Advertisement

Kohlenhydratstoffwechsel massiger Speicherorgane nach Abschluß der Speicherung; Lagerung; Kältekonservierung

  • Johannes Wolf
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 6)

Zusammenfassung

Kohlenhydrate und deren Derivate werden in Organen verschiedenster morphologischer Herkunft gespeichert. Solche Organe sind Früchte, insbesondere auch deren Samen, Reservestoffbehälter bienner oder perennierender Stauden (Rhizome, Wurzel- und Sproßknollen, Zwiebeln und andere Blattspeicher) und Achsenspeicher (Kakteen, gewisse Compositen, Stämme und Zweige von Bäumen und Sträuchern).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Afrikjan, B. L., Ss. A. Marutjan U. R. G. Ssaakjan: Über Formen der Vorratskohlenhydrate der Weinrebe. Ber. Akad. Wiss. UdSSR,, N. S. 96., 1195–1196 (1954). Zit. nach Chem. Zbl. 1955., 4134.Google Scholar
  2. Appleman, C. O.: Maryland Exper. Stat. Bull. 167., 327 (1912). Zit. nach Lee (1951).Google Scholar
  3. Appleman, C. O., and E. V. Miller: A chemical and physiological study of maturity in potatoes. J. Agricult. Res. 33., 569–577 (1926).Google Scholar
  4. Archbold, H. K.: Ripening processes in the apple. Proceed of the IX. Internat. Horticult. Congress, London, 1930, S. 374–379.Google Scholar
  5. — Chemical studies in the physiology of apples. XII. Ripening processes in the apple and the relation of time of gathering to the chemical changes in cold storage. Ann. of Bot. 46., 407–459 (1932).Google Scholar
  6. Arreguin-Lozano, B., and J. Bonner: Experiments on sucrose formation by potato tubers as influenced by temperature. Plant Physiol. 24., 720–738 (1949).PubMedCrossRefGoogle Scholar
  7. Asselbergs, E. A. M., and F. J. Francis: Studies on the formation of vitamin C in slices of potato tissue. Canad. J. Bot. 30., 665–673 (1952).CrossRefGoogle Scholar
  8. Audus, L. J.: Mechanical stimulation and respiration in the green leaf. Part 4 and 5. New Phytologist 40., 86–95 (1941).CrossRefGoogle Scholar
  9. Banga, O.: Physiologische Symptomen van lage-temperatuur-bederf. Diss. Wageningen. Gorinchen: J. Norduyn en Zoon N. V. 1936.Google Scholar
  10. Barker, J.: Analytical studies in plant respiration. IV. and V. The relation of the respiration of potatoes to the concentration of sugars and to the accumulation of a depressant at low temperatures. Proc. Roy. Soc. Lond., Ser. B 112., 316–358 (1933).CrossRefGoogle Scholar
  11. — Analytic studies in plant respiration. VI. The relation of the respiration of potatoes to the concentration of sugars and to the accumulation of a depressant at low temperatures. Part 3. The relation of the respiration to the concentration of sucrose. Proc. Roy. Soc. Lond., Ser. B 119., 453–473 (1936).Google Scholar
  12. — The ascorbic acid content of potato tubers. I. The relation between ascorbic acid and the sugar content, as influenced by the maturity at lifting and by storage. New Phytologist 49., 11–22 (1950).Google Scholar
  13. Barker, J., and L. W. Mapson: The ascorbic acid content of potato tubers. II. The influence of the temperature of storage. New Phytologist 49., 283–303 (1950).CrossRefGoogle Scholar
  14. — The ascorbic acid content of potato tubers. III. The influence of storage in nitrogen, air and pure oxygen. New Phytologist 51., 90–115 (1952).Google Scholar
  15. Barnell, H. R.: Studies in tropical fruits. VIII. Carbohydrate metabolism of the banana fruit during development, Ann. of Bot., N. S. 4., 39–71 (1940).Google Scholar
  16. — Studies in tropical fruits. XI. Carbohydrate metabolism of the banana fruit during ripening under tropical conditions. Ann. of Bot., N. S. 5., 217–247 (1941a).Google Scholar
  17. — Studies in tropical fruits. XIII. Carbohydrate metabolism of the banana fruit during storage at 53° F and ripening at 68° F. Ann. of Bot,, N. S. 5., 607–646 (1941b).Google Scholar
  18. — Studies in tropical fruits. XIV. Carbohydrate metabolism of the banana fruit during storage at 53° F. Ann. of Bot., N. S. 7., 1–22 (1943a).Google Scholar
  19. — Studies in tropical fruits. XV. Hemicellulose metabolism of the banana fruit during storage and ripening. Ann. of Bot., N. S. 7., 297–323 (1943b).Google Scholar
  20. Beadle, N. C. W.: Studies in the growth and respiration of tomato fruits and their relationship to carbohydrate content. Austral. J. Exper. Biol. a. Med. Sci. 15., 173–189 (1937).CrossRefGoogle Scholar
  21. Belval, H.: Les transformations des glucides dans le bananier, formation et disparition de l’amidon. Rev. gén. Bot. 44., 513–525 (1932).Google Scholar
  22. Bolotina, T. T., u. A. Petrova: Phosphoglucomutase der Kartoffelknollen. Ber. Akad. Wiss. UdSSR,, N. S. 88., 1027–1029 (1953). Zit. nach Chem. Zbl. 1953., 7830.Google Scholar
  23. — Die Phosphoglucomutase der Kartoffelknolle bei deren Reifung und Lagerung. Ber. Akad. Wiss. UdSSR., N. S. 95, 119–121 (1954). Zit. nach Chem. Zbl. 1955., 4854.Google Scholar
  24. Bonner, J.: Plant biochemistry. New York: Academic Press Inc., Publishers 1950.Google Scholar
  25. Bourdouil, C.: Sur la variation de la composition de la banane au cours de la maturation. Bull. Soc. Chim. biol. Paris 11., 1130–1142 (1929).Google Scholar
  26. Claypool, L. L., and F. W. Allen: The influence of temperature and oxygen level on the respiration and ripening of Wickson plums. Hilgardia 21., 129–160 (1951).Google Scholar
  27. Czapek, F.: Biochemie der Pflanzen, 3. Aufl., Bd. 1, S. 395–496. Jena: Gustav Fischer 1922.Google Scholar
  28. Damanski, A. F., U. T. K. Marić: Die Bildung der L-Ascorbinsäure in der Kartoffelknolle. Acta pharmac. jugosl. 4., 45–51 (1954). Zit. nach Chem. Zbl. 1955., 6317.Google Scholar
  29. Dastur, R. H., and S. D. Agnthotri: Study of the pectic changes in the potato tuber at different stages of growth and in storage. Indian J. Agricult. Sci. 4., 430–450 (1934). Zit. nach Lee (1951).Google Scholar
  30. Date, W. B., and E. Hansen: Pectic changes in pears during storage and ripening. Proc. Indian Acad. Sci., Sect. B 39., 171–178 (1954). Zit. nach Chem. Zbl. 1954., 10837.Google Scholar
  31. Deleano, N. T.: Studien über den Atmungsstoffwechsel abgeschnittener Laubblätter. Jb. wiss. Bot. 51., 541–592 (1912).Google Scholar
  32. Denny, F. F., and M. C. Thornton: Effect of post-harvest pre-storage conditions on the rate of development of sugar in potato tubers during subsequent cold storage. Contrib. Boyce Thompson Inst. 13., 65–71 (1943). Zit. nach Lee (1951).Google Scholar
  33. Dettweiler, Chr.: Zusammenhänge zwischen Austreiben und Atmung bei der Kartoffelknolle. I. Mitt. Die Hemmung des Austreibens durch Fermentinhibitoren, insbesondere Urethane. Planta (Berl.) 41., 214–239 (1952).CrossRefGoogle Scholar
  34. Doesburg, J. J.: Relation between the solubilization of pectin and the fate of organic acids during maturation of apples. J. Sci. Food a. Agricult. 8., 206–216 (1957).CrossRefGoogle Scholar
  35. Donen, L: The role of sorbitol in the carbon metabolism of the Kelsey plum. I. Changes in chemical composition during growth and storage. Biochemie. J. 33., 1611–1620 (1939).Google Scholar
  36. Donen, I., and E. R. Roux: The role of sorbitol in the C-metabolism of the Kelsey plum. II. Relation of carbohydrate and acid loss to CO2 production in stored fruit. Biochemie. J. 33., 1947–1956 (1939).Google Scholar
  37. Eberhardt, F.: Der Atmungsverlauf alternder Blätter und reifender Früchte. Planta (Berl.) 45., 57–67 (1955).CrossRefGoogle Scholar
  38. Eggenberger, W.: Biochemische Untersuchungen an Äpfeln während der Entwicklung und Lagerung. Diss. Eidgen. Techn. Hochsch. Zürich 1949.Google Scholar
  39. Emilsson, B.: Studies on the rest period and dormant period in the potato tuber. Acta Agric. suecana 3., 189–284 (1949).Google Scholar
  40. Emmett, A. M.: An investigation of the chemical changes which take place in pears stored at different temperatures, with special reference to pectic changes. Ann. of Bot. 43., 269–308 (1929).Google Scholar
  41. Evans, D. I.: Chemical studies in the physiology of apples. VII. A study of the sugars of apples with special reference to the fructose/glucose ratio. Ann. of Bot. 42., 1–28 (1928).Google Scholar
  42. Ewart, M. H., D. Siminovitch and D. R. Briggs: Studies on the chemistry of the living bark of the black locust tree in relation to frost hardiness. VI. Amylase and Phosphorylase systems of the bark tissue. Plant Physiol. 28., 629–644 (1953).PubMedCrossRefGoogle Scholar
  43. — Studies on the chemistry of the living bark of the black locust in relation to its frost hardiness. VIII. Possible enzymatic processes involved in starch-sucrose interconversions. Plant Physiol. 29., 407–413 (1954).Google Scholar
  44. Ezell, B. D., and M. S. Wilcox: Influence of storage temperature on carotene, total carotenoids and ascorbic acid content of sweet potatoes. Plant Physiol. 27., 81–94 (1952).PubMedCrossRefGoogle Scholar
  45. Gardener, V. R., F. Ch. Bradford and H. D. Hooker jr.: The fundamentals of fruit production. New York-Toronto-London: McGraw-Hill Book Company, Inc. 1952.Google Scholar
  46. Genevois, L., et E. Peynaud: Composition de 16 variétés de pêches. Rev. Horticole, N. S. 30., 295–298 (1947).Google Scholar
  47. Gerhardt, F., and B. D. Ezell: Physiological investigations on fall and winter pears in the Pacific Northwest. U. S. Dept. Agric., Techn. Bull. 1941., No 759.Google Scholar
  48. Godwin, H., and L. R. Bishop: The behaviour of the cyanogenetic glucosides of cherry laurel during starvation. New Phytologist 25., 295–315 (1927).CrossRefGoogle Scholar
  49. Griffiths, D. G., N. A. Potter and A. C. Hulme: Data for the study of the metabolism of apples during growth and storage. J. Horticult. Sci. 25., 266–288 (1950).Google Scholar
  50. Guthrie, J. D.: Factors influencing the development of ascorbic acid and glutathione in potato tubers following treatment with ethylene chlorhydrin. Contrib. Boyce Thompson Inst. 9., 17–39 (1937/38).Google Scholar
  51. Haller, H. M.: Changes in the pectic constituents of apples in relation to softening. J. Agricult. Res. 39., 739–746 (1929).Google Scholar
  52. Hasselbring, H., and L. A. Hawkins: Carbohydrate transformations in sweet potatoes. J. Agricult. Res. 5., 543–560 (1915).Google Scholar
  53. Haynes, D., and H. K. Archbold: Chemical studies in the physiology of apples. X. A quantitative study of chemical changes in stored apples. Ann. of Bot. 42., 965–1017 (1928).Google Scholar
  54. Hellström, N.: Investigations on oil turnips and oil rape. VI. Further investigations in chemical composition. Acta agricult. scand. (Stockh.) 6., 17–44 (1956).CrossRefGoogle Scholar
  55. Hesse, S.: Zur Kaltlagerung von Kartoffeln. Kältetechnik 5., 311–317 (1953).Google Scholar
  56. Hocquette, M., et B. Montuelle: Participation des glucides de la membrane au métabolisme cellulaire dans les axes hypo-cotylés de Phaseolus vulgaris. C. r. Acad. Sci. Paris 240., 1567–1568 (1955).Google Scholar
  57. Holmes, A. D.: The value of maleic hydrazide as a plant growth retardant. Food Techn. 8., 448–452 (1954).Google Scholar
  58. Hopkins, E. F.: Relation of low temperatures to respiration and carbohydrate changes in potato tubers. Bot. Gaz. 78., 311–325 (1924).CrossRefGoogle Scholar
  59. Hopkins, E. F., and J. K. Phillips: Temperature and starch-sugar change in sweet potatoes. Science (Lancaster, Pa.) 86., 523–525 (1937).Google Scholar
  60. Huelin, F. E.: Volatile products of apples. III. Identification of aldehydes and ketones. Austral. J. Sci. Res. 5., 328–334 (1952).Google Scholar
  61. Hulme, A. C.: Studies in the nitrogen metabolism of apple fruits. The climacteric rise in respiration in relation to changes in the equilibrium between protein synthesis and breakdown. J. of Exper. Bot. 5., 159–172 (1954).CrossRefGoogle Scholar
  62. Humphries, E. C.: Wilt of cacao fruits (Theobroma Cacao). IV. Seasonal variation in the carbohydrate reserves of the bark and wood of the cacao tree. Ann. of Bot., N. S. 11., 219–244 (1947).Google Scholar
  63. Jermyn, M. A. and F. A. Isherwood: Changes in the cell wall of the pear during ripening Biochemic. J. 64., 123–132 (1956).Google Scholar
  64. Kertesz, Z. I.: The pectic substances. New York: Interscience Publishers, Inc. 1951.Google Scholar
  65. Kidd, F.: The respiration of fruits. Proc. Roy. Inst. Great Britain 28., 351–381 (1935).Google Scholar
  66. Kidd, F., and C. West: Respiration of apples. Rep. Food Invest, Board (London) 1922., 30–31 (1923).Google Scholar
  67. Kidd, F., C. West, D. G. Griffiths and N. A. Potter: An investigation of the changes in chemical composition and respiration during the ripening and storage of Conference pears. Ann. of Bot., N. S. 4., 1–30 (1940).Google Scholar
  68. — The degradation of starch in apples removed from the tree at different stages of development. J. Horticult, Sci. 25., 289–296 (1950).Google Scholar
  69. — Metabolism of sucrose in apples. I. J. Horticult. Sci. 27., 179–191 (1952).Google Scholar
  70. Kidd, F., C. West and M. N. Kidd: Gas storage of fruit. Dep. of Sci. a. Ind. Res., Food Invest., Spec. Rep. No 30, VIII u. 87 S. London: His Majesty’s Stationery Office 1927.Google Scholar
  71. Kiermeier, F., u. G. Krumbholz: Lagerungsversuche mit Kartoffeln mit besonderer Berücksichtigung der Kaltlagerung. Vorratspflege u. Lebensmittelforsch. 5., 1–20 (1942).Google Scholar
  72. Kobel, F.: Lehrbuch des Obstbaues auf physiologischer Grundlage, 2. Aufl. Berlin-Göttingen-Heidelberg: Springer 1954.Google Scholar
  73. Kotelnikova, A. W., u. W. W. Ssolomatina: Untersuchung der Apyrase- und Phosphataseaktivität in unter verschiedenen Bedingungen gewachsenen Kartoffelknollen mit der Reifung der Knollen im Zusammenhang mit den Prozessen der Stärkebildung. Biochimija 19., 144–149 (1954a). Zit. nach Chem. Zbl. 1955., 3645.Google Scholar
  74. — Über einige Sortenbesonderheiten der Apyraseaktivität in Kartoffelknollen. Ber. Akad. Wiss. UdSSR., N. S. 95., 325–327 (1954b). Zit. nach Chem. Zbl. 1955., 5569.Google Scholar
  75. Kröner, W., u. G. Steinhoff: Über das Reduktionsvermögen gelagerter Kartoffeln gegenüber 2,6-Dichlorphenolindophenol (Vitamin C). Biochem. Z. 294., 138–144 (1937).Google Scholar
  76. Kroker, F.: Der Einfluß der Aufbewahrung und der Gefrierkonservierung auf den Vitamingehalt von Obst und Gemüse. Forschungsdienst 7., 619–640 (1939).Google Scholar
  77. Krotkov, G., and V. Helson: Carbohydrate metabolism of Mcintosh apples during their development on tree and in cold storage. Canad. J. Res., Sect. C 24., 126–144 (1946).CrossRefGoogle Scholar
  78. Krumbholz, G.: Über die Bedeutung des Reifezustandes bei der Kaltlagerung von Kernobst und seine Bestimmung. Gartenbauwiss. 14., 591–600 (1940).Google Scholar
  79. Krumbholz, G., U. N. Wolodkewitsch: Festigkeitsmessungen an Obst. Landw. Jb. 88., 895–902 (1939).Google Scholar
  80. Kurz, F. A.: Die Rolle der Ascorbinsäure als Überträger des Wasserstoffs in den Pflanzen. Biochimija 18., 284–287 (1953). Zit. nach Chem. Zbl. 1953., 7573.Google Scholar
  81. Lee, F. A.: Vegetables and mushrooms. Fruits and nuts. In: Jacobs, M. B., The chemistry and technology of food and food products, 2. Aufl., Bd. II, S. 1212–1347 u. 1348–1589. New York: Interscience Publishers, Inc. 1951.Google Scholar
  82. Lunde, G., u. L. Erlandsen: Vitamine in frischen und konservierten Nahrungsmitteln, 2. Aufl. Berlin: Springer 1943.Google Scholar
  83. Lutz, J. M.: Chilling injury of cured and noncured Porto Rico sweet potatoes. U. S. Dept. Agric. (Washington), Circ. No 729 (1945).Google Scholar
  84. Magness, J. R.: Investigations in the ripening and storage of Bartlett pears. J. Agricult. Res. 19., 473–500 (1920).Google Scholar
  85. Maris Mc Arthur-Hespe, G. W. F.: Enige onderzoekingen over de activiteit van zetmeel splisende enzymen in peren gedurende de ontwikkeling en bij koelhuisbewaring. Diss. Amsterdam 1955. 70 S. Amsterdam: Willem 1955. Zit. nach Kältetechnik 7., 383–384 (1955).Google Scholar
  86. — The activity of starch-hydrolysing enzymes in pears during development and cold-storage. Acta bot. néerl. 5., 200–213 (1956).Google Scholar
  87. Mc Cready, R. M., and E. A. Mc Comb: Pectic constituents in ripe and unripe fruit. Food Res. 19., 530–535 (1954).Google Scholar
  88. Miller, E. V., and A. S. Heilmann: Ascorbic acid and physiological breakdown in the fruits of the pine-apple (Ananas comosus L. Merr.). Science (Lancaster, Pa.) 116., 505–506 (1952).Google Scholar
  89. Millerd, A., J. Bonner and J. B. Biale: The climacteric rise in fruit respiration as controlled by phosphorylative coupling. Plant Physiol. 28., 521–531 (1953).PubMedCrossRefGoogle Scholar
  90. Mothes, K.: Ein Beitrag zur Kenntnis des Stickstoffwechsels höherer Pflanzen. Planta (Berl.) 1., 472–552 (1926).CrossRefGoogle Scholar
  91. Müller-Thurgau, H.: Über Zuckeranhäufung in Pflanzentheilen in Folge niederer Temperatur. Landw. Jb. 11., 751–828 (1882).Google Scholar
  92. Müller-Thurgau, H., U. O. Schneider-Orelli: Reifevorgänge bei Kernobstfruchten. Landw. Jb. Schweiz 22., 760–774 (1908).Google Scholar
  93. — Beiträge zur Kenntnis der Lebensvorgänge in ruhenden Pflanzenteilen. I. Über den Einfluß des Vorerwärmens und einiger anderer Faktoren. Flora (Jena) 101., 309–372 (1910).Google Scholar
  94. — Beiträge zur Kenntnis der Lebensvorgänge in ruhenden Pflanzenteilen. II. Flora (Jena) 104., 387–446 (1912).Google Scholar
  95. Murneek, A. E.: Hemicellulose as a storage carbohydrate in woody plants with special reference to the apple. Plant Physiol. 4., 251–264 (1929).PubMedCrossRefGoogle Scholar
  96. Nicolaisen-Scupin, L., u. N. Nicolaisen: Die Kaltlagerung von Kartoffeln. Kältetechnik 6., 62–66 (1954).Google Scholar
  97. — Versuche zur Feststellung des Einflusses hoher Schüttung bei der Kaltlagerung von Speisekartoffeln. Kältetechnik 6., 311–315, 335–337 (1954).Google Scholar
  98. Olliver, M.: The ascorbic acid content of fruits and vegetables. Analyst (Lond.) 63., 2–18 (1938).CrossRefGoogle Scholar
  99. Paech, K.: Über die Regulation des Eiweißumsatzes und über den Zustand der proteolytischen Fermente in den Pflanzen. Planta (Berl.) 24., 78–129 (1935).CrossRefGoogle Scholar
  100. — Pflanzenphysiologische Grundlagenforschung. Landw. Jb. 85., 653–660 (1938).Google Scholar
  101. — Die Veränderung des Vitamin-C-Gehaltes bei der Kaltlagerung und beim Gefrieren von Obst und Gemüse. Forschungsdienst 7., 391–411 (1939).Google Scholar
  102. — Veränderungen des Plasmas während des Alterns pflanzlicher Zellen zugleich ein Beitrag zur Kenntnis der Narkose von Pflanzen. Planta (Berl.) 31., 295–348 (1940).Google Scholar
  103. — Biologische Grundlagen der Frischhaltung pflanzlicher Lebensmittel. In Handbuch der Kältetechnik (herausgeg. von R. Plank), Bd. 9., S. 223–310. Berlin-Göttingen-Heidelberg: Springer 1952.Google Scholar
  104. Petrova, A. N., T. T. Bolotina U.. A. A. Kobseva: Untersuchungen der Vorgänge der Synthese und des Zerfalls der Stärke in den Kartoffelknollen zu verschiedenen Vegetationszeiten. Biochimija 18., 47–50 (1953). Zit. nach Chem. Zbl. 1953., 5523.Google Scholar
  105. — Die Untersuchung der enzymatischen Synthese und des Zerfalls in den Kartoffelknollen bei Aufbewahrung derselben bei verschiedenen Temperaturen. Biochimija 19., 64–67 (1954). Zit. nach Chem. Zbl. 1954., 11213.Google Scholar
  106. Pfankuch, E.: Über die Phosphatase der Kartoffel und der Zuckerrübe. Hoppe-Seylers Z. 241., 34–46 (1936).CrossRefGoogle Scholar
  107. Phillips, T. G.: Changes in the composition of squash during storage. Plant Physiol. 21., 533–541 (1946).PubMedCrossRefGoogle Scholar
  108. Phillips, T. G., and W. Averill: Phosphorylase and a branching enzyme in squash. Plant Physiol. 28., 287–292 (1953).PubMedCrossRefGoogle Scholar
  109. Porter, H. K., and W. R. Rees: Some effects of ethanol extracts of potatoes on the activity of a Phosphorylase preparation. Plant Physiol. 29., 514–520 (1954).PubMedCrossRefGoogle Scholar
  110. Richardson, L. T., and W. R. Phillips: LOW temperature breakdown of potatoes in storage. Sci. Agric. 29., 149–166 (1949).Google Scholar
  111. Robertson, R. N., and J. F. Turner: The physiology of growth of apple fruits. II. Respiratory and other metabolic activities as functions of cell number and cell size in fruit development. Austral. J. Sci. Res. 4., 92–107 (1951).Google Scholar
  112. Rosa, J. T.: Changes in composition during ripening and storage of melons. Hilgardia (Berkeley, Calif.) 3., 421–443 (1928).Google Scholar
  113. Rosenfeld, Je. L., u. A. I. Schubina: Die Phosphorylase der Kartoffelknollen. Biochimija 19., 289–294 (1954). Zit. nach Chem. Zbl. 1955., 6048.Google Scholar
  114. Rubin, B. A.: Über das Biose-Monoseverhältnis als ein biochemisches Artmerkmal der Zwiebel. C. r. Acad. Sci. URSS. 3., 431–434 (1936). Zit. nach Chem. Zbl. 1937. I, 2044.Google Scholar
  115. — Hydrolysierende und synthetisierende Aktivität der Saccharase als Merkmal der Sorte bei Zwiebeln. Biochimija 1., 467–478 (1936). Zit. nach Chem. Zbl. 1937. I, 3653.Google Scholar
  116. Rubin, B. A., u. E. W. Arzichowskaja: Biochemische Charakteristik der Widerstandsfähigkeit der Pflanzen gegenüber Mikroorganismen. Berlin: Akademie-Verlag 1953.Google Scholar
  117. Sapožnikova, E. V., u. A. Jusubov: Umwandlung von Pektinstoffen beim Lagern von Äpfeln. Dokl. Akad. Nauk SSSR., N. S. 93., 693–695 (1953). Zit. nach Ber. wiss. Biol. 92., 60 (1954).Google Scholar
  118. Schwimmer, S., A. Bevenue, W. J. Weston and A. L. Potter: Potato composition. Survey of major and minor sugar and starch components of the white potato. J. Agric. a. Food Chem. 2., 1284–1290 (1954).CrossRefGoogle Scholar
  119. Scupin, L.: Ergebnisse der Untersuchungen über Veränderungen des Zuckergehaltes in Zwiebeln bei der Lagerung, insbesondere Kühllagerung. Dtsch. Lebensmittel-Rdsch. 46., 76–85 (1950).Google Scholar
  120. Seybold, A.: Untersuchungen über den Farbwechsel von Blumenblättern, Früchten und Samenschalen. Sitzgsber. Heidelberg. Akad. Wiss., Math. -naturwiss. Kl. 1953/54., 2. Abh.Google Scholar
  121. Sharples, G. C., and L. Burkhardt: Seasonal changes in carbohydrates in the Marsh grapefruit tree in Arizona. Proc. Amer. Soc. Horticult. Sci. 63., 74–80 (1954).Google Scholar
  122. Siminovitch, D., and D. R. Briggs: Studies on the chemistry of the living bark of the black locust in relation to its frost hardiness. VII. A possible direct effect of starch on the susceptibility of plants to freezing injury. Plant Physiol. 29., 331–337 (1954).PubMedCrossRefGoogle Scholar
  123. Siminovitch, D., C. M. Wilson and D. R. Briggs: Studies on the chemistry of the living bark of the black locust in relation to its frost hardiness. V. Seasonal transformations and variations in the carbohydrates: starch-sucrose interconversions. Plant Physiol. 28., 383–400 (1953).PubMedCrossRefGoogle Scholar
  124. Sistrunk, W. A., J. C. Miller and L. G. Jones: Carbohydrate changes during storage and cooking of sweet potatoes. Food Technol. 8., 223–226 (1954).Google Scholar
  125. Smith, F. G.: Ascorbic acid formation in potato tuber slices. Plant Physiol. 27., 736–744 (1952).PubMedCrossRefGoogle Scholar
  126. Sparrow, A. H., and E. Christensen: Improved storage quality of potato tubers after exposure to Co60 gammas. Nucleonics 12., 16–17 (1954).Google Scholar
  127. Steward, F. C., and G. Preston: Metabolic processes of potato discs under conditions conducive to salt accumulation. Plant Physiol. 15., 23–61 (1940).PubMedCrossRefGoogle Scholar
  128. Swarbrick, T.: Studies in the physiology of fruit trees. I. The seasonal starch content and cambial activity in one-to five-vear old apple branches. J. Pomol. a. Horticult. Sci. 6., 137–156 (1927).Google Scholar
  129. Thornton, N. C.: Carbon dioxide storage. XIV. The influence of carbon dioxide, oxygen and ethylene on the vitamin C content of ripening bananas. Contrib. Boyce Thompson Inst. 13., 201–220 (1943).Google Scholar
  130. — Factors influencing vitamin C content of asparagus, banana and seedlings of garden pea during growth or in storage. Contrib. Boyce Thompson Inst. 14., 295–304 (1947).Google Scholar
  131. Türner, J. F.: The metabolism of the apple during storage. Austral. J. SCI. Res. B 2., 138–153 (1949).Google Scholar
  132. Ulrich, R.: Conservation par le froid des denrées d’origine végétale. Paris: J. -B. Baillière et Fils 1954.Google Scholar
  133. Vickery, H. B., G. W. Pucher, A. J. Wakeman and C. S. Leavenworth: Chemical investigations of the tobacco plant. II. Chemical changes that occur in leaves of Connecticut shade-grown tobacco during culture in distilled water. Carnegie Instn. Wash. Publ. No 445, 1–77 (1933).Google Scholar
  134. Weurman, C.: Pectinase inhibitors in pears. Acta bot. néerl. 2., 107–121 (1953).Google Scholar
  135. — Pectinase in pears. Acta bot. néerl. 3., 108–113 (1954a).Google Scholar
  136. — Pectase in Doyenné Boussoch pears and changes in the quantity of the enzyme during development. Acta bot. néerl. 3., 100–107 (1954b).Google Scholar
  137. Widdowson, E. M.: Chemical studies in the physiology of apples. XIII. The starch and hemicellulose content of developing apples. Ann. of Bot. 46., 597–631 (1932).Google Scholar
  138. Williams, K. T., and A. Bevenue: Some carbohydrate components of tomato. J. Agric. a. Food Chem. 2., 472–474 (1954).CrossRefGoogle Scholar
  139. Winter, E.: Ascorbinsäure-Synthese in Gewebeschnitten. Planta (Berl.) 41., 52–58 (1952).CrossRefGoogle Scholar
  140. — Änderung des Vitamin-C-Gehaltes geernteter Pflanzen. Z. Lebensm. -Unters. u. -Forsch. 94., 414–419 (1952).Google Scholar
  141. Wokes, F., and G. Nunn: Vitamin C in potatoes. Nature (Lond.) 162., 900–901 (1948).CrossRefGoogle Scholar
  142. Wolf, J.: Untersuchungen an Spargel. I. Ascorbinsäure. Gartenbauwiss. 15., 109–117 (1940).Google Scholar
  143. — Untersuchungen an Spargel. II. Vitamin C. Gartenbauwiss. 15., 590–598 (1941a).Google Scholar
  144. — Kühlen und Gefrieren von Obst und Gemüse unter besonderer Berücksichtigung der Vitamin-C-Erhaltung. Vorratspflege u. Lebensmittelforsch. 4., 241–256 (1941b).Google Scholar
  145. Wood, J. G., D. H. Cruickshank and R. H. Kuchel: The metabolism of starving leaves. 1. Presentation of data; the nature of respiration rate/time curves in air and in nitrogen and the relation to carbohydrates. 2. Changes in amounts of total and chloroplast proteins, chlorophyll, ascorbic acids and soluble nitrogen compounds. 3. Changes in malic and citric acid contents and inter-relations of these with soluble nitrogen compounds. Austral. J. Exper. Biol. a. Med. Sci. 21., 37–53 (1943).CrossRefGoogle Scholar
  146. Wood, J. G., and A. H. K. Petrie: Studies on the nitrogen metabolism of plants. V. The relation of carbohydrate content to protein synthesis in leaves. Austral. J. Exper. Biol. a. Med. Sci. 20., 239–256 (1942).Google Scholar
  147. Wright, R. C., W. M. Peacock, T. M. Whiteman and E. F. Whiteman: The cooking quality, palatibility and carbohydrate composition of potatoes as influenced by storage temperature. U. S. Dept. Agric., Techn. Bull 1936., No 507.Google Scholar
  148. Wright, R. C., and T. M. Whiteman: Chipping quality of eight potato varieties as affected by source and by storage treatment. U. S. Dept. Agric., Circ. No 936 (1954).Google Scholar
  149. Yemm, E. W.: The respiration of barley plants. II. Carbohydrate concentration, and carbon dioxide production in starving leaves. Proc. Roy. Soc. Lond., Ser. B 117., 504–525 (1935).CrossRefGoogle Scholar
  150. — Respiration of barley plants. III. Protein catabolism in starving leaves. Proc. Roy. Soc. Lond., Ser. B 123., 243–273 (1937).Google Scholar
  151. Zeller, A.: Zuckergehalt und Haltbarkeit der Küchenzwiebel. Gartenbauwiss. 13., 598–604 (1939).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Johannes Wolf

There are no affiliations available

Personalised recommendations