Advertisement

Abstract

In this section carbohydrates will be taken to include mono-, di-, oligo- and polysaccharides and their naturally-occurring esters, the sugar alcohols and related hydroxy acids, excepting antibiotics. The mechanisms of photosynthesis in the formation of C3–C7 monosaccharides are discussed in this volume1 and in volume V of this encyclopedia. The lower plants will include bacteria, algae, fungi, lichens and bryophytes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Angeletti, A., and C. F. Cerruti: The action of certain fungi on aldose solutions. I. Ann. chim. Applicata 20., 424–433 (1930).Google Scholar
  2. Asahina, Y., and S. Shibata: Chemistry of lichen substances. English ed. Tokyo, Japan: Japan Society for the Promotion of Science 1954.Google Scholar
  3. Augier, J.: Les glucides et la systématique des Rhodophycées. C. r. Acad. Sci. Paris 224., 1654–1656 (1947).PubMedGoogle Scholar
  4. Barker, S. A., and E. J. Bourne: Enzymic synthesis of polysaccharides. Quart. Rev. 7., 56–83 (1953).CrossRefGoogle Scholar
  5. Barry, V. C., and T. Dillon: The glucan of the yeast membrane. Proc. Roy. Irish Acad. B 49., 177–185 (1943).Google Scholar
  6. — A galactan sulphuric ester from Dilsea edulis. Proc. Roy. Irish Acad. B 50., 349–358 (1945).Google Scholar
  7. Barsha, J., and H. Hibbert: Studies on reactions relating to carbohydrates and polysaccharides. XLVI. Structure of the cellulose synthesized by the action of Acetobacter xylinum on fructose and glycerol. Canad. J. Res. 10., 170–179 (1934).CrossRefGoogle Scholar
  8. Barton-Wright, E. C., and G. Harris: Carbohydrate composition of wort and the biochemistry of fermentation. Nature (Lond.) 167., 560–561 (1951).CrossRefGoogle Scholar
  9. Bary, A. de: Comparative morphology and biology of the fungi, mycetozoa and bacteria, pp. 8 and 13. Oxford: Clarendon Press 1887.Google Scholar
  10. Bebbington, A., E. J. Bourne, M. Stacey and I. A. Wilkinson: The Q-enzyme of Polytomella coeca. J. Chem. Soc. (Lond.) 1952., 240–245.Google Scholar
  11. Bernhauer, K.: Die oxydativen Gärungen. Österr. chem. Z. 34., 159–164, 167–170 (1931).Google Scholar
  12. Bevington, J. C., E. J. Bourne and C. N. Turton: Chemical degradation of C14-glucose and its application to C14-starch from Polytomella coeca. Chem. a. Ind. 1953., 1390–1391.Google Scholar
  13. Bevington, J. C., E. J. Bourne and I. A. Wilkinson: A microbiological method for the preparation of C14-labelled starch from sodium acetate. Chem. a. Ind. 1950., 691–692.Google Scholar
  14. Birkinshaw, J. H., J. H. V. Charles, A. C. Hetherington and H. Raistrick: Studies in the biochemistry of micro-organisms. IX. On the production of mannitol from glucose by species of Aspergillus. Trans. Roy. Soc. Lond. B 220., 153–171 (1931).CrossRefGoogle Scholar
  15. Birkinshaw, J. H., J. H. V. Charles and H. Raistrick: Studies in the biochemistry of microorganisms. XVIII. Biochemical characteristics of species of Penicillium responsible for the rot of citrus fruits. Trans. Roy. Soc. Lond. B 220., 355–362 (1931).CrossRefGoogle Scholar
  16. Birkinshaw, J. H., and H. Raistrick: Studies in the biochemistry of micro-organisms. XVII. The products of glucose metabolism formed by various species of fungi (Helminthosporium, Clasterosporium, etc.). Trans. Roy. Soc. Lond. B 220., 331–353 (1931).CrossRefGoogle Scholar
  17. — Studies in the biochemistry of micro-organisms. XXII. Puberulic acid, C8H6O6, and an acid C8H406, new products of the metabolism of glucose by Penicillium puberulum Bainier and P. aurantio-virens Biourge. Biochemic. J. 26., 441–453 (1932).Google Scholar
  18. Bishop, C. T., G. A. Adams and E. O. Hughes: A polysaccharide from the blue-green alga, Anabaena cylindrica. Canad. J. Chem. 32., 999–1004 (1954).CrossRefGoogle Scholar
  19. Black, W. A. P.: The seasonal variation in chemical composition of some of the sublittoral seaweeds common to Scotland. J. Soc. Chem. Ind. 67., 165–168, 169–172, 172–176 (1948a).CrossRefGoogle Scholar
  20. — The seasonal variation in chemical composition of some of the littoral seaweeds common to Scotland. I. Ascophyllum nodosum. J. Soc. Chem. Ind. 67., 355–357 (1948b).Google Scholar
  21. — The seasonal variation in chemical composition of some of the littoral seaweeds common to Scotland. II Fucus serratus, F. vesiculosus, F. spiralis, and Pelvetia canaliculata. J. Soc. Chem. Ind. 68., 183–189 (1949).Google Scholar
  22. — The seasonal variation in weight and chemical composition of the common British Laminariaceae. J. Mar. Biol. Assoc. U. Kingd. 29., 45–72 (1950a).Google Scholar
  23. — The effect of depth of immersion on the chemical constitution of some of the sublittoral seaweeds common to Scotland. J. Soc. Chem. Ind. 69., 161–165 (1950b).Google Scholar
  24. — Concentration gradients and their significance in Laminaria saccharina (L.) Lamour. J. Mar. Biol. Assoc. U. Kingd. 33., 49–60 (1954a).Google Scholar
  25. — The seasonal variation in the combined l-fucose content of the common British Laminariaceae and Fucaceae. J. Sci. Food Agricult. 9., 445–448 (1954b).Google Scholar
  26. Black, W. A. P., W. J. Cornhill and F. N. Woodward: A preliminary investigation on the chemical composition of Sphagnum moss and peat, J. Appl. Chem. 5., 484–492 (1955).CrossRefGoogle Scholar
  27. Black, W. A. P., and E. T. Dewar: Correlation of some of the physical and chemical properties of the sea water with the chemical constitution of the algae. J. Mar. Biol. Assoc. U. Kingd. 28., 673–699 (1949).CrossRefGoogle Scholar
  28. Blinc, M.: Versuche zur Anreicherung des Mazeransenzyms. Kolloid-Z. 101., 126–128 (1942).CrossRefGoogle Scholar
  29. Bold, H. C.: Life history and cell structure of Chlorococcum infusionum. Bull. Torrey Bot. Club 57., 577–604 (1930).CrossRefGoogle Scholar
  30. Bonhoeffer, K. F., u. G. Günther: Über die Polysaccharid-Synthese in der Hefezelle. Naturwiss. 25., 459 (1937).Google Scholar
  31. Bourne, E. J., M. Stacey and I. A. Wilkinson: The composition of the polysaccharide synthesized by Polytomella coeca. J. Chem. Soc. (Lond.) 1950., 2694–2698.Google Scholar
  32. Brandt, K. M.: Über die Reservekohlenhydrate der Preßhefe. Das Verhalten der Trehalose beim Wachstum und bei der Wärmeschädigung der Hefe. Biochem. Z. 309., 190–201 (1941).Google Scholar
  33. Brown, A. H.: The carbohydrate constituents of Scenedesmus in relation to the assimilation of carbon by photoreduction. Plant Physiol. 23., 331–337 (1948).PubMedCrossRefGoogle Scholar
  34. Butkewitsch, W.: Über die Umwandlung der Chinasäure durch die Pilze. Biochem. Z. 145., 442–460 (1924).Google Scholar
  35. Butler, M. R.: Comparison of the chemical composition of some marine algae. Plant Physiol. 6., 295–305 (1931).PubMedCrossRefGoogle Scholar
  36. — Seasonal variations in Chondrus crispus. Biochemic. J. 30., 1338–1344 (1936).Google Scholar
  37. Calvin, M., J. A. Bassham, A. A. Benson, V. H. Lynch, C. Ouellet, L. Schou, W. Stepka and N. E. Tolbert: Carbon dioxide assimilation in plants. Symposia Soc. f. Exper. Biol. 5., 284–305 (1951).Google Scholar
  38. Challinor, S. W., W. N. Haworth and E. L. Hirst: Polysaccharides. XVII. The constitution and chain length of levan. J. Chem. Soc. (Lond.) 1934., 676–679.Google Scholar
  39. Chargaff, E., and D. H. Moore: On bacterial glycogen: the isolation from avian tubercle bacilli of a polyglucosan of very high particle weight. J. of Biol. Chem. 155., 493–501 (1944).Google Scholar
  40. Chrzaszcz, T., u. D. Tiukow: Der Zusammenhang der Stärkebildung mit der Säureanhäufung bei den Schimmelpilzen (Penicillium). Biochem. Z. 222., 243–258 (1930).Google Scholar
  41. Clutterbuck, P. W.: Recent developments in the biochemistry of moulds. J. Soc. Chem. Ind. 55., 55–61 T (1936).CrossRefGoogle Scholar
  42. Clutterbuck, P. W., W. N. Haworth, H. Raistrick, G. Smith and M. Stacey: Studies in the biochemistry of micro-organisms. XXXVI. The metabolic products of Penicillium Charlesii G. Smith. Biochemic. J. 28., 94–110 (1934).Google Scholar
  43. Colin, H., et J. Augier: Un glucide original chez les Floridées du genre Polysiphonia, le d-mannoside α du glycérate de sodium. C. r. Acad. Sci. Paris 208., 1450–1453 (1939).Google Scholar
  44. Colin, H., et E. Guéguen: Le floridoside chez les Floridées. C. r. Acad. Sci. Paris 197., 1688–1690 (1933).Google Scholar
  45. Cooper, E. A., W. D. Daker and M. Stacey: Enzyme formation and polysaccharide synthesis by bacteria. III. Polysaccharides produced by “nitrogen-fixing” organisms. Biochemie. J. 32., 1752–1758 (1938).Google Scholar
  46. Cooper, E. A., and J. F. Preston: Polysaccharide synthesis by “nitrogen-fixing” organisms. J. Soc. Chem. Ind. 56., 1–5 T (1937).CrossRefGoogle Scholar
  47. Coyne, F. P., and H. Raistrick: Studies in the biochemistry of micro-organisms. XX. On the production of mannitol from hexoses and pentoses by a white species of Aspergillus. Biochemie. J. 25., 1513–1521 (1931).Google Scholar
  48. Daker, W. D., and M. Stacey: Polysaccharides. XXX. The polysaccharides produced from sucrose by Betabacterium vermiforme (Wakd-Mayer). J. Chem. Soc. (Lond.) 1939., 585–587.Google Scholar
  49. Dillon, T., and J. Mc Kenna: Mucilage of Dumontia incrassata. Nature (Lond.) 165., 318 (1950).CrossRefGoogle Scholar
  50. Doudoroff, M.: On the utilization and synthesis of sucrose and related compounds by some microorganisms. Federat. Proc. 4., 241–247 (1945).Google Scholar
  51. Doudoroff, M., and R. O’Neal: On the reversibility of levan synthesis by Bacillus subtilis. J. of Biol. Chem. 159., 585–592 (1945).Google Scholar
  52. Dox, A. W., and R. E. Niedig: The soluble polysaccharides of lower fungi. J. of Biol. Chem. 18., 167–175; 19., 235–237 (1914).Google Scholar
  53. Drake, B.: Untersuchungen über einige Polysaccharide der Flechten, vornehmlich das Lichenin und das neuentdeckte Pustulin. Biochem. Z. 313., 388–399 (1943).Google Scholar
  54. Ergle, D. R.: The glycogen content of Phymatotrichum sclerotia. J. Amer. Chem. Soc. 69., 2061–2062 (1947).CrossRefGoogle Scholar
  55. Evans, E. E., and J. W. Mehl: A quantitative analysis of capsular polysaccharides from Cryptococcus neoformans by filter paper chromatography. Science (Lancaster, Pa.) 114., 10–11 (1951).Google Scholar
  56. Evans, T. H., and H. Hibbert: Bacterial polysaccharides. Adv. Carbohydrate Chem. 2., 203–233 (1946).CrossRefGoogle Scholar
  57. Farr, W. K.: The microscopic structure of plant cell membranes. J. Physic. Chem. 42., 1113–1147 (1938).CrossRefGoogle Scholar
  58. Fellows, O. N., and J. I. Routh: A study of the chemical composition and antigenic properties of a polysaccharide fraction of three hour cultures of Staphylococcus aureus. J. Labor. a. Clin. Med. 29., 1054–1061 (1944).Google Scholar
  59. Fink, H., U.. F. Just: Zur Biochemie der Torula utilis. I. Die Auffindung von Dulcit in Holzzuckerhefe. Biochem. Z. 296., 306–314 (1938).Google Scholar
  60. Fischer, E. H., L. Kohtès et J. Fellig: Propriétés de l’invertase purifiée. Helvet. chim. Acta 34., 1132–1138 (1951).CrossRefGoogle Scholar
  61. Foster, J. W.: Chemical activities of fungi. New York: Academic Press 1949.Google Scholar
  62. Garzuly-Janke, R.: Über das Vorkommen von Mannan bei Hvphen- und Sproßpilzen. Zbl. Bakter. II 102., 361–365 (1940a).Google Scholar
  63. — Hefemannan. J. prakt. Chem. 156., 45–54 (1940b).Google Scholar
  64. Goris. A., et Ch. Vischniac: Notiz über die chemische Zusammensetzung des Mooses Sphagnum 920 cymbifolium. Bull. Sci. pharmacol. 20., 390–394 (1913).Google Scholar
  65. Gottschalk, A.: The synthesis of polysaccharides by yeast cells fermenting anaerobically glucose, fructose or mannose. Austral. J. Exper. Biol. a. Med. Sci. 20., 201–203 (1942).CrossRefGoogle Scholar
  66. Günther, G., u. K. F. Bonhoeffer: Über den Einbau von schwerem Wasserstoff in wachsende Organismen. V. Z. physik. Chem. A 180., 185–210 (1937).Google Scholar
  67. Haas, P., and T. G. Hill: An examination of the metabolic products of certain fucoids. II. Mannitol and mannitan. Biochemic. J. 23., 1005–1009 (1929).Google Scholar
  68. — The occurrence of sugar alcohols in marine algae. Dulcitol. Biochemic. J. 25., 1470–1471 (1931).Google Scholar
  69. — The occurrence of sugar alcohols in marine algae. II. Sorbitol. Biochemie. J. 26., 987–990 (1932).Google Scholar
  70. — Observations on the metabolism of certain seaweeds. Ann. of Bot. 47., 55–67 (1933).Google Scholar
  71. Harrison, F. C., H. L. A. Tarr and H. Hibbert: Studies on reactions relating to carbohydrates and polysaccharides. XXXIII. The synthesis of polysaccharides by bacteria and enzymes. Canad. J. Res. 3., 449–463 (1930).CrossRefGoogle Scholar
  72. Hassid, W. Z.: Carbohydrates in Iridaea laminarioides (Rhodophyceae). Plant Physiol. 11., 461–463 (1936).PubMedCrossRefGoogle Scholar
  73. Hassid, W. Z., and M. Doudoroff: Enzymatically synthesized polysaccharides and disaccharides. Fortschr. Chem. organ. Naturstoffe 5., 101–127 (1948).Google Scholar
  74. — Synthesis of disaccharides with bacterial enzymes. Adv. Enzymol. 10., 123–143 (1950).Google Scholar
  75. Hassid, W. Z., M. Doudoroff and H. A. Barker: Enzymatically synthesized crystalline sucrose. J. Amer. Chem. Soc. 66., 1416–1419 (1944).CrossRefGoogle Scholar
  76. Hassid, W. Z., and E. W. Putnam: Transformation of sugars in plants. Annual Rev. Plant Physiol. 1., 109–124 (1950).CrossRefGoogle Scholar
  77. Haug, A., and A. Jensen: Seasonal variations in the chemical composition of Alaria esculenta, Laminaria saccharina, L. hyperborea and L. digitata from northern Norway. Norweg. Inst, of Seaweed Res., Report No 4, 1–17 (1954).Google Scholar
  78. Hawker, L. E.: Physiology of fungi. London: Univ. of London Press 1950.Google Scholar
  79. Haworth, W. N., R. L. Heath and S. Peat: Constitution of yeast mannan. J. Chem. Soc. (Lond.) 1941., 833–842.Google Scholar
  80. Haworth, W. N., H. Raistrick and M. Stagey: Polysaccharides synthesized by micro-organisms. I. The molecular structure of mannocarolose produced from glucose by Penicillium Charlesii (G. Smith). Biochemie. J. 29., 612–621 (1935).Google Scholar
  81. Hehre, E. J.: Studies on the enzymatic synthesis of dextran from sucrose. J. of Biol. Chem. 163., 221–233 (1946).Google Scholar
  82. — Enzymic synthesis of polysaccharides. Adv. Enzymol. 11., 297–337 (1951).Google Scholar
  83. Hehre, E. J., and D. M. Hamilton: Conversion of sucrose to a polysaccharide of the starchglycogen class by Neisseria from the pharynx. J. Bacter. 55., 197–208 (1948).Google Scholar
  84. — Bacterial conversion of dextrin into a polysaccharide with the serological properties of dextran. Proc. Soc. Exper. Biol. a. Med. 71., 336–339 (1949).Google Scholar
  85. Hehre, E. J., and J. Y. Sugg: Serologically reactive polysaccharides produced through the action of bacterial enzymes. I. Dextran of Leuconostoc mesenteroides from sucrose. J. of Exper. Med. 75., 339–353 (1942).CrossRefGoogle Scholar
  86. Heidelberger, M., and A. E. O. Menzel: Specific and non-specific cell polysaccharides of the human type of tubercle bacillus, H-37. Proc. Sox. Exper. Biol. a. Med. 29., 631–633 (1932).Google Scholar
  87. — Specific and non-specific cell polysaccharides of a human strain of tubercle bacillus, H-37. J. of Biol. Chem. 118., 79–100 (1937).Google Scholar
  88. Hestrin, S., M. Aschner and J. Mager: Synthesis of cellulose by resting cells of Acetobacter xylinum. Nature (Lond.) 159., 64–65 (1947).CrossRefGoogle Scholar
  89. Hestrin, S., and S. Avineri-Shapiro: The mechanism of polysaccharide production. Biochemie. J. 38., 2–10 (1944).Google Scholar
  90. Hestrin, S., S. Avineri-Shapiro and M. Aschner: The enzymic production of levan. Biochemie. J. 37., 450–456 (1943).Google Scholar
  91. Hibbert, H., and J. Barsha: Studies on reactions relating to carbohydrates and polysaccharides. XXXIX. Structure of the cellulose synthesized by the action of Acetobacter xylinum on glucose. Canad. J. Res. 5., 580–591 (1931).CrossRefGoogle Scholar
  92. Hida, T.: Starch formation in moulds. J. Shanghai Sci. Inst., Ser. IV 1., 85–116 (1934).Google Scholar
  93. Hopkins, S. J., and A. C. Chibnall: Growth of Aspergillus versicolor on higher paraffins. Biochemie. J. 26., 133–142 (1932).Google Scholar
  94. Hough, L., J. K. N. Jones and W. H. Wadman: An investigation of the polysaccharide components of certain fresh-water algae. J. Chem. Soc. (Lond.) 1952., 3393–3399.Google Scholar
  95. Hutchens, J. O., B. Podolsky and M. F. Morales: Studies on the kinetics and energetics of carbon and nitrogen metabolism of Chilomonas paramaecium. J. Cellul. a. Comp. Physiol. 32., 117–141 (1948).CrossRefGoogle Scholar
  96. Hutner, S. H., and L. Provasoli: Biochemistry and physiology of protozoa, Vol. 1, p. 47 (1951); Vol. 2, p. 21 (1955). New York: Academic Press.Google Scholar
  97. Ishihara, Y., S. Umemoto and Y. Matsubara: Vitamin C of marine algae in Hokkaido. Mem. Fac. Agricult. Hokkaido Imp. Univ. 1., 83–86 (1951).Google Scholar
  98. Ivanovics, G.: Untersuchungen über das Polysaccharid der Milzbrandbazillen. Z. Immun.forsch. 97., 402–423 (1940).Google Scholar
  99. Jeanloz, R.: Recherches sur l’amidon. XXVII. Le glycogène de levure natif. Helvet. chim. Acta 27., 1501–1509 (1944).CrossRefGoogle Scholar
  100. Jones, J. K. N.: The structure of the mannan present in Porphyra umbilicalis. J. Chem. Soc. (Lond.) 1950., 3292–3295.Google Scholar
  101. Kaushal, R., and T. K. Walker: Formation of cellulose by certain species of Acetobacter. Biochemie. J. 48., 618–621 (1951).Google Scholar
  102. Kawaguchi, K., S. Yamada and S. Miyama: Chemical studies on algae. I. Sodium α (α-d-mannosido)-d-glycerate obtained from Digenea simplex. Bull. Japan Soc. Sci. Fish. 19., 481–486 (1953).CrossRefGoogle Scholar
  103. Kleczkowski, A., and P. Wierzchowski: Experiments on the chemical nature and properties of the polysaccharide produced by Bacillus krzemieniewski n. sp. Soil Sci. 49., 193–195 (1940).CrossRefGoogle Scholar
  104. Kopeloff, N., and L. Kopeloff: DO mold spores contain enzymes? J. Agricult. Res. 18., 195–209 (1919).Google Scholar
  105. Kosterlitz, H. W.: Synthetic galactose-1-phosphoric acid. Biochemic. J. 33., 1087–1093 (1939).Google Scholar
  106. Kylin, H.: Untersuchungen über die Biochemie der Meeresalgen. Z. physiol. Chem. 94., 337–425 (1915).CrossRefGoogle Scholar
  107. — Biochemie der Cyanophyceae. Förh. kgl. Fysiograf. Sällskap. Lund 13., 64–77 (1943a).Google Scholar
  108. — Biochemie der Rhodophyceae. Förh. kgl. Fysiograf. Sällskap. Lund 13., 51–63 (1943b).Google Scholar
  109. — Biochemie der Cladophora rupestris. Förh. kgl. Fysiograf. Sällskap. Lund 14., 221–225 (1944a).Google Scholar
  110. — Biochemie der Phaeophyceae. Förh. kgl. Fysiograf. Sällskap. Lund 14., 226–238 (1944b).Google Scholar
  111. Laidlaw, P. P., and H. W. Dudley: A specific precipitating substance from tubercle bacilli. Brit. J. Exper. Path. 6., 197–201 (1925).Google Scholar
  112. Lapique, L.: Variation saisonnière dans la composition chimique des algues marines. C. r. Acad. Sci. Paris 169., 1426–1428 (1919).Google Scholar
  113. Lechner, R.: Über die Ausnutzung der Pentosen bei der biologischen Eiweißsynthese. IV. Züchtung von Torula utilis in Xylose und Xylose-Glucose-Mischungen. Biochem. Z. 301., 170–188 (1939).Google Scholar
  114. Levene, P. A.: Biochemical studies on the Bacillus tuberculosis. J. Med. Res. 6., 135–144 (1901).PubMedGoogle Scholar
  115. — On the biochemistry of the tubercle bacillus. J. Med. Res. 12., 205–213 (1904).Google Scholar
  116. Lewin, J. C.: Heterotrophy in diatoms. J. Gen. Microbiol. 9., 305–313 (1953).PubMedGoogle Scholar
  117. — The capsule of the diatom Navicula pelliculosa. J. Gen. Microbiol. 13., 162–169 (1955).Google Scholar
  118. Liebisch, W.: Amphitetras antediluviana Ehrbg., sowie einige Beiträge zum Bau und zur Entwicklung der Diatomeenzelle. Z. Bot. 20., 225–271 (1928).Google Scholar
  119. Lindberg, B., and J. Mc Pherson: Low-molecular carbohydrates in algae. V. Investigation of Laminaria cloustoni. Acta chem. scand. (Copenh.) 8., 1547–1550 (1954).CrossRefGoogle Scholar
  120. Linton, R. W., and B. N. Mitra: Types of specific carbohydrates in the cholera and cholera-like vibrios. Proc. Soc. Exper. Biol. a. Med. 32., 464–468 (1934).Google Scholar
  121. Locker, F.: Beiträge zur Kenntnis des Formwechsels der Diatomeen an Hand von Kulturversuchen. Österr. bot. Z. 97., 322–332 (1950).CrossRefGoogle Scholar
  122. Lockwood, L. B., B. Tabenkin and G. E. Ward: Production of gluconic acid and 2-ketogluconic acid from glucose by species of Pseudomonas and Phytomonas. J. Bacter. 42., 51–61 (1941).Google Scholar
  123. Lwoff, A., H. Ionesco et A. Gutmann: Le métabolisme de l’amidon chez un flagellé sans chlorophylle incapable d’utiliser le glucose. C. r. Acad. Sci. Paris 228., 342–344 (1949).PubMedGoogle Scholar
  124. — Synthèse et utilisation de l’amidon chez un flagellé sans chlorophylle incapable d’utiliser les sucres. Biochim. et Biophysica Acta 4., 270–275 (1950).Google Scholar
  125. Lyne, R. R., S. Peat and M. Stacey: Polysaccharides. XXXIX. The constitution of certain levans formed by bacterial action. J. Chem. Soc. (Lond.) 1940., 237–241.Google Scholar
  126. Mangin, L.: Observations sur la membrane des mucorinées. J. de Bot. 13., 209–216, 276–287, 307–316, 339–348, 371–378 (1899).Google Scholar
  127. Marchal, El., et Em. Marchal: Recherches physiologiques sur l’amidon chez les bryophytes. Bull. Soc. roy. bot. Belg. 43., 115–124 (1906).Google Scholar
  128. Marshall, S. M., L. Newton and A. P. Orr: A study of certain British seaweeds and their utilisation in the preparation of agar. London: H. M. Stationery Office 1949.Google Scholar
  129. May, O. E., and G. E. Ward: Hydrolysis of the chitinous complex of lower fungi. J. Amer. Chem. Soc. 56., 1597–1599 (1934f.)CrossRefGoogle Scholar
  130. Mc Clenahan, W. S., E. B. Tilden and C. S. Hudson: A study of the products obtained from starch by the action of the amylase of Bacillus macerans. J. Amer. Chem. Soc. 64., 2139–2144 (1942).CrossRefGoogle Scholar
  131. Mc Intire, F. C., W. H. Peterson and A. J. Riker: A polysaccharide produced by the crown gall organism. J. of Biol. Chem. 143., 491–496 (1942).Google Scholar
  132. Mac Pherson, M. G., and E. G. Young: Seasonal variation in the chemical composition of the Fucaceae in the Maritime Provinces. Canad. J. Bot. 30., 67–77 (1952).CrossRefGoogle Scholar
  133. Menzel, A. E. O., and M. Heidelberger: Specific and non-specific cell polysaccharides of a bovine strain of tubercle bacillus. J. of Biol. Chem. 127., 221–236 (1939).Google Scholar
  134. Meyer, K. H., et P. Gürtler: Recherches sur l’amidon. XXXII. L’isolichénine. Helvet, chim. Acta 30., 761–765 (1947).CrossRefGoogle Scholar
  135. Milner, H. W.: The fatty acids of Chlorella. J. of Biol. Chem. 176., 813–817 (1948).Google Scholar
  136. — Algal culture. Carnegie Instn. Publ. 1953., No 600, 285–302.Google Scholar
  137. Mirande, R.: Sur la presence de la callose dans la membrane des algues siphonées marines. C. r. Acad. Sci. Paris 156., 475–477 (1913).Google Scholar
  138. Molliard, M.: Sur une nouvelle acide produite par le Sterigmatocystis nigra. C. r. Acad. Sci. Paris 174., 881–883 (1922).Google Scholar
  139. Mori, T.: Seaweed polysaccharides. Adv. Carbohydrate Chem. 8., 315–350 (1953).CrossRefGoogle Scholar
  140. Moss, B.: Studies in the genus Fucus. II. The anatomical structure and chemical composition of receptacles of F. vesiculosus from three contrasting habitats. Ann. of Bot. 14., 395–410 (1950).Google Scholar
  141. — Variations in the chemical composition during the development of Himanthalia elongata (L.) S. F. Gray. J. Mar. Biol. Assoc. U. Kingd. 31., 29–34 (1952).Google Scholar
  142. Musfeld, W.: Versuche über die Aufnahme von Zucker durch Hefezellen. Ber. Schweiz. bot. Ges. 52., 583–620 (1942).Google Scholar
  143. Naylor, G. L., and B. Russell-Wells: On the presence of cellulose and its distribution in the cell walls of brown and red algae. Ann. of Bot. 48., 635–641 (1934).Google Scholar
  144. Nicolai, E., and R. D. Preston: Cell-wall studies in the Chlorophyceae. I. A general survey of submicroscopic structure in filamentous species. Proc. Roy. Soc. Lond., Ser. B 140., 244–274 (1952).CrossRefGoogle Scholar
  145. Niven, C. F., K. L. Smiley and J. M. Sherman: The polysaccharides synthesized by Streptococcus salivarius and Streptococcus bovis. J. of Biol. Chem. 140., 105–109 (1941).Google Scholar
  146. Oxford, A. E., and H. Raistrick: Studies in the biochemistry of micro-organisms. XLVI. i-Erythritol, a metabolic product of Penicillium brevi-compactum Dierckx and P. cyclopium Westling. Biochemic. J. 29., 1599–1601 (1935).Google Scholar
  147. Partridge, S. M.: Filter-paper chromatography of sugars. II. An examination of the blood group A specific substance from hog’s gastric mucin and the specific polysaccharide of Bacterium dysenteriae (Shiga). Biochemic. J. 42., 251–253 (1948).Google Scholar
  148. Payen, J.: Recherches biochimiques sur quelques Cyanophycées. Rev. algologique 11., 1–99 (1938).Google Scholar
  149. Pearsall, W. H., and L. Loose: The growth of Chlorella vulgaris in pure culture. Proc. Roy. Soc. Lond., Ser. B 121., 451–501 (1937).CrossRefGoogle Scholar
  150. Percival, E. G. V., and S. K. Chanda: The xylan of Rhodymenia palmata. Nature (Lond.) 166., 787–788 (1950).CrossRefGoogle Scholar
  151. Pringsheim, E. G.: On the nutrition of Ochromonas. Quart. J. Microscop. Sci. 93., 71–96 (1952).Google Scholar
  152. Quillet, M., M. Joussaume et C. Chavannes: Sur le métabolisme glucidique des bryophytes. I. Les Sphaignes, nouveau groupe de végétaux à réserve fructosidique. C. r. Acad. Sci. Paris 242., 669–671 (1956).Google Scholar
  153. Raistrick, H., and M. L. Rintoul: Studies in the biochemistry of micro-organisms. XIII. On a new type of mucilagenous material, luteic acid, produced from glucose by Penicillium luteum (Zukal). Trans. Roy. Soc. Lond., Ser. B 220., 255–267 (1931).CrossRefGoogle Scholar
  154. Rancken, H.: Über die Stärke bei Bryophyten. Acta Soc. Fauna et Flora fenn. 39., 5–97 (1914).Google Scholar
  155. Ricard, P.: Les constituants glucidiques des algues brunes. Ann. Inst. océanog. (Paris), Sér. II 8., 101–184 (1930).Google Scholar
  156. — Les constituants glucidiques des Laminaires: nature, variations saisonnières. Bull. Soc. Chim. biol. Paris 13., 417–435 (1931).Google Scholar
  157. Risi, J., C. E. Brunette, D. Spence and H. Girard: The chemical composition of peat. Dept. of Mines, Quebec, Canada: Special Report No 234 (1950); 281 (1953); 282 (1953); 301 (1954).Google Scholar
  158. — Ross, A. G.: Some typical analyses of red seaweeds. J. Sci. Food Agricult. 4., 333–335 (1953).CrossRefGoogle Scholar
  159. Sauvageau, C., et G. Dentgès: Sur le sucre des algues floridées. C. r. Acad. Sci. Paris 190., 958–959 (1930).Google Scholar
  160. Schmidt, D.: Über die Pilzstärke (Amylose) bei Aspergillus niger v. Tgh. und einige Bemerkungen über ihren diastatischen Abbau. Biochem. Z. 158., 223–252 (1935).Google Scholar
  161. Schmidt, M.: Makrochemische Untersuchungen über das Vorkommen von Chitin bei Mikroorganismen. Arch. Mikrobiol. 7., 241–260 (1936).CrossRefGoogle Scholar
  162. Sisson, W. A.: The existence of mercerized cellulose and its orientation in Halicystis as indicated by X-ray diffraction analysis. Science (Lancaster, Pa.) 87., 350 (1938).Google Scholar
  163. — X-ray studies regarding the structure and behavior of native cellulose membranes. Chem. Rev. 26., 187–201 (1940).Google Scholar
  164. Smith, J. H. C.: Photosynthesis in plants, pp. 53–94. Ames, Iowa: Iowa State College Press 1949.Google Scholar
  165. Souci, S. W.: Beiträge zur chemischen Kennzeichnung und analytischen Untersuchung des Torfes. Kolloid-Z. 82., 87–99 (1938).CrossRefGoogle Scholar
  166. Spohr, H. A., and H. W. Milner: The chemical composition of Chlorella: effect of environmental conditions. Plant Physiol. 24., 120–149 (1949).CrossRefGoogle Scholar
  167. Sponsler, O. L.: Orientation of cellulose space lattice in the cell wall. Additional X-ray data from Valonia cell wall. Protoplasma 12., 241–254 (1931).CrossRefGoogle Scholar
  168. Stacey, M.: Enzymatic production of bacterial polysaccharides. Nature (Lond.) 149., 639 (1942).CrossRefGoogle Scholar
  169. Stacey, M., and P. W. Kent: The polysaccharides of Mycobacterium tuberculosis. Adv. Carbohydrate Chem. 3., 311–336 (1948).CrossRefGoogle Scholar
  170. Stacey, M., and F. R. Youd: A note on the dextran produced from sucrose by Betacoccus arabinosaceous haemolyticus. Biochemic. J. 32., 1943–1945 (1938).Google Scholar
  171. Stosch, H. A. v.: Über das Leukosin, den Reservestoff der Chrysophyten. Naturwiss. 38., 192–193 (1951).CrossRefGoogle Scholar
  172. Tarr, H. L. A., and H. Hibbert: Studies on reactions relating to carbohydrates and polysaccharides. XXXV. Polysaccharide synthesis by the action of Acetobacter xylinum on carbohydrates and related compounds. Canad. J. Res. 4., 372–388 (1931).CrossRefGoogle Scholar
  173. Tausson, T. A.: Oxidation of paraffin by yeasts and yeast-like organisms. Mikrobiologiya 8., 828–833 (1939).Google Scholar
  174. Tausson, W. O.: Über die Oxydation der Wachse durch Mikroorganismen. Biochem. Z. 193., 85–93 (1928).Google Scholar
  175. Tausson, W. O., u. W. A. Aleschina: Über die bakterielle Sulfatreduktion bei An Wesenheit der Kohlenwasserstoffe. Mikrobiologiya 1., 229–261 (1932).Google Scholar
  176. Thiessen, R., and R. C. Johnson: An analysis of peat profile. Industr. Engin. Chem., Anal. Ed. 1., 216–220 (1929).CrossRefGoogle Scholar
  177. Thom, C., and H. Phillips: Lignin-like complexes in fungi. J. Wash. Acad. Sci. 22., 237–239 (1932).Google Scholar
  178. Thomas, B. C.: Composition of fungus hyphae. I. The fusaria. Amer. J. Bot. 15., 537–547 (1928).CrossRefGoogle Scholar
  179. Togasowa, Y., and T. Mine: Biochemical studies on marine algae. III. Bull. Japan Soc. Sci. Fish. 20., 193–195 (1954).CrossRefGoogle Scholar
  180. Tsuchiya, Y.: Physiological studies on the vitamin C content of marine algae. Tôhoku J. Agricult. Res. 1., 97–102 (1950).Google Scholar
  181. Veibel, S.: Polylaevans formed by the carbohydrate metabolism of certain bacteria. Biochemic. J. 32., 1949–1952 (1938).Google Scholar
  182. Waksman, S. A., and K. R. Stevens: The chemical composition of peat. I. Chemical nature of organic complexes in peat and methods of analysis. Soil Sci. 26., 113–137, 239–252 (1928).CrossRefGoogle Scholar
  183. Walker, T. K., V. Subramanian and F. Challenger: The mechanism of the formation of citric and oxalic acids from sugars by Aspergillus niger. II. J. Chem. Soc. (Lond.) 1927., 3044–3054.Google Scholar
  184. Ward, G. E., L. B. Lockwood, O. E. May and H. T. Herrick: Production of fat from glucose by molds. Industr. Engin. Chem. 27., 318–322 (1935).CrossRefGoogle Scholar
  185. Wort, D. J.: The seasonal variation in the chemical composition of Macrocystis interfolia and Nereocystis leutkeana in British Columbia coastal waters. Canad. J. Bot. 33., 323–340 (1955).CrossRefGoogle Scholar
  186. Yaphe, W., and B. Baxter: The enzymic hydrolysis of carrageenin. Applied Microbiol. 3., 380–383 (1955).Google Scholar
  187. Zechmeister, L., U. G. Tóth: Über die Polyose der Hefemembran. I. Biochem. Z. 270., 309–316 (1934).Google Scholar
  188. — Über die Polyose der Hefemembran. II. Biochem. Z. 284., 133–138 (1936).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • E. Gordon Young

There are no affiliations available

Personalised recommendations