The synthesis of amino acids in plants

  • W. D. Loomis
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Abstract

Amino acids, both in the free form and as constituents of protein, occupy a central position in the metabolism of all organisms, and the pathways of amino acid metabolism, as far as they are known, are for the most part quite similar from one organism to another. Instances of dissimilarity occur primarily in the ability or inability to synthesize a particular amino acid. Thus, while plants, animals and microorganisms utilize generally the same amino acids for protein synthesis and other metabolic functions, they differ greatly in synthetic capacity. Whereas the plant can produce all the amino acids it requires, animals and many microorganisms must obtain several of the amino acids preformed, in their food or culture medium. Unfortunately, since the biosynthesis of amino acids has received less attention in plants than in other organisms (the amides are a notable exception to this statement), it will be necessary in this review to draw heavily on findings from animals and microorganisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Abelson, P. H.: Amino acid biosynthesis in Escherichia coli: isotopic competition with C14 glucose. J. of Biol. Chem. 206, 335–343 (1954).Google Scholar
  2. Adams, E.: The enzymatic synthesis of histidine from histidinol. J. of Biol. Chem. 209, 829–846 (1954).Google Scholar
  3. Adelberg, E. A.: [1] The biosynthesis of isoleucine, valine, and leucine. In: Amino Acid Metabolism, pp. 419 to 430. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  4. [2]
    The biosynthesis of isoleucine and valine. III. Tracer experiments with L-threonine. J. of Biol. Chem. 216, 431–437 (1955).Google Scholar
  5. Adelberg, E. A., C. A. Coughlin and R. W. Barratt: The biosynthesis of isoleucine and valine. II. Independence of the biosynthetic pathways in Neurospora. J. of Biol. Chem. 216, 425–430 (1955).Google Scholar
  6. Adelberg, E. A., and H. E. Umbarger: Isoleucine and valine metabolism in Escherichia coli. V. α-ketoisovaleric acid accumulation. J. of Biol. Chem. 205, 475–482 (1953).Google Scholar
  7. Adler, E., N. B. Das, H. V. Euler u. U. Heyman: Biologische Dehydrierung und Synthese der Glutaminsäure. C. r. Trav. Labor. Carlsberg, Sér. Chim. 22, 15–24 (1938).Google Scholar
  8. Adler, E., G. Günther u. J. E. Everett: Über den enzymatischen Abbau und Aufbau der Glutaminsäure. IV. In Hefe. Hoppe-Seylers Z. 255, 27–35 (1938).CrossRefGoogle Scholar
  9. Ames, B. N.: The biosynthesis of histidine. In: Amino Acid Metabolism, pp. 357–372. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  10. Ames, B. N., and H. K. Mitchell: The biosynthesis of histidine. Imidazoleglycerol phosphate, imidazoleacetol phosphate and histidinol phosphate. J. of Biol. Chem. 212, 687–696 (1955).Google Scholar
  11. Anderson, D. G., H. A. Stafford, E. E. Conn and B. Vennesland: The distribution in higher plants of triphosphopyridine nucleotide-linked enzyme systems capable of reducing glutathione. Plant Physiol. 27, 675–684 (1952).PubMedCrossRefGoogle Scholar
  12. Archibald, R. M.: Chemical characteristics and physiological roles of glutamine. Chem. Rev. 37, 161–208 (1945).PubMedCrossRefGoogle Scholar
  13. Arregttin, B., J. Bonner and B. J. Wood: Studies on the mechanism of rubber formation in guayule. III. Experiments with isotopic carbon. Arch. of Biochem. a. Biophysics 31, 234–247 (1951).CrossRefGoogle Scholar
  14. Axelrod, B., and R. S. Bandurski: Phosphoglyceryl kinase in higher plants. J. of Biol. Chem. 204, 939–948 (1953).Google Scholar
  15. Axelrod, B., R. S. Bandurski, C. M. Greiner and R. Jang: The metabolism of hexose and pentose phosphates in higher plants. J. of Biol. Chem. 202, 619–634 (1953).Google Scholar
  16. Axelrod, B., and R. Jang: Purification and properties of phosphoriboisomerase from alfalfa. J. of Biol. Chem. 209, 847–855 (1954).Google Scholar
  17. Axelrod, B., P. Saltman, R. S. Bandurski and R. S. Baker: Phosphohexokinase in higher plants. J. of Biol. Chem. 197, 89–96 (1952).Google Scholar
  18. Barnett, R. C., H. A. Stafford, E. E. Conn and B. Vennesland: Phosphogluconic dehydrogenase in higher plants. Plant Physiol. 28, 115–122 (1953).PubMedCrossRefGoogle Scholar
  19. Bassham, J. A., A. A. Benson, L. D. Kay, A. Z. Harris, A. T. Wilson and M. Calvin: The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Amer. Chem. Soc. 76, 1760–1770 (1954).CrossRefGoogle Scholar
  20. Beaudreau, G. S., and L. F. Remmert: Krebs cycle activity of particles from bean seedlings. Arch. of Biochem. a. Biophysics 55, 469–485 (1955).CrossRefGoogle Scholar
  21. Beevers, H.: An l-glutamic acid decarboxylase from barley. Biochemic. J. 48, 132–137 (1951).Google Scholar
  22. Berg, A. M., S. Kari, M. Alfthan and A. I. Virtanen: Homoserine and α-aminoadipic acid in green plants. Acta chem. scand. (Copenh.) 8, 358 (1954).CrossRefGoogle Scholar
  23. Berg, A. M., and A. I. Virtanen: Additional note on α-aminopimelic acid in green plants. Acta chem. scand. (Copenh.) 8, 1725 (1954).CrossRefGoogle Scholar
  24. Berger, J., and G. S. Avery jr.: Glutamic and isocitric acid dehydrogenase in the Avena coleoptile and the effect of auxins on these enzymes. Amer. J. Bot. 31, 11–19 (1944).CrossRefGoogle Scholar
  25. Black, S., and N. M. Gray: Enzymic phosphorylation of l-aspartate. J. Amer. Chem. Soc. 75, 2271–2272 (1953).CrossRefGoogle Scholar
  26. Black, S., and N. G. Wright: [1] Intermediate steps in the biosynthesis of threonine. In: Amino Acid Metabolism, pp. 591 to 600. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  27. [2]
    β-aspartokinase and β-aspartyl phosphate. J. of Biol. Chem. 213, 27–38 (1955).Google Scholar
  28. [3]
    Aspartic β-semialdehyde dehydrogenase and aspartic β-semialdehyde. J. of Biol. Chem. 213, 39–50 (1955).Google Scholar
  29. [4]
    Homoserine dehydrogenase. J. of Biol. Chem. 213, 51–60 (1955).Google Scholar
  30. Bonner, D.: Production of biochemical mutations in Pénicillium. Amer. J. Bot. 33, 788–791 (1946).CrossRefGoogle Scholar
  31. Bonner, J., and A. Millerd: Oxidative phosphorylation by plant mitochondria. Arch. of Biochem. a. Biophysics 42, 135–148 (1953).CrossRefGoogle Scholar
  32. Boyer, P. D., O. J. Koeppe and W. W. Luchsinger: Direct oxygen transfer in enzymic syntheses coupled to adenosine triphosphate degradation. J. Amer. Chem. Soc. 78, 356–357 (1956).CrossRefGoogle Scholar
  33. Boyer, P. D., O. J. Koeppe, W. W. Luchsinger and A. B. Falcone: Mechanisms of participation of ATP in enzymic syntheses. Federat. Proc. 14, 185 (1955).Google Scholar
  34. Broquist, H. P., and E. E. Snell: Studies of the mechanism of histidine synthesis in lactic acid bacteria. J. of Biol. Chem. 180, 59–71 (1949).Google Scholar
  35. Brummond, D. O., and R. H. Burris: Reactions of the tricarboxylic acid cycle in green leaves. J. of Biol. Chem. 209, 755–765 (1954).Google Scholar
  36. Cantoni, G. L.: Considerations of homocysteine and its role in the metabolism of S-amino acids. In: Amino Acid Metabolism, pp. 601–607. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  37. Cohen, G. N., M. L. Hirsch, S. B. Wiesendanger et B. Nisman: Précisions sur la synthèse de l-thréonine á partir d’acide l-aspartique par des extraits de Escherichia coli. C. r. Acad. Sci. Paris 238, 1746–1748 (1954).PubMedGoogle Scholar
  38. Cohen, P. P.: Nitrogen metabolism of amino acids. In: Chemical Pathways of Metabolism, vol. 2, pp. 1–46. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.Google Scholar
  39. Conn, E. E., and L. C. T. Young: Oxidative phosphorylation in lupine mitochondria. Federat. Proc. 14, 195–196 (1955).Google Scholar
  40. Coon, M. J., W. G. Robinson and B. K. Bachhawat: Enzymatic studies on the biological degradation of the branched chain amino acids. In: Amino Acid Metabolism, pp. 431–441. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  41. Damodaran, M., and K. R. Nair: Glutamic acid dehydrogenase from germinating seeds. Biochemic. J. 32, 1064–1074 (1938).Google Scholar
  42. Davis, B. D.: Biosynthesis of the aromatic amino acids. In: Amino Acid Metabolism, pp. 799–811. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  43. Davison, D. C., and W. H. Elliott: Enzymic reaction between arginine and fumarate in plant and animal tissues. Nature (Lond.) 169, 313–314 (1952).CrossRefGoogle Scholar
  44. Denes, G.: [1] Die enzymatische Synthese des Glutamins in Lupinus albus. Experientia (Basel) 9, 24–25 (1953).CrossRefGoogle Scholar
  45. [2]
    [2] Glutamine synthetase: its steriospecificity and changes induced by activating ions. Biochim. et Biophysica Acta 15, 296–297 (1954).CrossRefGoogle Scholar
  46. Denes, G., and Zs. Gazda: Untersuchungen über die enzymatische Synthese der Säureamid- und Peptidbindung. I. Die enzymatische Synthese von Glutamin in Lupinus albus. Acta physiol. Acad. Sci. Hung. 4, 1–12 (1953).CrossRefGoogle Scholar
  47. Dewey, D. L., D. S. Hoare and E. Work: Diaminopimelic acid decarboxylase in cells and extracts of Escherichia coli and Aerobacter aerogenes. Biochemic. J. 58, 523–531 (1954).Google Scholar
  48. Eberts jr., F. S., R. H. Burris and A. J. Riker: The metabolism of nitrogenous compounds by sunflower crown gall tissue cultures. Plant Physiol. 29, 1–10 (1954).PubMedCrossRefGoogle Scholar
  49. Ehrensvärd, G., L. Reio, E. Saluste and R. Stjernholm: Acetic acid metabolism in Torulopsis utilis. III. Metabolic connection between acetic acid and various amino acids. J. of Biol. Chem. 189, 93–108 (1951).Google Scholar
  50. Ellfolk, N.: [1] Studies on aspartase. III. On the specificity of aspartase. Acta chem. scand. (Copenh.) 8, 151–156 (1954).CrossRefGoogle Scholar
  51. [2]
    Studies on aspartase. IV. On the effect of pH on aspartase. Acta chem. scand. (Copenh.) 8, 443–448 (1954).Google Scholar
  52. Elliott, W. H.: [1] Studies on the enzymic synthesis of glutamine. Biochemie. J. 49, 106–112 (1951).Google Scholar
  53. [2]
    Isolation of glutamine synthetase and glutamo-transferase from green peas. J. of Biol. Chem. 201, 661–672 (1953).Google Scholar
  54. Evstigneeva, Z. G., i V. L. Kretovich: Difference in structure and chemical properties of asparagine and glutamine. Dokl. Akad. Nauk SSSR. 93, 1069–1072 (1953). Cited from Chem. Abstr. 48, 4602i (1954).PubMedGoogle Scholar
  55. Fincham, J. R. S.: [1] Mutant strains of Neurospora deficient in animating ability. J. of Biol. Chem. 182, 61–73 (1950).Google Scholar
  56. [2]
    The occurrence of glutamic dehydrogenase in Neurospora and its apparent absence in certain mutant strains. J. Gen. Microbiol. 5, 793–806 (1951).Google Scholar
  57. [3]
    Transaminases in Neurospora crassa. Nature (Lond.) 168, 957–958 (1951).Google Scholar
  58. Fowden, L.: [1] The nitrogen metabolism of groundnut plants: the role of γ-methyleneglutamine and γ-methyleneglutamic acid. Ann. of Bot., N. S. 18, 417–440 (1954).Google Scholar
  59. [2]
    The enzymic decarboxylation of γ-methyleneglutamic acid by plant extracts. J. of Exper. Bot. 5, 28–36 (1954).Google Scholar
  60. [3]
    [3] Azetidine-2-carboxylic acid: A new constituent of plants. Nature (Lond.) 176, 347–348 (1955).CrossRefGoogle Scholar
  61. Fowden, L., and J. Done: The enzymatic decarboxylation of γ-methyleneglutamic acid. Biochemic. J. 53, xxxi–xxxii (1953).Google Scholar
  62. Gibbs, M.: The respiration of the pea plant. Oxidation of hexose phosphate and pentose phosphate by cell-free extracts of pea leaves. Plant Physiol. 29, 34–39 (1954).PubMedCrossRefGoogle Scholar
  63. Gibbs, M., and B. L. Horecker: The mechanism of pentose phosphate conversion to hexose monophosphate. II. With pea leaf and pea root preparations. J. of Biol. Chem. 208, 813–820 (1954).Google Scholar
  64. Gilvarg, C.: Prephenic acid and the aromatization step in the synthesis of phenylalanine. In: Amino Acid Metabolism, pp. 812–816. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  65. Greenberg, D. M.: [1] Synthetic processes involving amino acids. In: Chemical Pathways of Metabolism, vol.2, pp. 113–147. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.Google Scholar
  66. [2]
    Metabolism of sulfur-containing compounds. In: Chemical Pathways of Metabolism, vol.2, pp. 149–171. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.Google Scholar
  67. Grisolia, S., and R. O. Marshall: Recent advances in citrulline biosynthesis. In: Amino Acid Metabolism, pp. 258 to 276. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  68. Grobbelaar, N., and F. C. Steward: Pipecolic acid in Phaseolus vulgaris: Evidence on its derivation from lysine. J. Amer. Chem. Soc. 75, 4341–4343 (1953).CrossRefGoogle Scholar
  69. Hasse, K., U. H. W. Schumacher: Das Reaktionsprodukt der Decarboxylierung von 1-Glutaminsäure mittels pflanzlicher Decarboxylase. Chem. Ber. 83, 68–71 (1950).CrossRefGoogle Scholar
  70. Hattori, S., S. Yoshtda and M. Hasegawa: Occurrence of shikimic acid in the leaves of gymnosperms. Physiol. Plantarum (Copenh.) 7, 283–289 (1954).CrossRefGoogle Scholar
  71. Hirsch, M. L., and G. N. Cohen: Mise en évidence d’un système synthétisant la l-homosérine à partir de l’acide l-aspartique. Biochim. et Biophysica Acta 15, 560–567 (1954).CrossRefGoogle Scholar
  72. Horecker, B. L., and P. Z. Smyrniotis: Purification and properties of yeast transaldolase. J. of Biol. Chem. 212, 811–825 (1955).Google Scholar
  73. Horecker, B. L., P. Z. Smyrniotis, H. H. Hiatt and P. A. Marks: Tetrose phosphate and the formation of sedoheptulose diphosphate. J. of Biol. Chem. 212, 827–836 (1955).Google Scholar
  74. Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulose phosphate from pentose phosphate. J. of Biol. Chem. 205, 661–682 (1953).Google Scholar
  75. Horowitz, N. H.: [1] Methionine synthesis in Neurospora. The isolation of cystathionine. J. of Biol. Chem. 171, 255–264 (1947).Google Scholar
  76. [2]
    Discussion. In: Amino Acid Metabolism, pp. 631–632. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  77. Johnston, J. A., D. W. Racusen and J. Bonner: The metabolism of isoprenoid precursors in a plant system. Proc. Nat. Acad. Sci. U.S.A. 40, 1031–1037 (1954).CrossRefGoogle Scholar
  78. Jones, M. E., L. Spector and F. Lipmann: Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. Chem. Soc. 77, 819–820 (1955).CrossRefGoogle Scholar
  79. Kalan, E. B., and P. R. Srintvasan: Synthesis of 5-dehydroshikimic acid from carbohydrates in a cell-free extract. In: Amino Acid Metabolism, pp. 826–830. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  80. Kasting, R., and C. C. Delwiche: Ornithine, citrulline, arginine interconversions in higher plants. Plant Physiol. 30, “Supplement“, Proc. Plant Physiol. Meetings xxviii (1955).Google Scholar
  81. King, F. E., T. J. King and A. J. Warwick: The chemistry of extractives from hardwoods. Part III. Baikiain, an amino acid present in Baikiaea plurijuga. J. Chem. Soc. (Lond.) 1950, 3590–3597 (1950).CrossRefGoogle Scholar
  82. Kleipool, R. J. C., and J. P. Wibaut: Mimosine (Leucaenine). 5th communication. Rec. trav. chim. Pays-Bas 69, 37–44 (1950).CrossRefGoogle Scholar
  83. Korzenovsky, M.: Metabolism of arginine and citrulline by bacteria. In: Amino Acid Metabolism, pp. 309–320. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  84. Kowalsky, A., C. Wyttenbach, L. Langer and D. E. Koshland jr.: Transfer of oxygen in the glutamine synthetase reaction. J. of Biol. Chem. 219, 719–725 (1956).Google Scholar
  85. Krebs, H. A.: Oxidation of amino acids. In: The Enzymes, vol.2, parti, pp. 499–535. J. B. Sumner and K. Myrbäck, editors. New York: Academic Press, Inc. 1951.Google Scholar
  86. Krebs, H. A., u. K. Henseleit: Untersuchungen über die Harnstoffbildung im Tierkörper. Hoppe-Seylers Z. 210, 33–66 (1932).CrossRefGoogle Scholar
  87. Leach, S. J., and H. Lindley: Structure of asparagine. Nature (Lond.) 171, 1062–1063 (1953).CrossRefGoogle Scholar
  88. Levintow, L., and A. Meister: [1] Enzymatic synthesis of d-glutamine and related hydroxamic acids. J. Amer. Chem. Soc. 75, 3039–3040 (1953).CrossRefGoogle Scholar
  89. [2]
    Reversibility of the enzymatic synthesis of glutamine; with appendix by M. F. Morales. J. of Biol. Chem. 209, 265–280 (1954).Google Scholar
  90. [1]
    γ-Glutamyl phosphate. Federat. Proc. 15, 299 (1956).Google Scholar
  91. Levy, L., and M. J. Coon: [1] The role of formate in the biosynthesis of histidine. J. of Biol. Chem. 192, 807–815 (1951).Google Scholar
  92. [2]
    Biosynthesis of histidine from radioactive acetate and glucose. J. of Biol. Chem. 208, 691–700 (1954).Google Scholar
  93. Liverman, J. L., and J. B. Ragland: Metabolism of sulfur-35 in the Alaska pea. Plant Physiol. 31, Suppl. Proc. Plant Physiol. Meetings, vii–viii (1956).Google Scholar
  94. Lowy, P. H.: The conversion of lysine to pipecolic acid by Phaseolus vulgaris. Arch. of Biochem. a. Biophysics 47, 228–229 (1953).CrossRefGoogle Scholar
  95. Maas, W. K., G. D. Novelle and F. Lipmann: Acetylation of glutamic acid by extracts of Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 39, 1004–1008 (1953).CrossRefGoogle Scholar
  96. Mac Vicar, R., and R. H. Burris: Studies on nitrogen metabolism in tomato with use of isotopically labeled ammonium sulfate. J. of Biol. Chem. 176, 511–516 (1948).Google Scholar
  97. Mc Manus, I. R.: The biosynthesis of valine by Saccharomyces cerevisiae. J. of Biol. Chem. 208, 639–644 (1954).Google Scholar
  98. Meiss, A. N.: The formation of asparagine in etiolated seedlings of Lupinus albus L. Connecticut Agricult. Exper. Stat. Bull. 553 (1952).Google Scholar
  99. Meister, A.: [1] Studies on the mechanism and specificity of the glutamine-α-keto acid transamination-deamidation reaction. J. of Biol. Chem. 210, 17–35 (1954).Google Scholar
  100. [2] General reactions of amino acids. In: Amino Acid Metabolism, pp. 3–32. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  101. [3]
    Metabolism of glutamine. Physiologic. Rev. 36, 103–127 (1956).Google Scholar
  102. Meister, A., and P. E. Fraser: Enzymatic formation of L-asparagine by transamination. J. of Biol. Chem. 210, 37–43 (1954).Google Scholar
  103. Miettinen, J. K., and A. I. Virtanen: Nitrogen metabolism of the alder (Alnus). The absence of arginase and presence of glutamic acid decarboxylase. Acta chem. scand. (Copenh.) 7, 289–296 (1953).CrossRefGoogle Scholar
  104. Miller, A., and H. Waelsch: Enzymatic hydroxamic acid formation from aspartic acid. Federat. Proc. 12, 246–247 (1953).Google Scholar
  105. Mitsuhashi, S., and B. D. Davis: [1] Aromatic biosynthesis. XII. Conversion of 5-dehydroquinic acid to 5-dehydroshikimic acid by 5-dehydroquinase. Biochim. et Biophysica Acta 15, 54–61 (1954).CrossRefGoogle Scholar
  106. [2]
    Aromatic biosynthesis. XIII. Conversion of quinic acid to 5-dehydroquinic acid by quinic dehydrogenase. Biochim. et Biophysica Acta 15, 268–280 (1954).Google Scholar
  107. Morrison, J. F.: Enzymatic mechanisms in the respiration of rhubarb leaves. Austral. J. Exper. Biol. a. Med. Sci. 28, 311–320 (1950).CrossRefGoogle Scholar
  108. Morrison, R. I.: The isolation of l-pipecolinic acid from Trifolium repens. Biochemic. J. 53, 474–478 (1953).Google Scholar
  109. Myers, J. W., and E. A. Adelberg: The biosynthesis of isoleucine and valine. I. Enzymatic transformation of the dihydroxy acid precursors to the keto acid precursors. Proc. Nat. Acad. Sci. U.S.A. 40, 493–499 (1954).CrossRefGoogle Scholar
  110. Nisman, B., G. N. Cohen, S. B. Wiesendanger and M. L. Hirsch: Transformation de l’acide aspartique en homosérine et en thréonine par des extraits de Escherichia coli. C. r. Acad. Sci. Paris 238, 1342–1344 (1954).PubMedGoogle Scholar
  111. Oginsky, E. L.: Mechanisms of arginine and citrulline breakdown in microorganisms. In: Amino Acid Metabolism, pp. 300–308. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  112. Okunuki, K.: [1] Über ein neues Enzym Glutamino-carboxylase. Bot. Mag. (Tokyo) 51, 270–278 (1937).Google Scholar
  113. [2]
    Über den Gaswechsel der Pollen. III. Weitere Untersuchungen über die Dehydrasen aus den Pollenkörnern. Acta phytochim. (Tokyo) 11, 65–80 (1939).Google Scholar
  114. [3]
    Über die Wirkungsgruppe der Glutaminocarboxylase und ihre Hemmungskörper. Acta phytochim. (Tokyo) 13, 155–159 (1943).Google Scholar
  115. Racusen, D. W., and S. Aronoff: Metabolism of soybean leaves. VI. Exploratory studies in protein metabolism. Arch. of Biochem. a. Biophysics 51, 68–78 (1954).CrossRefGoogle Scholar
  116. Radhakrishnan, A. N., and K. V. Giri: The isolation of allo-hydroxy-l-proline from sandal (Santalum album L.). Biochemic. J. 58, 57–61 (1954).Google Scholar
  117. Rafelson jr., M. E.: Conversion of radioactive glucose and acetate to tryptophan by Aerobacter aerogenes. J. of Biol. Chem. 213, 479–486 (1955).Google Scholar
  118. Ragland, J. B., and J. L. Liverman: A reinvestigation of the sulfur auxotrophs of Neurospora. Plant Physiol. 31, Suppl. Proc. Plant Physiol. Meetings, viii (1956).Google Scholar
  119. Ratner, S.: [1] Urea synthesis and metabolism of arginine and citrulline. Adv. Enzymol. 15, 319–387 (1954).Google Scholar
  120. [2]
    Arginine metabolism and interrelationships between the citric acid and urea cycles. In: Amino Acid Metabolism, pp. 231–257. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  121. Rautanen, N.: On the formation of amino acids and amides in green plants. Acta chem. scand. (Copenh.) 2, 127–139 (1948).CrossRefGoogle Scholar
  122. Reed, D. J., B. E. Christensen, V. H. Cheldelin and C. H. Wang: Biosynthesis of leucine in bakers’ yeast. J. Amer. Chem. Soc. 76, 5574–5575 (1954).CrossRefGoogle Scholar
  123. Manuscript in preparation (1956).Google Scholar
  124. Reiss, O., and K. Bloch: Studies on leucine biosynthesis in yeast. J. of Biol. Chem. 216, 703–712 (1955).Google Scholar
  125. Rogers, B. J.: Oxidation and decarboxylation of amino acids by squash preparations. Plant Physiol. 30, 186–187 (1955).PubMedCrossRefGoogle Scholar
  126. Rothstein, M., and L. L. Miller: The conversion of lysine to pipecolic acid in the rat. J. of Biol. Chem. 211, 851–858 (1954).Google Scholar
  127. Rudman, D., and A. Meister: Transamination in Escherichia coli. J. of Biol. Chem. 200, 591–604 (1953).Google Scholar
  128. Rudney, H.: The synthesis of β-hydroxy-β-methylglutaric acid in rat liver homogenates. J. Amer. Chem. Soc. 76, 2595–2596 (1954).CrossRefGoogle Scholar
  129. Saito, V., O. Cano-Corona and R. Pepinsky: X-ray examination of molecular configuration of asparagine in crystalline l-asparagine monohydrate. Science (Lancaster, Pa.) 121, 435–436 (1955).Google Scholar
  130. Saltman, P.: Hexokinase in higher plants. J. of Biol. Chem. 200, 145–154 (1953).Google Scholar
  131. Schales, O.: Amino acid decarboxylases. In: The Enzymes, vol.2, part 2, pp. 216–247. J. B. Sumner and K. Myrbäck, editors. New York: Academic Press Inc. 1951.Google Scholar
  132. Schales, O., V. Mims and S. S. Schales: Glutamic acid decarboxylase of higher plants. I. Distribution; preparation of clear solutions; nature of prosthetic group. Arch. of Biochem. 10, 455–465 (1946).Google Scholar
  133. Schales, O., and S. S. Schales: [1] Glutamic acid decarboxylase of higher plants. II. pH-activity curve, reaction kinetics, inhibition by hydroxylamine. Arch. of Biochem. 11, 155–166 (1946).Google Scholar
  134. [2]
    Glutamic acid decarboxylase of higher plants. III. Enzymatic determination of l(+)-glutamic acid. Arch. of Biochem. 11, 445–450 (1946).Google Scholar
  135. Schiff, J. A.: Preliminary studies on the sulfur metabolism of Chlorella pyrenoidosa with sulfur-35. Plant Physiol. 31, Suppl. Proc. Plant Physiol. Meetings, vii (1956).Google Scholar
  136. Schweet, R. S., J. T. Holden and P. H. Lowy: The isolation and metabolism of the α-keto acid of lysine. In: Amino Acid Metabolism, pp. 496–505. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  137. Singer, T. P., and E. B. Kearney: Enzymatic pathways in the degradation of sulfur-containing amino acids. In: Amino Acid Metabolism, pp. 558–590. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  138. Slade, H. D.: The metabolism of citrulline by bacteria. In: Amino Acid Metabolism, pp. 321–334. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  139. Speck, J. F.: The enzymic synthesis of glutamine. J. of Biol. Chem. 168, 403–404 (1947).Google Scholar
  140. Sprinson, D. B.: The biosynthesis of shikimic acid from labeled carbohydrates. In: Amino Acid Metabolism, pp. 817–825. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  141. Srb, A. M., and N. H. Horowitz: The ornithine cycle in Neurospora and its genetic control. J. of Biol. Chem. 154, 129–139 (1944).Google Scholar
  142. Srinivasan, P. R.: Personal communication (1955).Google Scholar
  143. Srinivasan, P. R., M. Katagiri and D. B. Sprinson: The enzymatic synthesis of shikimic acid from d-erythrose-4-phosphate and phosphoenolpyruvate. J. Amer. Chem. Soc. 77, 4943–4944 (1955).CrossRefGoogle Scholar
  144. Srinivasan, P. R., and D. B. Sprinson: Conversion of d-erythrose-4-phosphate plus phosphoenolpyruvate to intermediates in shikimic acid formation. Federat. Proc. 15, 360 (1956).Google Scholar
  145. Stadtman, E. R., J. Katz and H. A. Barker: Cyanide-induced acetylation of amino acids by enzymes of Clostridium Kluyveri. J. of Biol. Chem. 195, 779–785 (1952).Google Scholar
  146. Stekol, J. A.: Synthetic pathways of methionine, cysteine, and threonine. In: Amino Acid Metabolism, pp. 509–557. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  147. Stetten, M. R.: Metabolic relationships between glutamic acid, proline, hydroxyproline, and ornithine. In: Amino Acid Metabolism, pp. 277–290. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  148. Stetten, M. R., and R. Schoenhéimer: The metabolism of l(—)proline studied with the aid of deuterium and isotopic nitrogen. J. of Biol. Chem. 153, 113–132 (1944).Google Scholar
  149. Steward, F. C., and J. F. Thompson: [1] Structure of asparagine. Nature (Lond.) 171, 1063–1064 (1953).CrossRefGoogle Scholar
  150. [2]
    Proteins and protein metabolism in plants. In: The Proteins II, part A, pp. 513–594. H. Neurath and K. Bailey, editors. New York: Academic Press, Inc. 1954.Google Scholar
  151. Strassman, M., L. A. Locke, A. J. Thomas and S. Weinhouse: [1] A study of leucine biosynthesis in Torulopsis utilis. Science (Lancaster, Pa.) 121, 303–304 (1955).Google Scholar
  152. [2]
    A study of leucine biosynthesis in Torulopsis utilis. J. Amer. Chem. Soc. 78, 1599–1602 (1956).Google Scholar
  153. Strassman, M., A. J. Thomas and S. Weinhouse: Valine biosynthesis in Torulopsis utilis. J. Amer. Chem. Soc. 75, 5135 (1953).CrossRefGoogle Scholar
  154. Strassman, M., and S. Weinhouse: Isotope studies on biosynthesis of valine and isoleucine. In: Amino Acid Metabolism, pp. 452–457. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  155. Strecker, H. J.: Glutamic dehydrogenase. Arch. of Biochem. a. Biophysics 46, 128–140 (1953).CrossRefGoogle Scholar
  156. Stumpf, P. K.: Glycolytic enzymes in higher plants. Annual Rev. Plant Physiol. 3, 17–34 (1952).CrossRefGoogle Scholar
  157. Tabor, H.: Degradation of histidine. In: Amino Acid Metabolism, pp. 373–390. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  158. Tatum, E. L., S. R. Gross, G. Ehrensvärd and L. Garnjobst: Synthesis of aromatic compounds by Neurospora. Proc. Nat. Acad. Sci. U.S.A. 40, 271–276 (1954).CrossRefGoogle Scholar
  159. Tatum, E. L., and D. Shemin Mechanism of tryptophan synthesis in Neurospora. J. of Biol. Chem. 209, 671–675 (1954).Google Scholar
  160. Teas, H. J., N. H. Horowitz and M. Fling: Homoserine as a precursor of threonine and methionine in Neurospora. J. of Biol. Chem. 172, 651–658 (1948).Google Scholar
  161. Towers, G. H. N., and F. C. Steward: The keto acids of the tulip (Tulipa gesneriana) with special reference to the keto analog of γ-methyleneglutamic acid. J. Amer. Chem. Soc. 76, 1959–1961 (1954).CrossRefGoogle Scholar
  162. Towers, G. H. N., J. F. Thompson and F. C. Steward: The detection of the keto acids of plants. A procedure based on their conversion to amino acids. J. Amer. Chem. Soc. 76, 2392–2396 (1954).CrossRefGoogle Scholar
  163. Umbarger, H. E.: Some observations on the biosynthetic pathway of isoleucine. In: Amino Acid Metabolism, pp. 442–451. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  164. Umbreit, W. W., W. A. Wood and I. C. Gunsalus: The activity of pyridoxal phosphate in tryptophane formation by cell-free enzyme preparations. J. of Biol. Chem. 165, 731–732 (1946).Google Scholar
  165. Varner, J. E., and G. C. Webster: Studies on the enzymatic synthesis of glutamine. Plant Physiol. 30, 393–402 (1955).PubMedCrossRefGoogle Scholar
  166. Vennesland, B., and E. E. Conn: Carboxylating enzymes in plants. Annual Rev. Plant Physiol. 3, 307–332 (1952).CrossRefGoogle Scholar
  167. Vickery, H. B., G. W. Pucher, R. Schoenhéimer and D. Rittenberg: [1] The metabolism of nitrogen in the leaves of the buckwheat plant. J. of Biol. Chem. 129, 791–792 (1939).Google Scholar
  168. [2]
    [2] The assimilation of ammonia nitrogen by the tobacco plant: A preliminary study with isotopic nitrogen. J. of Biol. Chem. 135, 531–539 (1940).Google Scholar
  169. Virtanen, A. I.: A new imino-acid in some Liliaceae. Nature (Lond.) 176, 984 (1955).CrossRefGoogle Scholar
  170. Virtanen, A. L, and M. Alfthan: New α-keto acids in green plants. Acta chem. scand. (Copenh.) 8, 1720–1721 (1954).CrossRefGoogle Scholar
  171. Virtanen, A. L, A. M. Berg and S. Kari: Formation of homoserine in germinating pea seeds. Acta chem. scand. (Copenh.) 7, 1423–1424 (1953).CrossRefGoogle Scholar
  172. Virtanen, A. L, P. Rintala and T. Laine: Decarboxylation of aspartic and glutamic acids. Nature (Lond.) 142, 674 (1938).CrossRefGoogle Scholar
  173. Virtanen, A. L, u. J. Tarnanen: Die enzymatische Spaltung und Synthese der Asparaginsäure. Biochem. Z. 250, 193–211 (1932).Google Scholar
  174. Vogel, H. J.: On the glutamate-proline-ornithine interrelation in various microorganisms. In: Amino Acid Metabolism, pp. 335–346. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  175. Vogel, H. J., and D. M. Bonner: On the glutamate-proline-ornithine interrelation in Neurospora crassa. Proc. Nat. Acad. Sci. U.S.A. 40 688–694 (1954).CrossRefGoogle Scholar
  176. Walker, J. B.: [1] Arginosuccinic acid from Chlorella. Proc. Nat. Acad. Sci. U.S.A. 38, 561–566 (1952).CrossRefGoogle Scholar
  177. [2]
    An enzymatic reaction between canavanine and fumarate. J. of Biol. Chem. 204, 139–146 (1953).Google Scholar
  178. Walker, J. B., and J. Myers: The formation of arginosuccinic acid from arginine and fumarate. J. of Biol. Chem. 203, 143–152 (1953).Google Scholar
  179. Webb, J. A., and L. Fowden: Changes in oxo acid concentrations during the growth of groundnut seedlings. Biochemic. J. 61, 1–4 (1955).Google Scholar
  180. Webster, G. C.: Enzymatic synthesis of glutamine in higher plants. Plant Physiol. 28, 724–727 (1953).PubMedCrossRefGoogle Scholar
  181. Webster, G. C., and J. E. Varner: [1] On the mechanism of the enzymatic synthesis of glutamine. J. Amer. Chem. Soc. 76, 633 (1954).CrossRefGoogle Scholar
  182. [2]
    Aspartate metabolism and asparagine synthesis in plant systems. J. of Biol. Chem. 215, 91–99 (1955).Google Scholar
  183. Weiss, U., C. Gilvarg, E. S. Mingioli and B. D. Davis: Aromatic biosynthesis. XI. The aromatization step in the synthesis of phenylalanine. Science (Lancaster, Pa.) 119, 774–775 (1954).Google Scholar
  184. Werle, E., U. S. Brüninghaus: Zur Kenntnis der Cysteinsäure- und der Glutaminsäure-Decarboxylase. Biochem. Z. 321, 492–499 (1951).PubMedGoogle Scholar
  185. Westley, J., and J. Ceithaml: Synthesis of histidine in E. coli. I. Biochemical mutant studies. Arch. of Biochem. a. Biophysics 60, 215–225 (1956).CrossRefGoogle Scholar
  186. Williams, V. R., and R. T. Mc Intyre: Preparation and partial purification of the aspartase of Bacterium cadaveris. J. of Biol. Chem. 217, 467–477 (1955).Google Scholar
  187. Wilson, L. G., and R. S. Bandurski: An ATP-sulfite reaction. Plant Physiol. 31, Suppl. Proc. Plant Physiol. Meetings, viii (1956).Google Scholar
  188. Work, E.: Some comparative aspects of lysine metabolism. In: Amino Acid Metabolism, pp. 462–492. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  189. Yamamoto, S., A. Eritate and T. Miwa: Urea formation in higher fungi. I. Urea content and arginase activity. Bot. Mag. (Tokyo) 66, 234–238 (1953).Google Scholar
  190. Yaniv, H., and C. Gilvarg: Aromatic biosynthesis. XIV. 5-dehydroshikimic reductase. J. of Biol. Chem. 213, 787–795 (1955).Google Scholar
  191. Yanofsky, C.: [1] Tryptophan desmolase of Neurospora. Partial purification and properties. J. of Biol. Chem. 194, 279–286 (1952).Google Scholar
  192. [2]
    Tryptophan and niacin synthesis in various organisms. In: Amino Acid Metabolism, pp. 930–939. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  193. [2]
    On the conversion of anthranilic acid to indole. Science (Lancaster, Pa.) 121, 138–139 (1955).Google Scholar
  194. Zacharius, R. M., J. F. Thompson and F. C. Steward: The detection, isolation and identification of (—) pipecolic acid as a constituent of plants. J. Amer. Chem. Soc. 74, 2949 (1952).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • W. D. Loomis

There are no affiliations available

Personalised recommendations