Zusammenfassung

Die Cellulose ist, wie bereits S. 268 erwähnt, die weitverbreitetste organische Substanz auf der Erde. Die Kenntnisse über die Fermente, die bei der Synthese von Cellulose mitwirken, sind allerdings eng begrenzt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abrams, E.: Microbiological deterioration of cellulose during the first 72 hours of attack. Textile Res. J. 20, 71–86 (1950).CrossRefGoogle Scholar
  2. Aschan, K., and B. Norkrans: A study in the cellulolytic variation for wildtypes and mutants of Collybia velutipes. I. Physiol. Plantarum (Copenh.) 6, 564–583 (1953).CrossRefGoogle Scholar
  3. Bailey, I. W., and M. R. Vestal: The significance of certain wood-destroying fungi in the study of the enzymatic hydrolysis of cellulose. J. Arnold Arboretum 18, 196–205 (1937).Google Scholar
  4. Basu, S. N., and D. R. Whitaker: Inhibition and stimulation of the cellulase of Myrothecium verrucaria. Arch. of Biochem. a. Biophysics 42, 12–24 (1953).CrossRefGoogle Scholar
  5. Biedermann, W., u. P. Moritz: Beiträge zur vergleichenden Physiologie der Verdauung. II. Über ein celluloselösendes Enzym im Lebersekret der Schnecke (Helix pomatia). Pflügers Arch. 73, 219–287 (1898).CrossRefGoogle Scholar
  6. Blum, R., and W. H. Stahl: Enzymic degradation of cellulose fibers. Textile Res. J. 22, 178–192 (1952).CrossRefGoogle Scholar
  7. Bose, S. R.: Enzymes of wood-rotting fungi. Erg. Enzymforsch. 8, 267–276 (1939).Google Scholar
  8. Bose, S. R., and S. N. Sarkar: Enzymes of some wood-rotting Polypores. Proc. Roy. Soc. Lond., Ser. B 123, 193–213 (1937).CrossRefGoogle Scholar
  9. Boswell, J. G.: The biological decomposition of cellulose. New Phytologist 40, 20–33 (1941).CrossRefGoogle Scholar
  10. Brown, H. T., and G. H. Morris: Researches on the germination of some of the Gramineae. J. Chem. Soc. (Lond.) 57, 458–528 (1890).Google Scholar
  11. Büter, H.: Kritische Untersuchung einiger Verdauungsfermentpräparate des Handels. Dtsch. Apotheker-Ztg 56, 614–615 (1941).Google Scholar
  12. Buston, H. W., and A. Jabbar: Synthesis of β-linked glucosaccharides by extracts of Chaetomium globosum. Biochim. et Biophysica Acta 15, 543–548 (1954).CrossRefGoogle Scholar
  13. Chambers, T. C.: Use of snail stomach cytase in plant cytology. Nature (Lond.) 175, 215 (1955).CrossRefGoogle Scholar
  14. Crewther, W. G. and F. G. Lennox: Enzymes of Aspergillus oryzae. III. The sequence of appearance and some properties of the enzymes liberated during growth. Austral. J. Biol. Sci. 6, 410–427 (1953).Google Scholar
  15. Crook, E. M., and B. A. Stone: Formation of oligosaccharides during the enzymic hydrolysis of β-glucosides. Proc.Biochem. Soc, Biochem. J. 55, XXV (1953).Google Scholar
  16. Enebo, L.: Studies in cellulose decomposition by an anaerobic thermophilic bacterium and two associated non-cellulolytic species. Diss. Roy. Techn. Coll. (Stockh.) 1954, 1–117.Google Scholar
  17. Enebo, L., E. Sandegren and L. Ljungdahl: Cell wall decomposing enzymes of barley and malt. II. Cellulase increase during germination and influence of sugars on cellulase activity. J. Inst. Brewing 59, 205–211 (1953).Google Scholar
  18. Fabergé, A. C.: Snail stomach cytase, a new reagent for plant cytology. Stain Technol. 20, 1–4 (1945).Google Scholar
  19. Fåhraeus, G.: Studies in aerobic cellulose decomposition. I. The course of cellulose decomposition by Cytophaga. Ann. Agric. Coll. Sweden 12, 1–22 (1944).Google Scholar
  20. Enzyme preparations from cellulose-decomposing bacteria. Experientia (Basel) 2, 413–415 (1946).Google Scholar
  21. Studies in the cellulose decomposition by Cytophaga. Symbolae bot. Upsalienses 9, Nr. 2, 1–128 (1947).Google Scholar
  22. Further studies in the formation of laccase by Polyporus versicolor. Physiol. Plantarum (Copenh.) 7, 704–712 (1954).Google Scholar
  23. Faust, O., P. Karrer u. P. Schubert: Polysaccharide. XXXVIII. Beitrag zur Kenntnis des Verhaltens von Viscoseseiden zu Schneckencellulase. Helvet. chim. Acta 11, 231–233 (1928).CrossRefGoogle Scholar
  24. Florkin, M., and F. Lozet: Origine bactérienne de la cellulase du contenu intestinal de l’escargot. Arch. internat. Physiol. 57, 201–207 (1949).Google Scholar
  25. Freudenberg, K., u. T. Ploetz: Über die Verschiedenheit von Cellulase und Lichenase. 1. Mitt. Über den enzymatischen Abbau polymerer Kohlenhydrate. Z. physiol. Chem. 259, 19–27 (1939).CrossRefGoogle Scholar
  26. Frey-Wyssling, A.: Growth of plant cell walls. Symposia Soc. Exper. Biol. 6, 320–328 (1952).Google Scholar
  27. Gilligan, W., and E. T. Reese: Evidence for multiple components in microbial cellulases. Canad. J. Microbiol. 1, 90–107 (1954).CrossRefGoogle Scholar
  28. Giri, K. V., V. N. Nigam and K. S. Srinivasan: Synthesis of oligosaccharides during enzymatic hydrolysis of cellobiose by Aspergillus flavus. Nature (Lond.) 173, 953 (1954).CrossRefGoogle Scholar
  29. Goerdeler, J.: Lichenase-Extraktion aus Gerste. Z. Naturforsch. 3b, 403–406 (1948).Google Scholar
  30. Grassmann, W., u. H. Rubenbauer: Über Zellulase und Hemizellulase mit besonderer Berücksichtigung ihrer therapeutischen Anwendung. Münch, med. Wschr. 1931, 1817–1819.Google Scholar
  31. Enzymes from molds. U. S. Pat. 2 102315 Dez. 14, 1937.Google Scholar
  32. Grassmann, W., R. Stadler u. R. Bender: Zur Spezifität cellulose- und hemicellulosespaltender Enzyme. 1. Mitt. über enzymatische Spaltung von Polysacchariden. Liebigs Ann. 502, 20–40 (1933a).CrossRefGoogle Scholar
  33. Grassmann, W., L. Zechmeister, G. Tóth u. R. Stadler: Über den enzymatischen Abbau der Cellulose und ihrer Spaltprodukte. 2. Mitt. über enzymatische Spaltung von Polysacchariden. Liebigs Ann. 503, 167–179 (1933b).CrossRefGoogle Scholar
  34. Greathouse, G. A.: Microbiological degradation of cellulose. Textile Res. J. 20, 227–238 (1950).CrossRefGoogle Scholar
  35. Greenfield, L. J., and C. E. Lane: Cellulose digestion in teredo. J. of Biol. Chem. 204, 669–672 (1953).Google Scholar
  36. Hammerstrom, R. A., K. D. Claus, J. W. Coghlan and R. H. Mc Bee: The constitutive nature of bacterial cellulases. Arch. of Biochem. a. Biophysics 56, 123–129 (1955).CrossRefGoogle Scholar
  37. Hirsch, H. M.: Temperature-dependent cellulase production by Neurospora crassa and its ecological implications. Experientia (Basel) 10, 180–182 (1954).CrossRefGoogle Scholar
  38. Holden, M.: A study of enzymes that can break down tobacco-leaf components. 5. Unfractionated fungal enzymes. Biochemic. J. 47, 426–431 (1950).Google Scholar
  39. Holden, M., N. W. Pirie and M. V. Tracey: A study of enzymes that can break down tobacco-leaf components. 1. Digestive juice of Helix on leaf fibre. Biochemic. J. 47, 399–407 (1950).Google Scholar
  40. Holden, M., and M. V. Tracey: A study of enzymes that can break down tobacco-leaf components. 2. Digestive juice of Helix on defined substrates. Biochemic. J. 47, 407–414 (1950).Google Scholar
  41. Hungate, R. E.: Further experiments on cellulose digestion by the protozoa in the rumen of cattle. Biol. Bull. 84, 157–163 (1943a).CrossRefGoogle Scholar
  42. Quantitative analyses on the cellulose fermentation by termite protozoa. Ann. Entomol. Soc. Amer. 36, 730–739 (1943b).Google Scholar
  43. Husemann, E., u. R. Lötterle: Über den fermentativen Abbau von Polysacchariden. I. Der heterogene Abbau von Cellulose. Makromolekulare Chem. 4, 278–288 (1950).CrossRefGoogle Scholar
  44. Husemann, E., E. Loës u. R. Lötterle: Über den fermentativen Abbau von Polysacchariden. II. Die Bestimmung der Aktivität von Cellulase, Xylanase und Mannanase. Makromolekulare Chem. 6, 163–173 (1951).CrossRefGoogle Scholar
  45. Janke, A.: Der Abbau der Zellulose durch Mikroorganismen. Österr. bot. Z. 96, 399–443 (1949).CrossRefGoogle Scholar
  46. Jermyn, M. A.: Fungal cellulases. I. General properties of unpurified enzyme preparations from Aspergillus oryzae. Austral. J. Sci. Res., B Biol. Sci. 5, 409–432 (1952a).Google Scholar
  47. Fungal cellulases. II. The complexity of enzymes from Aspergillus oryzae that split β-glucosidic linkages, and their partial separation. Austral. J. Sci. Res., B Biol. Sci. 5, 433–443 (1952b).Google Scholar
  48. Fungal cellulases. III. Stachybotrys atra: Growth and enzyme production on nonceilulosic substrates. Austral. J. Biol. Sci. 6, 48–69 (1953).Google Scholar
  49. Kalninš, A.: Aerobic soil bacteria that decompose cellulose. Acta Univ. Latv., Lauksaimniecības Fak. Ser. 1, 221–312 (1930).Google Scholar
  50. Karrer, P., u. H. Illing: Polysaccharide. XXXII. Über die Kinetik des enzymatischen Celluloseabbaues. Helvet. chim. Acta 8, 245–247 (1925).CrossRefGoogle Scholar
  51. Karrer, P., B. Joos u. M. Staub: Polysaccharide. XXI. Zur Kenntnis des Lichenins. II. Helvet. chim. Acta 6, 800–816 (1923).CrossRefGoogle Scholar
  52. Karrer, P., u. M. Staub: Polysaccharide. XXVII. Zur Kenntnis der Lichenase. Helvet. chim. Acta 7, 916–928 (1924).CrossRefGoogle Scholar
  53. Karrer, P., M. Staub, A. Weinhagen u. B. Joos: Polysaccharide. XXII. Zur Kenntnis der Lichenase und Reservecellulose (Lichenin). Helvet. chim. Acta 7, 144–154 (1924).CrossRefGoogle Scholar
  54. Karreth, A.: Cellulose- und hemicellulosespaltende Enzyme. D.R.P. 745081. Dec. 2, 1943.Google Scholar
  55. Kitts, W. D., and L. A. Underkofler: Digestion by rumen microorganisms. Hydrolytic products of cellulose and the cellulolytic enzymes. J. Agric. Food Chem. 2, 639–645 (1954).CrossRefGoogle Scholar
  56. Kohnstamm, P.: Amylolytische, glycosidspaltende, proteolytische und celluloselösende Fermente in holzbewohnenden Pilzen. Beih. bot. Zbl. 10, 90–121 (1901).Google Scholar
  57. Kooiman, P., P. A. Roelofsen and S. Sweeris: Some properties of cellulase from Myrothecium verrucaria. Enzymologia (Den Haag) 16, 237–246 (1953).Google Scholar
  58. Levinson, H. S., G. R. Mandels and E. T. Reese: Products of enzymatic hydrolysis of cellulose and its derivatives. Arch. of Biochem. a. Biophysics 31, 351–365 (1951).CrossRefGoogle Scholar
  59. Levinson, H. S., and E. T. Reese: Enzymatic hydrolysis of soluble cellulose derivatives as measured by changes in viscosity. J. Gen. Physiol. 33, 601–628 (1950).PubMedCrossRefGoogle Scholar
  60. Lindeberg, G.: On the decomposition of lignin and cellulose in litter caused by soil-inhabiting Hymenomycetes. Ark. Bot. A 33, (Stockh.), Nr. 10, 1–16 (1946).Google Scholar
  61. Marsh, P. B., K. Bollenbacher, M. L. Butler and L. R. Guthrie: „S Factor“, a microbial enzyme which increases the swelling of cotton in alkali. Textile Res. J. 23, 878–888 (1953).CrossRefGoogle Scholar
  62. Marsh, P. B., K. Bollenbacher, M. L. Butler and K. B. Raper: The fungi concerned in fiber deterioration. II. Their ability to decompose cellulose. Textile Res. J. 19, 462–484 (1949).CrossRefGoogle Scholar
  63. Newcombe, F. C.: Cellulose-Enzymes. Ann. of Bot. 13, 49–81 (1899).Google Scholar
  64. Nisizawa, K., and T. Kobayashi: Cellulose-splitting enzymes 2. Mode of action of Irpex-cellulase upon its substrates. J. Agric. Chem. Soc. Jap. 27, 239–242 (1953).Google Scholar
  65. Norkrans, B.: Influence of cellulolytic enzymes from hymenomycetes on cellulose preparations of different crystallinity. Physiol. Plantarum (Copenh.) 3, 75–87 (1950a).CrossRefGoogle Scholar
  66. Studies in growth and cellulolytic enzymes of Tricholoma. Symbolae bot. Upsalienses 11, Nr 1, 1–126 (1950b).Google Scholar
  67. Norkrans, B., and K. Aschan: a study in the cellulolytic variation for wildtypes and mutants of Collybia velutipes. II. Relations to different nutrient media. Physiol. Plantarum (Copenh.) 6, 829–836 (1953).CrossRefGoogle Scholar
  68. Peat, S., W. J. Whelan and K. a. Hinson: Synthetic action of almond emulsin. Nature (Lond.) 170, 1056–1057 (1952).CrossRefGoogle Scholar
  69. Pigman, W.: Cellulases, hemicellulases, and related enzymes. In: J. Sumner and K. Myrbäck, The enzymes, vol. I/2, p. 725–744. 1951.Google Scholar
  70. Ploetz, T.: Über einige Enzyme des Hausschwamms (Merulius lacrymans). 2. Mitt. über den enzymatischen Abbau polymerer Kohlenhydrate. Z. physiol. Chem. 261, 183–188 (1939).CrossRefGoogle Scholar
  71. Pochon, J.: La digestion de la cellulose et les cellulases dans la série animale. Rev. gén. Sci. pures appl. 47, 55–59 (1936).Google Scholar
  72. La fermentation anaërobie de la cellulose. Ann. Fermentations 8, 67–92 (1943).Google Scholar
  73. Preece, I. A., R. A. Aitken and J. A. Dick: Nonstarchy polysaccharides of cereal grains. VI. Preliminary study of the enzymolysis of barley β-glucosan. J. Inst. Brewing 60, 497–507 (1954).Google Scholar
  74. Pringsheim, H.: Über den fermentativen Abbau der Cellulose. Z. physiol. Chem. 78, 266–291 (1912).CrossRefGoogle Scholar
  75. Pringsheim, H., u. K. Baur: Über die Spaltung von Lichenin und Cellulose durch die Fermente des Gerstenmalzes. Z. physiol. Chem. 173, 188–210 (1928).CrossRefGoogle Scholar
  76. Pringsheim, H., u. A. Beiser: Über die Trennung der Fermente des Gerstenmalzes. II. Mitt.: Lichenase und Cellobiase. Biochem. Z. 172, 411–421 (1926).Google Scholar
  77. Pringsheim, H., u. W. Kusenack: Über Lichenin und die Lichenase. V. Mitt. über Hemicellulosen. Z. physiol. Chem. 137, 265–271 (1924).CrossRefGoogle Scholar
  78. Pringsheim, H., u. K. Seifert: Über die fermentative Spaltung des Lichenins. III. Mitt. über Hemicellulosen. Z. physiol. Chem. 128, 284–289 (1923).CrossRefGoogle Scholar
  79. Ray, D. L., and J. R. Julian: Occurrence of cellulase in Limnoria. Nature (Lond.) 169, 32–33 (1952).CrossRefGoogle Scholar
  80. Reese, E. T., and M. H. Downing: Activity of the Aspergilli on cellulose, cellulose derivatives and wool. Mycologia (N.Y.) 43, 16–28 (1951).CrossRefGoogle Scholar
  81. Reese, E. T., and W. Gilligan: Separation of components of cellulolytic systems by paper chromatography. Arch. of Biochem. a. Biophysics 45, 74–82 (1953).CrossRefGoogle Scholar
  82. The swelling factor in cellulose hydrolysis. Textile Res. J. 24, 663–669 (1954).Google Scholar
  83. Reese, E. T., and H. S. Levinson: A comparative study of the breakdown of cellulose by microorganisms. Physiol. Plantarum (Copenh.) 5, 345–366 (1952).CrossRefGoogle Scholar
  84. Reese, E. T., H. S. Levinson, M. H. Downing and W. L. White: Quartermaster culture collection. Farlowia 4, 45–86 (1950).Google Scholar
  85. Reese, E. T., R. G. H. Siu and H. S. Levinson: The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacter. 59, 485–497 (1950).Google Scholar
  86. Sandegren, E., and L. Enebo: Cell wall decomposing enzymes of barley and malt. I. Determination and stability investigations. J. Inst. Brewing 58, 198–203 (1952).Google Scholar
  87. Saunders, R. R., R. G. H. Siu and R. N. Genest: A cellulolytic enzyme preparation from Myrothecium verrucaria. J. of Biol. Chem. 174, 697–703 (1948).Google Scholar
  88. Seillière, G.: Sur un cas d’hydrolyse diastatique de la cellulose du coton, après dissolution dans la liqueur de Schweitzer. C. r. Soc. Biol. Paris 61, 205–206 (1906).Google Scholar
  89. Remarques sur l’hydrolyse diastasique de la cellulose du coton et de quelques autres polysaccharides. C. r. Soc. Biol. Paris 63, 515–517 (1907).Google Scholar
  90. Silberschmidt, K.: Versuche über die Wirkung von Zellulase und Hemizellulase auf pflanzliche Objekte in vitro. Münch. med. Wschr. 1931, 1819–1824.Google Scholar
  91. Simola, P. E.: Über den Abbau der Cellulose durch Mikroorganismen. II. Ann. Acad. Sci. fenn., Ser. A 34 Nr 6, 1–115 (1931).Google Scholar
  92. Siu, R. G. H.: Mechanism of microbiological decomposition of cellulose. Textile Res. J. 20, 281–288 (1950).CrossRefGoogle Scholar
  93. Microbial decomposition of cellulose. New York: Reinhold Publishing Corp. 1951.Google Scholar
  94. Siu, R. G. H., R. T. Darby, P. R. Burkholder and E. S. Barghoorn: Specificity of microbiological attack on cellulose derivatives. Textile Res. J. 19, 484–488 (1949).CrossRefGoogle Scholar
  95. Siu, R. G. H., and E. T. Reese: Decomposition of cellulose by microorganisms. Bot. Review 19, 377–416 (1953).CrossRefGoogle Scholar
  96. Stanier, R. Y.: The Cytophaga group: a contribution to the biology of Myxobacteria. Bacter. Rev. 6, 143–196 (1942).Google Scholar
  97. Stuart, N. W., and S. L. Emsweller: Use of enzymes to improve cytological techniques. Science (Lancaster, Pa.) 98, 569–570 (1943).Google Scholar
  98. Thaysen, A. C., and H. J. Bunker: The microbiology of cellulose, hemicelluloses, pectin and gums. London: Oxford Univ. Press 1927.Google Scholar
  99. Tracey, M. V.: Cellulase from leaves and roots of tobacco. Biochemic. J. 47, 431–433 (1950).Google Scholar
  100. Cellulases. Biochem. Soc. Symposia 11, 49–61 (1953).Google Scholar
  101. Wainwright, S.D.: Formation of a bacterial adaptive enzyme system in the absence of substrate: production of nitratase by Bact. coli without nitrate. Brit. J. Exper. Path. 31, 495–506 (1951).Google Scholar
  102. Walseth, C. S.: Occurrence of cellulases in enzyme preparations from microorganisms. Tappi 35, 228–233 (1952a).Google Scholar
  103. The influence of the fine structure of cellulose on the action of cellulases. Tappi 35, 233–238 (1952b).Google Scholar
  104. Weidenhagen, R.: Glukanasen. In: E. Bamann und K. Myrbäck, Methoden der Fermentforschung, Bd. II, S. 1903–1909. Leipzig: Georg Thieme 1941.Google Scholar
  105. Whistler, R. L., and C. L. Smart: Isolation of crystalline d-glucose and cellobiose from an enzymatic hydrolyzate of cellulose. J. Amer. Chem. Soc. 75, 1916–1918 (1953).CrossRefGoogle Scholar
  106. Whitaker, D. R.: Purification of the cellulase of Myrothecium verrucaria. Nature (Lond.) 168, 1070 (1951).CrossRefGoogle Scholar
  107. An effect of proteins and proteoses on the cellulase of Myrothecium verrucaria. Science (Lancaster, Pa.) 116, 90–92 (1952).Google Scholar
  108. Purification of Myrothecium verrucaria cellulase. Arch. of Biochem. a. Biophysics 43, 253–268 (1953).Google Scholar
  109. Hydrolysis of a series of β-1,4’-oligoglucosides by Myrothecium verrucaria cellulase. Arch. of Biochem. a. Biophysics 53, 439–449 (1954).Google Scholar
  110. Whitaker, D. R., J. R. Colvin and W. H. Cook: The molecular weight and shape of Myrothecium verrucaria cellulase. Arch. of Biochem. a. Biophysics 49, 257–262 (1954).CrossRefGoogle Scholar
  111. White, W. L., R. T. Darby, G. M. Stechert and K. Sanderson: Assays of cellulolytic activity of molds isolated from fabrics and related items exposed in the tropics. Mycologia (N. Y.) 40, 34–84 (1948).CrossRefGoogle Scholar
  112. Winogradsky, S.: Etudes sur la microbiologie du sol. IV. Sur la dégradation de la cellulose dans le sol. Ann. Inst. Pasteur 43, 549–633 (1929).Google Scholar
  113. Ziese, W.: Über die Einwirkung von Fermenten des Magensaftes von Helix pomatia und solcher des Gerstenmalzes auf Celluloseglykoläther. Z. physiol. Chem. 203, 87–116 (1931).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Gösta Fåhraeus

There are no affiliations available

Personalised recommendations