Advertisement

Zusammenfassung

Einleitung. Alle in den pflanzlichen Organismen vorkommenden körpereigenen Stoffe und auch mancherlei Ausscheidungsprodukte sind organische C-Verbindungen, deren Kohlenstoff letzten Endes dem CO2 entstammt, welches die autotrophe Pflanze photosynthetisch oder chemosynthetisch zu reduzieren vermag. Dabei wird ein Großteil der eingesetzten Energie in den entstehenden Reduktionsprodukten deponiert, die in der Regel Kohlenhydratnatur haben. Neben diesen, den pflanzlichen Assimilationsstoffwechsel beherrschenden Vorgängen spielt der Einbau des CO2 in organische C-Verbindungen (Dunkelfixierung), wie er durch die Wood-Werkman-Reaktion und ähnliche Vorgänge zustande kommt, selbst bei den heterotrophen Pflanzen nur eine unbedeutende Rolle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abelson., P. H.: Amino acid biosynthesis in Escherichia coli.: isotopic competition with glucose. J. of Biol. Chem. 206., 335–343 (1954).Google Scholar
  2. Adelberg., E. A.: The biosynthesis of isoleucine, valine, and leucine. In: Amino Acid Metabolism, p. 419–430. W. D. Mcelroy. and B. Glass., editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  3. — The biosynthesis of isoleucine and valine. III. Tracer experiments with L-threonine. J. of Biol. Chem. 216., 431–437 (1955).Google Scholar
  4. Ames., B. N.: The biosynthesis of histidine. In: Amino Acid Metabolism, p. 357 bis 372. W. D. Mcelroy. and B. Glass., editors. Baltimore: Johns Hopkins Press 1955.Google Scholar
  5. Anderson., D. G., H.A. Stafford., E. E. Conn. and B. Vennesland.: The distribution in higher plants of triphosphopyridine nucleotide-linked enzyme systems capable of reducing glutathione. Plant Physiol. 27., 675–684 (1952).PubMedCrossRefGoogle Scholar
  6. Appleby., C. A., and R. K. Morton.: Crystalline cytochrome and lactic dehydrogenase of yeast. Nature (Lond.) 173., 749–752 (1954).CrossRefGoogle Scholar
  7. Arnon., D. J.: Glyceraldehyde phosphate dehydrogenase of green plants. Science (Lancaster, Pa.) 116., 635–637 (1952).Google Scholar
  8. Arreguin., B., and J. Bonner.: The biochemistry of rubber formation in the guayule. II. Rubber formation in aseptic tissue cultures. Arch. of Biochem. 26., 178–186 (1950).Google Scholar
  9. Asnis., R. E., and A. F. Brodie.: A glycerol dehydrogenase from Escherichia coli.. J. of Biol. Chem. 203., 153–159 (1953).Google Scholar
  10. Axelrod., B., and R. S. Bandurski.: Oxidative metabolism of hexose phosphates by higher plants. Federat. Proc. 11., 182 (1952).Google Scholar
  11. Axelrod., B., R. S. Bandurski., C. M. Greiner. and R. Jang.: The metabolism of hexose and pentose phosphates in higher plants. J. of Biol. Chem. 202., 619–634 (1953).Google Scholar
  12. Axelrod., B., and H. Beevers.: Mechanisms of carbohydrate breakdown in plants. Annual Rev. Plant Physiol. 7., 267–298 (1956).CrossRefGoogle Scholar
  13. Axelrod., B., and R. Jang.: Purification and properties of phosphoriboisomerase from alfalfa. J. of Biol. Chem. 209., 847–855 (1954).Google Scholar
  14. Axelrod., B., P. Saltman., B. S. Bandurski. and R. S. Baker.: Phos-phohexokinase in higher plants. J. of Biol. Chem. 197., 89–96 (1952).Google Scholar
  15. Bandurski., R. S., and C. M. Greiner.: The enzymatic synthesis of oxalacetate from phosphoryl-enol pyruvate and carbon dioxide. J. of Biol. Chem. 204., 781–786 (1953).Google Scholar
  16. Barnett., R.C, H.A. Stafford., E. E. Conn. and B. Vennesland.: Phosphoglueonic dehydrogenase in higher plants. Plant Physiol. 28., 115–122 (1953).PubMedCrossRefGoogle Scholar
  17. Barron., E. S. G., G. K. K. Link., R. M. Klein. and B. E. Michel.: The metabolism of potato slices. Arch. of Biochem. 28., 377–398 (1950).Google Scholar
  18. Beevers., H., and M. Gibbs.: Participation of the oxidative pathway in yeast respiration. Nature (Lond.) 173., 640–641 (1954).CrossRefGoogle Scholar
  19. — Position of C14 in alcohol and carbon dioxide formed from labeled glucose by corn root tips. Plant Physiol. 29., 318–321 (1954).Google Scholar
  20. — The direct oxidation pathway in plant respiration. Plant Physiol. 29., 322–324 (1954).Google Scholar
  21. Berg., P.: Participation of adenyl-acetate in the acetate-activating system. J. Amer. Chem. Soc. 77., 3163–3164 (1955).CrossRefGoogle Scholar
  22. Bergmann., W.: The plant sterols. Annual Rev. Plant Physiol. 4., 383–426 (1953).CrossRefGoogle Scholar
  23. Black., S., and N. G.Wright.: yβ-Aspartokinase and β-aspartyl phosphate. J. of Biol. Chem. 213., 27–38 (1955).Google Scholar
  24. — Aspartie;β-semialdehyde dehydrogenase and aspartic β-semialdehyde. J. of Biol. Chem. 213., 39–50 (1955).Google Scholar
  25. Bloch., K.: The biological synthesis of cholesterol. Recent Progr. in Hormone Res. 6., 111–129 (1951).Google Scholar
  26. Bonner., J.: Biochemical mechanisms in the respiration of the Avena. coleoptile. Arch. of Biochem. 17., 311–326 (1948).Google Scholar
  27. Bonner., J., M. W. Parker. and J. C. Monter-moso.: Biosynthesis of rubber. Science (Lancaster, Pa.) 120., 549–551 (1954).Google Scholar
  28. Bonner., J., and S. G. Wildman.: Enzymatic mechanisms in the respiration of spinach leaves. Arch. of Biochem. 10., 497–517 (1946).Google Scholar
  29. Brodie., A. F., and F. Lipmann.: The enzymatic formation and hydrolysis of D-glucono-δ-lacton. Bacter. Proc. 1954., 107–108.Google Scholar
  30. — Identification of a gluconolactonase. J. of Biol. Chem. 212., 677–685 (1955).Google Scholar
  31. Brown., A. H.: The effects of light on respiration using isotopically enriched oxygen. Amer. J. Bot. 40., 719–729 (1953).CrossRefGoogle Scholar
  32. Brown., S.A., and A. C. Neish.: The biosynthesis of cell wall carbohydrates. Glucose-C14as a cellulose precursor in wheat plants. Canad. J. Biochem. a. Physiol. 32., 170–177 (1954).CrossRefGoogle Scholar
  33. Brummond., D. O., and R. H. Burris.: Reactions of the tricarboxylic acid cycle in green leaves. J. of Biol. Chem. 209., 755–765 (1954).Google Scholar
  34. Bücher., T.: Systeme des Energietransportes in der lebendigen Substanz. Angew. Chem. 62., 256–262 (1950).CrossRefGoogle Scholar
  35. Burton., R. M., and N.O.Kaplan.: A DPN specific glycerol dehydrogenase from Aerobacter aerogenes.. J. Amer. Chem. Soc. 75., 1005–1006 (1953).CrossRefGoogle Scholar
  36. Caputto., R., L. F. Leloir., R. E. Trucco., C. E. Cardini. and A. C. Paladini.: A coenzyme for phosphoglucomutase. Arch. of Biochem. 18., 201–203 (1948).Google Scholar
  37. Cardini., C. E.: Activation of plant phosphoglucomutase. Enzymologia (Den Haag) 15., 44–48 (1951).Google Scholar
  38. Clayton., R. B., and K. Bloch.: Biological synthesis of lanosterol and agnosterol. J. of Biol. Chem. 218., 305–319 (1956).Google Scholar
  39. Cohen., G.N., M. L. Hirsch., S. B. Wiesendanger. et B. Nisman.: Précisions sur la synthèse de L-thréonine a partir d’acide L-aspartique par des extraits de Escherichia coli.. C. r. Acad. Sci. Paris 238., 1746–1748 (1954).PubMedGoogle Scholar
  40. Coon., M. J., W. G. Robinson. and B. K. Bachhawat.: Enzymatic studies on the biological degradation of the branched chain amino acids. In: Amino Acid Metabolism, p. 431–441. Edit. by W. D. Mcelroy. and B. Glass.. Baltimore: Johns Hopkins Press 1955.Google Scholar
  41. Cori., O., and F. Lipmann.: The primarv oxidation product of enzymatic glucose-6-phosphate oxidation. J. of Biol. Chem. 194., 417–425 (1952).Google Scholar
  42. Davis., B.D.: Biosynthesis of the aromatic amino acids. In: Amino Acid Metabolism, p. 799–811. Edit. by W. D. Mcelroy. and B. Glass.. Baltimore: Johns Hopkins Press 1955.Google Scholar
  43. Dedonder., R., et C. Noblesse.: Déshydrogénases du glucose-6-phosphate et de l’acide 6-phosphogluconique chez B. subtilis. et B. megatherium.. Ann. Inst. Pasteur 85., 71–87 (1953).Google Scholar
  44. De la. Haba., G., J. G. Leder. and E. Racker.: Enzymatic formation of ribulose-5-phosphate from “active aldehyde” and triose phosphate. Federat. Proc. 12., 194 (1953).Google Scholar
  45. De.Moss., R. D., B. C. Bard. and I. C. Gunsalus.: The mechanism of the heterolactic fermentation: A new route of ethanol formation. J. Bacter. 62., 499–511 (1951).— De. Moss., R. D., and M. Gibbs.: Mechanism of ethanol formation by Pseudomonas lindneri.. Bacter. Proc. 1952., 146.Google Scholar
  46. De. Moss., R. D., I. C. Gunsalus. and R. C. Bard.: A glucose-6-phosphate dehydrogenase in Leuconostoc mesenteroides.. J. Bacter. 66., 10–16 (1953).Google Scholar
  47. Dickens., F.: Mechanism of carbohydrate oxidation. Nature (Lond.) 138., 1057 (1936).CrossRefGoogle Scholar
  48. — Oxidation of phosphohexonate and pentose phosphoric acids by yeast enzymes. I. Oxidation of phosphohexonate. II. Oxidation of pentose phosphoric acids. Biochemic. J. 32.,1626–1644 (1938).Google Scholar
  49. — Yeast fermentation of pentosephosphoric acids. Biochemic. J. 32., 1645–1653 (1938).Google Scholar
  50. Dolin., M. J.: The DPN-H oxidizing enzymes of Streptococcus faecalis.. II. The enzymes utilizing oxygen, cytochrom c, peroxide or 2, 6-dichloro-phenolindophenol or ferri-cyanide as oxidants. Arch. of Biochem. a. Biophysics 1955.Google Scholar
  51. Ehrensvärd., G., L. Reio., E. Saluste. and R. Stjernholm.: Acetic acid metabolism in Torulopsis utilis.. III. Metabolic connection between acetic acid and various amino acids. J. of Biol. Chem. 189., 93–108 (1951).Google Scholar
  52. Entner., N., and M. Doudoroff.: Glucose and gluconic acid oxidation of Pseudomonas saccharophila.. J. of Biol. Chem. 196., 853–862 (1952).Google Scholar
  53. Erkama., J., and A. J. Virtanen.: Aspartase. In: The Enzymes, vol. I, p. 1244 bis 1249. Edit. by J. B. Sumner. and K. Myrbäck.. 1951.Google Scholar
  54. Eschrich., W.: Ein Beitrag zur Kenntnis der Kailose. Planta (Berl.) 44., 532–542 (1954).CrossRefGoogle Scholar
  55. — Kailose. (Ein kritischer Sammelbericht.) Protoplasma (Wien) 47., 487–530 (1956).Google Scholar
  56. Fincham., J. R. S.: Transaminases in Neurospora crassa.. Nature (Lond.) 168., 957–958 (1951).CrossRefGoogle Scholar
  57. — Ornithine transaminase in Neurospora. and its relation to the biosynthesis of proline. Biochemic. J. 53., 313–320 (1953).Google Scholar
  58. Förster., TH.: Energiewanderung und Fluoreszenz. Naturwiss. 33., 166–175 (1946).CrossRefGoogle Scholar
  59. Gibbs., M.: Triosephosphate dehydrogenase and glucose-6-phosphate dehydrogenase in the pea plant. Nature (Lond.) 170., 164 (1952).CrossRefGoogle Scholar
  60. — Effect of light intensity on the distribution of C14 in sunflower leaf metabolites during photosynthesis. Arch. of Biochem. a. Biophysics 45, 156–160 (1953).Google Scholar
  61. — The respiration of the pea plant. Oxidation of hexose phosphate and pentose phosphate by cell-free extracts of pea leaves. Plant Physiol. 29., 34–39 (1954).Google Scholar
  62. — TPN triosephosphate dehydrogenase from plant tissue. In: Methods in Enzymology, vol. I, p. 411–415. Edit. by S. P. Colowick. and N. O. Kaplan.. New York, N. Y.: Academic Press Inc. 1955.Google Scholar
  63. Gibbs., M., and H. Beevers.: Glucose dissimilation in the higher plant. Effect of age tissue. Plant Physiol. 30., 343–347 (1955).PubMedCrossRefGoogle Scholar
  64. Goddard., D. R., and J. O. Meeuse.: Respiration of higher plants. Annual Rev. Plant Physiol. 1., 207–232 (1950).CrossRefGoogle Scholar
  65. Green., D.E.: Enzymes in metabolic sequences. In: Chemical pathways of metabolism, vol.1, p. 27–65. Edit. by D. M. Greenberg.. 1954.Google Scholar
  66. Gunsalus., I. C: The chemistry and function of the pyruvate oxidation factor (lipoic acid). J. Cellul. a. Comp. Physiol. 41., Suppl., 113–136 (1952).CrossRefGoogle Scholar
  67. Gunsalus., I. C, and M. Gibbs.: The heterolactic fermentation. II. Position of C14 in the products of glucose dissimilation by Leuconostoc mesen-teroides.. J. of Biol. Chem. 194., 871–875 (1952).Google Scholar
  68. Gunsalus., I. C, B. L. Horecker. and W. A. Wood.: Pathways of carbohydrates metabolism in microorganisms. Bacter. Rev. 19., 79–128 (1955).Google Scholar
  69. Haagen.-Smit., A. J.: The biogenesis of terpenes. Annual Rev. Plant Physiol. 4., 305–324 (1953).CrossRefGoogle Scholar
  70. Hanahan., D. J., and J. L. Chaikoff.: The phosphorus containing lipids of the carrot. J. of Biol. Chem. 168., 233–239 (1947).Google Scholar
  71. Hanes., C. S.: The breakdown and synthesis of starch by an enzyme system from pea seeds. Proc. Roy. Soc. Lond., Ser. B 128., 421–450 (1940).CrossRefGoogle Scholar
  72. Hawthorne., J. N., and E. Chargaff.: A study of inositol-containing lipids. J. of Biol. Chem. 206., 27–37 (1954).Google Scholar
  73. Holzer., H.: Acetyl-Coenzym A und andere S-Acyl-Verbindungen bei der Energieausnutzung in der lebenden Zelle. Angew. Chem. 64., 248–253 (1952).CrossRefGoogle Scholar
  74. Horecker., B. L., and P. Z. Smyrniotis.: Phosphogluconic acid dehydrogenase from yeast. J. of Biol. Chem. 193., 371–381 (1951).Google Scholar
  75. Horecker., B. L., P. Z. Smyrniotis. and H. Klenow.: The formation of sedoheptulose phosphate from pentose phosphate. J. of Biol. Chem. 205., 661–682 (1953).Google Scholar
  76. Horecker., B. L., P. Z. Smyrniotis. and J. E. Seegmiller.: The enzymatic conversion of 6-phosphogluconate to ribulose-5-phosphate and ribose-5-phosphate. J. of Biol. Chem. 193., 383–396 (1951).Google Scholar
  77. James., W.O.: Alkaloids in plants. In: The alkaloides. Chemistry and physiology. By R. H. F. Manske. and H. L. Holmes., vol. I. New York: Academic Press 1950.Google Scholar
  78. Jones., M. E., L. Spector. and F. Lipmann.: Carbamylphosphate, the carbamyldonor in enzymatic citrulline synthesis. J. Amer. Chem. Soc. 77., 819–820 (1955).CrossRefGoogle Scholar
  79. Kalan., F. B., and P. B. Srinivasan.: Synthesis of 5-dehydroshikimic acid from carbohydrates in a cell-free extract. In: Amino acid metabolism, p. 826–830. Edit. by W. D. Mcelroy. and B. Glass.. Baltimore: Johns Hopkins Press 1955.Google Scholar
  80. Kalckah., H., and H. Klenow.: Nonoxidative and nonproteolytic enzymes. Biosynthesis and metabohsm of phosphorus compounds. Annual Rev. Biochem. 23., 527–586 (1954).CrossRefGoogle Scholar
  81. Kaufman., S.: Studies on the mechanism of the reaction catalyzed by the phosphorylating enzyme. J. of Biol. Chem. 216., 153–164 (1955).Google Scholar
  82. Kaufman., S., and S. G. A. Alivisatos.: Purification and properties of the phosphorylating enzyme from spinach. J. of Biol. Chem. 216., 141–152 (1955).Google Scholar
  83. Kaufman., S., S. Korkes. and A. de. Campillo.: Biosynthesis of dicarboxylic acids by carbon dioxide fixation. V. Further study of the “malic” enzyme of Lactobacillus arabinosus.. J. of Biol. Chem. 192., 301–312 (1951).Google Scholar
  84. Kennedy., E. P., and S. B. Weiss.: Cytidine diphosphate choline: a new intermediate in lecithin biosynthesis. J. Amer. Chem. Soc. 77., 250–251 (1955).CrossRefGoogle Scholar
  85. Király., Z., U. G. L. Parkas.: Infektionsbedingte Änderung der Glutaminsäuredecarboxylaseaktivität beim rostbefallenen Weizen. Naturwiss. 44., 353 (1957).CrossRefGoogle Scholar
  86. Kling., H.: Versuche zur zytologischen Darstellung der Stoffeintrittsstellen und Transportbahnen in Wurzelrindenzellen. Diss. Stuttgart 1957.Google Scholar
  87. Kornberg., A., and W. E. Pricer. jr.: Enzymatic synthesis of the coenzyme A derivatives of long chain fatty acids. J. of Biol. Chem. 204., 329–343 (1953).Google Scholar
  88. — Enzymatic esterification of α-glycerolphosphate by long chain fatty acids. J. of Biol. Chem. 204., 345–357 (1953).Google Scholar
  89. Kornberg., H. L., and H. A. Krebs.: Synthesis of cell constituents from C2 -units by a modified tricarboxylic acid cycle. Nature (Lond.) 179., 988–991 (1957).CrossRefGoogle Scholar
  90. Kovalchevich., R., and W. A. Wood.: Carbohydrate metabolism of Pseudomonas fluorescens.. IV. Purification and properties of 2-keto-3-deoxy-6-phospho-gluconate aldolase. J. of Biol. Chem. 212., 757–767 (1955).Google Scholar
  91. Krebs., H. A.: The tricarboxylic acid cycle. In: Chemical pathways of Metabolism, vol. I, p. 109–171. Edit. by D. M. Greenberg.. 1954.Google Scholar
  92. — Die energieliefernden Reaktionen des Stoffwechsels. Verh. Ges. dtsch. Naturforsch. (99. Verslg.) 1957., 74–78.Google Scholar
  93. Lampen., J. O., and H. R. Peterjohn.: Studies on the specificity of the fermentation of pentoses by Lactobacillus pentosus.. J. Bacter. 62., 281–292 (1951).Google Scholar
  94. Langdon., R. G.: The requirement of triphosphopyridine nucleotide in fatty acid synthesis. J. Amer. Chem. Soc. 77., 5190–5192 (1955).CrossRefGoogle Scholar
  95. Leloir., L. F.: The metabolism of hexosephosphates. In: Phosphorous metabolism, vol. I, p. 67–93. Edit. by W. D. Mcelroy. and B. Glass.. Baltimore: Johns Hopkins Press 1951.Google Scholar
  96. — Enzymic isomerization and related processes. Adv. Enzymol. 14., 193–218 (1953).Google Scholar
  97. Leloir., L. F., R. E. Trucco., C. E. Cardini., A. C. Paladini. and R. Caputto.: The coenzyme of phosphoglucomutase. Arch. of Biochem. 19., 339–340 (1948).Google Scholar
  98. Levy., L., and M. J. Coon.: Biosynthesis of histidine from radioactive acetate and glucose. J. of Biol. Chem. 208., 691–700 (1954).Google Scholar
  99. Lipmann., F.: Fermentation of phosphoglueonic acid. Nature (Lond.) 138., 588–589 (1936).CrossRefGoogle Scholar
  100. — A phosphorylated oxidation product of pyruvic acid. J. of Biol. Chem. 134., 463–464 (1940).Google Scholar
  101. — Acetylation of sulfanilamide by liver homogenates and extracts. J. of Biol. Chem. 160., 173–190 (1945).Google Scholar
  102. Loomis., W. D.: The synthesis of amino acids in plants. In: Handbuch der Pflanzenphysiologie, Bd. VIII.Google Scholar
  103. Lynen., F.: Der Fettsäurecyclus. Angew. Chem. 67., 463–470 (1955).CrossRefGoogle Scholar
  104. — CoA, ein Bindeglied zwischen energieliefernden und -verbrauchenden Reaktionen des ZellstoffWechsels. Verh. Ges. dtsch. Naturforsch. (99. Verslg.) 1957., 78–87.Google Scholar
  105. Macgee., J., and M. Doudoroff.: A new phosphorylated intermediate in glucose oxidation. J. of Biol. Chem. 210., 617–626 (1954).Google Scholar
  106. Mashtakow., S. M.: Qualitative changes of rubber and resins in kok-saghyz roots in the course of the plant development. C. r. Acad. Sci. URSS. 19., 307–309 (1938).Google Scholar
  107. Mcvicar., R., and R. H. Burris.: Studies on nitrogen metabolism in tomato plants with use of isotopically labelled ammonium sulfate. J. of Biol. Chem. 176., 511–516 (1948).Google Scholar
  108. Millerd., A., and J. Bonner.: Acetate activation and acetoacetate formation in plant systems. Arch. of Biochem. a. Biophysics 49, 343–355 (1954).CrossRefGoogle Scholar
  109. Millerd., A., J. Bonner., B. Axelrod. and R. Bandurski.: Oxidative and phos-phorylative activity of plant mitochondria. Proc. Nat. Acad. Sci. U.S.A. 37., 855–862 (1951).CrossRefGoogle Scholar
  110. Mortenson., L. E., and P. W. Wilson.: Initial steps in breakdown of glucose by the Azotobacter.. Bacter. Proc. 1954., 108.Google Scholar
  111. Narrod., S.A., and W. A. Wood.: Gluconate and 2-ketogluconate phosphorylation by extracts of Pseudomonas fluorescens.. Bacter. Proc. 1954., 108–109.Google Scholar
  112. Neish., A. C.: The biosynthesis of cell wall carbohydrates. II. Formation of cellulose and xylan from labeled monosaccharides in wheat plants. Canad. J. Biochem. a. Physiol. 33., 658–666 (1955).CrossRefGoogle Scholar
  113. Nisman., B., G. N. Cohen., S. B. Wiesendanger. et M, L. Hirsch.: Transformation de l’acide aspartique en homosérine et en thréonine par des extraits de Escherichia coli.. C. r. Acad. Sci. Paris 238., 1342–1344 (1954).PubMedGoogle Scholar
  114. Ochoa., S.: Enzymic mechanism in the citric acid cycle. Adv. Enzymol. 15., 183–270 (1954).Google Scholar
  115. Okunuki., K.: Über ein neues Enzym: Glutaminocarboxylase. Bot. Mag. (Tokyo) 51., 270–278 (1937).Google Scholar
  116. Olson., J. A.: The D-isocitric lyase system: the formation of glyoxylic and succinic acids from D-isocitric acid. Nature (Lond.) 174., 695–696 (1954).CrossRefGoogle Scholar
  117. Paech., K.: Die Biogenese sekundärer Pflanzenstoffe. 8. Congr. Internat. de Botanique, Paris 1954. Rapports et communications, Sect. 11. Physiologie végét., p. 49–56.Google Scholar
  118. Pardee., A. B.: Free energy and metabolism. In: Chemical pathways of metabolism, vol. I, p. 1–25. Edit. by D. M. Greenberg.. 1954.Google Scholar
  119. Racker., E., G. De la. Haba. and J. G. Leder.: Thiamine pyrophosphate, a coenzyme of transketolase. J. Amer. Chem. Soc. 75., 1010–1011 (1953).CrossRefGoogle Scholar
  120. Rappoport., D. A., H.A. Barker. and W. Z. Hassid.: Fermentation of L-arabinose-l-C14 by Lactobacillus pentoaceticus.. Arch. of Biochem. a. Biophysics 31., 326 (1951).CrossRefGoogle Scholar
  121. Ratner., S.: Arginine metabolism and interrelationships between the citric acid and urea cycles. In: Amino acid metabolism, p. 231–257. Edit. by W. D. Mcelroy. and B. Glass.. Baltimore: Johns Hopkins Press 1955.Google Scholar
  122. Rautanen., N.: On the formation of amino acids and amides in green plants. Acta chem. scand. (Copenh.) 2., 127–139 (1948).CrossRefGoogle Scholar
  123. Roberts., E., and H. M. Bregoff.: Transamination of γ-aminobutyric acid and β-alanine in brain and liver. J. of Biol. Chem. 201., 393–398 (1953).Google Scholar
  124. Rogers., B. J.: Oxidation and decarboxylation of amino acids by squash preparations. Plant Physiol. 30., 186–187 (1955).PubMedCrossRefGoogle Scholar
  125. Saz., H. J.: Enzvmatische Bildung von Glyoxylat und Succinat aus Tricarbonsäuren. Biochemic. J. 58., XX–XXI (1954).Google Scholar
  126. Saz., H. J., and E. P. Hillary.: The formation of glyoxylate and succinate from tricarboxylic acids by Pseudomonas aeruginosa.. Biochemic. J. 62., 563–569 (1956).Google Scholar
  127. Schales., O., and S. Schales.: Glutamic acid decarboxylase of higher plants. III. Enzymatic determination of L(+)-glutamic acid. Arch. of Biochem. 10, 455–460 (1946).Google Scholar
  128. Scott., D. B. M., and S. S. Cohen.: The oxidative pathway of carbohydrate metabohsm in Escherichia coli.. I. The isolation and properties of glucose-6-phos-phate dehydrogenase and 6-phospho-gluconate dehydrogenase. Biochemic. J. 55., 23–33 (1953).Google Scholar
  129. Sebek., O. K., and C. J. Randles.: The oxidative dissimilation of mannitol and sorbitol by Pseudomonas fluorescens.. J. Bacter. 63., 693–700 (1952).Google Scholar
  130. Silver., W. S., and W. D. Mcelroy.: Enzyme studies on nitrate and nitrite mutants of Neurospora.. Arch. of Biochem. a. Biophysics 51., 379–394 (1954).CrossRefGoogle Scholar
  131. Sissakjan., N. M., i A. M. Kobjakova.: Über die Phosphoglucomutaseaktivität der Piastiden. Dokl. Akad. Nauk SSSR. 4, 703–706 (1949).Google Scholar
  132. Smith., R. A., and I. C. Gunsalus.: Isocitrase: a new tricarboxylic acid cleavage system. J. Amer. Chem. Soc. 76., 5002–5003 (1954).CrossRefGoogle Scholar
  133. — Distribution and formation of iso-citritase. Nature (Lond.) 175., 774–775 (1955).Google Scholar
  134. Scratch., J. T., and I. C. Gunsalus.: The enzymes of an adaptive gluconate fermentation pathway in Streptococcus faecalis.. Bacter. Proc. 1954., 109–110.Google Scholar
  135. Stetten., M. R.: Mechanism of the conversion of ornithine into proline and glutamic acid in vivo.. J. of Biol. Chem. 189., 499–507 (1951).Google Scholar
  136. Strassman., M., L. A. Locke., A. J. Thomas. and S. Weinhouse.: A study of leucine biosynthesis in Torulopsis utilis.. Science (Lancaster, Pa.) 121., 303–304 (1955).Google Scholar
  137. Stutz., R. E., and R. H. Burris.: Photosynthesis and metabohsm of organic acids in higher plants. Plant Physiol. 26, 226–243 (1951).PubMedCrossRefGoogle Scholar
  138. Sutherland., E. W., T. Posternak. and C. F. Cori.: The mechanism of action of phosphoglucomutase and phosphoglyceric acid mutase. J. of Biol. Chem. 179., 501–502 (1949).Google Scholar
  139. Suzuki., Y., and N. Takakuwa.: Decarboxylation of L-glutamic acid in Scopolia japonica.. Naturwiss. 44., 353–354 (1957).CrossRefGoogle Scholar
  140. Szent.-Györgyi., A.: Chemistry of muscular contraction. New York 1947.Google Scholar
  141. Tanko., B.: Hexosephosphates produced by higher plants. Biochemic. J. 30., 692–700 (1936).Google Scholar
  142. Tavormina., P. A., M. H. Gibbs. and J. W. Huff.: The utilization of β-hydroxy-β-methyl-δ-valerolactone in cholesterol biosynthesis. J. Amer. Chem. Soc. 78., 4498–4499 (1956).CrossRefGoogle Scholar
  143. Tchen., T. T., and K. Bloch.: In vitro. conversion of squalene to lanosterol and cholesterol. J. Amer. Chem. Soc. 77., 6085–6086 (1955).CrossRefGoogle Scholar
  144. — On the mechanism of cyclization of squalene. J. Amer. Chem. Soc. 78., 1516–1517 (1956).Google Scholar
  145. Tewfik., S., and P. K. Stumpf.: Carbohydrate metabolism in higher plants. II. The distribution of aldolase in plants. Amer. J. Bot. 36, 567–571 (1949).CrossRefGoogle Scholar
  146. — Carbohydrate metabolism in higher plants. IV. Observations on triose phosphate dehydrogenase. J. of Biol. Chem. 192., 519–526 (1951).Google Scholar
  147. Thimann., K. v., and W. D. Bonner.: Organic acid metabohsm. Annual Rev. Plant Physiol. 1, 75–108 (1950).CrossRefGoogle Scholar
  148. Tolbert., N. E., and M. S. Cohan.: Activation of glycolic acid oxidase in plants. J. of Biol. Chem. 204., 639–648 (1953).Google Scholar
  149. — Products formed from glvcolic acid in plants. J. of Biol. Chem. 204., 649–654 (1953).Google Scholar
  150. Towers., G. H. N., and F. C. Steward.: The keto acids of the tulip (Tulipa gesneriana.) with special reference to the keto analog of γ-methyleneglutamic acid. J. Amer. Chem. Soc. 76., 1959–1961 (1954).CrossRefGoogle Scholar
  151. Towers., G. H. N., J. F. Thompson. and F. C. Steward.: The detection of the keto acids of plants. A procedure based on their conversion to amino acids. J. Amer. Chem. Soc. 76., 2392–2396 (1954).CrossRefGoogle Scholar
  152. Vennesland., B., and E. E. Conn.: Carboxylating enzymes in plants. Annual Rev. Plant Physiol. 3., 307–322 (1952).CrossRefGoogle Scholar
  153. Virtanen., A. J., and M. Alfthan.: New α-keto acids in green plants. Acta chem. scand. (Copenh.) 8., 1720–1721 (1954).CrossRefGoogle Scholar
  154. Virtanen., A. J., and M. Nordlund.: An improved method for the preparation of dihydroxvacetone. Biochemic. J. 27., 442–444 (1933).Google Scholar
  155. Wagner.-Jauregg., T., u. H. Rauen.: Über die enzymatische Dehvdrierung der Zitronensäure. Hoppe-Seylers Z, 233., 215–222 (1935).CrossRefGoogle Scholar
  156. Walker., T. N. Hall. and J. W. Horton.: Chromatographic detection of pyruvic, dimethylpyruvic and α-ketoglutaric acids in cultures of Aspergillus niger. on various substances. Nature (Lond.) 168., 1042–1043 (1951).CrossRefGoogle Scholar
  157. Warburg., O., U. W. Christian.: Über Aktivierung der Robisonschen Hexose-Mono-Phosphorsäure in roten Blutzellen und die Gewinnung aktivierender Fermentlösungen. Biochem. Z. 242., 206–227 (1931).Google Scholar
  158. — Über ein neues Oxydationsferment und scin Adsorptionsspektrum. Biochem. Z. 254., 438–458 (1932).Google Scholar
  159. — Über das gelbe Oxydationsferment. Biochem. Z. 257., 492 (1933).Google Scholar
  160. Warburg., O., W.Christian. U. A. Griese.: Wasserstoffübertragendes Coferment, scine Zusammensetzung und scine Wirkungsweise. Biochem. Z. 282., 157–205 (1935).Google Scholar
  161. Webb., J. A., and L. Fowden.: Changes in oxo acid concentrations during the growth of groundnut seedlings. Biochemic. J. 61, 1–4 (1955).Google Scholar
  162. Wong., D.T.O., and S. J. Ajl.: Isocitritase in Escherichia coli.. Nature (Lond.) 176., 970–971 (1955).CrossRefGoogle Scholar
  163. Wood., W. A., and R. F. Schwerdt.: Carbohydrate oxidation by Pseudomonas fluorescens.. I. The mechanism of glucose and gluconate oxidation. J. of Biol. Chem. 201., 501–511 (1953).Google Scholar
  164. — Carbohydrate oxidation by Pseudomonas fluorescens.. II. Mechanism of hexose phosphate oxidation. J. of Biol. Chem.. 206, 625–635 (1954).Google Scholar
  165. Wright., L. D., E. L. Cresson., H. R. Skeggs., G. D. E. Macrae., C. H. Hoffman., D. E. Wolf. and K. Folkers.: Isolation of a new acetate-replacing factor. J. Amer. Chem. Soc. 78., 5273–5275 (1956).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • A. Arnold

There are no affiliations available

Personalised recommendations