Advertisement

Cellulosen und ähnliche Wandsubstanzen von Kohlenhydratnatur, z. B. Hemicellulosen (Struktur, Eigenschaften und Verbreitung)

  • Bengt G. Rånby
Part of the Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology book series (532, volume 6)

Zusammenfassung

Das Polysaccharid Cellulose und seine Begleitstoffe von Kohlenhydratnatur, die Hemicellulosen, sind in der Natur sehr weit verbreitet. Die größten Mengen werden in den höheren Pflanzen gefunden, wo die Cellulose die feste, widerstandsfähige Skeletsubstanz der Zellwände bildet. Das Wort Cellulose ist aus „Ceir“ (= Zelle) hergeleitet worden. Im Holz der Bäume sind 40–45% Cellulose enthalten. Bastfasern und Samenhaare einiger Pflanzen zeigen einen noch höheren Cellulosegehalt, während grüne Stengel, Stroh, Nadeln und Blätter viel geringere Cellulosemengen in Prozent des Trockengewichts enthalten. Nach Schätzungen besteht etwa ein Drittel allen organischen Materials aus Cellulose, die infolge der Photosynthese in den grünen Pflanzen in jedem Jahr um einige Tausend Millionen Tonnen vermehrt wird. Der Weltbedarf an Holz ist auf 1500 Millionen Kubikmeter geschätzt worden (1953) und die totale Zellstoffproduktion auf 37 Millionen Tonnen (1953, davon sind über 90% Holzzellstoff).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Champetier, G.: Dérivés cellulosiques, Paris: Dunod 1947.Google Scholar
  2. Frey-Wyssling, A., u. K. Mühlethaler: The fine structure of cellulose. In L. Zechmeister, Fortschr. Chem. organ. Naturstoffe 8, 1–27 (1951).Google Scholar
  3. Hägglund, E.: Chemistry of wood. New York: Academic Press 1951.Google Scholar
  4. Hermans, P. H.: Physics and chemistry of cellulose fibers. Amsterdam: Elsevier 1949.Google Scholar
  5. Hess, K.: Elektronenmikroskopie und Wandstruktur bei natürlichen Cellulosefasern. Kunstseide und Zellwolle 28, 3–11 (1950).Google Scholar
  6. Heuser, E.: The chemistry of cellulose. New York: Wiley 1944.Google Scholar
  7. Kratky, O.: Der übermolekulare Aufbau der Cellulose. In: R. Pummerer, Chemische Textilfasern, Filme und Folien. Stuttgart: Ferdinand Enke 1951.Google Scholar
  8. Lieser, T.: Kurzes Lehrbuch der Cellulosechemie. Berlin: Gebrüder Bornträger 1953.Google Scholar
  9. Mark, H.: Physik und Chemie der Cellulose. Berlin: Springer 1932.Google Scholar
  10. Mark, H., and A. V. Tobolsky: Physical chemistry of high polymeric systems, 2. Aufl. New York: Inter-science 1950.Google Scholar
  11. Meyer, K. H.: Makromolekulare Chemie, 2. Aufl. Leipzig: Geest u. Portig 1950.Google Scholar
  12. Nikitin, N. I.: Die Chemie des Holzes. (Übersetzt aus dem Russischen von R. Wittwer.) Berlin: Akademie-Verlag 1955.Google Scholar
  13. Ott, E., H. M. Spurlin and M. W. Grafflin: Cellulose and cellulose derivatives, 2. Aufl., Teil I-III. New York: Interscience 1954/55.Google Scholar
  14. Pigman, W. W., and R. M. Goepp jr.: Chemistry of carbohydrates. New York: Academic Press 1948. XVII u. 748 S.Google Scholar
  15. Rånby, B. G., and S. A. Rydholm: Cellulose and cellulose derivatives. In: C. E. Schildknecht, Polymer Processes, Kap. IX. New York: Interscience 1956.Google Scholar
  16. Staudinger, H.: Die hochmolekularen organischen Verbindungen — Kautschuk und Cellulose. Berlin: Springer 1932.CrossRefGoogle Scholar
  17. Treiber, E.: Der übermolekulare Aufbau der Cellulose. Protoplasma 40, 166–186, 367–396 (1951).CrossRefGoogle Scholar
  18. Morphologische Strukturen bei natürlichen Fasern. In: H. A. Stuart, Die Physik der Hochpolymeren, Bd. III, S. 369–413. Berlin: Springer 1955.Google Scholar
  19. Ward jr., K.: Chemistry and chemical technology of cotton. New York: Interscience 1955.Google Scholar
  20. Whistler, R. L., and C. L. Smart: Polysaccharide chemistry. New York: Academic Press 1953.Google Scholar
  21. Wise, L. E., and E. C. Jahn: Wood chemistry, 2. Aufl., Bd. 1 u. 2. New York: Reinhold 1952.Google Scholar
  22. Adams, G. A.: The constitution of a polyuronide hemicellulose from wheat straw. Canad. J. Chem. 30, 698–710 (1952).CrossRefGoogle Scholar
  23. Adams, G. A., and A. E. Castagne: Purification and composition of a polyuronide hemicellulose isolated from wheat straw. Canad. J. Chem. 30, 515–521 (1952).CrossRefGoogle Scholar
  24. Algar, W. H., H. W. Giertz u. A. M. Gustafsson: Faserstruktur und Zellstoffeigenschaften. (In Schwedisch, Zusammenfassungen in Deutsch u. Englisch.) Svensk Papperstidning 54, 335–344 (1951).Google Scholar
  25. Anderson, D. B., and T. Kerr: Growth and structure of cotton fiber. Industr. Engin. Chem. 30, 48–54 (1938).CrossRefGoogle Scholar
  26. Anderson, E., J. Hechtman and M. Seeley: Hemicelluloses from cottonseed hulls. J. of Biol. Chem. 126, 175–179 (1938).Google Scholar
  27. Anderson, E., M. Seeley, W. T. Stewart, J. C. Redd and D. Westerbeke: The origin and composition of the hemicelluloses obtained from hardwoods. J. of Biol. Chem. 135, 189–198 (1940). Vgl. 144, 767–772 (1942).Google Scholar
  28. Anthis, A.: Some carbohydrate linkages in slash pine alpha-cellulose. Tappi (U.S.A.) 39, 401–405 (1956).Google Scholar
  29. Argue, G. H., and O. Maass: Measurements of the heat of wetting of cellulose and wood pulp. Canad. J. Res. 12, 564–574 (1935).CrossRefGoogle Scholar
  30. Aspinall, G, O., E. L. Hirst, E. G. V. Percival and I. R. Williamson: The mannans of ivory nuts (Phytelephas macrocarpa). Part I. The methylation of mannan A and mannan B. J. Chem. Soc. (Lond.) 1953, 3184–3188.Google Scholar
  31. Asunmaa, S.: Electron microscope studies on sections of aspen sulfite pulp fibres. Svensk Papperstidning 58, 33–34 (1955).Google Scholar
  32. Asunmaa, S., and P. W. Lange: The distribution of cellulose and hemicellulose in the cell wall of spruce, birch, and cotton. Svensk Papperstidning 57, 501–516 (1954).Google Scholar
  33. Bailey, I. W.: Contributions to plant anatomy. Chronica bot. 15 (1954).Google Scholar
  34. Bishop, C. T.: Crystalline xylans from straws. Canad. J. Chem. 31, 793–800 (1953).CrossRefGoogle Scholar
  35. Björnhaug, A., Ø. Ellefsen and B. A. Tönnesen: Interpretation of x-ray diagrams of unoriented chain polymer substances. III. Regenerated Cellulose. Norsk Skogindustri 7, 171–181 (1953).Google Scholar
  36. Bucher, H.: Die Tertiärlamelle von Holzfasern und ihre Erscheinungsformen bei Coniferen. Solothurn (Schweiz): Attisholz AG. 1953.Google Scholar
  37. Bucher, H., u. L. P. Widerkehr-Scherb: Morphologie und Struktur der Holzfasern. Solothurn (Schweiz): Attisholz AG 1948.Google Scholar
  38. Campbell, W. G., E. L. Hirst and J. K. N. Jones: The ε-galactan of larch wood (Larix decidua). J. Chem. Soc. (Lond.) 1948, 774–777.Google Scholar
  39. Chanda, S. K., E. L. Hirst, J. K. N. Jones, and E. G. V. Percival: The constitution of xvlan from Esparto grass (Stipa tenacissima). J. Chem. Soc. (Lond.) 1950, 1289–1297.Google Scholar
  40. Chanda, S. K., E. L. Hirst and E. G. V. Percival: The constitution of pear cell-wall xylan. J. Chem. Soc. (Lond.) 1951, 1240–1246.Google Scholar
  41. Dymling, E., H. W. Giertz and B. G. Rånby: Fractional dissolution of nitrated carbohydrates in native fibers. Svensk Papperstidning 58, 10–15 (1955).Google Scholar
  42. Ekenstam, A., af: Über die Celluloselösungen in Mineralsäuren. Diss. Lund 1936.Google Scholar
  43. Forziati, F. H., R. M. Brownell and C. H. Hunt: Surface areas of cottons and modified cottons before and after swelling as determined by nitrogen sorption. J. Res. Nat. Bur. Stand. 50, 139–145 (1953).Google Scholar
  44. Forziati, F. H., and J. W. Rowen: Effect of changes in crystalline structure on the infrared absorption spectrum of cellulose. J. Res. Nat. Bur. Stand. 46, 38–42 (1951).Google Scholar
  45. Freudenberg, K.: Stereochemie. Leipzig u. Wien. 1933.Google Scholar
  46. Zur Biogenese des Lignins. Holz als Roh- und Werkstoff 11, 267–269 (1953).Google Scholar
  47. Freudenberg, K., u. F. Cramer: Über die Schardinger-Dextrine aus Stärke. Chem. Ber. 83, 296–304 (1950).CrossRefGoogle Scholar
  48. Frey-Wyssling, A.: Die Micellarlehre erläutert am Beispiel des Faserfeinbaues. Kolloid-Z. 85, 148–157 (1938).CrossRefGoogle Scholar
  49. Frey-Wyssling, A., u. K. Mühlethaler: The fine structure of cellulose. In: L. Zechmeister, Fortschr. Chem. organ. Naturstoffe. 8, 1–27 (1951).Google Scholar
  50. Frey-Wyssling, A., K. Mühlethaler, u. R. W. G. Wyckoff: Mikrofibrillenbau der pflanzlichen Zellwände. Experientia (Basel) 4, 476–479 (1948).CrossRefGoogle Scholar
  51. Frilette, V. J., J. Hanle and H. Mark: Rate of exchange of cellulose with heavy water. J. Amer. Chem. Soc. 70, 1107–1113 (1948).CrossRefGoogle Scholar
  52. Galowa, O. P., u. W. J. Iwanow: Über das Molekulargewicht der Cellulose. Berlin: Akademie Verlag 1953.Google Scholar
  53. Gatenby, J. B., and H. W. Beams: The microtomist’s vade-mecum (Bolles Lee), 11. Aufl., Kap. 46: Some special methods with cell-wall substances. Philadelphia: P. Blakiston Son & Comp. 1950.Google Scholar
  54. Gezelius, K., and B. G. Rånby: Morphology and fine structure of the slime mould Dictyostelium discoideum. Exper. Cell Res. 1957.Google Scholar
  55. Giertz, H. W.: The physical structure and chemical composition of wood cellulose fibers. Proc. Techn. Sect., Brit. Paper a. Board Makers’ Assoc. (England) 33, 487–512 (1952).Google Scholar
  56. Gralén, N.: Sedimentation and diffusion measurements on cellulose and cellulose derivatives. Diss. Uppsala 1944.Google Scholar
  57. Gustafsson, C., S. Pettersson and T. Lindh: Determination of carbohydrates by means of paper partition chromatography. Paperi ja Puu (Finland) 33, 1–3 (1951).Google Scholar
  58. Hampton, H. A., W. N. Haworth, and E. L. Hirst: Polysaccharides. Part IV. The constitution of xylan. J. Chem. Soc. (Lond.) 1929, 1739–1753.Google Scholar
  59. Hengstenberg, J., u. H. Mark: Über Form und Größe der Micelle von Cellulose und Kautschuk. Z. Kristallogr., Mineral. u. Petrogr. 69, 271–284 (1928).Google Scholar
  60. Hermans, P. H.: X-ray studies on the crystallinity of cellulose. J. Polymer Sci. 4, 135–144 (1949).CrossRefGoogle Scholar
  61. Hermans, P. H., and A. Weidinger: Quantitative x-ray investigations on the crystallinity of cellulose fibers. A background analysis. J. Appl. Physics. 19, 491–506 (1948).CrossRefGoogle Scholar
  62. Hess, K., u. M. Lüdtke: Isolierung von Mannan und Xylan aus Sulfitzellstoff (Fichte). Liebigs Ann. 466, 18–26 (1928).CrossRefGoogle Scholar
  63. Heyn, H. N. J.: Small angle x-ray scattering of various cellulose fibers and its relation to the micellar structure. Textile Res. J. 19, 163–172 (1949).CrossRefGoogle Scholar
  64. Small particle x-ray scattering by fibers. Size and shape of microcrystallites. J. Appl. Physics. 26, 519–526 (1955).Google Scholar
  65. Hock, C. W., and H. Mark: The distribution of submicroscopic metal crystals in fibers. In: E. Ott: Cellulose and cellulose derivatives, 1. Aufl., S. 346–351. New York: Interscience 1943.Google Scholar
  66. Houwink, A. L., u. P. A. Roelofsen: Fibrillar architecture of growing plant cell walls. Acta bot. neerl. 3 (3), 385–395 (1954).Google Scholar
  67. Howsmon, J. A.: Water sorption and the polyphase structure of cellulose fibers. Textile Res. J. 19, 152–162 (1949).CrossRefGoogle Scholar
  68. Structure-sorption relationships (of cellulose fibers). In E. Ott, H. M. Spurlin and M. W. Grafflin, Cellulose and cellulose derivatives, 2. Aufl., Teil I, S. 393–441. New York: Interscience 1954.Google Scholar
  69. Husemann, E.: Die Konstitution von Holzpolyosen. J. prakt. Chem. 155, 13–64 (1940).CrossRefGoogle Scholar
  70. Immergut, E. H., and F. R. Eirich: Intrinsic viscosities and molecular weights of cellulose and cellulose derivatives. Industr. Engin. Chem. 45, 2500–2511 (1953).CrossRefGoogle Scholar
  71. Immergut, E. H., and B. G. Rånby: Heterogeneous acid hydrolysis of native cellulose fibers. Industr. Engin. Chem. 48, 1183–1189 (1956).CrossRefGoogle Scholar
  72. Immergut, E. H., B. G. Rånby and H. F. Mark: Recent work on molecular weight of cellulose. Industr. Engin. Chem. 45, 2483–2490 (1953).CrossRefGoogle Scholar
  73. HydrolySis of cellulose in phosphoric acid. Ric. Sci. 25, 1–17 (1955).Google Scholar
  74. Jörgensen, L.: Studies on the partial hydrolysis of cellulose. Diss. Oslo 1950.Google Scholar
  75. Swelling and heterogeneous hydrolysis of cotton linters and wood pulp fibers related to their fine structure. Acta chem. scand. (Copenh.) 4, 185–199 (1950).Google Scholar
  76. Jones, J. K. N.: Larch ε-galactan. Part II. The isolation of 3-β-l-arabopyranosyl l-arabinose. J. Chem. Soc. (Lond.) 1953, 1672–1675.Google Scholar
  77. Jullander, A., and B. G. Rånby: Formation of high-temperature cellulose (Cellulose IV) in wood pulps. Svensk Papperstidning 60 (1957).Google Scholar
  78. Jullander, I.: Water solubility of ethyl cellulose. Acta chem. scand. (Copenh.) 9, 1291–1295 (1955).CrossRefGoogle Scholar
  79. Jurjew, W. I., u. G. M. Skurichina: Mat. Zentr. Wiss. Papierforsch. Inst. 38, 52 (1950). Ref. in N. L. Nikitin, Die Chemie des Holzes. Berlin: Springer 1955.Google Scholar
  80. Kast, W.: Die Teilcheneigenschaften der kristallinen Gebiete der Cellulosefasern. Z. Elektrochem. 57, 525–530 (1953).Google Scholar
  81. Kratky, O.: Größe und Form der kristallinen Bereiche in festen hochpolymeren Stoffen. Kolloid-Z. 120, 24–35 (1951).CrossRefGoogle Scholar
  82. Lange, P. W.: The distribution of the components in the plant cell wall. Svensk Papperstidning 57, 563–567 (1954).Google Scholar
  83. Lewis, H. F.: The significant chemical components of Western hemlock, Douglas fir, Western red cedar, Loblolly pine, and Black spruce. Tappi (U.S.A.) 33, 299–301 (1950).Google Scholar
  84. Lovell, E. L., and O. Goldschmid: Rayon Structure. Industr. Engin. Chem. 38, 811–817 (1949).CrossRefGoogle Scholar
  85. Mark, H., and R. Sihma: Degradation of long chain molecules. Trans. Faraday Soc. 36, 611–618 (1940).CrossRefGoogle Scholar
  86. Marrinan, H. J., and J. Mann: A study by infra-red spectroscopy of hydrogen bonding in cellulose. J. Appl. Chem. (Lond.) 4, 204–211 (1954).CrossRefGoogle Scholar
  87. Martin, A. R., L. Smith, R. L. Whistler and M. Harris: Estimation of aldehyde groups in hydrocellulose from cotton. J. Res. Nat. Bur. Stand. 27, 449–457 (1941).Google Scholar
  88. Marx, M., u. G. V. Schulz: Über den Polymerisationsgrad nativer Cellulosen. Papier 9, 13–16 (1955).Google Scholar
  89. Mc Burney, L. F.: Oxydative degradation of cellulose. In: E. Ott, H. M. Spurlin and M. W. Grafflin, Cellulose and cellulose derivatives, 2. Aufl., Bd. I, S. 140–167. New York u. London: Interscience 1954.Google Scholar
  90. Mc Ilroy, R. L.: The hemicellulose of Phormium tenax (N. Z. Flax). Part II. The constitution of the aldotriuronic acid. J. Chem. Soc. (Lond.) 1949, 121–124.Google Scholar
  91. Mc Ilroy, R. L., G. S. Holmes and R. P. Manger: A preliminary study of the polyuronide hemicellulose of Phormium tenax (N. Z. Flax). J. Chem. Soc. (Lond.) 1945, 796–799.Google Scholar
  92. Mc Pherson, J., and B. G. Rånby: The isolation and analysis of an acidic xylan from a chemical grade sulphite pulp (spruce). Acta chem. scand. (Copenh.) 11 (1957).Google Scholar
  93. Meller, A.: Studies on modified cellulose. IV. Oxidation by chlorous acid and reduction by sodium borohydride of chemically modified celluloses. Tappi (U.S.A.) 38, 682–687 (1955).Google Scholar
  94. The question of the existence of weak links in the cellulose molecule. Holzforsch. 9, 149–153 (1956).Google Scholar
  95. Morrison, J. L., W. Boyd Campbell and O. Maass: The heats of wetting of cellulose by alcohols and their aqueous solutions. Canad. J. Res., Sect. B 15, 447–456 (1937).CrossRefGoogle Scholar
  96. Mosimann, H., u. T. Svedberg: Sedimentations- und Diffusionsmessungen am wasserlöslichen Polysaccharid aus Lärchenholz. Kolloid-Z. 100, 99–105 (1942).CrossRefGoogle Scholar
  97. Mühlethaler, K.: Elektronenmikroskopische Untersuchungen an pflanzlichen Geweben. Z. Zellforsch. 38, 299–327 (1953).PubMedCrossRefGoogle Scholar
  98. Mukherjee, S. M., and H. J. Woods: X-ray and electron-microscope studies of the degradation of cellulose by sulfuric acid. Biochim. et Biophysica Acta 10, 499–511 (1953).CrossRefGoogle Scholar
  99. Nickerson, R. F.: The relative crystallinity of celluloses. Adv. Carbohydrate Chem. 5, 103–126 (1950).CrossRefGoogle Scholar
  100. Pacsu, E.: Recent developments in the structural problem of cellulose. Fortschr. Chem. organ. Naturstoffe 5, 128–174 (1948).Google Scholar
  101. Pacsu, E., and L. A. Hiller jr.: Cellulose studies. IV. The chemical structure of cellulose and starch. Textile Res. J. 16, 243–248 (1946).CrossRefGoogle Scholar
  102. Polglase, W. J.: Polysaccharides associated with wood cellulose. Adv. Carbohydrate Chem. 10, 283–333 (1955).CrossRefGoogle Scholar
  103. Preston, R. D.: Fibrillar units in the structure of native cellulose. Discuss. Faraday Soc. 11, 165–170 (1951).CrossRefGoogle Scholar
  104. Purves, C. B.: Chemically modified cellulose. In: L. E. Wise and E. C. Jahn, Wood cellulose, 2. Aufl., Bd. I, S. 162–225. New York: Reinhold 1952.Google Scholar
  105. Rånby, B. G.: The colloidal properties of cellulose micelles. Discuss. Faraday Soc. 11, 158–165 (1951).CrossRefGoogle Scholar
  106. The mercerisation of cellulose. I-III. Acta chem. scand. (Copenh.) 6, 101–138 (1952a).Google Scholar
  107. The physical characteristics of α-, β-, and γ-cellulose. Svensk Papperstidning 55, 115–124 (1952b).Google Scholar
  108. Fine structure and reactions of native cellulose. Diss. Uppsala 1952c.Google Scholar
  109. Über die Feinstruktur der nativen Cellulosefasern. Makromolekulare Chem. 13, 40–52 (1954).Google Scholar
  110. Rånby, B. G., B. Immergut and K. Rosengren: Isolation and analysis of glucomannans from spruce wood and lily bulbs. Acta chem. scand. (Copenh.) 11 (1957).Google Scholar
  111. Rånby, B. G., u. H. F. Mark: The mercerization of cellulose. IV. Phase transition studies on technical wood pulps and cotton linters. Svensk Papperstidning 58, 374–382 (1955).Google Scholar
  112. Rees, W. H.: The heat of absorption of water by cellulose. Shirley Inst. Memoirs 21, 333–349 (1947).Google Scholar
  113. Reeves, R. E.: Cuprammonium-gtycoside complexes. Adv. Carbohydrate Chem. 6, 107–134 (1951).CrossRefGoogle Scholar
  114. Roelofsen, P. A., V. C. Dalitz and C. F. Wijnman: Constitution, submicroscopic structure, and degree of crystallinity in the cell wall of Halicystis osterhoutii. Biochim. et Biophysica Acta 11, 344–352 (1953).CrossRefGoogle Scholar
  115. Rollins, M. L.: Some aspects of microscopy in cellulose research. Analyt. Chem. 26, 718–724 (1954).CrossRefGoogle Scholar
  116. Rowen, J. W., and E. K. Plyler: Effect of deuteriation, oxidation, and hydrogen-bonding on the infrared spectrum of cellulose. J. Res. Nat. Bur. Stand. 44, 313–319 (1950).Google Scholar
  117. Saarnio, J., K. Wathén and C. Gustafsson: Structure of an acidic xylan isolated from birch wood holocellulose. Acta chem. scand (Copenh.) 8, 825–828 (1954). Vgl. Paperi ja Puu 36, 209–211 (1954).CrossRefGoogle Scholar
  118. Samuelson, O., u. A. Wennerblom: Degradation of cellulose by alkali cooking. I. Formation of carboxyl groups. Svensk Papperstidning 57, 827–830 (1954).Google Scholar
  119. Scheurch, C.: The solvent properties of liquids and their relation to the solubility, swelling, isolation and fractionation of lignin. J. Amer. Chem. Soc. 74, 5061–5067 (1952).CrossRefGoogle Scholar
  120. Schoettler, J. R.: The alkali resistance of the pentosans in aspenwood. Tappi (U.S.A.) 37, 686–694 (1954).Google Scholar
  121. Schulz, G. V.: Die Kinetik des Celluloseabbaus und die langperiodische Struktur des Cellulosemoleküls. J. Polymer Sci. 3, 365–370 (1948).CrossRefGoogle Scholar
  122. Schulz, G. V., u. E. Husemann: Über die Verteilung der Molekulargewichte in abgebauten Cellulosen und ein periodisches Aufbauprinzip im Cellulosemolekül. Z. physik. Chem. B 52, 23–60 (1940).Google Scholar
  123. Schulz, G. V., u. M. Marx: Über Molekulargewichte und Molekulargewichtsverteilungen nativer Cellulosen. Makromolekulare Chem. 14, 52–95 (1954).CrossRefGoogle Scholar
  124. Sharples, A.: Weak bonds in cotton cellulose. Chem. a. Ind. 1953, 870–871.Google Scholar
  125. Hydrolysis of cellulose. II. Acid-sensitive linkages in Egyptian cotton. J. Polymer Sci. 14, 95–104 (1954).Google Scholar
  126. Shirk, H. G., and G. A. Greathouse: Infrared spectra of bacterial cellulose. Analyt. Chem. 24, 1774–1775 (1952).CrossRefGoogle Scholar
  127. Sippel, A.: Zur Frage der Cellulosemodifikationen. I u. II. Kolloid-Z. 119, 42–45 (1950); 122, 20–23 (1951).CrossRefGoogle Scholar
  128. Sisson, W. A., and G. L. Clark: X-ray method for quantitative comparison of crystallite orientation in cellulose fibers. Industr. Engin. Chem., Analyt. Edit. 5, 296–300 (i933).CrossRefGoogle Scholar
  129. Stamm, A. J., and W. E. Cohen: The viscosity of cellulose in phosphoric acid solutions. J. of Phys. Chem. 42, 921–933 (1938).CrossRefGoogle Scholar
  130. Staudinger, H. u. F. Reinecke: Der Polymerisationsgrad von Cellulosen verschiedener Typen. Holz als Roh- u. Werkstoff 2, 321–323 (1939).CrossRefGoogle Scholar
  131. Steinmann, H. W., and B. B. White: Mannan in purified wood pulps and its relation to cellulose acetate properties. Tappi (U.S.A.) 37, 225–232 (1954).Google Scholar
  132. Sundman, J., J. Saarnio and C. Gustafsson: Investigation of the carbohydrate composition of some kinds of wood by paper chromatography. Finnish Paper Timber J. 31, 467–471 (1949).Google Scholar
  133. Thompson, J. O., J. J. Becher and L. E. Wise: A physicochemical study of a water-soluble polysaccharide from Douglas fir (Pseudotsuga taxifolia). Tappi (U.S.A.) 36, 319–324 (1953).Google Scholar
  134. Timell, T.: Studies on cellulose reactions. Ingeniörsvetenskapsakademiens Handlingar Nr 205. Stockholm 1950.Google Scholar
  135. Timell, T. E.: Fractional precipitation as a method for estimating the chain-length distribution of high-molecular weight celluloses. Svensk Papperstidning 58, 1–9 (1955a).Google Scholar
  136. Chain length and chain-length distribution of untreated cotton, flax and ramie celluloses. Industr. Engin. Chem. 47. 2166–2172 (1955b).Google Scholar
  137. Chain length and chain-length distribution of native white spruce cellulose. Pulp Paper Mag. Canada 56, 104–114 (1955c).Google Scholar
  138. Treiber, E.: Der übermolekulare Aufbau der Cellulose. Protoplasma 40, 166–186, 367–396 (1951).CrossRefGoogle Scholar
  139. Urquhart, A. R., and N. Eckersall: The adsorption of water by rayon. J. Textile Inst. 23, T163–T168 (1932).CrossRefGoogle Scholar
  140. Vogel, A.: Zur Feinstruktur von Ramie. Makromolekulare Chem. 11, 111–130 (1953).CrossRefGoogle Scholar
  141. Wadman, W. H., A. B. Anderson and W. Z. Hassid: The structure of arabogalactan from Jeffrey pine (Pinus Jeffreyi). J. Amer. Chem. Soc. 76, 4097–4101 (1954).CrossRefGoogle Scholar
  142. Wardrop, A. B.: The fine structure of Conifer tracheids. Holzforsch. 8, 12–29 (1954).CrossRefGoogle Scholar
  143. Whistler, R. L.: Xylan. Adv. Carbohydrate Chem. 5, 269–290 (1950).CrossRefGoogle Scholar
  144. Whistler, R. L., and C. C. Tu: Isolation and properties of a series of crystalline oligosaccharides from xylan. J. Amer. Chem. Soc. 74, 3609–3612 (1952).CrossRefGoogle Scholar
  145. White, E. V.: The constitution of arabo-galactan. IV. The structure of the repeating unit. J. Amer. Chem. Soc. 64, 2838–2842 (1942).CrossRefGoogle Scholar
  146. Wilson, W. K.: Determination of aldehyde in cellulose. A review of methods. Tappi (U.S.A.) 38, 274–279 (1955).Google Scholar
  147. Wise, L. E.: The hemicelluloses. In: L. E. Wise and E. C. Jahn, Wood chemistry, 2. Aufl., Bd. I, S. 369–408. New York: Reinhold 1952.Google Scholar
  148. Wise, L. E., and F. C. Peterson: The chemistry of wood. II. Water-soluble polysaccharides of Western larch wood. Industr. Engin. Chem. 22, 362–365 (1930).CrossRefGoogle Scholar
  149. Wise, L. E., and E. K. Ratliff: Quantitative isolation of hemicelluloses and the summative analysis of wood. Analyt. Chem. 19, 459–462 (1947).CrossRefGoogle Scholar
  150. Wise, L. E., E. K. Ratliff and B. L. Browning: Determination of mannose. Mannans in hardwoods. Analyt. Chem. 20, 825–828 (1948).CrossRefGoogle Scholar
  151. Yundt, A. P.: Crystalline hemicelluloses. I. Crystalline and amorphous xylan from barley straw. II. Crystalline xylan from paper birch. III. Acid and enzymatic hydrolysis of xylans. Tappi (U.S.A.) 34, 89–94 (1951).Google Scholar

Copyright information

© Springer-Verlag oHG. Berlin · Göttingen · Heidelberg 1958

Authors and Affiliations

  • Bengt G. Rånby

There are no affiliations available

Personalised recommendations