D., and T. Mann: Properties of laccase from the latex of laquer trees. Nature (Lond.) 145, 304 (1940).CrossRefGoogle Scholar
  43. Keilin, D., and J. D. Smith: Hemoglobin and nitrogen fixation in the root nodules of leguminous plants. Nature (Lond.) 159, 692 (1947).CrossRefGoogle Scholar
  44. Keilin, D., and Y. L. Wang: Hemoglobin in the root nodules of leguminous plants. Nature (Lond.) 155, 227–229 (1945).CrossRefGoogle Scholar
  45. Knaysi, G., R. F. Baker and J. Hillier: A study with the high-voltage electron microscope of the endospore and life cycle of Bacillus mycoides. J. Bacter. 53, 525–537 (1947).Google Scholar
  46. Krasnovskii, A. A., V. B. Evstigneev, G. P. Brin i V. A. Gavrilova: Isolation of phycoerythrin from red algae and its spectral and photochemical properties. Dokl. Akad. Nauk SSSR. 82, 947–950 (1952).PubMedGoogle Scholar
  47. Kubo, H.: Hemoprotein from the root nodule of legumes. Acta phytochim. (Tokyo) 11, 195–200 (1937).Google Scholar
  48. Kubowitz, F.: The chemical composition of potato oxidase. Biochem. Z. 292, 221–229 (1937).Google Scholar
  49. Kylin, H.: Fysiograf. Sällsk. Lund Förh. 7, 119–123 (1937).Google Scholar
  50. Lemberg, R., and J. W. Legge: Hematin compounds and bile pigments. New York: Interscience publishers 1949.Google Scholar
  51. Lepeschkin, W. W.: Some aspects of the state of chlorophyll in chloroplasts. Plant Physiol. 24, 175–177 (1949).PubMedCrossRefGoogle Scholar
  52. Little, H. N., and R. H. Burris: Activity of the red pigment from leguminous root nodules. J. Amer. Chem. Soc. 69, 838–841 (1947).CrossRefGoogle Scholar
  53. Lockhart, E. E.: Diaphorase. Biochemic. J. 33, 613–617 (1939).Google Scholar
  54. Lubimenko, W. N.: Plastid pigments and their transformation in living plant tissues. Rev. gén. Bot. 40, 23, 88, 146, 226, 303. 372 (1927).Google Scholar
  55. Lundegårdh, H.: A new cytochrome in living roots. Nature (Lond.) 173, 939 (1954).CrossRefGoogle Scholar
  56. Mahler, H. R., and D. E. Green: Metalloflavoproteins and electron transport. Science (Lancaster, Pa.) 120, 7–12 (1954).Google Scholar
  57. Markham, R., and D. J. Smith: Nucleoproteins and viruses. In Neurath-Bailey, Proteins, vol. II, pp. 1–122. 1954.Google Scholar
  58. Metzner, H.: Cytochemical investigations on the occurrence of nucleic acids in chloroplasts. Naturwiss. 30, 64–65 (1952).CrossRefGoogle Scholar
  59. Meyer, K.: Mucoids and glycoproteins. Adv. Protein Chem. 2, 249–275 (1945).CrossRefGoogle Scholar
  60. Mucoproteins and mucoids. In: Some Conjugated Proteins, pp. 64–73. New Brunswick: Rutgers University Press 1953.Google Scholar
  61. Moriyama, H.: Formation of cell-like mass from lipoproteins of castor beans. Science (Japan) 11, 482–483 (1941).Google Scholar
  62. Nelson, J. M., and C. R. Dawson: Tyrosinase. Adv. Enzymol. 4, 99–152 (1944).Google Scholar
  63. Nicholas, D. J. D., and A. Nason: Molybdenum as constituent of nitrate reductase. J. of Biol. Chem. 207, 353–360 (1954).Google Scholar
  64. Nyman, M. A., and E. Chargaff: On the lipoprotein particles of yeast cells. J. of Biol. Chem. 180, 741–746 (1949).Google Scholar
  65. Okunuki, K.: Acta phytochim. (Tokyo) 11, 249 (1940).Google Scholar
  66. Olcott, H. S., and D. K. Mecham: Lipoprotein nature of the glutenin fraction. Cereal Chem. 24, 407–414 (1947).Google Scholar
  67. Packer, L., and W. Vishniac: The specificity of a diphosphopyridine nucleotide-linked hydrogenase. Biochim. et Biophysica Acta 17, 153–154 (1955).CrossRefGoogle Scholar
  68. Pirie, N. W.: The isolation from normal tobacco leaves of nucleoproteins with some similarity to plant viruses. Biochemic. J. 47, 614–625 (1950).Google Scholar
  69. Pollister, A. W., and A. E. Mirsky: Nucleoprotamine of trout sperm. J. Gen. Physiol. 30, 101–116 (1946).PubMedCrossRefGoogle Scholar
  70. Powers, W., S. Lewis and C. R. Dawson: Preparation and properties of a highly purified ascorbic acid oxidase. J. Gen. Physiol. 27, 178–180 (1944).Google Scholar
  71. Sagastume, C. A., C. Inda and R. Nico: Preparation of lipid-proteins of plant origin. Rec. Fac. Quim., Univ. Nac. La Plate 15, 39–41 (1940).Google Scholar
  72. Scarisbrick, R.: Hematin compounds in plants. Ann. Rep. Chem. Soc. 244, 226–236 (1947).Google Scholar
  73. Semenenko, G. L.: Change in the nucleoprotein content of plants in vegetative hybridization. Biokhimya 17, 655–659 (1952).Google Scholar
  74. Sheratt, H. S. A., and W. C. Evans: A crystalline chlorophyll-protein complex from Chlamydomonas. Nature (Lond.) 173, 540 (1954).CrossRefGoogle Scholar
  75. Smith, E. L.: Action of sodium dodecyl sulfate on the chlorophyll-protein compound of the spinach leaf. J. Gen. Physiol. 24, 583–596 (1941).PubMedCrossRefGoogle Scholar
  76. Stacey, M.: Conjugated proteins. Disc. Faraday Soc. 13, 245–251 (1953).CrossRefGoogle Scholar
  77. Stern, K. G., G. Goldstein, J. Wagman and J. Schryver: Studies on desoxyribonucleoproteins: isolation and properties of genoprotein T. Federat. Proc. 6, 296 (1947).Google Scholar
  78. Stoll, A.: Chlorophyll. Fortschr. chem. Forsch. 2, 538–608 (1952).CrossRefGoogle Scholar
  79. Svedberg, T., and T. Katsurai: The molecular weight of phycocyan and of phycoerythrin from Porphyra tenera and of phycocyan from Aphanizomenon flos aquae. J. Amer. Chem. Soc. 51, 3573 to 3583 (1929).CrossRefGoogle Scholar
  80. Takashitma, S.: Chlorophyll-lipoprotein obtained in crystals. Nature (Lond.) 169, 182–183 (1952).CrossRefGoogle Scholar
  81. Tauber, H.: The interaction of ascorbic acid with enzymes. Erg. Enzymforsch. 7, 301 (1938).Google Scholar
  82. Theorell, H.: Reversible cleavage of a peroxidase. Ark. Kemi (Stockh.) B 14, No 20 (1940).Google Scholar
  83. The preparation and some properties of crystalline horseradish peroxidase. Ark. Kemi (Stockh.) A 16, No 2 (1943).Google Scholar
  84. Theorell, H., and A. P. Nygaard: The combination of flavin mononucleotide and riboflavin with the protein of the old yellow enzyme. Acta chem. scand. (Copenh.) 8, 1104–1106 (1954).CrossRefGoogle Scholar
  85. Thomas, J. B., and W. De Rover: On phycocyanin participation in the Hill reaction of the blue-green alga Synechococcus cedrorum. Biochim. et Biophysica Acta 16, 391–395 (1955).CrossRefGoogle Scholar
  86. Tonzig, S.: I mucoproteidi e la vita della cellula vegetale. Padua: Libr. Randi 1942.Google Scholar
  87. Tueva, O. F., i S. A. Samoilova: Consequences of phosphate and nitrogen starvation in plants. Dokl. Akad. Nauk SSSR. 59, 589–592 (1948).Google Scholar
  88. Vallee, B. L., and F. L. Hoch: Yeast alcohol dehydrogenase, a zinc enzyme. J. Amer. Chem. Soc. 77, 821–822 (1955).CrossRefGoogle Scholar
  89. Vernon, L. P.: Cytochrome c content of Rhodospirillum rubrum. Arch. of Biochem. a. Biophysics 43, 492–493 (1953).CrossRefGoogle Scholar
  90. Vernon, P. L., and M. D. Kamen: Hematin compounds in photosynthetic bacteria. J. of Biol. Chem. 211, 643, 663 (1954).Google Scholar
  91. Virtanen, A. I., J. Jorma, H. Linkola and A. Linnasalmi: On the relation between nitrogen fixation and leghemoglobin content of leguminous roots. Acta chem. scand. (Copenh.) 1, 90–111 (1947).CrossRefGoogle Scholar
  92. Virtanen, A. I., T. Laine and H. Linkola: The green pigments in the root nodules of leguminous plants. Suomen Kemistilehti B 18, 36–38 (1945).Google Scholar
  93. Walkin, J. J., and F. A. Schwertz: Chlorophyll monolayers in chloroplasts. J. Gren. Physiol. 37, 111–120 (1953).CrossRefGoogle Scholar
  94. Warburg, O., u. W. Christian: On a new oxidation enzyme and its absorption spectru. Biochem. Z. 254, 438–458 (1932); 257, 492 (1933); 266, 377 (1933).Google Scholar
  95. Westphal, O., O. Lüderitz u. F. Bister: Extraction of bacteria with phenol/ water. Naturforsch. 7b, 148–155 (1952).Google Scholar
  96. Yakushiji, E.: Occurrence of cytochrome in higher plants and algae. Acta phytochim. Tokyo) 8, 325–329 (1935).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Felix Haurowitz

There are no affiliations available

Personalised recommendations