Advertisement

Abstract

The monosaccharides may be defined as a group of polyhydroxy aldehydes (aldoses) or ketones (ketoses) normally possessing unbranched carbon chains. All the known ketoses have their carbonyl group in the second position and only a few rare aldoses contain unsubstituted methyl (CH3) or methylene (CH2) groups or branched carbon chains. With the carbonyl group in aldoses at position one, there results a terminal primary alcohol group with intervening secondary alcohol functions. These compounds therefore can be represented by the general formula CH2OH—(CHOH)n—CHO for the aldoses and by CH2OH—(CHOH)n—CO— CH2OH for the ketoses. The monosaccharides are further classified according to their carbon content, with the pentoses and the hexoses being of special interest.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Amadori, M.: The product of the condensation of glucose and p-phenetidine. II. Atti Accad. Lincei [6] 9, 68–73 (1929).Google Scholar
  2. Condensation products of glucose with p-toluidine. Atti Accad. Lincei [6] 13, 72–77 (1931).Google Scholar
  3. Appel, H.: An easy method for the preparation of l-xylose. J. Chem. Soc. (Lond.) 1935, 425–426.Google Scholar
  4. Armstrong, E. F.: Studies on enzyme action. I. The correlation of the stereoisomeric α- and β-glucosides with the corresponding glucoses. J. Chem. Soc. (Lond.) 1903, 1305–1313.Google Scholar
  5. Ballou, C. E., S. Roseman and K. P. Link: Reductive cleavage of benzyl glycosides for relating anomeric configurations. Preparation of some new benzyl pentosides. J. Amer. Chem. Soc. 73, 1140–1144 (1951).CrossRefGoogle Scholar
  6. Bassham, J. A., A. A. Benson, L. D. Kay, Anne Z. Harris, A. T. Wilson and M. Calvin: The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Amer. Chem. Soc. 76, 1760–1770 (1954).CrossRefGoogle Scholar
  7. Bates, F. J., and Associates: Polarimetry, saccharimetry and the sugars. Washington D. C.: United States Government Printing Office 1942.Google Scholar
  8. Behrend, R., u. P. Roth: Über die Birotation der Glucose. Liebigs Ann. 331, 359–382 (1904).CrossRefGoogle Scholar
  9. Beilstein, F.: Handbuch der organischen Chemie, Bd. XXXI, F. Richter, Kohlenhydrate. Teil I: Monosaccharide und Oligosaccharide. Berlin: Springer 1938.Google Scholar
  10. Bell, D. J.: Biological synthesis and interconversion of some monosaccharides. Ann. Rep. Progr. Chem. 51, 324–334 (1955).Google Scholar
  11. Bell, D. J., F. A. Isherwood and N. E. Hardwick: d(+)-Apiose from the monocotyledon, Posidonia australis. J. Chem. Soc. (Lond.) 1954, 3702–3706.Google Scholar
  12. Benson, A. A., S. Kawauchi, P. Hayes and M. Calvin: The path of carbon in photosynthesis. XVI. Kinetic relationship of the intermediates in steady state photosynthesis. J. Amer. Chem. Soc. 74, 4477–4482 (1952).CrossRefGoogle Scholar
  13. Bentley, H. R., K. G. Cunningham and F. S. Spring: Cordycepin, a metabolic product from cultures of Cordyceps militaris (Linn.) Link. Part II. The structure of cordycepin. J. Chem. Soc. (Lond.) 1951, 2301–2305.Google Scholar
  14. Bijvoet, J. M., A. F. Peerdeman and A. J. van Bommel: Determination of the absolute configuration of optically active compounds by means of X-rays. Nature (Lond.) 168, 271–272 (1951).CrossRefGoogle Scholar
  15. Binkley, W. W.: Column chromatography of sugars and their derivatives. Adv. Carbohydrate Chem. 10, 55–79 (1955).CrossRefGoogle Scholar
  16. Boothroyd, B., S. A. Brown, J. A. Thorn and A. C. Neish: A chemical procedure for determination of the C14-distribution in labeled glucose. Canad. J. Biochem. a. Physiol. 33, 62–68 (1955).CrossRefGoogle Scholar
  17. Bray, H. G., and M. Stacey: Blood group polysaccharides. Adv. Carbohydrate Chem. 4, 37–55 (1949).CrossRefGoogle Scholar
  18. Brigl, P.: Über ein neues, das 1,2-Anhydrid der Glucose. Kohlenhydrate. II. Hoppe-Seylers Z. 122, 245–262 (1922).CrossRefGoogle Scholar
  19. Butlerow, A.: Bildung einer zuckerartigen Substanz durch Synthese. Liebigs Ann. 120, 295–298 (1861).Google Scholar
  20. Campbell, H. A., and K. P. Link: Acetals in the sugar group. I. The dimethyl acetal of d-galactose. J. of Biol. Chem. 122, 635–640 (1938).Google Scholar
  21. Cantor, S. M., and Q. P. Peniston: The reduction of aldoses at the dropping mercury cathode: estimation of the aldehydo structure in aqueous solutions. J. Amer. Chem. Soc. 62, 2113–2121 (1940).CrossRefGoogle Scholar
  22. Davies, D. A. L.: The specific polysaccharides of some gramnegative bacteria. Biochemic. J. 59, 696–704 (1955).Google Scholar
  23. Edelman, J., V. Ginsbubg and W. Z. Hassid: Conversion of monosaccharides to sucrose and cellulose in wheat seedlings. J. of Biol. Chem. 213, 843–854 (1955).Google Scholar
  24. Eisenbebg jr., F.: Degradation of isotopically-labeled glucose via periodate oxidation of gluconate. J. Amer. Chem. Soc. 76, 5152–5154 (1954).CrossRefGoogle Scholar
  25. Elderfield, R. C.: The carbohydrate components of the cardiac glycosides. Adv. Carbohydrate Chem. 1, 147–173 (1945).CrossRefGoogle Scholar
  26. Fieser, L. F., and M. Fieser: Organic chemistry. Boston: D. C. Heath & Comp. 1944.Google Scholar
  27. Fischer, E.: Verbindungen des Phenylhydrazins mit den Zuckerarten. Ber. dtsch. chem. Ges. 17, 579–584 (1884).CrossRefGoogle Scholar
  28. Synthesen in der Zuckergruppe. Ber. dtsch. chem. Ges. 23, 2114–2141 (1890).Google Scholar
  29. Über die Configuration des Traubenzuckers und seiner Isomeren. Ber. dtsch. chem. Ges. 24, 1836–1845, 2683–2687 (1891).Google Scholar
  30. Über die Verbindungen der Zuckerarten mit den Mercaptanen. Ber. dtsch. chem. Ges. 27, 673–679 (1894).Google Scholar
  31. Fischer, E., u. I. W. Fay: Über Idonsäure, Idose, Idit und Idozuckersäure. Ber. dtsch. chem. Ges. 28, 1975–1983 (1895).CrossRefGoogle Scholar
  32. Fischer, H. O. L., u. E. Baer: Weitere Derivate der Triosen und ihre Umwandlungen. Ber. dtsch. chem. Ges. 65, 345–352 (1932).CrossRefGoogle Scholar
  33. Synthese von d-Fructose und d-Sorbose aus d-Glycerinaldehyd bzw. aus d-Glycerinaldehyd und Dioxyaceton; über Aceton-glycerinaldehyd. III. Helvet. chim. Acta 19, 519–532 (1936).Google Scholar
  34. Freed, M., and A. M. Wynne: Determination of hydroxyl groups in organic compounds. Industr. Engng. Chem., Analyt. Edit. 8, 278–279 (1936).CrossRefGoogle Scholar
  35. Freudenberg, K., W. Dürr, u. H. V. Hochstetter: Zur Kenntnis der Aceton-Zucker. XIII. Die Hydrolyse einiger Disaccharide, Glucoside und Aceton-Zucker. Ber. dtsch. chem. Ges. 61, 1735–1743 (1928).CrossRefGoogle Scholar
  36. Freudenberg, K., u. R. M. Hixon: Zur Kenntnis der Aceton-Zucker. IV. Versuche mit Galaktose und Mannose. Ber. dtsch. chem. Ges. 56, 2119–2127 (1923).CrossRefGoogle Scholar
  37. Glattfeld, J. W. E., and S. Gershon: The catalytic dehydrogenation of sugar alcohols. J. Amer. Chem. Soc. 60, 2013–2023 (1938).CrossRefGoogle Scholar
  38. Green, J. W., and E. Pacsu: Glycofuranosides and thioglycofuranosides. II. Crystalline α-ethylgalactofuranoside. J. Amer. Chem. Soc. 59, 2569–2570 (1937).CrossRefGoogle Scholar
  39. Hagedorn, H. C., u. B. N. Jensen: Zur Mikrobestimmung des Blutzuckers mittels Ferricyanid. Biochem. Z. 135, 46–48 (1923).Google Scholar
  40. Hanes, C. S.: An application of the method of Hagedorn and Jensen to the determination of larger quantities of reducing sugars. Biochemic. J. 23, 99–106 (1929).Google Scholar
  41. Hann, R. M., and C. S. Hudson: The action of copper sulfate on phenylosazones of the sugars. Phenyl-d-glucosotriazole. J. Amer. Chem. Soc. 66, 735–738 (1944).CrossRefGoogle Scholar
  42. Haworth, W. N.: A new method of preparing alkylated sugars. J. Chem. Soc. (Lond.) 1915, 8–16.Google Scholar
  43. Helferich, B.: The glycals. Adv. Carbohydrate Chem. 7, 209–245 (1952).CrossRefGoogle Scholar
  44. Helferich, B., u. E. Himmen: Eine neue ungesättigte Anhydroglucose. Ber. dtsch. chem. Ges. 61, 1825–1835 (1928).CrossRefGoogle Scholar
  45. Hirst, E. L.: The structure of the normal monosaccharides. J. Chem. Soc. (Lond.) 1926, 350–357.Google Scholar
  46. Horecker, B. L.: The pentose phosphate pathway in carbohydrate metabolism. Abstr. Amer. Chem. Soc. 128, 18D (1955).Google Scholar
  47. Hough, L., and J.K.N. Jones: The biosynthesis of the monosaccharides. Adv. Carbohydrate Chem. 11, 185–261 (1956).CrossRefGoogle Scholar
  48. Hudson, C. S.: The significance of certain numerical relations in the sugar group. J. Amer. Chem. Soc. 31, 66–86 (1909).CrossRefGoogle Scholar
  49. Relation between the chemical constitution and the optical rotatory power of the sugar lactones. J. Amer. Chem. Soc. 32, 338–346 (1910).Google Scholar
  50. Relation between rotatory power and structure in the sugar group. XXXII. The relations of the aldonic gamma lactones. J. Amer. Chem. Soc. 61, 1525–1528 (1939).Google Scholar
  51. Apiose and the glycosides of the parsley plant. Adv. Carbohydrate Chem. 4, 57–74 (1949).Google Scholar
  52. Huebner, C. F., S. R. Ames and E. C. Bubl: Periodate oxidation of certain active methylene groups. J. Amer. Chem. Soc. 68, 1621–1628 (1946).CrossRefGoogle Scholar
  53. Isbell, H. S.: A study of the delta lactones formed by the oxidation of aldoses with bromine water. J. Res. Nat. Bur. Stand. 8, 615–624 (1932).Google Scholar
  54. Isbell, H. S., H. L. Frush and N. B. Holt: Synthesis of d-galactose-1-C14 and d-talose-1-C14. J. Res. Nat. Bur. Stand. 53, 217–220 (1954).Google Scholar
  55. Synthesis of α-d-xylose-1-C14 and β-d-lyxose-1-C14. J. Res. Nat. Bur. Stand. 53, 325–327 (1954).Google Scholar
  56. Isbell, H. S., J. V. Karabinos, H. L. Frush, N. B. Holt, A. Schwebel and T. T. Galkowski: Synthesis of d-glucose-1-C14 and d-mannose-1-C14. J. Res. Nat. Bur. Stand. 48, 163–171 (1952).Google Scholar
  57. Iwadare, K.: The formation of polyhydroxydialdehydes. I. Xylo-trihydroxy-glutaric dialdehyde and its derivatives. Bull. Chem. Soc. Japan 16, 40–44 (1941).CrossRefGoogle Scholar
  58. Jackson, E. L., and C. S.Hudson: Studies on the cleavage of the carbon chain of glycosides by oxidation. A new method for determining ring structures and alpha and beta configurations of glycosides. J. Amer. Chem. Soc. 59, 994–1003 (1937).CrossRefGoogle Scholar
  59. Jesiatis, Margeris A., and W. F. Goebel: The chemical and antiviral properties of the somatic antigen of phase II Shigella sonnei. J. of Exper. Med. 96, 409–429 (1952).CrossRefGoogle Scholar
  60. Kenner, J., and G. N. Richards: The degradation of carbohydrates by alkali. VII. 5-O-Benzyl and 3:5-O-benzylidene-2-deoxy-d-ribose. J. Chem. Soc. (Lond.) 1954, 3277–3281.Google Scholar
  61. Khalique, M. A., and M. Ahmed: Corchsularin, a new bitter from jute seeds. I. Its isolation and constitution of corchsularose. J. Org. Chem. 19, 1523–1528 (1954).CrossRefGoogle Scholar
  62. Kiliani, H.: Beitrag zur Kenntnis des Saccharins. Ber. dtsch. chem. Ges. 15, 701–702 (1882).CrossRefGoogle Scholar
  63. Über die Constitution der Isosaccharinsäure. Ber. dtsch. chem. Ges. 18, 2514–2518 (1885).Google Scholar
  64. Über die Einwirkung von Blausäure auf Dextrose. Ber. dtsch. chem. Ges. 19, 767–772 (1886).Google Scholar
  65. Kiliani, H., u. P. Loeffler: Constitution der Metasaccharinsäure. Ber. dtsch. chem. Ges. 38, 2667–2670 (1905).CrossRefGoogle Scholar
  66. Kowkabany, G. N.: Paper chromatography of carbohydrates and related compounds. Adv. Carbohydrate Chem. 9, 303–353 (1954).CrossRefGoogle Scholar
  67. La Forge, F. B., and C. S. Hudson: Sedoheptose, a new sugar from Sedum spectabile. J. of Biol. Chem. 30, 61–77 (1917).Google Scholar
  68. Lemieux, R. U., and M. L. Wolfrom: The chemistry of streptomycin. Adv. Carbohydrate Chem. 3, 337–384 (1948).CrossRefGoogle Scholar
  69. Levene, P. A., and G. M. Meyer: Pentamethyl d-mannose and pentamethyl d-galactose and their dimethyl acetals. J. of Biol. Chem. 74, 695–699 (1927).Google Scholar
  70. Lobry de Bruyn, C. A., et W. Alberda van Ekenstein: Action des alcalis sur les sucres iv–vi. Ree. Trav. chim. Pays-Bas 16, 257–281 (1897).CrossRefGoogle Scholar
  71. Long, C: The naturally occurring seven-carbon sugars and related compounds. Sci. Progr. 41, 282–290 (1953).Google Scholar
  72. Lowry, T. M., and I. J. Faulkner: Studies of dynamic isomerism. XX. Amphoteric solvents as catalysts for the muturotation of the sugars. J. Chem. Soc. (Lond.) 1925, 2883–2887.Google Scholar
  73. Mac Donald, D. L., and H. O. L. Fischer: The degradation of sugars by means of their disulfones. J. Amer. Chem. Soc. 74, 2087–2090 (1952).CrossRefGoogle Scholar
  74. Maurer, K.: Neue ungesättigte Anhydro-zucker. II. Mitt. Ber. dtsch. chem. Ges. 62, 332–338 (1929).CrossRefGoogle Scholar
  75. Maurer, K., u. G. Drefahl: Oxydationen mit Stickstoffdioxyd. I. Mitt. Die Darstellung von Glyoxylsäure, Glucuronsäure und Galakturonsäure. Ber., dtsch. chem. Ges. 75, 1489–1491 (1942).CrossRefGoogle Scholar
  76. Mc Neely, W. H., W. W. Binkley and M. L. Wolfrom: Separation of sugar acetates by chromatography. J. Amer. Chem. Soc. 67, 527–529 (1945).CrossRefGoogle Scholar
  77. Mehltretter, C. L., B. H. Alexander, R. L. Mellies and C. E. Rist: A practical synthesis of d-glucuronic acid through the catalytic oxidation of 1,2-isopropylidene-d-glucose. J. Amer. Chem. Soc. 73, 2424–2427 (1951).CrossRefGoogle Scholar
  78. Mills, J. A.: The stereochemistry of cyclic derivatives of carbohydrates. Adv. Carbohydrate Chem. 10, 1–53 (1955).CrossRefGoogle Scholar
  79. Moore, S., and K. P. Link: Carbohydrate characterization. I. The oxidation of aldoses by hypoiodite in methanol. II. The identification of seven aldo-monosaccharides as benzimidazole derivatives. J. of Biol. Chem. 133, 293–311 (1940).Google Scholar
  80. Muskat, I. E.: Reactions of carbohydrates in liquid ammonia. II. Apparatus and methods. Alkyl, acyl and certain metallic and non-metallic derivatives of diacetoneglucose. J. Amer. Chem. Soc. 56, 2449–2454 (1934).CrossRefGoogle Scholar
  81. Nef, J. U.: Dissoziationsvorgänge in der Zuckergruppe. Über das Verhalten der Zuckerarten gegen Ätzalkalien. Liebigs Ann. 376, 1–119 (1910).CrossRefGoogle Scholar
  82. Dissoziationsvorgänge in der Zuckergruppe. Liebigs Ann. 403, 204–383 (1914).Google Scholar
  83. Ness, A. T., R. M. Hann and C. S. Hudson: The acetolysis of trimethylene-d-sorbitol, 2,4-methylene-d-sorbitol and 1,3:2,4-dimethylene-d-sorbitol. J. Amer. Chem. Soc. 66, 665–670 (1944).CrossRefGoogle Scholar
  84. Neuberg, C.: Die Methylphenylhydrazinreaction der Fructose. Ber. dtsch chem. Ges. 37, 4616–4618 (1904).CrossRefGoogle Scholar
  85. Newth, F. H.: The formation of furan compounds from hexoses. Adv. Carbohydrate Chem. 6, 83–106 (1951).CrossRefGoogle Scholar
  86. Overend, W. G., and M. Stagey: The chemistry of the 2-desoxysugars. Adv. Carbohydrate Chem. 8, 45–105 (1953).CrossRefGoogle Scholar
  87. Peat, S.: The chemistry of anhydro sugars. Adv. Carbohydrate Chem. 2, 37–77 (1946).CrossRefGoogle Scholar
  88. Peat, S., and L. F. Wiggins: The preparation of 2:3-anhydro-, 3:4-anhydro-, and 3:6-anhydro-methylhexosides from 3-p-toluenesulphonyl methylglucoside. J. Chem. Soc. (Lond.) 1938, 1088–1097.Google Scholar
  89. Perlin, A. S.: Shortening the carbon chain of sugars. J. Amer. Chem. Soc. 76, 2595 (1954).CrossRefGoogle Scholar
  90. Pigman, W. W., and R. M. Goepp jr.: Chemistry of the carbohydrates. New York: Academic Press Inc., Publishers 1948.Google Scholar
  91. Purdie, T., and J. C. Irvine: The alkylation of sugars. J. Chem. Soc. (Lond.) 1903, 1021–1037.Google Scholar
  92. Quayle, J. R., R. C. Fuller, A. A. Benson and M. Calvin: Enzymatic carboxylation of ribulose diphosphate. J. Amer. Chem. Soc. 76, 3610–3611 (1954).CrossRefGoogle Scholar
  93. Raymond, A. L.: Thio- and seleno-sugars. Adv. Carbohydrate Chem. 1, 129–145 (1945).CrossRefGoogle Scholar
  94. Reeves, R. E.: Cuprammonium-glycoside complexes. Adv. Carbohydrate Chem. 6, 107–134 (1951).CrossRefGoogle Scholar
  95. Regna, p. p., F. A. Hochstein, R. L. Wagner jr. and R. B. Woodward: Magnamycin. II. Mycarose, an unusual branched-chain deoxysugar from magnamycin. J. Amer. Chem. Soc. 75, 4625–4626 (1953).CrossRefGoogle Scholar
  96. Richtmyer, N. K., and C. S. Hudson: The ring structure of d-altrosan. J. Amer. Chem. Soc. 62, 961–964 (1940).CrossRefGoogle Scholar
  97. Richtmyer, N. K., L. C. Stewart and C. S. Hudson: l-Fuco-4-ketose. A new sugar produced by the action of Acetobacter suboxydans on l-fucitol. J. Amer. Chem. Soc. 72, 4934–4937 (1950).CrossRefGoogle Scholar
  98. Rosanoff, M. A.: On Fischer’s classification of stereo-isomers. J. Amer. Chem. Soc. 28, 114–121 (1906).CrossRefGoogle Scholar
  99. Ruff, O.: Über die Verwandlung der d-Gluconsäure in d-Arabinose. Ber. dtsch. chem. Ges. 31, 1573–1577 (1898).CrossRefGoogle Scholar
  100. Schmidt, O. Th., u. K. Heintz: Über Zucker mit verzweigter Kohlenstoffkette. V. Die Synthese der Hamamelonsäure. Liebigs Ann. 515, 77–96 (1934).Google Scholar
  101. Shafizadeh, F.: Branched chain sugars of natural occurrence. Adv. Carbohydrate Chem. 2, 263–283 (1956).CrossRefGoogle Scholar
  102. Shafizadeh, F., and M. L. Wolfrom: Synthesis of l-iduronic acid and an improved production of d-glucose-6-C14. J. Amer. Chem. Soc. 77, 2568–2569 (1955).CrossRefGoogle Scholar
  103. Slein, M. W., and G. W. Schnell: An aldoheptose phosphate in polysaccharide isolated from Shigella flexneri. Proc. Soc. Exper. Biol. a. Med. 82, 734–738 (1953).Google Scholar
  104. Somogyi, M.: A new reagent for the determination of sugars. J. of Biol. Chem. 160, 61–68 (1945).Google Scholar
  105. Sorkin, E., u. T. Reichstein: d-Idose aus d-Galactose. Helvet. chim. Acta 28, 1–17 (1945).CrossRefGoogle Scholar
  106. Sowden, J. C.: The action of hydrobromic acid on 1-C14-d-glucose. J. Amer. Chem. Soc. 71, 3568 (1949).CrossRefGoogle Scholar
  107. The nitromethane and 2-nitroethanol syntheses. Adv. Carbohydrate Chem. 6, 291–318 (1951).Google Scholar
  108. Preparation of 1-C14-d-xylose from 1-C14-d-glucose. J. Amer. Chem. Soc. 73, 5496–5497 (1951).Google Scholar
  109. 6-C14-d-Glucose and 6-C14-d-glucuronolactone. J. Amer. Chem. Soc. 74, 4377–4379 (1952).Google Scholar
  110. A convenient method of preparing 2-deoxy-d-ribose. J. Amer. Chem. Soc. 76, 3541–3542 (1954).Google Scholar
  111. Spengler, O., u. A. Pfannenstiel: Über die Oxydation reduzierender Zucker durch Sauerstoff. Z. Wirtschaftsgr. Zuckerind. 85, 546–552 (1935).Google Scholar
  112. Stacey, M.: Bacterial polysaccharides. Endeavour 12, 38–42 (1953).Google Scholar
  113. Stewart, L. C., and N. K. Richtmyer: Transformation of d-gulose to 1,6-anhydro-β-d-gulopyranose in acid solution. J. Amer. Chem. Soc. 77, 1021–1024 (1955).CrossRefGoogle Scholar
  114. Stodola, F. H., O. L. Shotwell, A. M. Borud, R. G. Benedict and A. C. Riley jr.: Hydroxystreptomycin, a new antibiotic from Streptomyces griseocarneus. J. Amer. Chem. Soc. 73, 2290–2293 (1951).CrossRefGoogle Scholar
  115. Tanret, C.: Sur les modifications moléculaires du glucose. C. r. Acad. Sci. Paris 120, 1060–1062 (1895).Google Scholar
  116. Tipson, R. S.: Sulfonic esters of carbohydrates. Adv. Carbohydrate Chem. 8, 107–215 (1953).CrossRefGoogle Scholar
  117. Tollens, B., u. H. Elsner: Kurzes Handbuch der Kohlenhydrate. Leipzig: Johann Ambrosius Barth 1935.Google Scholar
  118. Tollens, B., u. F. Mayer: Über die Bestimmung der Moleculargröße der Raffinose und des Formaldehydes mittelst Raoult’s Gefriermethode. Ber. dtsch. chem. Ges. 21, 1566–1572 (1888).CrossRefGoogle Scholar
  119. Vasseur, E., u. J. Immers: Genus specificity of the carbohydrate component in seaurchin egg jelly coat as revealed by paper chromatography. Ark. Kemi (Stockh.) 1, 39–41 (1949).Google Scholar
  120. Votoček, E.: Über Saccharinose und Saccharinohexose. Collection Trav. chim. Tchéchosl. 2, 158–160 (1930).Google Scholar
  121. Weerman, M. R. A.: L’action de l’hypochlorite de sodium sur les amides d’α-hydroxy-acides et de polyhydroxy-acides, ayant un groupe hydroxyle a la place a. Rec. Trav. chim. Pays-Bas 37, 16–51 (1918).Google Scholar
  122. Wehmer, C.: Die Pflanzenstoffe, 2. Aufl. Jena: Gustav Fischer 1929–1935.Google Scholar
  123. Westphal, O., O. Lüderitz, I. Fromme u. N. Joseph: Neue Desoxyzucker als Bausteine von Polysaccharid-Symplexen gramnegativer Bakterien — Tyvelose und Abequose. Angew. Chem. 65, 555–557 (1953).CrossRefGoogle Scholar
  124. Wiley, P. F., and Ollidene Weaver: Erythromycin. III. The structure of cladinose. J. Amer. Chem. Soc. 77, 3422–3423 (1955).CrossRefGoogle Scholar
  125. Wohl, A.: Abbau des Traubenzuckers. Ber. dtsch. chem. Ges. 26, 730–744 (1893).CrossRefGoogle Scholar
  126. Wolfrom, M. L.: The acetate of the free aldehyde form of glucose. J. Amer. Chem. Soc. 51, 2188–2193 (1929).CrossRefGoogle Scholar
  127. Wolfrom, M. L., R. L. Brown and E. F. Evans: The action of diazomethane upon cyclic sugar derivatives. IV. Ketose synthesis. J. Amer. Chem. Soc. 65, 1021–1027 (1943).CrossRefGoogle Scholar
  128. Wolfrom, M. L., and J. V. Karabinos: The identification of aldose sugars by their mercaptal acetates. J. Amer. Chem. Soc. 67, 500–501 (1945).CrossRefGoogle Scholar
  129. Wolfrom, M. L., and S. W. Waisbrot: The dimethyl acetal of d-glucose. J. Amer. Chem. Soc. 60, 854–855 (1938).CrossRefGoogle Scholar
  130. Zervas, L.: Über Benzyliden-glucose und ihre Verwendung zu Synthesen: 1-Benzoyl-glucose. Ber. dtsch. chem. Ges. 64, 2289–2296 (1931).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • F. Shafizadeh
  • M. L. Wolfrom

There are no affiliations available

Personalised recommendations