Transamination and transamidation

  • W. D. Loomis
  • P. K. Stumpf
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)


Transamination represents a class of reaction wherein the amino nitrogen of an amino acid (donor) is transferred to aminate the carbonyl group of a keto acid (acceptor). The acceptor now becomes an amino acid whereas the donor becomes a keto acid. Transamidation involves the transfer of −NH2 from a carboxamide group to a suitable acceptor. Transamination is far better understood than transamidation, but both types of transfer reaction appear to be of general importance in the metabolism of plants and other organisms. The role of transamination in amino acid synthesis is discussed in the chapter “The synthesis of amino acids in plants”, p. 224.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, E., G. Günther u. J. E. Everett: Über den enzymatischen Abbau und Aufbau der Glutaminsäure. IV. In Hefe. Hoppe-Seylers Z. 255, 27–35 (1938).CrossRefGoogle Scholar
  2. Albaum, H. G., and P. P. Cohen: Transamination and protein synthesis in germinating oat seedlings. J. of Biol. Chem. 149, 19–27 (1943).Google Scholar
  3. Bessman, S. P., J. Rossen and E. C. Layne: γ-Aminobutyric acid-glutamic acid transamination in brain. J. of Biol. Chem. 201, 385–391 (1953).Google Scholar
  4. Bonner, J.: Plant Biochemistry. New York: Academic Press, Inc. 1950.Google Scholar
  5. Braunstein, A. E.: Transamination and the integrative functions of the dicarboxylic acids in nitrogen metabolism. Adv. Protein Chem. 3, 1–52b (1947).PubMedCrossRefGoogle Scholar
  6. Braunstein, A. E., u. M. G. Kritzmann: Über den Ab- und Aufbau von Aminosäuren durch Umaminierung. Enzymologia (Den Haag) 2, 129–146 (1937).Google Scholar
  7. Burris, R. H.: Organic acids in plant metabolism. Annual Rev. Plant Physiol. 4, 91–114 (1953).CrossRefGoogle Scholar
  8. Cammarata, P. S., and P. P. Cohen: The scope of the transamination reaction in animal tissues. J. of Biol. Chem. 187, 439–452 (1950).Google Scholar
  9. Cedrangolo, F., e G. Carandante: Aspartico- and glutamico-aminopherase in higher plant. Arch. di Sci. biol. 26, 369–383 (1940). Cited from Chem. Abstr. 35, 7988 (1941).Google Scholar
  10. Cohen, P. P.: [1] Transaminases. In: The Enzymes, vol. 1, part 2, pp. 1040–1067. J. B. Sumner and K. Myrbäck, editors. New York: Academic Press, Inc. 1951.Google Scholar
  11. [2]
    Nitrogen metabolism of amino acids. In: Chemical Pathways of Metabolism, vol. 2, pp. 1–46. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.Google Scholar
  12. Delwiche, C. C., W. D. Loomis and P. K. Stumpf: Amide metabolism in higher plants. II. The exchange of isotopic ammonia by glutamyl transphorase. Arch. of Biochem. a. Biophysics 33, 333–338 (1951).CrossRefGoogle Scholar
  13. Dowmont, Y. P., and J. S. Fruton: Chromatography of peptides as applied to transamidation reactions. J. of Biol. Chem. 197, 271–283 (1952).Google Scholar
  14. Durell, J., and J. S. Fruton: Proteinase-catalyzed transamidation and its efficiency. J. of Biol. Chem. 207, 487–500 (1954).Google Scholar
  15. Eberts jr., F. S., R. H. Burris and A. J. Riker: The metabolism of nitrogenous compounds by sunflower crown gall tissue cultures. Plant Physiol. 29, 1–10 (1954).PubMedCrossRefGoogle Scholar
  16. Elliott, W. H.: Isolation of glutamine synthetase and glutamotransferase from green peas. J. of Biol. Chem. 201, 661–372 (1953).Google Scholar
  17. Feldman, L. I., and I. C. Gunsalus: The occurrence of a wide variety of transaminases in bacteria. J. of Biol. Chem. 187, 821–830 (1950).Google Scholar
  18. Fincham, J. R. S.: [1] Transaminases in Neurospora crassa. Nature (Lond.) 168, 957–958 (1951).CrossRefGoogle Scholar
  19. [2]
    Ornithine transaminase in Neurospora and its relation to the biosynthesis of proline. Biochemic. J. 53, 313–320 (1953).Google Scholar
  20. Fowden, L., and J. Done: A new transamination reaction. Nature (Lond.) 171, 1068–1069 (1953).CrossRefGoogle Scholar
  21. Fruton, J. S.: The role of proteolytic enzymes in the biosynthesis of peptide bonds. Yale J. Biol. a. Med. 22, 263–271 (1950).Google Scholar
  22. Fruton, J. S., R. B. Johnston and M. Fried: Elongation of peptide chains in enzyme-catalyzed transamidation reactions. J. of Biol. Chem. 190, 39–53 (1951).Google Scholar
  23. Gnu, K. V., A. N. Radhakrishnan and C. S. Vaidyanathan: Transaminase activity in plants. J. Indian Inst. Sci., Sect. A 34, 305–313 (1952).Google Scholar
  24. Green, D. E., L. F. Leloir and V. Nocito: Transaminases. J. of Biol. Chem. 161, 559–582 (1945).Google Scholar
  25. Grisolia, S., and R. H. Bttrris: Preparation of glutamate and carbamyl glutamate selectively labeled with deuterium. J. of Biol. Chem. 210, 109–117 (1954).Google Scholar
  26. Gunsalus, C. F., and J. Tonzetich: Transaminases for pyridoxamine and purines. Nature (Lond.) 170, 162 (1952).CrossRefGoogle Scholar
  27. Hilton, M. A., F. W. Barnes jr., S. S. Henry and T. Enns: Mechanisms in enzymic transamination. Rate of exchange of the hydrogen of aspartate. J. of Biol. Chem. 209, 743–754 (1954).Google Scholar
  28. Johnston, R. B., M. J. Mycek and J. S. Fruton: Catalysis of transamidation reactions by proteolytic enzymes. J. of Biol. Chem. 185, 629–641 (1950).Google Scholar
  29. Krebs, H. A.: Equilibria in transamination systems. Biochemic. J. 54, 82–86 (1953).Google Scholar
  30. Kritzmann, M. G.: The enzyme system transferring the amino-group of aspartic acid. Nature (Lond.) 143, 603–604 (1939).CrossRefGoogle Scholar
  31. Leonard, M. J. K., and R. H. Burris: A survey of transaminases in plants. J. of Biol. Chem. 170, 701–709 (1947).Google Scholar
  32. Levintow, L., A. Meister, G. H. Hogeboom and E. L. Kuff: Studies on the relationship between the enzymatic synthesis of glutamine and the glutamyl transfer reaction. J. Amer. Chem. Soc. 77, 5304–5308 (1955).CrossRefGoogle Scholar
  33. Looms, W. D.: Glutamyl transferase in higher plants. Dissertation. University of California, Berkeley 1953.Google Scholar
  34. Loomis, W. D., and P. K. Stumpf: Activation of plant glutamyl transphorase by ADP, IDP, and ATP. Federat. Proc. 12, 240–241 (1953).Google Scholar
  35. [1]
    Meister, A.: [1] Preparation and enzymatic reactions of the keto analogues of asparagine and glutamine. J. of Biol. Chem. 200, 571–589 (1953).Google Scholar
  36. [2]
    Enzymatic transamination reactions involving arginine and ornithine. J. of Biol. Chem. 206, 587–596 (1954).Google Scholar
  37. [3]
    Studies on the mechanism and specificity of the glutamine-α-keto acid transamination-deamidation reaction. J. of Biol. Chem. 210, 17–35 (1954).Google Scholar
  38. [4]
    Enzymatic transfer of alpha-amino groups. Science (Lancaster, Pa.) 120, 43–50 (1954).Google Scholar
  39. [5]
    Transamination. Adv. Enzymol. 16, 185–246 (1955).Google Scholar
  40. Meister, A., and P. E. Fraser: Enzymatic formation of l-asparagine by transamination. J. of Biol. Chem. 210, 37–43 (1954).Google Scholar
  41. Meister, A., L. Levintow, R. E. Greenfield and P. A. Abendschein: Hydrolysis and transfer reactions catalyzed by ω-amidase preparations. J. of Biol. Chem. 215, 441–460 (1955).Google Scholar
  42. [1]
    Meister, A., H. A. Sober and E. A. Peterson: [1] Activation of purified glutamic-aspartic apotransaminase by crystalline pyridoxamine phosphate. J. Amer. Chem. Soc. 74, 2385–2386 (1952).CrossRefGoogle Scholar
  43. [2] Studies on the coenzyme activation of glutamic-aspartic apotransaminase. J. of Biol. Chem. 206, 89–100 (1954).Google Scholar
  44. Metzler, D. E., M. Ikawa and E. E. Snell: A general mechanism for vitamin B6-catalyzed reactions. J. Amer. Chem. Soc. 76, 648–652 (1954).CrossRefGoogle Scholar
  45. Metzler, D. E., J. Olivard and E. E. Snell: Transamination of pyridoxamine and amino acids with glyoxylic acid. J. Amer. Chem. Soc. 76, 644–648 (1954).CrossRefGoogle Scholar
  46. Metzler, D. E., and E. E. Snell: Some transamination reactions involving vitamin B6. J. Amer. Chem. Soc. 74, 979–983 (1952).CrossRefGoogle Scholar
  47. Miettinen, J. K., and A. I. Virtanen: Nitrogen metabolism of pea and alder. Transamination of γ-aminobutyric acid and l(+)-citrulline with α-ketoglutaric acid. Acta chem. scand. (Copenh.) 7, 1243–1246 (1953).CrossRefGoogle Scholar
  48. Millbank, J. W.: Demonstration of transaminase systems in the alga Chlorella. Nature (Lond.) 171, 476–477 (1953).CrossRefGoogle Scholar
  49. Peterson, E. A., and H. A. Sober: Preparation of crystalline phosphorylated derivatives of vitamin B6. J. Amer. Chem. Soc. 76, 169–175 (1954).CrossRefGoogle Scholar
  50. Peyser, P.: Some aspects of the mechanism of transamination. Dissertation. Columbia University 1954. Diss. Abstr. 14, 1301–1302 (1954).Google Scholar
  51. Rabinowitz, J. C., and E. E. Snell: The vitamin B6 group. XII. Microbiological activity and natural occurrence of pyridoxamine phosphate. J. of Biol. Chem. 169, 643–650 (1947).Google Scholar
  52. [1]
    Rautanen, N.: [1] Transamination in green plants. J. of Biol. Chem. 163, 687–688 (1946).Google Scholar
  53. [2] On the synthesis of the first amino acids in green plants. Ann. Acad. Sci. fenn., Ser. A, II 1948, No. 33, 1–66.Google Scholar
  54. Roberts, E.: Studies of transamination. Arch. of Biochem. a. Biophysics 48, 395–401 (1954).CrossRefGoogle Scholar
  55. Roberts, E., P. Ayengar and I. Posner: Transamination of γ-aminobutyric acid and β-alanine in microorganisms. J. of Biol. Chem. 203, 195–204 (1953).Google Scholar
  56. Roberts, E., and H. M. Bregoff: Transamination of γ-aminobutyric acid and β-alanine in brain and liver. J. of Biol. Chem. 201, 393–398 (1953).Google Scholar
  57. Rudman, D., and A. Meister: Transamination in Escherichia coli. J. of Biol. Chem. 200, 591–604 (1953).Google Scholar
  58. Rudnick, D., P. Mela and H. Waelsch: Enzymes of glutamine metabolism in the developing chick embryo. J. of Exper. Zool. 126, 297–321 (1954).CrossRefGoogle Scholar
  59. Ruggieri, G.: Certain transamination systems in plants. Ricerca Sci. 23, 1208–1213 (1953). Cited from Chem. Abstr. 48, 821i (1954).Google Scholar
  60. [1]
    Snell, E. E.: [1] The vitamin B6 group. V. The reversible interconversions of pyridoxal and pyridoxamine by transamination reactions. J. Amer. Chem. Soc. 67, 194–197 (1945).CrossRefGoogle Scholar
  61. [2]
    Summary of known metabolic functions of nicotinic acid, riboflavin, and vitamin B6. Physiologic. Rev. 33, 509–524 (1953).Google Scholar
  62. Stumpf, P. K.: Transaminases in higher plants. Federat. Proc. 10, 256 (1951).Google Scholar
  63. Stumpf, P. K., and W. D. Loomis: Observations on a plant amide enzyme system requiring manganese and phosphate. Arch. of Biochem. 25, 451–453 (1950).Google Scholar
  64. Stumpf, P. K., W. D. Loomis and C. Michelson: Amide metabolism in higher plants. I. Preparation and properties of a glutamyl transphorase from pumpkin seedüng. Arch. of Biochem. 30, 126–137 (1951).Google Scholar
  65. Umbreit, W. W.: Pyridoxine and related compounds. In: The Vitamins, vol. 3, pp. 234 to 242. W. H. Sebrell jr. and R. S. Harris, editors. New York: Academic Press, Inc. 1954.Google Scholar
  66. Varner, J. E., and G. C. Webster: Studies on the enzymatic synthesis of glutamine. Plant Physiol. 30, 393–402 (1955).PubMedCrossRefGoogle Scholar
  67. [1]
    Virtanen, A. I., and T. Laine: [1] Biological synthesis of amino acids from atmospheric nitrogen. Nature (Lond.) 141, 748–749 (1938).CrossRefGoogle Scholar
  68. [2] Über die Umaminierung in grünen Pflanzen. Biochem. Z. 308, 213–215 (1941).Google Scholar
  69. [1]
    Waelsch, H.: [1] Certain aspects of intermediary metabolism of glutamine, asparagine, and glutathione. Adv. Enzymol. 13, 237–319 (1952).Google Scholar
  70. [2]
    The biological significance of the γ-glutamyl radical. In: Phosphorus Metabolism, vol. 2, pp. 109–125. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1952.Google Scholar
  71. Wealsch, H., P. Owades, E. Borek, N. Grossowicz and M. Schou: The enzyme-catalyzed exchange of ammonia with the amide group of glutamine and asparagine. Arch. of Biochem. 27, 237–239, 482 (1950).Google Scholar
  72. Webster, G. C.: Enzymatic synthesis of glutamine in higher plants. Plant Physiol. 28, 724–727 (1953).PubMedCrossRefGoogle Scholar
  73. Williams, V. R., and J. B. Neilands: Apparent ionization constants, spectral properties and metal chelation of the cotransaminases and related compounds. Arch. of Biochem. a. Biophysics 53, 56–70 (1954).CrossRefGoogle Scholar
  74. Wilson, D. G., K. W. King and R. H. Burris: Transamination in plants. J. of Biol. Chem. 208, 863–874 (1954).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • W. D. Loomis
  • P. K. Stumpf

There are no affiliations available

Personalised recommendations