Advertisement

The special role of individual amino acids in plant metabolism

  • W. D. Loomis
  • P. K. Stumpf
Chapter
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Abstract

In addition to their primary role as structural units of protein, the amino acids and their amides serve various other functions: as agents for storage and translocation of nitrogen, as intermediates in biosynthesis, and as important components of coenzymes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Anderson, D. G., H. A. Stafford, E. E. Conn and B. Vennesland: The distribution in higher plants of triphosphopyridine nucleotide-linked enzyme systems capable of reducing glutathione. Plant Physiol. 27, 675–684 (1952).PubMedCrossRefGoogle Scholar
  2. Bandurski, R. S., and C. M. Greiner: The enzymatic synthesis of oxalacetate from phosphoryl-enolpyruvate and carbon dioxide. J. of Biol. Chem. 204, 781–786 (1953).Google Scholar
  3. Barron, E. S. G.: Thiol groups of biological importance. Adv. Enzymol. 11, 201–266 (1951)Google Scholar
  4. Benson, A. A., S. Kawaguchi, P. Hayes and M. Calvin: The path of carbon in photosynthesis. XVI. Kinetic relationships of the intermediates in steady state photosynthesis. J. Amer. Chem. Soc. 74, 4477–4482 (1952).CrossRefGoogle Scholar
  5. Bidwell, R. G. S., G. Krotkov and G. B. Reed: Synthesis of radioactive glutamine from C14O2 in Swisschard leaves and its isolation by paper chromatography. Arch. of Biochem. a. Biophysics 48, 72–83 (1954).CrossRefGoogle Scholar
  6. Bloch, K., J. E. Snoke and S. Yanari: Enzymatic synthesis of glutathione. In: Phosphorus Metabolism, vol. 2, pp. 82–93. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1952.Google Scholar
  7. Bogorad, L.: Intermediates in the biosynthesis of porphyrins from porphobilinogen. Science (Lancaster, Pa.) 121, 878–879 (1955).Google Scholar
  8. Bogorad, L., and S. Granick: The enzymatic synthesis of porphyrins from porphobilinogen. Proc. Nat. Acad. Sci. U.S.A. 39, 1176–1188 (1953).CrossRefGoogle Scholar
  9. Bregoff, H., and C. C. Delwiche: The formation of choline and betaine in leaf discs of Beta vulgaris. J. of Biol. Chem. 217, 819–828 (1955).Google Scholar
  10. Buchanan, J. M., B. Levenberg, J. G. Flaks and J. A. Gladner: Interrelationships of amino acid metabolism with purine biosynthesis. In: Amino Acid Metabolism, pp. 743–764. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  11. Byerrum, R. U., L. J. Dewey, R. L. Hamill and C. D. Ball: The utilization of glycolic acid for methyl group synthesis in tobacco. J. of Biol. Chem. 219, 345–350 (1956).Google Scholar
  12. Byebrum, R. U., J. H. Flokstra, L. J. Dewey and C. D. Ball: Incorporation of formate and the methyl group of methionine into methoxyl groups of lignin. J. of Biol. Chem. 210, 633–643 (1954).Google Scholar
  13. Byerrum, R. U., R. L. Hamill and C. D. Ball: The incorporation of glycine into nicotine in tobacco plant metabolism. J. of Biol. Chem. 210, 645–650 (1954).Google Scholar
  14. Byerrum, R. U., R. L. Ringler and R. L. Hamill: Biosynthesis of the N-methyl group of nicotine from formaldehyde and beta-carbon of serine. Federat. Proc. 14, 188 (1955).Google Scholar
  15. Byerrum, R. U., R. L. Ringler, R. L. Hamill and C. D. Ball: Serine and formaldehyde as metabolic precursors for the nicotine N-methyl group. J. of Biol. Chem. 216, 371–378 (1955).Google Scholar
  16. Challenger, F.: Biological methylation. Adv. Enzymol. 12, 429–491 (1951).Google Scholar
  17. Chibnall, A. C.: Protein Metabolism in the Plant. New Haven: Yale University Press 1939.Google Scholar
  18. Colowick, S., A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors: Glutathione. New York: Academic Press, Inc. 1954.Google Scholar
  19. Cromwell, B. T., and S. D. Rennie: [1] The biosynthesis and metabolism of betaines in plants. 2. The biosynthesis of glycinebetaine (betaine) in higher plants. Biochemic. J. 58, 318–322 (1954).Google Scholar
  20. [2] The biosynthesis and metabolism of betaines in plants. 3. Studies on the biosynthesis of precursors of glycinebetaine in seedlings of wheat (Triticum vulgäre Vill.). Biochemic. J. 58, 322–326 (1954).Google Scholar
  21. Della Rosa, R. J., K. I. Altman and K. Salomon: The biosynthesis of chlorophyll as studied with labelled glycine and acetic acid. J. of Biol. Chem. 202, 771–779 (1953).Google Scholar
  22. Dewey, L. J., R. U. Byerrum and C. D. Ball: The origin of the methyl group of nicotine through transmethylation. J. Amer. Chem. Soc. 76, 3997–3999 (1954).CrossRefGoogle Scholar
  23. Dubeck, M., and S. Kirkwood: The origin of the O- and N-methyl groups of the alkaloid ricinine. J. of Biol. Chem. 199, 307–312 (1952).Google Scholar
  24. Eaton, S. V.: Effects of phosphorus deficiency on growth and metabolism of soybean. Bot. Gaz. 111, 426–436 (1950).CrossRefGoogle Scholar
  25. Fowden, L.: [1] The nitrogen metabolism of groundnut plants: the role of γ-methyleneglutamine and γ-methyleneglutamic acid. Ann. of Bot. 18, 417–440 (1954).Google Scholar
  26. [2]
    The deamidase of groundnut plants (Arachis hypogaea). J. of Exper. Bot. 6, 362–370 (1955).Google Scholar
  27. Gibson, K. D., A. Neuberger and J. J. Scott: The purification and properties of δ-aminolaevulic acid dehydrase. Biochemic. J. 61, 618–629 (1955).Google Scholar
  28. Goldthwait, D. A., R. A. Peabody and G. R. Greenberg: The biosynthesis of the purine ring. In: Amino Acid Metabolism, pp. 765–781. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  29. Granick, S.: [1] Metabolism of heme and chlorophyll. In: Chemical Pathways of Metabolism, vol. 2, pp. 287–342. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.Google Scholar
  30. [2]
    Enzymatic conversion of δ-amino levulinic acid to porphobilinogen. Science (Lancaster, Pa.) 120, 1105–1106 (1954).Google Scholar
  31. Greenberg, D. M.: Synthetic processes involving amino acids. In: Chemical Pathways of Metabolism, vol. 2, pp. 113–147. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.Google Scholar
  32. Hanes, C. S., G. E. Connell and G. H. Dixon: Transpeptidation and transamidation reactions. In: Phosphorus Metabolism, vol. 2, pp. 95–108. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1952.Google Scholar
  33. Hanes, C. S., G. H. Dixon and G. E. Connell: Glutathione in relation to transpeptidation reactions. In: Glutathione, pp. 145–150. S. Colowick, A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors. New York: Academic Press, Inc. 1954.Google Scholar
  34. [1]
    Hanes, C. S., F. J. R. Herd and F. A. Isherwood: [1] Synthesis of peptides in enzymic reactions involving glutathione. Nature (Lond.) 166, 288–292 (1950).CrossRefGoogle Scholar
  35. [2] Enzymic transpeptidation reactions involving γ-glutamyl peptides and α-aminoacyl peptides. Biochemic. J. 51, 25–35 (1952).Google Scholar
  36. Hewitt, E. J., E. W. Jones and A. H. Williams: Relation of molybdenum and manganese to the free amino-acid content of the cauliflower. Nature (Lond.) 163, 681–682 (1949).CrossRefGoogle Scholar
  37. Horecker, B. L., J. Hurwitz and P. Z. Smyrniotis: Xylulose 5-phosphate and the formation of sedoheptulose 7-phosphate with liver transketolase. J. Amer. Chem. Soc. 78, 692–694 (1956).CrossRefGoogle Scholar
  38. [1]
    Koeppe, O. J.: Acyl-enzyme formation in the glyceraldehyde-3-phosphate dehydrogenase reaction. Federat. Proc. 14, 237 (1955).Google Scholar
  39. Kolesnikov, P. A.: [1] Catalytic action of glycolic acid on oxidation of chlorophyll in ground leaves. Dokl. Akad. Nauk SSSR. 60, 1353–1355 (1948). Cited from Chem. Abstr. 42, 7374d (1948).Google Scholar
  40. [2]
    Formation of glycine from glyoxalic acid in extracts from green leaves. Dokl. Akad. Nauk SSSR. 96, 125–128 (1954). Cited from Chem. Abstr. 48, 10847a (1954).Google Scholar
  41. Krimsky, I.: Isolation of an acylenzyme complex from a mixture of acetyl phosphate and glyceraldehyde-3-phosphate dehydrogenase. Federat. Proc. 14, 239 (1955).Google Scholar
  42. Krimsky, I., and E. Racker: Glutathione, a prosthetic group of glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 198, 721–729 (1952).Google Scholar
  43. Leloir, L. F., and C. E. Cardini: The biosynthesis of glucosamine. Biochim. et Biophysica Acta 12, 15–22 (1953).CrossRefGoogle Scholar
  44. Levenberg, B., S. C. Hartman and J. M. Buchanan: Precursors and intermediates in purine biosynthesis. Federat. Proc. 14, 243 (1955).Google Scholar
  45. Lohmann, K.: Beitrag zur enzymatischen Umwandlung von synthetischem Methylglyoxal in Milchsäure. Biochem. Z. 254, 332–354 (1932).Google Scholar
  46. Marion, L., and A. F. Thomas: A further observation on the biogenesis of hyoscyamine. Canad. J. Chem. 33, 1853–1854 (1955).CrossRefGoogle Scholar
  47. Matchett, T. J., L. Marion and S. Kirkwood: The biogenesis of alkaloids. VIII. The role of methionine in the formation of the N-methyl groups of the alkaloid hordenine. Canad. J. Chem. 31, 488–492 (1953).CrossRefGoogle Scholar
  48. Mc Kee, H. S.: Review of recent work on nitrogen metabolism. New Phytologist 48, 1–83 (1949).CrossRefGoogle Scholar
  49. Meiss, A. N.: The formation of asparagine in etiolated seedlings of Lupinus albus L. Connecticut Agricult. Exper. Stat. Bull. 553 (1952).Google Scholar
  50. Meister, A.: Metabolism of glutamine. Physiologic. Rev. 36, 103–127 (1956).Google Scholar
  51. Miettinen, J. K., and A. I. Vertanen: The free amino acids in the leaves, roots, and root nodules of the alder (Alnus). Physiol. Plantarum (Copenh.) 5, 540–557 (1952).CrossRefGoogle Scholar
  52. [1]
    Mothes, K.: [1] Zur Biosynthese der Säureamide Asparagin und Glutamin. Planta (Berl.) 30, 726–756 (1940).CrossRefGoogle Scholar
  53. [2] Physiology of alkaloids. Annual Rev. Plant Physiol. 6, 393–432 (1955).Google Scholar
  54. Nelson, C. D., G. Krotkov and G. B. Reed: Metabolism of radioactive asparagine in wheat leaves and Lupinus angustifolius seedlings. Arch. of Biochem. a. Biophysics 44, 218–225 (1953).CrossRefGoogle Scholar
  55. Newburgh, R. W., and R. H. Burris: Effect of inhibitors on the photo-synthetic fixation of carbon dioxide. Arch. of Biochem. a. Biophysics 49, 98–109 (1954).CrossRefGoogle Scholar
  56. Nicholas, D. J. D., and A. Nason: Molybdenum and nitrate reductase. II. Molybdenum as a constituent of nitrate reductase. J. of Biol. Chem. 207, 353–360 (1954).Google Scholar
  57. [1]
    Racker, E.: [1] The mechanism of action of glyoxalase. J. of Biol. Chem. 190, 685–696 (1951).Google Scholar
  58. [2] Glutathione as a coenzyme in intermediary metabolism. In: Glutathione, pp. 165–183. S. Colowick, A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors. New York: Academic Press, Inc. 1954.Google Scholar
  59. Racusen, D. W., and S. Aronoff: Metabolism of soybean leaves. V. The dark reactions following photosynthesis. Arch. of Biochem. a. Biophysics 42, 25–40 (1953).CrossRefGoogle Scholar
  60. Richmond, J. E., K. Salomon and S. Caplin: Biosynthesis of haemin in soy-bean nodule homogenates. Nature (Lond.) 174, 34–35 (1954).CrossRefGoogle Scholar
  61. Romano, A. H., and W. J. Nickerson: Cystine reductase of pea seeds and yeasts. J. of Biol. Chem. 208, 409–416 (1954).Google Scholar
  62. Sakami, W.: The biochemical relationship between glycine and serine. In: Amino Acid Metabolism, pp. 658–683. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  63. Schou, L., A. A. Benson, J. A. Bassham and M. Calvin: The path of carbon in photosynthesis. XI. The role of glycolic acid. Physiol. Plantarum (Copenh.) 3, 487–495 (1950).CrossRefGoogle Scholar
  64. Schulze, E.: Über den Umsatz der Eiweißstoffe in der lebenden Pflanze. Hoppe-Seylers Z. physiol. Chem. 24, 18–114 (1898).CrossRefGoogle Scholar
  65. Shemin, D.: The succinate-glycine cycle. In: Amino Acid Metabolism, pp. 727–740. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  66. Shemin, D., C. S. Russell and T. Abramsky: The succinate-glvcine cycle. I. The mechanism of pyrrole synthesis. J. of Biol. Chem. 215, 613–626 (1955).Google Scholar
  67. Siedel, W.: Die Biosynthese des Chlorophylls. Angew. Chem. 66, 735–738 (1954).CrossRefGoogle Scholar
  68. Sivaramakrishnan, V. M., and P. S. Sarma: The inhibition by neopyrithiamine of asparagine synthesis from glutamic acid and glucose. Biochim. et Biophysica Acta 14, 579–580 (1954).CrossRefGoogle Scholar
  69. Sonne, J. C., I. Lin and J. M. Buchanan: The role of N15 glycine, glutamine, asparagine and glutamate in hypoxanthine synthesis. J. Amer. Chem. Soc. 75, 1516–1517 (1953).CrossRefGoogle Scholar
  70. Snoke, J. E., and K. Bloch: The biosynthesis of glutathione. In: Glutathione, pp. 129–137. S. Colowick, A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors. New York: Academic Press, Inc. 1954.Google Scholar
  71. Spencer, D., and J. G. Wood: The role of molybdenum in nitrate reduction in higher plants. Austral. J. Biol. Sci. 7, 425–434 (1954).Google Scholar
  72. Spragg, S. P., and E. W. Yemm: Glutathione and ascorbic acid in the metabolism of germinating peas. Biochemic. J. 58, xi–xii (1954).Google Scholar
  73. [1]
    Sribney, M., and S. Kirkwood: [1] Origin of the methylene-dioxy groups of the alkaloid protropine. Nature (Lond.) 171, 931–932 (1953).CrossRefGoogle Scholar
  74. [2] The role of betaine in plant methylations. Canad. J. Chem. 32, 918–920 (1954).Google Scholar
  75. Steward, F. C., and J. K. Pollard: Some further observations on glutamyl and related compounds in plants. In: Inorganic Nitrogen Metabolism, pp. 377–407. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1956.Google Scholar
  76. Strecker, H. J.: Thioesterase and γ-glutamyl activation. In: Glutathione, pp. 137–141. S. Colowick, A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors. New York: Academic Press, Inc. 1954.Google Scholar
  77. Street, H. E.: Nitrogen metabolism of higher plants. Adv. Enzymol. 9, 391–454 (1949).Google Scholar
  78. Tchen, T. T., and B. Vennesland: Enzymatic carbon dioxide fixation into oxalacetate in wheat germ. J. of Biol. Chem. 213, 533–546 (1955).Google Scholar
  79. Tolbert, N. E.: Formic acid metabolism in barley leaves. J. of Biol. Chem. 215, 27–34 (1955).Google Scholar
  80. [1]
    Tolbert, N. E., and M. S. Cohan: [1] Activation of glycolic acid oxidase in plants. J. of Biol. Chem. 204, 639–648 (1953).Google Scholar
  81. [2] Products formed from glycolic acid in plants. J. of Biol. Chem. 204, 649–654 (1953).Google Scholar
  82. Vennesland, B., and E. E. Conn: The enzymatic oxidation and reduction of glutathione. In: Glutathione, pp. 105–126. S. Colowick, A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors. New York: Academic Press, Inc. 1954.Google Scholar
  83. Vernon, L. P., and S. Aronoff: Metabolism of soybean leaves. II. Amino acids formed during short-term photosynthesis. Arch. of Biochem. 29, 179–186 (1950).Google Scholar
  84. Vickery, H. B., and G. W. Pucher: Amide metabolism in etiolated seedlings. I. Asparagine and glutamine formation in Lupinus angustifolius, Vicia atropurpurea, and Cucurbita pepo. J. of Biol. Chem. 150, 197–207 (1943).Google Scholar
  85. Virtanen, A. I., and M. Alfthan: New α-keto acids in green plants. α-Ketopimelic acid, γ-hydroxy-α-ketopimelic acid, and hydroxypyruvic acid in Asplenium septentrionale. Acta chem. scand. (Copenh.) 8, 1720–1721 (1954).CrossRefGoogle Scholar
  86. Waelsch, H.: Certain aspects of intermediary metabolism of glutamine, asparagine, and glutathione. Adv. Enzymol. 13, 237–319 (1952).Google Scholar
  87. Webster, G. C.: Peptide-bond synthesis in higher plants. I. The synthesis of glutathione. Arch. of Biochem. a. Biophysics 47, 241–250 (1953).CrossRefGoogle Scholar
  88. Webster, G. C., and J. E. Varner: Peptide-bond synthesis in higher plants. II. Studies on the mechanism of synthesis of γ-glutamylcysteine. Arch. of Biochem. a. Biophysics 52, 22–32 (1954).CrossRefGoogle Scholar
  89. Weissbach, A., and B. L. Horecker: The formation of glycine from ribose-5-phosphate. In: Amino Acid Metabolism, pp. 741–742. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  90. [1]
    Williams, W. J., and C. B. Thorne: [1] Biosynthesis of glutamyl peptides from glutamine by a transfer reaction. J. of Biol. Chem. 210, 203–217 (1954).Google Scholar
  91. [2]
    Biosynthesis of γ-glutamyl peptides by transfer reactions. In: Amino Acid Metabolism, pp. 107–118. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  92. Wolfrom, M. L., and A. Thompson: An effect of pyridoxal-5-phosphate in vitro on heme synthesis and CO2 production from glycine-2-C-14. J. Amer. Chem. Soc. 77, 6402–6403 (1955).CrossRefGoogle Scholar
  93. Yamaguchi, M., and M. A. Joslyn: Purification and properties of dehydroascorbic acid reductase in peas (Pisum sativum). Arch. of Biochem. a. Biophysics 38, 451–465 (1952).CrossRefGoogle Scholar
  94. Yemm, E. W.: Glutamine in the metabolism of barley plants. New Phytologist 48, 315–331 (1949).CrossRefGoogle Scholar
  95. Zeile, K.: Die Biosynthese des Hämins. Angew. Chem. 66, 729–735 (1954).CrossRefGoogle Scholar
  96. Zelitch, I.: Oxidation and reduction of glycolic and glyoxylic acids in plants. II. Glyoxylic acid reductase. J. of Biol. Chem. 201, 719–726 (1953).Google Scholar
  97. Zelitch, I., and S. Ochoa: Oxidation and reduction of glycolic and glyoxylic acids in plants. I. Glycolic acid oxidase. J. of Biol. Chem. 201, 707–718 (1953).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • W. D. Loomis
  • P. K. Stumpf

There are no affiliations available

Personalised recommendations