Skip to main content

The synthesis of amino acids in plants

  • Chapter
Der Stickstoffumsatz / Nitrogen Metabolism

Abstract

Amino acids, both in the free form and as constituents of protein, occupy a central position in the metabolism of all organisms, and the pathways of amino acid metabolism, as far as they are known, are for the most part quite similar from one organism to another. Instances of dissimilarity occur primarily in the ability or inability to synthesize a particular amino acid. Thus, while plants, animals and microorganisms utilize generally the same amino acids for protein synthesis and other metabolic functions, they differ greatly in synthetic capacity. Whereas the plant can produce all the amino acids it requires, animals and many microorganisms must obtain several of the amino acids preformed, in their food or culture medium. Unfortunately, since the biosynthesis of amino acids has received less attention in plants than in other organisms (the amides are a notable exception to this statement), it will be necessary in this review to draw heavily on findings from animals and microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Abelson, P. H.: Amino acid biosynthesis in Escherichia coli: isotopic competition with C14 glucose. J. of Biol. Chem. 206, 335–343 (1954).

    CAS  Google Scholar 

  2. Adams, E.: The enzymatic synthesis of histidine from histidinol. J. of Biol. Chem. 209, 829–846 (1954).

    CAS  Google Scholar 

  3. Adelberg, E. A.: [1] The biosynthesis of isoleucine, valine, and leucine. In: Amino Acid Metabolism, pp. 419 to 430. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  4. The biosynthesis of isoleucine and valine. III. Tracer experiments with L-threonine. J. of Biol. Chem. 216, 431–437 (1955).

    Google Scholar 

  5. Adelberg, E. A., C. A. Coughlin and R. W. Barratt: The biosynthesis of isoleucine and valine. II. Independence of the biosynthetic pathways in Neurospora. J. of Biol. Chem. 216, 425–430 (1955).

    CAS  Google Scholar 

  6. Adelberg, E. A., and H. E. Umbarger: Isoleucine and valine metabolism in Escherichia coli. V. α-ketoisovaleric acid accumulation. J. of Biol. Chem. 205, 475–482 (1953).

    CAS  Google Scholar 

  7. Adler, E., N. B. Das, H. V. Euler u. U. Heyman: Biologische Dehydrierung und Synthese der Glutaminsäure. C. r. Trav. Labor. Carlsberg, Sér. Chim. 22, 15–24 (1938).

    CAS  Google Scholar 

  8. Adler, E., G. Günther u. J. E. Everett: Über den enzymatischen Abbau und Aufbau der Glutaminsäure. IV. In Hefe. Hoppe-Seylers Z. 255, 27–35 (1938).

    Article  CAS  Google Scholar 

  9. Ames, B. N.: The biosynthesis of histidine. In: Amino Acid Metabolism, pp. 357–372. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  10. Ames, B. N., and H. K. Mitchell: The biosynthesis of histidine. Imidazoleglycerol phosphate, imidazoleacetol phosphate and histidinol phosphate. J. of Biol. Chem. 212, 687–696 (1955).

    CAS  Google Scholar 

  11. Anderson, D. G., H. A. Stafford, E. E. Conn and B. Vennesland: The distribution in higher plants of triphosphopyridine nucleotide-linked enzyme systems capable of reducing glutathione. Plant Physiol. 27, 675–684 (1952).

    Article  PubMed  CAS  Google Scholar 

  12. Archibald, R. M.: Chemical characteristics and physiological roles of glutamine. Chem. Rev. 37, 161–208 (1945).

    Article  PubMed  CAS  Google Scholar 

  13. Arregttin, B., J. Bonner and B. J. Wood: Studies on the mechanism of rubber formation in guayule. III. Experiments with isotopic carbon. Arch. of Biochem. a. Biophysics 31, 234–247 (1951).

    Article  Google Scholar 

  14. Axelrod, B., and R. S. Bandurski: Phosphoglyceryl kinase in higher plants. J. of Biol. Chem. 204, 939–948 (1953).

    CAS  Google Scholar 

  15. Axelrod, B., R. S. Bandurski, C. M. Greiner and R. Jang: The metabolism of hexose and pentose phosphates in higher plants. J. of Biol. Chem. 202, 619–634 (1953).

    CAS  Google Scholar 

  16. Axelrod, B., and R. Jang: Purification and properties of phosphoriboisomerase from alfalfa. J. of Biol. Chem. 209, 847–855 (1954).

    CAS  Google Scholar 

  17. Axelrod, B., P. Saltman, R. S. Bandurski and R. S. Baker: Phosphohexokinase in higher plants. J. of Biol. Chem. 197, 89–96 (1952).

    CAS  Google Scholar 

  18. Barnett, R. C., H. A. Stafford, E. E. Conn and B. Vennesland: Phosphogluconic dehydrogenase in higher plants. Plant Physiol. 28, 115–122 (1953).

    Article  PubMed  CAS  Google Scholar 

  19. Bassham, J. A., A. A. Benson, L. D. Kay, A. Z. Harris, A. T. Wilson and M. Calvin: The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Amer. Chem. Soc. 76, 1760–1770 (1954).

    Article  CAS  Google Scholar 

  20. Beaudreau, G. S., and L. F. Remmert: Krebs cycle activity of particles from bean seedlings. Arch. of Biochem. a. Biophysics 55, 469–485 (1955).

    Article  CAS  Google Scholar 

  21. Beevers, H.: An l-glutamic acid decarboxylase from barley. Biochemic. J. 48, 132–137 (1951).

    CAS  Google Scholar 

  22. Berg, A. M., S. Kari, M. Alfthan and A. I. Virtanen: Homoserine and α-aminoadipic acid in green plants. Acta chem. scand. (Copenh.) 8, 358 (1954).

    Article  CAS  Google Scholar 

  23. Berg, A. M., and A. I. Virtanen: Additional note on α-aminopimelic acid in green plants. Acta chem. scand. (Copenh.) 8, 1725 (1954).

    Article  CAS  Google Scholar 

  24. Berger, J., and G. S. Avery jr.: Glutamic and isocitric acid dehydrogenase in the Avena coleoptile and the effect of auxins on these enzymes. Amer. J. Bot. 31, 11–19 (1944).

    Article  CAS  Google Scholar 

  25. Black, S., and N. M. Gray: Enzymic phosphorylation of l-aspartate. J. Amer. Chem. Soc. 75, 2271–2272 (1953).

    Article  CAS  Google Scholar 

  26. Black, S., and N. G. Wright: [1] Intermediate steps in the biosynthesis of threonine. In: Amino Acid Metabolism, pp. 591 to 600. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  27. β-aspartokinase and β-aspartyl phosphate. J. of Biol. Chem. 213, 27–38 (1955).

    Google Scholar 

  28. Aspartic β-semialdehyde dehydrogenase and aspartic β-semialdehyde. J. of Biol. Chem. 213, 39–50 (1955).

    Google Scholar 

  29. Homoserine dehydrogenase. J. of Biol. Chem. 213, 51–60 (1955).

    Google Scholar 

  30. Bonner, D.: Production of biochemical mutations in Pénicillium. Amer. J. Bot. 33, 788–791 (1946).

    Article  CAS  Google Scholar 

  31. Bonner, J., and A. Millerd: Oxidative phosphorylation by plant mitochondria. Arch. of Biochem. a. Biophysics 42, 135–148 (1953).

    Article  CAS  Google Scholar 

  32. Boyer, P. D., O. J. Koeppe and W. W. Luchsinger: Direct oxygen transfer in enzymic syntheses coupled to adenosine triphosphate degradation. J. Amer. Chem. Soc. 78, 356–357 (1956).

    Article  CAS  Google Scholar 

  33. Boyer, P. D., O. J. Koeppe, W. W. Luchsinger and A. B. Falcone: Mechanisms of participation of ATP in enzymic syntheses. Federat. Proc. 14, 185 (1955).

    Google Scholar 

  34. Broquist, H. P., and E. E. Snell: Studies of the mechanism of histidine synthesis in lactic acid bacteria. J. of Biol. Chem. 180, 59–71 (1949).

    CAS  Google Scholar 

  35. Brummond, D. O., and R. H. Burris: Reactions of the tricarboxylic acid cycle in green leaves. J. of Biol. Chem. 209, 755–765 (1954).

    CAS  Google Scholar 

  36. Cantoni, G. L.: Considerations of homocysteine and its role in the metabolism of S-amino acids. In: Amino Acid Metabolism, pp. 601–607. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  37. Cohen, G. N., M. L. Hirsch, S. B. Wiesendanger et B. Nisman: Précisions sur la synthèse de l-thréonine á partir d’acide l-aspartique par des extraits de Escherichia coli. C. r. Acad. Sci. Paris 238, 1746–1748 (1954).

    PubMed  CAS  Google Scholar 

  38. Cohen, P. P.: Nitrogen metabolism of amino acids. In: Chemical Pathways of Metabolism, vol. 2, pp. 1–46. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.

    Google Scholar 

  39. Conn, E. E., and L. C. T. Young: Oxidative phosphorylation in lupine mitochondria. Federat. Proc. 14, 195–196 (1955).

    Google Scholar 

  40. Coon, M. J., W. G. Robinson and B. K. Bachhawat: Enzymatic studies on the biological degradation of the branched chain amino acids. In: Amino Acid Metabolism, pp. 431–441. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  41. Damodaran, M., and K. R. Nair: Glutamic acid dehydrogenase from germinating seeds. Biochemic. J. 32, 1064–1074 (1938).

    CAS  Google Scholar 

  42. Davis, B. D.: Biosynthesis of the aromatic amino acids. In: Amino Acid Metabolism, pp. 799–811. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  43. Davison, D. C., and W. H. Elliott: Enzymic reaction between arginine and fumarate in plant and animal tissues. Nature (Lond.) 169, 313–314 (1952).

    Article  CAS  Google Scholar 

  44. Denes, G.: [1] Die enzymatische Synthese des Glutamins in Lupinus albus. Experientia (Basel) 9, 24–25 (1953).

    Article  CAS  Google Scholar 

  45. [2] Glutamine synthetase: its steriospecificity and changes induced by activating ions. Biochim. et Biophysica Acta 15, 296–297 (1954).

    Article  Google Scholar 

  46. Denes, G., and Zs. Gazda: Untersuchungen über die enzymatische Synthese der Säureamid- und Peptidbindung. I. Die enzymatische Synthese von Glutamin in Lupinus albus. Acta physiol. Acad. Sci. Hung. 4, 1–12 (1953).

    Article  CAS  Google Scholar 

  47. Dewey, D. L., D. S. Hoare and E. Work: Diaminopimelic acid decarboxylase in cells and extracts of Escherichia coli and Aerobacter aerogenes. Biochemic. J. 58, 523–531 (1954).

    CAS  Google Scholar 

  48. Eberts jr., F. S., R. H. Burris and A. J. Riker: The metabolism of nitrogenous compounds by sunflower crown gall tissue cultures. Plant Physiol. 29, 1–10 (1954).

    Article  PubMed  CAS  Google Scholar 

  49. Ehrensvärd, G., L. Reio, E. Saluste and R. Stjernholm: Acetic acid metabolism in Torulopsis utilis. III. Metabolic connection between acetic acid and various amino acids. J. of Biol. Chem. 189, 93–108 (1951).

    Google Scholar 

  50. Ellfolk, N.: [1] Studies on aspartase. III. On the specificity of aspartase. Acta chem. scand. (Copenh.) 8, 151–156 (1954).

    Article  CAS  Google Scholar 

  51. Studies on aspartase. IV. On the effect of pH on aspartase. Acta chem. scand. (Copenh.) 8, 443–448 (1954).

    Google Scholar 

  52. Elliott, W. H.: [1] Studies on the enzymic synthesis of glutamine. Biochemie. J. 49, 106–112 (1951).

    CAS  Google Scholar 

  53. Isolation of glutamine synthetase and glutamo-transferase from green peas. J. of Biol. Chem. 201, 661–672 (1953).

    Google Scholar 

  54. Evstigneeva, Z. G., i V. L. Kretovich: Difference in structure and chemical properties of asparagine and glutamine. Dokl. Akad. Nauk SSSR. 93, 1069–1072 (1953). Cited from Chem. Abstr. 48, 4602i (1954).

    PubMed  CAS  Google Scholar 

  55. Fincham, J. R. S.: [1] Mutant strains of Neurospora deficient in animating ability. J. of Biol. Chem. 182, 61–73 (1950).

    CAS  Google Scholar 

  56. The occurrence of glutamic dehydrogenase in Neurospora and its apparent absence in certain mutant strains. J. Gen. Microbiol. 5, 793–806 (1951).

    Google Scholar 

  57. Transaminases in Neurospora crassa. Nature (Lond.) 168, 957–958 (1951).

    Google Scholar 

  58. Fowden, L.: [1] The nitrogen metabolism of groundnut plants: the role of γ-methyleneglutamine and γ-methyleneglutamic acid. Ann. of Bot., N. S. 18, 417–440 (1954).

    Google Scholar 

  59. The enzymic decarboxylation of γ-methyleneglutamic acid by plant extracts. J. of Exper. Bot. 5, 28–36 (1954).

    Google Scholar 

  60. [3] Azetidine-2-carboxylic acid: A new constituent of plants. Nature (Lond.) 176, 347–348 (1955).

    Article  Google Scholar 

  61. Fowden, L., and J. Done: The enzymatic decarboxylation of γ-methyleneglutamic acid. Biochemic. J. 53, xxxi–xxxii (1953).

    CAS  Google Scholar 

  62. Gibbs, M.: The respiration of the pea plant. Oxidation of hexose phosphate and pentose phosphate by cell-free extracts of pea leaves. Plant Physiol. 29, 34–39 (1954).

    Article  PubMed  CAS  Google Scholar 

  63. Gibbs, M., and B. L. Horecker: The mechanism of pentose phosphate conversion to hexose monophosphate. II. With pea leaf and pea root preparations. J. of Biol. Chem. 208, 813–820 (1954).

    CAS  Google Scholar 

  64. Gilvarg, C.: Prephenic acid and the aromatization step in the synthesis of phenylalanine. In: Amino Acid Metabolism, pp. 812–816. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  65. Greenberg, D. M.: [1] Synthetic processes involving amino acids. In: Chemical Pathways of Metabolism, vol.2, pp. 113–147. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.

    Google Scholar 

  66. Metabolism of sulfur-containing compounds. In: Chemical Pathways of Metabolism, vol.2, pp. 149–171. D. M. Greenberg, editor. New York: Academic Press, Inc. 1954.

    Google Scholar 

  67. Grisolia, S., and R. O. Marshall: Recent advances in citrulline biosynthesis. In: Amino Acid Metabolism, pp. 258 to 276. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  68. Grobbelaar, N., and F. C. Steward: Pipecolic acid in Phaseolus vulgaris: Evidence on its derivation from lysine. J. Amer. Chem. Soc. 75, 4341–4343 (1953).

    Article  CAS  Google Scholar 

  69. Hasse, K., U. H. W. Schumacher: Das Reaktionsprodukt der Decarboxylierung von 1-Glutaminsäure mittels pflanzlicher Decarboxylase. Chem. Ber. 83, 68–71 (1950).

    Article  CAS  Google Scholar 

  70. Hattori, S., S. Yoshtda and M. Hasegawa: Occurrence of shikimic acid in the leaves of gymnosperms. Physiol. Plantarum (Copenh.) 7, 283–289 (1954).

    Article  CAS  Google Scholar 

  71. Hirsch, M. L., and G. N. Cohen: Mise en évidence d’un système synthétisant la l-homosérine à partir de l’acide l-aspartique. Biochim. et Biophysica Acta 15, 560–567 (1954).

    Article  CAS  Google Scholar 

  72. Horecker, B. L., and P. Z. Smyrniotis: Purification and properties of yeast transaldolase. J. of Biol. Chem. 212, 811–825 (1955).

    CAS  Google Scholar 

  73. Horecker, B. L., P. Z. Smyrniotis, H. H. Hiatt and P. A. Marks: Tetrose phosphate and the formation of sedoheptulose diphosphate. J. of Biol. Chem. 212, 827–836 (1955).

    CAS  Google Scholar 

  74. Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulose phosphate from pentose phosphate. J. of Biol. Chem. 205, 661–682 (1953).

    CAS  Google Scholar 

  75. Horowitz, N. H.: [1] Methionine synthesis in Neurospora. The isolation of cystathionine. J. of Biol. Chem. 171, 255–264 (1947).

    CAS  Google Scholar 

  76. Discussion. In: Amino Acid Metabolism, pp. 631–632. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  77. Johnston, J. A., D. W. Racusen and J. Bonner: The metabolism of isoprenoid precursors in a plant system. Proc. Nat. Acad. Sci. U.S.A. 40, 1031–1037 (1954).

    Article  CAS  Google Scholar 

  78. Jones, M. E., L. Spector and F. Lipmann: Carbamyl phosphate, the carbamyl donor in enzymatic citrulline synthesis. J. Amer. Chem. Soc. 77, 819–820 (1955).

    Article  CAS  Google Scholar 

  79. Kalan, E. B., and P. R. Srintvasan: Synthesis of 5-dehydroshikimic acid from carbohydrates in a cell-free extract. In: Amino Acid Metabolism, pp. 826–830. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  80. Kasting, R., and C. C. Delwiche: Ornithine, citrulline, arginine interconversions in higher plants. Plant Physiol. 30, “Supplement“, Proc. Plant Physiol. Meetings xxviii (1955).

    Google Scholar 

  81. King, F. E., T. J. King and A. J. Warwick: The chemistry of extractives from hardwoods. Part III. Baikiain, an amino acid present in Baikiaea plurijuga. J. Chem. Soc. (Lond.) 1950, 3590–3597 (1950).

    Article  Google Scholar 

  82. Kleipool, R. J. C., and J. P. Wibaut: Mimosine (Leucaenine). 5th communication. Rec. trav. chim. Pays-Bas 69, 37–44 (1950).

    Article  CAS  Google Scholar 

  83. Korzenovsky, M.: Metabolism of arginine and citrulline by bacteria. In: Amino Acid Metabolism, pp. 309–320. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  84. Kowalsky, A., C. Wyttenbach, L. Langer and D. E. Koshland jr.: Transfer of oxygen in the glutamine synthetase reaction. J. of Biol. Chem. 219, 719–725 (1956).

    CAS  Google Scholar 

  85. Krebs, H. A.: Oxidation of amino acids. In: The Enzymes, vol.2, parti, pp. 499–535. J. B. Sumner and K. Myrbäck, editors. New York: Academic Press, Inc. 1951.

    Google Scholar 

  86. Krebs, H. A., u. K. Henseleit: Untersuchungen über die Harnstoffbildung im Tierkörper. Hoppe-Seylers Z. 210, 33–66 (1932).

    Article  CAS  Google Scholar 

  87. Leach, S. J., and H. Lindley: Structure of asparagine. Nature (Lond.) 171, 1062–1063 (1953).

    Article  CAS  Google Scholar 

  88. Levintow, L., and A. Meister: [1] Enzymatic synthesis of d-glutamine and related hydroxamic acids. J. Amer. Chem. Soc. 75, 3039–3040 (1953).

    Article  CAS  Google Scholar 

  89. Reversibility of the enzymatic synthesis of glutamine; with appendix by M. F. Morales. J. of Biol. Chem. 209, 265–280 (1954).

    Google Scholar 

  90. γ-Glutamyl phosphate. Federat. Proc. 15, 299 (1956).

    Google Scholar 

  91. Levy, L., and M. J. Coon: [1] The role of formate in the biosynthesis of histidine. J. of Biol. Chem. 192, 807–815 (1951).

    CAS  Google Scholar 

  92. Biosynthesis of histidine from radioactive acetate and glucose. J. of Biol. Chem. 208, 691–700 (1954).

    Google Scholar 

  93. Liverman, J. L., and J. B. Ragland: Metabolism of sulfur-35 in the Alaska pea. Plant Physiol. 31, Suppl. Proc. Plant Physiol. Meetings, vii–viii (1956).

    Google Scholar 

  94. Lowy, P. H.: The conversion of lysine to pipecolic acid by Phaseolus vulgaris. Arch. of Biochem. a. Biophysics 47, 228–229 (1953).

    Article  CAS  Google Scholar 

  95. Maas, W. K., G. D. Novelle and F. Lipmann: Acetylation of glutamic acid by extracts of Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 39, 1004–1008 (1953).

    Article  CAS  Google Scholar 

  96. Mac Vicar, R., and R. H. Burris: Studies on nitrogen metabolism in tomato with use of isotopically labeled ammonium sulfate. J. of Biol. Chem. 176, 511–516 (1948).

    CAS  Google Scholar 

  97. Mc Manus, I. R.: The biosynthesis of valine by Saccharomyces cerevisiae. J. of Biol. Chem. 208, 639–644 (1954).

    CAS  Google Scholar 

  98. Meiss, A. N.: The formation of asparagine in etiolated seedlings of Lupinus albus L. Connecticut Agricult. Exper. Stat. Bull. 553 (1952).

    Google Scholar 

  99. Meister, A.: [1] Studies on the mechanism and specificity of the glutamine-α-keto acid transamination-deamidation reaction. J. of Biol. Chem. 210, 17–35 (1954).

    CAS  Google Scholar 

  100. [2] General reactions of amino acids. In: Amino Acid Metabolism, pp. 3–32. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  101. Metabolism of glutamine. Physiologic. Rev. 36, 103–127 (1956).

    Google Scholar 

  102. Meister, A., and P. E. Fraser: Enzymatic formation of L-asparagine by transamination. J. of Biol. Chem. 210, 37–43 (1954).

    CAS  Google Scholar 

  103. Miettinen, J. K., and A. I. Virtanen: Nitrogen metabolism of the alder (Alnus). The absence of arginase and presence of glutamic acid decarboxylase. Acta chem. scand. (Copenh.) 7, 289–296 (1953).

    Article  CAS  Google Scholar 

  104. Miller, A., and H. Waelsch: Enzymatic hydroxamic acid formation from aspartic acid. Federat. Proc. 12, 246–247 (1953).

    Google Scholar 

  105. Mitsuhashi, S., and B. D. Davis: [1] Aromatic biosynthesis. XII. Conversion of 5-dehydroquinic acid to 5-dehydroshikimic acid by 5-dehydroquinase. Biochim. et Biophysica Acta 15, 54–61 (1954).

    Article  CAS  Google Scholar 

  106. Aromatic biosynthesis. XIII. Conversion of quinic acid to 5-dehydroquinic acid by quinic dehydrogenase. Biochim. et Biophysica Acta 15, 268–280 (1954).

    Google Scholar 

  107. Morrison, J. F.: Enzymatic mechanisms in the respiration of rhubarb leaves. Austral. J. Exper. Biol. a. Med. Sci. 28, 311–320 (1950).

    Article  CAS  Google Scholar 

  108. Morrison, R. I.: The isolation of l-pipecolinic acid from Trifolium repens. Biochemic. J. 53, 474–478 (1953).

    CAS  Google Scholar 

  109. Myers, J. W., and E. A. Adelberg: The biosynthesis of isoleucine and valine. I. Enzymatic transformation of the dihydroxy acid precursors to the keto acid precursors. Proc. Nat. Acad. Sci. U.S.A. 40, 493–499 (1954).

    Article  CAS  Google Scholar 

  110. Nisman, B., G. N. Cohen, S. B. Wiesendanger and M. L. Hirsch: Transformation de l’acide aspartique en homosérine et en thréonine par des extraits de Escherichia coli. C. r. Acad. Sci. Paris 238, 1342–1344 (1954).

    PubMed  CAS  Google Scholar 

  111. Oginsky, E. L.: Mechanisms of arginine and citrulline breakdown in microorganisms. In: Amino Acid Metabolism, pp. 300–308. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  112. Okunuki, K.: [1] Über ein neues Enzym Glutamino-carboxylase. Bot. Mag. (Tokyo) 51, 270–278 (1937).

    Google Scholar 

  113. Über den Gaswechsel der Pollen. III. Weitere Untersuchungen über die Dehydrasen aus den Pollenkörnern. Acta phytochim. (Tokyo) 11, 65–80 (1939).

    Google Scholar 

  114. Über die Wirkungsgruppe der Glutaminocarboxylase und ihre Hemmungskörper. Acta phytochim. (Tokyo) 13, 155–159 (1943).

    Google Scholar 

  115. Racusen, D. W., and S. Aronoff: Metabolism of soybean leaves. VI. Exploratory studies in protein metabolism. Arch. of Biochem. a. Biophysics 51, 68–78 (1954).

    Article  CAS  Google Scholar 

  116. Radhakrishnan, A. N., and K. V. Giri: The isolation of allo-hydroxy-l-proline from sandal (Santalum album L.). Biochemic. J. 58, 57–61 (1954).

    CAS  Google Scholar 

  117. Rafelson jr., M. E.: Conversion of radioactive glucose and acetate to tryptophan by Aerobacter aerogenes. J. of Biol. Chem. 213, 479–486 (1955).

    CAS  Google Scholar 

  118. Ragland, J. B., and J. L. Liverman: A reinvestigation of the sulfur auxotrophs of Neurospora. Plant Physiol. 31, Suppl. Proc. Plant Physiol. Meetings, viii (1956).

    Google Scholar 

  119. Ratner, S.: [1] Urea synthesis and metabolism of arginine and citrulline. Adv. Enzymol. 15, 319–387 (1954).

    CAS  Google Scholar 

  120. Arginine metabolism and interrelationships between the citric acid and urea cycles. In: Amino Acid Metabolism, pp. 231–257. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  121. Rautanen, N.: On the formation of amino acids and amides in green plants. Acta chem. scand. (Copenh.) 2, 127–139 (1948).

    Article  CAS  Google Scholar 

  122. Reed, D. J., B. E. Christensen, V. H. Cheldelin and C. H. Wang: Biosynthesis of leucine in bakers’ yeast. J. Amer. Chem. Soc. 76, 5574–5575 (1954).

    Article  CAS  Google Scholar 

  123. Manuscript in preparation (1956).

    Google Scholar 

  124. Reiss, O., and K. Bloch: Studies on leucine biosynthesis in yeast. J. of Biol. Chem. 216, 703–712 (1955).

    CAS  Google Scholar 

  125. Rogers, B. J.: Oxidation and decarboxylation of amino acids by squash preparations. Plant Physiol. 30, 186–187 (1955).

    Article  PubMed  CAS  Google Scholar 

  126. Rothstein, M., and L. L. Miller: The conversion of lysine to pipecolic acid in the rat. J. of Biol. Chem. 211, 851–858 (1954).

    CAS  Google Scholar 

  127. Rudman, D., and A. Meister: Transamination in Escherichia coli. J. of Biol. Chem. 200, 591–604 (1953).

    CAS  Google Scholar 

  128. Rudney, H.: The synthesis of β-hydroxy-β-methylglutaric acid in rat liver homogenates. J. Amer. Chem. Soc. 76, 2595–2596 (1954).

    Article  CAS  Google Scholar 

  129. Saito, V., O. Cano-Corona and R. Pepinsky: X-ray examination of molecular configuration of asparagine in crystalline l-asparagine monohydrate. Science (Lancaster, Pa.) 121, 435–436 (1955).

    CAS  Google Scholar 

  130. Saltman, P.: Hexokinase in higher plants. J. of Biol. Chem. 200, 145–154 (1953).

    CAS  Google Scholar 

  131. Schales, O.: Amino acid decarboxylases. In: The Enzymes, vol.2, part 2, pp. 216–247. J. B. Sumner and K. Myrbäck, editors. New York: Academic Press Inc. 1951.

    Google Scholar 

  132. Schales, O., V. Mims and S. S. Schales: Glutamic acid decarboxylase of higher plants. I. Distribution; preparation of clear solutions; nature of prosthetic group. Arch. of Biochem. 10, 455–465 (1946).

    CAS  Google Scholar 

  133. Schales, O., and S. S. Schales: [1] Glutamic acid decarboxylase of higher plants. II. pH-activity curve, reaction kinetics, inhibition by hydroxylamine. Arch. of Biochem. 11, 155–166 (1946).

    CAS  Google Scholar 

  134. Glutamic acid decarboxylase of higher plants. III. Enzymatic determination of l(+)-glutamic acid. Arch. of Biochem. 11, 445–450 (1946).

    Google Scholar 

  135. Schiff, J. A.: Preliminary studies on the sulfur metabolism of Chlorella pyrenoidosa with sulfur-35. Plant Physiol. 31, Suppl. Proc. Plant Physiol. Meetings, vii (1956).

    Google Scholar 

  136. Schweet, R. S., J. T. Holden and P. H. Lowy: The isolation and metabolism of the α-keto acid of lysine. In: Amino Acid Metabolism, pp. 496–505. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  137. Singer, T. P., and E. B. Kearney: Enzymatic pathways in the degradation of sulfur-containing amino acids. In: Amino Acid Metabolism, pp. 558–590. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  138. Slade, H. D.: The metabolism of citrulline by bacteria. In: Amino Acid Metabolism, pp. 321–334. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  139. Speck, J. F.: The enzymic synthesis of glutamine. J. of Biol. Chem. 168, 403–404 (1947).

    CAS  Google Scholar 

  140. Sprinson, D. B.: The biosynthesis of shikimic acid from labeled carbohydrates. In: Amino Acid Metabolism, pp. 817–825. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  141. Srb, A. M., and N. H. Horowitz: The ornithine cycle in Neurospora and its genetic control. J. of Biol. Chem. 154, 129–139 (1944).

    CAS  Google Scholar 

  142. Srinivasan, P. R.: Personal communication (1955).

    Google Scholar 

  143. Srinivasan, P. R., M. Katagiri and D. B. Sprinson: The enzymatic synthesis of shikimic acid from d-erythrose-4-phosphate and phosphoenolpyruvate. J. Amer. Chem. Soc. 77, 4943–4944 (1955).

    Article  CAS  Google Scholar 

  144. Srinivasan, P. R., and D. B. Sprinson: Conversion of d-erythrose-4-phosphate plus phosphoenolpyruvate to intermediates in shikimic acid formation. Federat. Proc. 15, 360 (1956).

    Google Scholar 

  145. Stadtman, E. R., J. Katz and H. A. Barker: Cyanide-induced acetylation of amino acids by enzymes of Clostridium Kluyveri. J. of Biol. Chem. 195, 779–785 (1952).

    CAS  Google Scholar 

  146. Stekol, J. A.: Synthetic pathways of methionine, cysteine, and threonine. In: Amino Acid Metabolism, pp. 509–557. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  147. Stetten, M. R.: Metabolic relationships between glutamic acid, proline, hydroxyproline, and ornithine. In: Amino Acid Metabolism, pp. 277–290. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  148. Stetten, M. R., and R. Schoenhéimer: The metabolism of l(—)proline studied with the aid of deuterium and isotopic nitrogen. J. of Biol. Chem. 153, 113–132 (1944).

    CAS  Google Scholar 

  149. Steward, F. C., and J. F. Thompson: [1] Structure of asparagine. Nature (Lond.) 171, 1063–1064 (1953).

    Article  Google Scholar 

  150. Proteins and protein metabolism in plants. In: The Proteins II, part A, pp. 513–594. H. Neurath and K. Bailey, editors. New York: Academic Press, Inc. 1954.

    Google Scholar 

  151. Strassman, M., L. A. Locke, A. J. Thomas and S. Weinhouse: [1] A study of leucine biosynthesis in Torulopsis utilis. Science (Lancaster, Pa.) 121, 303–304 (1955).

    CAS  Google Scholar 

  152. A study of leucine biosynthesis in Torulopsis utilis. J. Amer. Chem. Soc. 78, 1599–1602 (1956).

    Google Scholar 

  153. Strassman, M., A. J. Thomas and S. Weinhouse: Valine biosynthesis in Torulopsis utilis. J. Amer. Chem. Soc. 75, 5135 (1953).

    Article  CAS  Google Scholar 

  154. Strassman, M., and S. Weinhouse: Isotope studies on biosynthesis of valine and isoleucine. In: Amino Acid Metabolism, pp. 452–457. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  155. Strecker, H. J.: Glutamic dehydrogenase. Arch. of Biochem. a. Biophysics 46, 128–140 (1953).

    Article  CAS  Google Scholar 

  156. Stumpf, P. K.: Glycolytic enzymes in higher plants. Annual Rev. Plant Physiol. 3, 17–34 (1952).

    Article  Google Scholar 

  157. Tabor, H.: Degradation of histidine. In: Amino Acid Metabolism, pp. 373–390. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  158. Tatum, E. L., S. R. Gross, G. Ehrensvärd and L. Garnjobst: Synthesis of aromatic compounds by Neurospora. Proc. Nat. Acad. Sci. U.S.A. 40, 271–276 (1954).

    Article  CAS  Google Scholar 

  159. Tatum, E. L., and D. Shemin Mechanism of tryptophan synthesis in Neurospora. J. of Biol. Chem. 209, 671–675 (1954).

    CAS  Google Scholar 

  160. Teas, H. J., N. H. Horowitz and M. Fling: Homoserine as a precursor of threonine and methionine in Neurospora. J. of Biol. Chem. 172, 651–658 (1948).

    CAS  Google Scholar 

  161. Towers, G. H. N., and F. C. Steward: The keto acids of the tulip (Tulipa gesneriana) with special reference to the keto analog of γ-methyleneglutamic acid. J. Amer. Chem. Soc. 76, 1959–1961 (1954).

    Article  CAS  Google Scholar 

  162. Towers, G. H. N., J. F. Thompson and F. C. Steward: The detection of the keto acids of plants. A procedure based on their conversion to amino acids. J. Amer. Chem. Soc. 76, 2392–2396 (1954).

    Article  CAS  Google Scholar 

  163. Umbarger, H. E.: Some observations on the biosynthetic pathway of isoleucine. In: Amino Acid Metabolism, pp. 442–451. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  164. Umbreit, W. W., W. A. Wood and I. C. Gunsalus: The activity of pyridoxal phosphate in tryptophane formation by cell-free enzyme preparations. J. of Biol. Chem. 165, 731–732 (1946).

    CAS  Google Scholar 

  165. Varner, J. E., and G. C. Webster: Studies on the enzymatic synthesis of glutamine. Plant Physiol. 30, 393–402 (1955).

    Article  PubMed  CAS  Google Scholar 

  166. Vennesland, B., and E. E. Conn: Carboxylating enzymes in plants. Annual Rev. Plant Physiol. 3, 307–332 (1952).

    Article  Google Scholar 

  167. Vickery, H. B., G. W. Pucher, R. Schoenhéimer and D. Rittenberg: [1] The metabolism of nitrogen in the leaves of the buckwheat plant. J. of Biol. Chem. 129, 791–792 (1939).

    CAS  Google Scholar 

  168. [2] The assimilation of ammonia nitrogen by the tobacco plant: A preliminary study with isotopic nitrogen. J. of Biol. Chem. 135, 531–539 (1940).

    Google Scholar 

  169. Virtanen, A. I.: A new imino-acid in some Liliaceae. Nature (Lond.) 176, 984 (1955).

    Article  CAS  Google Scholar 

  170. Virtanen, A. L, and M. Alfthan: New α-keto acids in green plants. Acta chem. scand. (Copenh.) 8, 1720–1721 (1954).

    Article  CAS  Google Scholar 

  171. Virtanen, A. L, A. M. Berg and S. Kari: Formation of homoserine in germinating pea seeds. Acta chem. scand. (Copenh.) 7, 1423–1424 (1953).

    Article  CAS  Google Scholar 

  172. Virtanen, A. L, P. Rintala and T. Laine: Decarboxylation of aspartic and glutamic acids. Nature (Lond.) 142, 674 (1938).

    Article  CAS  Google Scholar 

  173. Virtanen, A. L, u. J. Tarnanen: Die enzymatische Spaltung und Synthese der Asparaginsäure. Biochem. Z. 250, 193–211 (1932).

    CAS  Google Scholar 

  174. Vogel, H. J.: On the glutamate-proline-ornithine interrelation in various microorganisms. In: Amino Acid Metabolism, pp. 335–346. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  175. Vogel, H. J., and D. M. Bonner: On the glutamate-proline-ornithine interrelation in Neurospora crassa. Proc. Nat. Acad. Sci. U.S.A. 40 688–694 (1954).

    Article  CAS  Google Scholar 

  176. Walker, J. B.: [1] Arginosuccinic acid from Chlorella. Proc. Nat. Acad. Sci. U.S.A. 38, 561–566 (1952).

    Article  CAS  Google Scholar 

  177. An enzymatic reaction between canavanine and fumarate. J. of Biol. Chem. 204, 139–146 (1953).

    Google Scholar 

  178. Walker, J. B., and J. Myers: The formation of arginosuccinic acid from arginine and fumarate. J. of Biol. Chem. 203, 143–152 (1953).

    CAS  Google Scholar 

  179. Webb, J. A., and L. Fowden: Changes in oxo acid concentrations during the growth of groundnut seedlings. Biochemic. J. 61, 1–4 (1955).

    CAS  Google Scholar 

  180. Webster, G. C.: Enzymatic synthesis of glutamine in higher plants. Plant Physiol. 28, 724–727 (1953).

    Article  PubMed  CAS  Google Scholar 

  181. Webster, G. C., and J. E. Varner: [1] On the mechanism of the enzymatic synthesis of glutamine. J. Amer. Chem. Soc. 76, 633 (1954).

    Article  CAS  Google Scholar 

  182. Aspartate metabolism and asparagine synthesis in plant systems. J. of Biol. Chem. 215, 91–99 (1955).

    Google Scholar 

  183. Weiss, U., C. Gilvarg, E. S. Mingioli and B. D. Davis: Aromatic biosynthesis. XI. The aromatization step in the synthesis of phenylalanine. Science (Lancaster, Pa.) 119, 774–775 (1954).

    CAS  Google Scholar 

  184. Werle, E., U. S. Brüninghaus: Zur Kenntnis der Cysteinsäure- und der Glutaminsäure-Decarboxylase. Biochem. Z. 321, 492–499 (1951).

    PubMed  CAS  Google Scholar 

  185. Westley, J., and J. Ceithaml: Synthesis of histidine in E. coli. I. Biochemical mutant studies. Arch. of Biochem. a. Biophysics 60, 215–225 (1956).

    Article  CAS  Google Scholar 

  186. Williams, V. R., and R. T. Mc Intyre: Preparation and partial purification of the aspartase of Bacterium cadaveris. J. of Biol. Chem. 217, 467–477 (1955).

    CAS  Google Scholar 

  187. Wilson, L. G., and R. S. Bandurski: An ATP-sulfite reaction. Plant Physiol. 31, Suppl. Proc. Plant Physiol. Meetings, viii (1956).

    Google Scholar 

  188. Work, E.: Some comparative aspects of lysine metabolism. In: Amino Acid Metabolism, pp. 462–492. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  189. Yamamoto, S., A. Eritate and T. Miwa: Urea formation in higher fungi. I. Urea content and arginase activity. Bot. Mag. (Tokyo) 66, 234–238 (1953).

    CAS  Google Scholar 

  190. Yaniv, H., and C. Gilvarg: Aromatic biosynthesis. XIV. 5-dehydroshikimic reductase. J. of Biol. Chem. 213, 787–795 (1955).

    CAS  Google Scholar 

  191. Yanofsky, C.: [1] Tryptophan desmolase of Neurospora. Partial purification and properties. J. of Biol. Chem. 194, 279–286 (1952).

    CAS  Google Scholar 

  192. Tryptophan and niacin synthesis in various organisms. In: Amino Acid Metabolism, pp. 930–939. W. D. Mc Elroy and B. Glass, editors. Baltimore: Johns Hopkins Press 1955.

    Google Scholar 

  193. On the conversion of anthranilic acid to indole. Science (Lancaster, Pa.) 121, 138–139 (1955).

    Google Scholar 

  194. Zacharius, R. M., J. F. Thompson and F. C. Steward: The detection, isolation and identification of (—) pipecolic acid as a constituent of plants. J. Amer. Chem. Soc. 74, 2949 (1952).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Loomis, W.D. (1958). The synthesis of amino acids in plants. In: Allen, E.K., et al. Der Stickstoffumsatz / Nitrogen Metabolism. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94733-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94733-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94734-6

  • Online ISBN: 978-3-642-94733-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics