Skip to main content

The special role of individual amino acids in plant metabolism

  • Chapter
Book cover Der Stickstoffumsatz / Nitrogen Metabolism

Abstract

In addition to their primary role as structural units of protein, the amino acids and their amides serve various other functions: as agents for storage and translocation of nitrogen, as intermediates in biosynthesis, and as important components of coenzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Anderson, D. G., H. A. Stafford, E. E. Conn and B. Vennesland: The distribution in higher plants of triphosphopyridine nucleotide-linked enzyme systems capable of reducing glutathione. Plant Physiol. 27, 675–684 (1952).

    Article  PubMed  CAS  Google Scholar 

  2. Bandurski, R. S., and C. M. Greiner: The enzymatic synthesis of oxalacetate from phosphoryl-enolpyruvate and carbon dioxide. J. of Biol. Chem. 204, 781–786 (1953).

    CAS  Google Scholar 

  3. Barron, E. S. G.: Thiol groups of biological importance. Adv. Enzymol. 11, 201–266 (1951)

    Google Scholar 

  4. Benson, A. A., S. Kawaguchi, P. Hayes and M. Calvin: The path of carbon in photosynthesis. XVI. Kinetic relationships of the intermediates in steady state photosynthesis. J. Amer. Chem. Soc. 74, 4477–4482 (1952).

    Article  CAS  Google Scholar 

  5. Bidwell, R. G. S., G. Krotkov and G. B. Reed: Synthesis of radioactive glutamine from C14O2 in Swisschard leaves and its isolation by paper chromatography. Arch. of Biochem. a. Biophysics 48, 72–83 (1954).

    Article  CAS  Google Scholar 

  6. Bloch, K., J. E. Snoke and S. Yanari: Enzymatic synthesis of glutathione. In: Phosphorus Metabolism, vol. 2, pp. 82–93. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1952.

    Google Scholar 

  7. Bogorad, L.: Intermediates in the biosynthesis of porphyrins from porphobilinogen. Science (Lancaster, Pa.) 121, 878–879 (1955).

    CAS  Google Scholar 

  8. Bogorad, L., and S. Granick: The enzymatic synthesis of porphyrins from porphobilinogen. Proc. Nat. Acad. Sci. U.S.A. 39, 1176–1188 (1953).

    Article  CAS  Google Scholar 

  9. Bregoff, H., and C. C. Delwiche: The formation of choline and betaine in leaf discs of Beta vulgaris. J. of Biol. Chem. 217, 819–828 (1955).

    CAS  Google Scholar 

  10. Buchanan, J. M., B. Levenberg, J. G. Flaks and J. A. Gladner: Interrelationships of amino acid metabolism with purine biosynthesis. In: Amino Acid Metabolism, pp. 743–764. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  11. Byerrum, R. U., L. J. Dewey, R. L. Hamill and C. D. Ball: The utilization of glycolic acid for methyl group synthesis in tobacco. J. of Biol. Chem. 219, 345–350 (1956).

    CAS  Google Scholar 

  12. Byebrum, R. U., J. H. Flokstra, L. J. Dewey and C. D. Ball: Incorporation of formate and the methyl group of methionine into methoxyl groups of lignin. J. of Biol. Chem. 210, 633–643 (1954).

    Google Scholar 

  13. Byerrum, R. U., R. L. Hamill and C. D. Ball: The incorporation of glycine into nicotine in tobacco plant metabolism. J. of Biol. Chem. 210, 645–650 (1954).

    CAS  Google Scholar 

  14. Byerrum, R. U., R. L. Ringler and R. L. Hamill: Biosynthesis of the N-methyl group of nicotine from formaldehyde and beta-carbon of serine. Federat. Proc. 14, 188 (1955).

    Google Scholar 

  15. Byerrum, R. U., R. L. Ringler, R. L. Hamill and C. D. Ball: Serine and formaldehyde as metabolic precursors for the nicotine N-methyl group. J. of Biol. Chem. 216, 371–378 (1955).

    CAS  Google Scholar 

  16. Challenger, F.: Biological methylation. Adv. Enzymol. 12, 429–491 (1951).

    CAS  Google Scholar 

  17. Chibnall, A. C.: Protein Metabolism in the Plant. New Haven: Yale University Press 1939.

    Google Scholar 

  18. Colowick, S., A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors: Glutathione. New York: Academic Press, Inc. 1954.

    Google Scholar 

  19. Cromwell, B. T., and S. D. Rennie: [1] The biosynthesis and metabolism of betaines in plants. 2. The biosynthesis of glycinebetaine (betaine) in higher plants. Biochemic. J. 58, 318–322 (1954).

    CAS  Google Scholar 

  20. [2] The biosynthesis and metabolism of betaines in plants. 3. Studies on the biosynthesis of precursors of glycinebetaine in seedlings of wheat (Triticum vulgäre Vill.). Biochemic. J. 58, 322–326 (1954).

    Google Scholar 

  21. Della Rosa, R. J., K. I. Altman and K. Salomon: The biosynthesis of chlorophyll as studied with labelled glycine and acetic acid. J. of Biol. Chem. 202, 771–779 (1953).

    CAS  Google Scholar 

  22. Dewey, L. J., R. U. Byerrum and C. D. Ball: The origin of the methyl group of nicotine through transmethylation. J. Amer. Chem. Soc. 76, 3997–3999 (1954).

    Article  CAS  Google Scholar 

  23. Dubeck, M., and S. Kirkwood: The origin of the O- and N-methyl groups of the alkaloid ricinine. J. of Biol. Chem. 199, 307–312 (1952).

    CAS  Google Scholar 

  24. Eaton, S. V.: Effects of phosphorus deficiency on growth and metabolism of soybean. Bot. Gaz. 111, 426–436 (1950).

    Article  CAS  Google Scholar 

  25. Fowden, L.: [1] The nitrogen metabolism of groundnut plants: the role of γ-methyleneglutamine and γ-methyleneglutamic acid. Ann. of Bot. 18, 417–440 (1954).

    Google Scholar 

  26. The deamidase of groundnut plants (Arachis hypogaea). J. of Exper. Bot. 6, 362–370 (1955).

    Google Scholar 

  27. Gibson, K. D., A. Neuberger and J. J. Scott: The purification and properties of δ-aminolaevulic acid dehydrase. Biochemic. J. 61, 618–629 (1955).

    CAS  Google Scholar 

  28. Goldthwait, D. A., R. A. Peabody and G. R. Greenberg: The biosynthesis of the purine ring. In: Amino Acid Metabolism, pp. 765–781. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  29. Granick, S.: [1] Metabolism of heme and chlorophyll. In: Chemical Pathways of Metabolism, vol. 2, pp. 287–342. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.

    Google Scholar 

  30. Enzymatic conversion of δ-amino levulinic acid to porphobilinogen. Science (Lancaster, Pa.) 120, 1105–1106 (1954).

    Google Scholar 

  31. Greenberg, D. M.: Synthetic processes involving amino acids. In: Chemical Pathways of Metabolism, vol. 2, pp. 113–147. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.

    Google Scholar 

  32. Hanes, C. S., G. E. Connell and G. H. Dixon: Transpeptidation and transamidation reactions. In: Phosphorus Metabolism, vol. 2, pp. 95–108. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1952.

    Google Scholar 

  33. Hanes, C. S., G. H. Dixon and G. E. Connell: Glutathione in relation to transpeptidation reactions. In: Glutathione, pp. 145–150. S. Colowick, A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors. New York: Academic Press, Inc. 1954.

    Google Scholar 

  34. Hanes, C. S., F. J. R. Herd and F. A. Isherwood: [1] Synthesis of peptides in enzymic reactions involving glutathione. Nature (Lond.) 166, 288–292 (1950).

    Article  CAS  Google Scholar 

  35. [2] Enzymic transpeptidation reactions involving γ-glutamyl peptides and α-aminoacyl peptides. Biochemic. J. 51, 25–35 (1952).

    Google Scholar 

  36. Hewitt, E. J., E. W. Jones and A. H. Williams: Relation of molybdenum and manganese to the free amino-acid content of the cauliflower. Nature (Lond.) 163, 681–682 (1949).

    Article  CAS  Google Scholar 

  37. Horecker, B. L., J. Hurwitz and P. Z. Smyrniotis: Xylulose 5-phosphate and the formation of sedoheptulose 7-phosphate with liver transketolase. J. Amer. Chem. Soc. 78, 692–694 (1956).

    Article  CAS  Google Scholar 

  38. Koeppe, O. J.: Acyl-enzyme formation in the glyceraldehyde-3-phosphate dehydrogenase reaction. Federat. Proc. 14, 237 (1955).

    Google Scholar 

  39. Kolesnikov, P. A.: [1] Catalytic action of glycolic acid on oxidation of chlorophyll in ground leaves. Dokl. Akad. Nauk SSSR. 60, 1353–1355 (1948). Cited from Chem. Abstr. 42, 7374d (1948).

    CAS  Google Scholar 

  40. Formation of glycine from glyoxalic acid in extracts from green leaves. Dokl. Akad. Nauk SSSR. 96, 125–128 (1954). Cited from Chem. Abstr. 48, 10847a (1954).

    Google Scholar 

  41. Krimsky, I.: Isolation of an acylenzyme complex from a mixture of acetyl phosphate and glyceraldehyde-3-phosphate dehydrogenase. Federat. Proc. 14, 239 (1955).

    Google Scholar 

  42. Krimsky, I., and E. Racker: Glutathione, a prosthetic group of glyceraldehyde-3-phosphate dehydrogenase. J. of Biol. Chem. 198, 721–729 (1952).

    CAS  Google Scholar 

  43. Leloir, L. F., and C. E. Cardini: The biosynthesis of glucosamine. Biochim. et Biophysica Acta 12, 15–22 (1953).

    Article  CAS  Google Scholar 

  44. Levenberg, B., S. C. Hartman and J. M. Buchanan: Precursors and intermediates in purine biosynthesis. Federat. Proc. 14, 243 (1955).

    Google Scholar 

  45. Lohmann, K.: Beitrag zur enzymatischen Umwandlung von synthetischem Methylglyoxal in Milchsäure. Biochem. Z. 254, 332–354 (1932).

    CAS  Google Scholar 

  46. Marion, L., and A. F. Thomas: A further observation on the biogenesis of hyoscyamine. Canad. J. Chem. 33, 1853–1854 (1955).

    Article  CAS  Google Scholar 

  47. Matchett, T. J., L. Marion and S. Kirkwood: The biogenesis of alkaloids. VIII. The role of methionine in the formation of the N-methyl groups of the alkaloid hordenine. Canad. J. Chem. 31, 488–492 (1953).

    Article  CAS  Google Scholar 

  48. Mc Kee, H. S.: Review of recent work on nitrogen metabolism. New Phytologist 48, 1–83 (1949).

    Article  CAS  Google Scholar 

  49. Meiss, A. N.: The formation of asparagine in etiolated seedlings of Lupinus albus L. Connecticut Agricult. Exper. Stat. Bull. 553 (1952).

    Google Scholar 

  50. Meister, A.: Metabolism of glutamine. Physiologic. Rev. 36, 103–127 (1956).

    CAS  Google Scholar 

  51. Miettinen, J. K., and A. I. Vertanen: The free amino acids in the leaves, roots, and root nodules of the alder (Alnus). Physiol. Plantarum (Copenh.) 5, 540–557 (1952).

    Article  CAS  Google Scholar 

  52. Mothes, K.: [1] Zur Biosynthese der Säureamide Asparagin und Glutamin. Planta (Berl.) 30, 726–756 (1940).

    Article  CAS  Google Scholar 

  53. [2] Physiology of alkaloids. Annual Rev. Plant Physiol. 6, 393–432 (1955).

    Google Scholar 

  54. Nelson, C. D., G. Krotkov and G. B. Reed: Metabolism of radioactive asparagine in wheat leaves and Lupinus angustifolius seedlings. Arch. of Biochem. a. Biophysics 44, 218–225 (1953).

    Article  CAS  Google Scholar 

  55. Newburgh, R. W., and R. H. Burris: Effect of inhibitors on the photo-synthetic fixation of carbon dioxide. Arch. of Biochem. a. Biophysics 49, 98–109 (1954).

    Article  CAS  Google Scholar 

  56. Nicholas, D. J. D., and A. Nason: Molybdenum and nitrate reductase. II. Molybdenum as a constituent of nitrate reductase. J. of Biol. Chem. 207, 353–360 (1954).

    CAS  Google Scholar 

  57. Racker, E.: [1] The mechanism of action of glyoxalase. J. of Biol. Chem. 190, 685–696 (1951).

    CAS  Google Scholar 

  58. [2] Glutathione as a coenzyme in intermediary metabolism. In: Glutathione, pp. 165–183. S. Colowick, A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors. New York: Academic Press, Inc. 1954.

    Google Scholar 

  59. Racusen, D. W., and S. Aronoff: Metabolism of soybean leaves. V. The dark reactions following photosynthesis. Arch. of Biochem. a. Biophysics 42, 25–40 (1953).

    Article  CAS  Google Scholar 

  60. Richmond, J. E., K. Salomon and S. Caplin: Biosynthesis of haemin in soy-bean nodule homogenates. Nature (Lond.) 174, 34–35 (1954).

    Article  CAS  Google Scholar 

  61. Romano, A. H., and W. J. Nickerson: Cystine reductase of pea seeds and yeasts. J. of Biol. Chem. 208, 409–416 (1954).

    CAS  Google Scholar 

  62. Sakami, W.: The biochemical relationship between glycine and serine. In: Amino Acid Metabolism, pp. 658–683. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  63. Schou, L., A. A. Benson, J. A. Bassham and M. Calvin: The path of carbon in photosynthesis. XI. The role of glycolic acid. Physiol. Plantarum (Copenh.) 3, 487–495 (1950).

    Article  Google Scholar 

  64. Schulze, E.: Über den Umsatz der Eiweißstoffe in der lebenden Pflanze. Hoppe-Seylers Z. physiol. Chem. 24, 18–114 (1898).

    Article  Google Scholar 

  65. Shemin, D.: The succinate-glycine cycle. In: Amino Acid Metabolism, pp. 727–740. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  66. Shemin, D., C. S. Russell and T. Abramsky: The succinate-glvcine cycle. I. The mechanism of pyrrole synthesis. J. of Biol. Chem. 215, 613–626 (1955).

    CAS  Google Scholar 

  67. Siedel, W.: Die Biosynthese des Chlorophylls. Angew. Chem. 66, 735–738 (1954).

    Article  CAS  Google Scholar 

  68. Sivaramakrishnan, V. M., and P. S. Sarma: The inhibition by neopyrithiamine of asparagine synthesis from glutamic acid and glucose. Biochim. et Biophysica Acta 14, 579–580 (1954).

    Article  CAS  Google Scholar 

  69. Sonne, J. C., I. Lin and J. M. Buchanan: The role of N15 glycine, glutamine, asparagine and glutamate in hypoxanthine synthesis. J. Amer. Chem. Soc. 75, 1516–1517 (1953).

    Article  CAS  Google Scholar 

  70. Snoke, J. E., and K. Bloch: The biosynthesis of glutathione. In: Glutathione, pp. 129–137. S. Colowick, A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors. New York: Academic Press, Inc. 1954.

    Google Scholar 

  71. Spencer, D., and J. G. Wood: The role of molybdenum in nitrate reduction in higher plants. Austral. J. Biol. Sci. 7, 425–434 (1954).

    CAS  Google Scholar 

  72. Spragg, S. P., and E. W. Yemm: Glutathione and ascorbic acid in the metabolism of germinating peas. Biochemic. J. 58, xi–xii (1954).

    CAS  Google Scholar 

  73. Sribney, M., and S. Kirkwood: [1] Origin of the methylene-dioxy groups of the alkaloid protropine. Nature (Lond.) 171, 931–932 (1953).

    Article  CAS  Google Scholar 

  74. [2] The role of betaine in plant methylations. Canad. J. Chem. 32, 918–920 (1954).

    Google Scholar 

  75. Steward, F. C., and J. K. Pollard: Some further observations on glutamyl and related compounds in plants. In: Inorganic Nitrogen Metabolism, pp. 377–407. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1956.

    Google Scholar 

  76. Strecker, H. J.: Thioesterase and γ-glutamyl activation. In: Glutathione, pp. 137–141. S. Colowick, A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors. New York: Academic Press, Inc. 1954.

    Google Scholar 

  77. Street, H. E.: Nitrogen metabolism of higher plants. Adv. Enzymol. 9, 391–454 (1949).

    CAS  Google Scholar 

  78. Tchen, T. T., and B. Vennesland: Enzymatic carbon dioxide fixation into oxalacetate in wheat germ. J. of Biol. Chem. 213, 533–546 (1955).

    CAS  Google Scholar 

  79. Tolbert, N. E.: Formic acid metabolism in barley leaves. J. of Biol. Chem. 215, 27–34 (1955).

    CAS  Google Scholar 

  80. Tolbert, N. E., and M. S. Cohan: [1] Activation of glycolic acid oxidase in plants. J. of Biol. Chem. 204, 639–648 (1953).

    CAS  Google Scholar 

  81. [2] Products formed from glycolic acid in plants. J. of Biol. Chem. 204, 649–654 (1953).

    Google Scholar 

  82. Vennesland, B., and E. E. Conn: The enzymatic oxidation and reduction of glutathione. In: Glutathione, pp. 105–126. S. Colowick, A. Lazarow, E. Racker, D. R. Schwartz, E. Stadtman and H. Waelsch, editors. New York: Academic Press, Inc. 1954.

    Google Scholar 

  83. Vernon, L. P., and S. Aronoff: Metabolism of soybean leaves. II. Amino acids formed during short-term photosynthesis. Arch. of Biochem. 29, 179–186 (1950).

    CAS  Google Scholar 

  84. Vickery, H. B., and G. W. Pucher: Amide metabolism in etiolated seedlings. I. Asparagine and glutamine formation in Lupinus angustifolius, Vicia atropurpurea, and Cucurbita pepo. J. of Biol. Chem. 150, 197–207 (1943).

    CAS  Google Scholar 

  85. Virtanen, A. I., and M. Alfthan: New α-keto acids in green plants. α-Ketopimelic acid, γ-hydroxy-α-ketopimelic acid, and hydroxypyruvic acid in Asplenium septentrionale. Acta chem. scand. (Copenh.) 8, 1720–1721 (1954).

    Article  CAS  Google Scholar 

  86. Waelsch, H.: Certain aspects of intermediary metabolism of glutamine, asparagine, and glutathione. Adv. Enzymol. 13, 237–319 (1952).

    CAS  Google Scholar 

  87. Webster, G. C.: Peptide-bond synthesis in higher plants. I. The synthesis of glutathione. Arch. of Biochem. a. Biophysics 47, 241–250 (1953).

    Article  CAS  Google Scholar 

  88. Webster, G. C., and J. E. Varner: Peptide-bond synthesis in higher plants. II. Studies on the mechanism of synthesis of γ-glutamylcysteine. Arch. of Biochem. a. Biophysics 52, 22–32 (1954).

    Article  CAS  Google Scholar 

  89. Weissbach, A., and B. L. Horecker: The formation of glycine from ribose-5-phosphate. In: Amino Acid Metabolism, pp. 741–742. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  90. Williams, W. J., and C. B. Thorne: [1] Biosynthesis of glutamyl peptides from glutamine by a transfer reaction. J. of Biol. Chem. 210, 203–217 (1954).

    CAS  Google Scholar 

  91. Biosynthesis of γ-glutamyl peptides by transfer reactions. In: Amino Acid Metabolism, pp. 107–118. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  92. Wolfrom, M. L., and A. Thompson: An effect of pyridoxal-5-phosphate in vitro on heme synthesis and CO2 production from glycine-2-C-14. J. Amer. Chem. Soc. 77, 6402–6403 (1955).

    Article  Google Scholar 

  93. Yamaguchi, M., and M. A. Joslyn: Purification and properties of dehydroascorbic acid reductase in peas (Pisum sativum). Arch. of Biochem. a. Biophysics 38, 451–465 (1952).

    Article  CAS  Google Scholar 

  94. Yemm, E. W.: Glutamine in the metabolism of barley plants. New Phytologist 48, 315–331 (1949).

    Article  CAS  Google Scholar 

  95. Zeile, K.: Die Biosynthese des Hämins. Angew. Chem. 66, 729–735 (1954).

    Article  CAS  Google Scholar 

  96. Zelitch, I.: Oxidation and reduction of glycolic and glyoxylic acids in plants. II. Glyoxylic acid reductase. J. of Biol. Chem. 201, 719–726 (1953).

    CAS  Google Scholar 

  97. Zelitch, I., and S. Ochoa: Oxidation and reduction of glycolic and glyoxylic acids in plants. I. Glycolic acid oxidase. J. of Biol. Chem. 201, 707–718 (1953).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Loomis, W.D., Stumpf, P.K. (1958). The special role of individual amino acids in plant metabolism. In: Allen, E.K., et al. Der Stickstoffumsatz / Nitrogen Metabolism. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94733-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94733-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94734-6

  • Online ISBN: 978-3-642-94733-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics