Advertisement

Oxime und Hydroxylamin als Zwischenstufen der Assimilation von NO3 und NH4

  • Niilo Rautanen
Chapter
  • 226 Downloads
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 8)

Zusammenfassung

Der überwiegende Teil der Forscher ist heute der Ansicht, daß bei der Assimilation der verschiedenen Formen des Stickstoffs durch die Pflanzen das Ammoniak als aktive Zwischenstufe eine Hauptrolle spielt. Kleine Mengen von Ammoniak sind immer in den Pflanzenorganismen enthalten und zwar unabhängig von der Stickstoffnahrung. Die enzymatischen Systeme und die Vorgänge bei der Assimilation des Ammoniak sind wohlbekannt. Die oxydierten Formen des inorganischen Stickstoffs werden zu Ammoniak reduziert. Bei dieser Totalreduktion des Nitrats sind salpetrige Säure (HNO2), untersalpetrige Säure (H2N2O2) und Hydroxylamin (NH2OH) die möglichen Zwischenstufen (vgl. Chibnall 1939, Vanecko und Frear 1955).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aso, K., M. Migita and T. Ihda: The metabolism of nitrogen utilization by Azotobacter. Soü Sci. 48, 1–8 (1939).CrossRefGoogle Scholar
  2. Benson, A. A., and M. Calvin: Carbon dioxide fixation by green plants. Annual Rev. Plant Physiol. 1, 25–42 (1950).CrossRefGoogle Scholar
  3. Blom, J.: Empfindliche und spezifische Reaktionen auf Nitrat und Hydroxylamin. Ber. dtsch. chem. Ges. 59, 121–135 (1926).CrossRefGoogle Scholar
  4. Zum Nachweis von Hydroxylamin. Biochem. Z. 194, 385–391 (1928).Google Scholar
  5. Borek, E., N. Grossowicz and H. Waelsch: The effect of hydroxylamine on the metabolism of glutamine and asparagine. Arch. of Biochem. 31, 273–277 (1951).CrossRefGoogle Scholar
  6. Chibnall, A. C.: Protein metabolism in the plant. New Haven, Conn.: Yale Univ. Press 1939.Google Scholar
  7. Cohen, G. N., et G. Cohen-Bazire: Couplage oxydo-reducteur des deux réactions: fumarate-oxalacetate et hydroxylamine-ammoniac. C. r. Acad. Sci. Paris 227, 873–875 (1948).Google Scholar
  8. Cohen-Bazire, G., and G. N. Cohen: Direct transformation of fumarate to oxalacetate without intermediate formation of malate by Cl. saccharcbutyricum. Biochemie. J. 45, 41–45 (1949).Google Scholar
  9. Csaky, T. Z.: On the estimation of bound hydroxylamine in biological materials. Acta chem. scand. (Copenh.) 2, 450–454 (1948).CrossRefGoogle Scholar
  10. Delwiche, C. C., W. D. Loomis and P. K. Stumpf: Amide metabolism in higher plants. Arch, of Biochem. 33, 333–338 (1951).CrossRefGoogle Scholar
  11. Eggleton, W. G. E.: The assimilation of inorganic nitrogenous salts including sodium nitrite by grass plant. Biochemie. J. 29, 1389–1397 (1935).Google Scholar
  12. Elliott, W. H.: Adenosine-triphosphate in glutamine synthesis. Nature (Lond.) 161, 128–129 (1948).CrossRefGoogle Scholar
  13. Studies on the enzymic synthesis of glutamine. Biochemie. J. 49, 106–112 (1951).Google Scholar
  14. Isolation of glutamine synthetase and glutamotransferase from green peas. J. of Biol. Chem. 201, 661–672 (1953).Google Scholar
  15. Elliott, W. H., and E. F. Gale: Glutamine-synthetising svstem of Staphylococcus aureus. Nature (Lond.) 161, 129–130 (1948).CrossRefGoogle Scholar
  16. Endues, G.: Über ein Zwischenprodukt der N2-Assimilation. Naturwiss. 22, 662 (1934).CrossRefGoogle Scholar
  17. Zur Kenntnis der Stickstoffassimilierenden Bakterien. II. Liebigs Ann. 518, 109–126 (1935).Google Scholar
  18. Endres, G., u. L. Kaufmann: Zur Kenntnis der stickstoffassimilierenden Bakterien. III. Liebigs Ann. 535, 1–16 (1938).CrossRefGoogle Scholar
  19. Evans, H. J., and N. S. Hall: Association of molybdenum with nitrate reductase from soybean leaves. Science (Lancaster, Pa.) 122, 922 (1955).Google Scholar
  20. Evans, H. J., and A. Nason: Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol. 28, 233–254 (1953).PubMedCrossRefGoogle Scholar
  21. Grossowicz, N., E. Wainfan, E. Borek and H. Waelsch: The enzymatic formation of hydroxamic acids from glutamine and asparagine. J. of Biol. Chem. 187, 111 (1950).Google Scholar
  22. Haba, G. L. de la: Studies on the mechanism of nitrate assimilation in Neurospora. Science (Lancaster, Pa.) 112, 203–204 (1950).Google Scholar
  23. Hanes, C. S., F. J. R. Hird and F. A. Isherwood: Synthesis of peptides in enzymic reactions involving glutathione. Nature (Lond.) 166, 288–292 (1950).CrossRefGoogle Scholar
  24. Hoffmann, C.: Über Hydroxamsäuren. Ber. dtsch. chem. Ges. 22, 2854–2856 (1889).CrossRefGoogle Scholar
  25. Johnston, R. B., M. J. Mycek and J. S. Fruton: Catalysis of transamidation reactions by proteolytic enzymes. J. of Biol. Chem. 185, 629–641 (1950).Google Scholar
  26. James, W. O.: The use of respiratory inhibitors. Annual Rev. Plant Physiol. 4, 59–90 (1953).CrossRefGoogle Scholar
  27. Kaplan, N. O., and M. M. Ciotti: Competitive inhibition of hydroxylamine on alcohol dehydrogenase. J. of Biol. Chem. 201, 785–794 (1953).Google Scholar
  28. Direct evidence for a diphosphopyridine nucleotide-hydroxylamine complex with horse liver alcohol dehydrogenase. J. of Biol. Chem. 211, 431–445 (1954).Google Scholar
  29. Keilin, D., and E. F. Hartree: On some properties of catalase haematin. Proc. Roy. Soc. Lond., Ser. B 121, 173–191 (1937).CrossRefGoogle Scholar
  30. Klausmeier, R. E., and R. C. Bard: Ammonium dehydrogenase. J. Bacter. 68, 129 (1954).Google Scholar
  31. Lascelles, J., and J. L. Still: The reduction of nitrate, nitrite and hydroxylamine by E. coli. Austral. J. Exper. Biol. a. Med. Sci. 24, 159–167 (1946).CrossRefGoogle Scholar
  32. Lemoigne, M., P. Monqutllon et R. Desveaux: Réduction de l’acide nitreux en hydroxylamine par les végétaux supérieurs. Rôle de l’acide ascorbique. C. r. Acad. Sci. Paris 204, 1841 (1937a).Google Scholar
  33. Nouveaux résultats sur la présence de composés volatils de l’hydroxylamine dans les feuilles fraiches de végétaux supérieurs. Bull. Soc. Chim. biol. Paris 19, 671 (1937b).Google Scholar
  34. Sur la réduction des nitrites par le Sterigmatocystis nigra. C. r. Soc. Biol. Paris 127, 1403 (1938).Google Scholar
  35. Lewis. P. R., and C. N. Hinshelwood: The growth of conform bacteria in media containing nitrate and nitrite. Chem. Soc. J. 1948, 824–845.Google Scholar
  36. Lindsey, G. A., and C. M. Rhines: The production of hydroxylamine by the reduction of nitrates and nitrites by various pure cultures of bacteria. J. Bacter. 24, 489–492 (1932).Google Scholar
  37. Loomis, W. E.: Photosynthesis in green plants. The enzymes, Vol. II, part 2, p. 1052–1073. New York: Acad. Press 1952.Google Scholar
  38. Maurer, K.: Über die biochemische Überführung von Oximino-Brenztraubensäure in Alanin. Biochem. Z. 189, 216–219 (1927).Google Scholar
  39. Meyer, V., u. A. Janny: Über eine neue Bildungsweise der α-Nitrosopropionsäure und die Wirkungsweise des Hydroxylamins. Ber. dtsch. chem. Ges. 15, 1525–1529 (1882).CrossRefGoogle Scholar
  40. Meyer, V., u. E. Schulze: Über die Einwirkungen von Hydroxylaminsalzen auf Pflanzen. Ber. dtsch. chem. Ges. 17, 1554–1558 (1884).CrossRefGoogle Scholar
  41. Nason, A., R. G. Abraham and B. C. Averbach: The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides. Biochim. et Biophysica Acta 15, 160–161 (1954).CrossRefGoogle Scholar
  42. Nason, A., and H. J. Evans: Triphosphopyridine nucleotide-nitrate reductase in Neurospora. J. of Biol. Chem. 202, 655–673 (1953).Google Scholar
  43. Nicholas, D. J. D., and A. Nason: Mechanism of action of nitrate reductase from Neurospora. J. of Biol. Chem. 211, 183–197 (1954).Google Scholar
  44. Nord, F. F., and R. P. Mull: Recent progress in the biochemistry of Fusaria. Adv. Enzymol. 5, 165–205 (1945).Google Scholar
  45. Novak, R., and P. W. Wilson: The utilization of nitrogen in hydroxylamine and oximes by Azotobacter vinelandii. J. Bacter. 55, 517–524 (1948).Google Scholar
  46. Pearsall, W. H., and M. C. Billimoria: Losses of nitrogen from green plants. Biochemie J. 31, 1743–1750 (1937).Google Scholar
  47. Pirschle, K.: Biologische Beobachtungen über Hefewachstum mit besonderer Berücksichtigung von Nitrat als Stickstoffquelle. Biochem. Z. 218, 412–444 (1930).Google Scholar
  48. Rautanen, N.: On the formation of amino acids and amides in green plants. Acta chem. scand. (Copenh.) 2, 127–139 (1948a).CrossRefGoogle Scholar
  49. On the synthesis of the first amino acids in green plants. Ann. Acad. Sci. fenn., Ser. A, II. Chem. No 33, 1–62 (1948b).Google Scholar
  50. Rider, B. F., and M. G. Mellon: Colorimetric determination of nitrites. Industr. Engin. Chem., Anal. Ed. 18, 96–99 (1946).CrossRefGoogle Scholar
  51. Schou, M., N. Grossowicz, A. Lajtha and H. Waelsch: Enzymatic formation of glutamohydroxamic acid from glutamine in mammalian tissue. Nature (Lond.) 167, 818–819 (1951).CrossRefGoogle Scholar
  52. Silver, W. S., and W. D. Mc Elroy: Enzyme studies on nitrate and nitrite mutants of Neurospora. Arch. of Biochem. 51, 379–394 (1954).CrossRefGoogle Scholar
  53. Steinberg, R. A.: Effects of nitrogen compounds and trace elements on growth of Aspergillus niger. J. Agricult. Res. 59, 731–748 (1939). Growth of tobacco seedlings with nitrate and its reduction products. Plant Physiol. 28, 752–754 (1953).Google Scholar
  54. Steward, F. C., and H. E. Street: The nitrogenous constituents of plants. Ann. Rev. Biochem. 16, 471–502 (1947).PubMedCrossRefGoogle Scholar
  55. Stokes, J. L., J. W. Foster and C. R. Woodward: Synthesis of pyridoxin by a pyridoxinless x-ray mutant of Neurospora. Arch. of Biochem. 2, 235–245 (1943).Google Scholar
  56. Strauss, B. S.: Studies on the vitamin B6-requiring pH sensitive mutants of Neurospora. Arch. of Biochem. 30, 292–305 (1951).Google Scholar
  57. Street, H. E.: Nitrogen metabolism of higher plants. Adv. Enzymol. 9, 391–454 (1949).Google Scholar
  58. Stumpf, P. K.: Phosphate assimilation in higher plants. Phosphorus metabolism, Vol. II, p. 29–67. Baltimore: The Johns Hopkins Press 1952.Google Scholar
  59. Stumpf, P. K., and W. D. Loomis: Observations on a plant amide enzyme system requiring manganese and phosphate. Arch. of Biochem. 25, 451–453 (1950).Google Scholar
  60. Stumpf, P. K., W. D. Loomis and C. Michelson: Amide metabolism in higher plants. Arch. of Biochem. 30, 126–137 (1951).Google Scholar
  61. Taniguchi, S., H. Mitsui, K. Nakamura and F. Egami: Hydroxylamine reductase. Biochemistry of nitrogen. Ann. Acad. Sci. fenn., Ser. A, II, No 60, 200–215 (1955).Google Scholar
  62. Taniguchi, S., H. Mitsui, J. Toyoda, T. Yamada and F. Egami: The successive reduction from nitrate to ammonia by cell-free bacterial enzyme systems. J. of Biochem. (Tokyo) 40, 175–185 (1953).Google Scholar
  63. Tolbert, N. E., and R. H. Burris: Light activation of the plant enzyme which oxidizes glycolic acid. J. of Biol. Chem. 186, 791–804 (1950).Google Scholar
  64. Vanecko, S., and S. Frear: A study of the metabolism of possible intermediates of nitrate reduction in higher plants. Proc. Plant Physiol. Meetings. Plant Physiol. 30, Suppl., 26 (1955).Google Scholar
  65. Vertanen, A. I.: Biological nitrogen fixation. Ann. Rev. Microbiol. 2, 485–506 (1948).CrossRefGoogle Scholar
  66. Vertanen, A. I., and A. A. Arhimo: Formation of amino acids in green plants with nitrate as N-source. Suomen Kemistil., Ser. B 12, 24 (1939).Google Scholar
  67. Vertanen, A. I., A. A. Arhimo, J. Sundman U. L. Jännes: Vorkommen und Bedeutung der Oxalessigsäure in grünen Pflanzen. J. prakt. Chem. 162, 71–90 (1943).CrossRefGoogle Scholar
  68. Vertanen, A. I., and A.-M. Berg: Enzymatic hydrolysis and synthesis of benzhydroxamic acid. Acta chem. scand. (Copenh.) 5, 909–920 (1951).CrossRefGoogle Scholar
  69. Virtanen, A. I., and T. Z. Csaky: Formation of oxime nitrogen in Torula yeast fed with potassium nitrate. Nature (Lond.) 161, 814–815 (1948).CrossRefGoogle Scholar
  70. Virtanen, A. I., and H. Järvinen: On the formation of bound hydroxylamine in Azotobacter. Acta chem. scand. (Copenh.) 5, 220–226 (1951).CrossRefGoogle Scholar
  71. Virtanen, A. I., and T. Laine: Investigations on the root nodule bacteria of leguminous plants. Biochemic. J. 33, 412–427 (1939).Google Scholar
  72. Vertanen, A. I., H. Linkola, M. Hakala and N. Rautanen: Glutamic acid among the excretion products of leguminous root nodules. Suomen Kemistil., Ser. B 19, 83–84 (1946).Google Scholar
  73. Virtanen, A. L, J. K. Miettinen and H. Kunttu: Keto-acids in green plants. Acta chem. scand. (Copenh.) 7, 38–44 (1953).CrossRefGoogle Scholar
  74. Vertanen, A. L, and N. Rautanen: Nitrogen assimilation. The Enzymes, Vol. II, part 2, p. 1089–1130. New York: Acad. Press 1952.Google Scholar
  75. Vertanen, A. I., and N.-E. Saris: Organic hydroxylamine compounds formed from nitrite in Torulopsis utilis. Acta chem. scand. (Copenh.) 9, 337–338 (1955).CrossRefGoogle Scholar
  76. Vertanen, A. L, and S. Saubert-v. Hausen: Dependence of nitrate reduction in green plants on reducing substances. Acta chem. scand. (Copenh.) 5, 638–642 (1951).CrossRefGoogle Scholar
  77. Vishniac, W., and S. Ochoa: Fixation of carbon dioxide coupled to photochemical reduction of pyridine nucleotides by chloroplast preparations. J. of Biol. Chem. 195, 75–93 (1952).Google Scholar
  78. Waelsch, H.: Glutamic acid and cerebral function. Adv. Protein Chem. 6, 299–341 (1951).PubMedCrossRefGoogle Scholar
  79. Certain aspects of intermediary metabolism of glutamine, asparagine and glutathione. Adv. Enzymol. 13, 237–319 (1952).Google Scholar
  80. Waelsch, H., P. Owades, E. Borek, N. Grossowicz and M. Schou: The enzyme catalyzed exchange of ammonia with the amide group of glutamine and asparagine. Arch. of Biochem. 27, 237–239 (1950).Google Scholar
  81. Waelsch, H., and D. Rittenberg: Glutathione. J. of Biol. Chem. 139, 761–774 (1941).Google Scholar
  82. Webster, G. C.: Enzymatic synthesis of glutamine in higher plants. Plant Physiol. 28, 724–727 (1953).PubMedCrossRefGoogle Scholar
  83. Webster, G. C., and J. E. Varner: Aspartate metabolism and asparagine synthesis in plant systems. J. of Biol. Chem. 215, 91–99 (1955).Google Scholar
  84. Wilson, P. W., and R. H. Burris: The mechanism of biological nitrogen fixation. Bacter. Rev. 11, 41–74 (1947).Google Scholar
  85. Wirth, J. C., and F. F. Nord: Essential steps in the enzymatic breakdown of hexoses and pentoses. Interaction between dehydrogenation and fermentation. Arch. of Biochem. 1, 143–163 (1943a).Google Scholar
  86. The mechanism of enzyme action. Intermediary phases in the enzymatic breakdown of d, l-alanine by Fusarium lini Bolley. Arch. of Biochem. 2, 463–468 (1943 b). Wood, J. G.: Nitrogen metabolism of higher plants. Annual Rev. Plant Physiol. 4, 1–22 (1953).Google Scholar
  87. Wood, J. G., and M. R. Hone: Studies on the nitrogen metabolism of plants. Austral. J. Sci. Res. B 1, 163–175 (1948).Google Scholar
  88. Wood, J. G., M. R. Hone, M. E. Mattner and C. P. Symons: Studies on the nitrogen metabolism of plants. Austral. J. Sci. Res. B 1, 38–49 (1948).Google Scholar
  89. Woods, D. D.: Reduction of nitrate to ammonia by Clostridium welchii. Biochemie. J. 32, 2000–2012 (1938).Google Scholar
  90. Yamagata, S.: Biological reductions. Nitrate reductase and a new nitrite reductase from Bacillus pyocyaneus. Acta phytochim. (Tokyo) 11, 145–157 (1939).Google Scholar
  91. Zelitch, I.: Oxidation and reduction of glycolic and glyoxylic acids. J. of Biol. Chem. 201, 719–726 (1953).Google Scholar
  92. Zucker, M., and A. Nason: Enzymatic reduction of hydroxylamine to ammonia by reduced pyridine nucleotides. Federat. Proc. 13, 328 (1954).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Niilo Rautanen

There are no affiliations available

Personalised recommendations