Skip to main content

Abstract

Transamination represents a class of reaction wherein the amino nitrogen of an amino acid (donor) is transferred to aminate the carbonyl group of a keto acid (acceptor). The acceptor now becomes an amino acid whereas the donor becomes a keto acid. Transamidation involves the transfer of −NH2 from a carboxamide group to a suitable acceptor. Transamination is far better understood than transamidation, but both types of transfer reaction appear to be of general importance in the metabolism of plants and other organisms. The role of transamination in amino acid synthesis is discussed in the chapter “The synthesis of amino acids in plants”, p. 224.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Adler, E., G. Günther u. J. E. Everett: Über den enzymatischen Abbau und Aufbau der Glutaminsäure. IV. In Hefe. Hoppe-Seylers Z. 255, 27–35 (1938).

    Article  CAS  Google Scholar 

  2. Albaum, H. G., and P. P. Cohen: Transamination and protein synthesis in germinating oat seedlings. J. of Biol. Chem. 149, 19–27 (1943).

    CAS  Google Scholar 

  3. Bessman, S. P., J. Rossen and E. C. Layne: γ-Aminobutyric acid-glutamic acid transamination in brain. J. of Biol. Chem. 201, 385–391 (1953).

    CAS  Google Scholar 

  4. Bonner, J.: Plant Biochemistry. New York: Academic Press, Inc. 1950.

    Google Scholar 

  5. Braunstein, A. E.: Transamination and the integrative functions of the dicarboxylic acids in nitrogen metabolism. Adv. Protein Chem. 3, 1–52b (1947).

    Article  PubMed  CAS  Google Scholar 

  6. Braunstein, A. E., u. M. G. Kritzmann: Über den Ab- und Aufbau von Aminosäuren durch Umaminierung. Enzymologia (Den Haag) 2, 129–146 (1937).

    Google Scholar 

  7. Burris, R. H.: Organic acids in plant metabolism. Annual Rev. Plant Physiol. 4, 91–114 (1953).

    Article  Google Scholar 

  8. Cammarata, P. S., and P. P. Cohen: The scope of the transamination reaction in animal tissues. J. of Biol. Chem. 187, 439–452 (1950).

    CAS  Google Scholar 

  9. Cedrangolo, F., e G. Carandante: Aspartico- and glutamico-aminopherase in higher plant. Arch. di Sci. biol. 26, 369–383 (1940). Cited from Chem. Abstr. 35, 7988 (1941).

    CAS  Google Scholar 

  10. Cohen, P. P.: [1] Transaminases. In: The Enzymes, vol. 1, part 2, pp. 1040–1067. J. B. Sumner and K. Myrbäck, editors. New York: Academic Press, Inc. 1951.

    Google Scholar 

  11. Nitrogen metabolism of amino acids. In: Chemical Pathways of Metabolism, vol. 2, pp. 1–46. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.

    Google Scholar 

  12. Delwiche, C. C., W. D. Loomis and P. K. Stumpf: Amide metabolism in higher plants. II. The exchange of isotopic ammonia by glutamyl transphorase. Arch. of Biochem. a. Biophysics 33, 333–338 (1951).

    Article  CAS  Google Scholar 

  13. Dowmont, Y. P., and J. S. Fruton: Chromatography of peptides as applied to transamidation reactions. J. of Biol. Chem. 197, 271–283 (1952).

    CAS  Google Scholar 

  14. Durell, J., and J. S. Fruton: Proteinase-catalyzed transamidation and its efficiency. J. of Biol. Chem. 207, 487–500 (1954).

    CAS  Google Scholar 

  15. Eberts jr., F. S., R. H. Burris and A. J. Riker: The metabolism of nitrogenous compounds by sunflower crown gall tissue cultures. Plant Physiol. 29, 1–10 (1954).

    Article  PubMed  CAS  Google Scholar 

  16. Elliott, W. H.: Isolation of glutamine synthetase and glutamotransferase from green peas. J. of Biol. Chem. 201, 661–372 (1953).

    CAS  Google Scholar 

  17. Feldman, L. I., and I. C. Gunsalus: The occurrence of a wide variety of transaminases in bacteria. J. of Biol. Chem. 187, 821–830 (1950).

    CAS  Google Scholar 

  18. Fincham, J. R. S.: [1] Transaminases in Neurospora crassa. Nature (Lond.) 168, 957–958 (1951).

    Article  CAS  Google Scholar 

  19. Ornithine transaminase in Neurospora and its relation to the biosynthesis of proline. Biochemic. J. 53, 313–320 (1953).

    Google Scholar 

  20. Fowden, L., and J. Done: A new transamination reaction. Nature (Lond.) 171, 1068–1069 (1953).

    Article  CAS  Google Scholar 

  21. Fruton, J. S.: The role of proteolytic enzymes in the biosynthesis of peptide bonds. Yale J. Biol. a. Med. 22, 263–271 (1950).

    CAS  Google Scholar 

  22. Fruton, J. S., R. B. Johnston and M. Fried: Elongation of peptide chains in enzyme-catalyzed transamidation reactions. J. of Biol. Chem. 190, 39–53 (1951).

    CAS  Google Scholar 

  23. Gnu, K. V., A. N. Radhakrishnan and C. S. Vaidyanathan: Transaminase activity in plants. J. Indian Inst. Sci., Sect. A 34, 305–313 (1952).

    Google Scholar 

  24. Green, D. E., L. F. Leloir and V. Nocito: Transaminases. J. of Biol. Chem. 161, 559–582 (1945).

    CAS  Google Scholar 

  25. Grisolia, S., and R. H. Bttrris: Preparation of glutamate and carbamyl glutamate selectively labeled with deuterium. J. of Biol. Chem. 210, 109–117 (1954).

    CAS  Google Scholar 

  26. Gunsalus, C. F., and J. Tonzetich: Transaminases for pyridoxamine and purines. Nature (Lond.) 170, 162 (1952).

    Article  CAS  Google Scholar 

  27. Hilton, M. A., F. W. Barnes jr., S. S. Henry and T. Enns: Mechanisms in enzymic transamination. Rate of exchange of the hydrogen of aspartate. J. of Biol. Chem. 209, 743–754 (1954).

    CAS  Google Scholar 

  28. Johnston, R. B., M. J. Mycek and J. S. Fruton: Catalysis of transamidation reactions by proteolytic enzymes. J. of Biol. Chem. 185, 629–641 (1950).

    CAS  Google Scholar 

  29. Krebs, H. A.: Equilibria in transamination systems. Biochemic. J. 54, 82–86 (1953).

    CAS  Google Scholar 

  30. Kritzmann, M. G.: The enzyme system transferring the amino-group of aspartic acid. Nature (Lond.) 143, 603–604 (1939).

    Article  Google Scholar 

  31. Leonard, M. J. K., and R. H. Burris: A survey of transaminases in plants. J. of Biol. Chem. 170, 701–709 (1947).

    CAS  Google Scholar 

  32. Levintow, L., A. Meister, G. H. Hogeboom and E. L. Kuff: Studies on the relationship between the enzymatic synthesis of glutamine and the glutamyl transfer reaction. J. Amer. Chem. Soc. 77, 5304–5308 (1955).

    Article  CAS  Google Scholar 

  33. Looms, W. D.: Glutamyl transferase in higher plants. Dissertation. University of California, Berkeley 1953.

    Google Scholar 

  34. Loomis, W. D., and P. K. Stumpf: Activation of plant glutamyl transphorase by ADP, IDP, and ATP. Federat. Proc. 12, 240–241 (1953).

    Google Scholar 

  35. Meister, A.: [1] Preparation and enzymatic reactions of the keto analogues of asparagine and glutamine. J. of Biol. Chem. 200, 571–589 (1953).

    CAS  Google Scholar 

  36. Enzymatic transamination reactions involving arginine and ornithine. J. of Biol. Chem. 206, 587–596 (1954).

    Google Scholar 

  37. Studies on the mechanism and specificity of the glutamine-α-keto acid transamination-deamidation reaction. J. of Biol. Chem. 210, 17–35 (1954).

    Google Scholar 

  38. Enzymatic transfer of alpha-amino groups. Science (Lancaster, Pa.) 120, 43–50 (1954).

    Google Scholar 

  39. Transamination. Adv. Enzymol. 16, 185–246 (1955).

    Google Scholar 

  40. Meister, A., and P. E. Fraser: Enzymatic formation of l-asparagine by transamination. J. of Biol. Chem. 210, 37–43 (1954).

    CAS  Google Scholar 

  41. Meister, A., L. Levintow, R. E. Greenfield and P. A. Abendschein: Hydrolysis and transfer reactions catalyzed by ω-amidase preparations. J. of Biol. Chem. 215, 441–460 (1955).

    CAS  Google Scholar 

  42. Meister, A., H. A. Sober and E. A. Peterson: [1] Activation of purified glutamic-aspartic apotransaminase by crystalline pyridoxamine phosphate. J. Amer. Chem. Soc. 74, 2385–2386 (1952).

    Article  CAS  Google Scholar 

  43. [2] Studies on the coenzyme activation of glutamic-aspartic apotransaminase. J. of Biol. Chem. 206, 89–100 (1954).

    Google Scholar 

  44. Metzler, D. E., M. Ikawa and E. E. Snell: A general mechanism for vitamin B6-catalyzed reactions. J. Amer. Chem. Soc. 76, 648–652 (1954).

    Article  CAS  Google Scholar 

  45. Metzler, D. E., J. Olivard and E. E. Snell: Transamination of pyridoxamine and amino acids with glyoxylic acid. J. Amer. Chem. Soc. 76, 644–648 (1954).

    Article  CAS  Google Scholar 

  46. Metzler, D. E., and E. E. Snell: Some transamination reactions involving vitamin B6. J. Amer. Chem. Soc. 74, 979–983 (1952).

    Article  CAS  Google Scholar 

  47. Miettinen, J. K., and A. I. Virtanen: Nitrogen metabolism of pea and alder. Transamination of γ-aminobutyric acid and l(+)-citrulline with α-ketoglutaric acid. Acta chem. scand. (Copenh.) 7, 1243–1246 (1953).

    Article  CAS  Google Scholar 

  48. Millbank, J. W.: Demonstration of transaminase systems in the alga Chlorella. Nature (Lond.) 171, 476–477 (1953).

    Article  CAS  Google Scholar 

  49. Peterson, E. A., and H. A. Sober: Preparation of crystalline phosphorylated derivatives of vitamin B6. J. Amer. Chem. Soc. 76, 169–175 (1954).

    Article  CAS  Google Scholar 

  50. Peyser, P.: Some aspects of the mechanism of transamination. Dissertation. Columbia University 1954. Diss. Abstr. 14, 1301–1302 (1954).

    Google Scholar 

  51. Rabinowitz, J. C., and E. E. Snell: The vitamin B6 group. XII. Microbiological activity and natural occurrence of pyridoxamine phosphate. J. of Biol. Chem. 169, 643–650 (1947).

    CAS  Google Scholar 

  52. Rautanen, N.: [1] Transamination in green plants. J. of Biol. Chem. 163, 687–688 (1946).

    CAS  Google Scholar 

  53. [2] On the synthesis of the first amino acids in green plants. Ann. Acad. Sci. fenn., Ser. A, II 1948, No. 33, 1–66.

    Google Scholar 

  54. Roberts, E.: Studies of transamination. Arch. of Biochem. a. Biophysics 48, 395–401 (1954).

    Article  CAS  Google Scholar 

  55. Roberts, E., P. Ayengar and I. Posner: Transamination of γ-aminobutyric acid and β-alanine in microorganisms. J. of Biol. Chem. 203, 195–204 (1953).

    CAS  Google Scholar 

  56. Roberts, E., and H. M. Bregoff: Transamination of γ-aminobutyric acid and β-alanine in brain and liver. J. of Biol. Chem. 201, 393–398 (1953).

    CAS  Google Scholar 

  57. Rudman, D., and A. Meister: Transamination in Escherichia coli. J. of Biol. Chem. 200, 591–604 (1953).

    CAS  Google Scholar 

  58. Rudnick, D., P. Mela and H. Waelsch: Enzymes of glutamine metabolism in the developing chick embryo. J. of Exper. Zool. 126, 297–321 (1954).

    Article  CAS  Google Scholar 

  59. Ruggieri, G.: Certain transamination systems in plants. Ricerca Sci. 23, 1208–1213 (1953). Cited from Chem. Abstr. 48, 821i (1954).

    CAS  Google Scholar 

  60. Snell, E. E.: [1] The vitamin B6 group. V. The reversible interconversions of pyridoxal and pyridoxamine by transamination reactions. J. Amer. Chem. Soc. 67, 194–197 (1945).

    Article  CAS  Google Scholar 

  61. Summary of known metabolic functions of nicotinic acid, riboflavin, and vitamin B6. Physiologic. Rev. 33, 509–524 (1953).

    Google Scholar 

  62. Stumpf, P. K.: Transaminases in higher plants. Federat. Proc. 10, 256 (1951).

    Google Scholar 

  63. Stumpf, P. K., and W. D. Loomis: Observations on a plant amide enzyme system requiring manganese and phosphate. Arch. of Biochem. 25, 451–453 (1950).

    CAS  Google Scholar 

  64. Stumpf, P. K., W. D. Loomis and C. Michelson: Amide metabolism in higher plants. I. Preparation and properties of a glutamyl transphorase from pumpkin seedüng. Arch. of Biochem. 30, 126–137 (1951).

    CAS  Google Scholar 

  65. Umbreit, W. W.: Pyridoxine and related compounds. In: The Vitamins, vol. 3, pp. 234 to 242. W. H. Sebrell jr. and R. S. Harris, editors. New York: Academic Press, Inc. 1954.

    Google Scholar 

  66. Varner, J. E., and G. C. Webster: Studies on the enzymatic synthesis of glutamine. Plant Physiol. 30, 393–402 (1955).

    Article  PubMed  CAS  Google Scholar 

  67. Virtanen, A. I., and T. Laine: [1] Biological synthesis of amino acids from atmospheric nitrogen. Nature (Lond.) 141, 748–749 (1938).

    Article  CAS  Google Scholar 

  68. [2] Über die Umaminierung in grünen Pflanzen. Biochem. Z. 308, 213–215 (1941).

    Google Scholar 

  69. Waelsch, H.: [1] Certain aspects of intermediary metabolism of glutamine, asparagine, and glutathione. Adv. Enzymol. 13, 237–319 (1952).

    CAS  Google Scholar 

  70. The biological significance of the γ-glutamyl radical. In: Phosphorus Metabolism, vol. 2, pp. 109–125. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1952.

    Google Scholar 

  71. Wealsch, H., P. Owades, E. Borek, N. Grossowicz and M. Schou: The enzyme-catalyzed exchange of ammonia with the amide group of glutamine and asparagine. Arch. of Biochem. 27, 237–239, 482 (1950).

    Google Scholar 

  72. Webster, G. C.: Enzymatic synthesis of glutamine in higher plants. Plant Physiol. 28, 724–727 (1953).

    Article  PubMed  CAS  Google Scholar 

  73. Williams, V. R., and J. B. Neilands: Apparent ionization constants, spectral properties and metal chelation of the cotransaminases and related compounds. Arch. of Biochem. a. Biophysics 53, 56–70 (1954).

    Article  CAS  Google Scholar 

  74. Wilson, D. G., K. W. King and R. H. Burris: Transamination in plants. J. of Biol. Chem. 208, 863–874 (1954).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Loomis, W.D., Stumpf, P.K. (1958). Transamination and transamidation. In: Allen, E.K., et al. Der Stickstoffumsatz / Nitrogen Metabolism. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94733-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94733-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94734-6

  • Online ISBN: 978-3-642-94733-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics